|
| 1 | +# original source: |
| 2 | +# https://github.com/AminRezaei0x443/memory-efficient-attention/blob/1bc0d9e6ac5f82ea43a375135c4e1d3896ee1694/memory_efficient_attention/attention_torch.py |
| 3 | +# license: |
| 4 | +# unspecified |
| 5 | +# credit: |
| 6 | +# Amin Rezaei (original author) |
| 7 | +# Alex Birch (optimized algorithm for 3D tensors, at the expense of removing bias, masking and callbacks) |
| 8 | +# implementation of: |
| 9 | +# Self-attention Does Not Need O(n2) Memory": |
| 10 | +# https://arxiv.org/abs/2112.05682v2 |
| 11 | + |
| 12 | +from functools import partial |
| 13 | +import torch |
| 14 | +from torch import Tensor |
| 15 | +from torch.utils.checkpoint import checkpoint |
| 16 | +import math |
| 17 | +from typing import Optional, NamedTuple, Protocol, List |
| 18 | + |
| 19 | +def dynamic_slice( |
| 20 | + x: Tensor, |
| 21 | + starts: List[int], |
| 22 | + sizes: List[int], |
| 23 | +) -> Tensor: |
| 24 | + slicing = [slice(start, start + size) for start, size in zip(starts, sizes)] |
| 25 | + return x[slicing] |
| 26 | + |
| 27 | +class AttnChunk(NamedTuple): |
| 28 | + exp_values: Tensor |
| 29 | + exp_weights_sum: Tensor |
| 30 | + max_score: Tensor |
| 31 | + |
| 32 | +class SummarizeChunk(Protocol): |
| 33 | + @staticmethod |
| 34 | + def __call__( |
| 35 | + query: Tensor, |
| 36 | + key: Tensor, |
| 37 | + value: Tensor, |
| 38 | + ) -> AttnChunk: ... |
| 39 | + |
| 40 | +def _query_chunk_attention( |
| 41 | + query: Tensor, |
| 42 | + key: Tensor, |
| 43 | + value: Tensor, |
| 44 | + key_chunk_size: Optional[int] = None, |
| 45 | + use_checkpoint = True, |
| 46 | +): |
| 47 | + batch_x_heads, k_tokens, k_channels_per_head = key.shape |
| 48 | + _, _, v_channels_per_head = value.shape |
| 49 | + key_chunk_size = min(key_chunk_size or int(math.sqrt(k_tokens)), k_tokens) |
| 50 | + scale = k_channels_per_head ** -0.5 |
| 51 | + |
| 52 | + def summarize_chunk( |
| 53 | + query: Tensor, |
| 54 | + key: Tensor, |
| 55 | + value: Tensor, |
| 56 | + ) -> AttnChunk: |
| 57 | + attn_weights = torch.baddbmm( |
| 58 | + torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), |
| 59 | + query, |
| 60 | + key.transpose(1,2), |
| 61 | + alpha=scale, |
| 62 | + beta=0, |
| 63 | + ) |
| 64 | + max_score, _ = torch.max(attn_weights, -1, keepdim=True) |
| 65 | + max_score = max_score.detach() |
| 66 | + exp_weights = torch.exp(attn_weights - max_score) |
| 67 | + exp_values = torch.bmm(exp_weights, value) |
| 68 | + max_score = max_score.squeeze(-1) |
| 69 | + return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score) |
| 70 | + summarizer: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk |
| 71 | + |
| 72 | + def chunk_scanner(chunk_idx: int) -> AttnChunk: |
| 73 | + key_chunk = dynamic_slice( |
| 74 | + key, |
| 75 | + (0, chunk_idx, 0), |
| 76 | + (batch_x_heads, key_chunk_size, k_channels_per_head) |
| 77 | + ) |
| 78 | + value_chunk = dynamic_slice( |
| 79 | + value, |
| 80 | + (0, chunk_idx, 0), |
| 81 | + (batch_x_heads, key_chunk_size, v_channels_per_head) |
| 82 | + ) |
| 83 | + |
| 84 | + return summarizer(query, key_chunk, value_chunk) |
| 85 | + |
| 86 | + chunks: List[AttnChunk] = [ |
| 87 | + chunk_scanner(chunk) for chunk in torch.arange(0, k_tokens, key_chunk_size) |
| 88 | + ] |
| 89 | + acc_chunk = AttnChunk(*map(torch.stack, zip(*chunks))) |
| 90 | + chunk_values, chunk_weights, chunk_max = acc_chunk |
| 91 | + |
| 92 | + global_max, _ = torch.max(chunk_max, 0, keepdim=True) |
| 93 | + max_diffs = torch.exp(chunk_max - global_max) |
| 94 | + chunk_values *= torch.unsqueeze(max_diffs, -1) |
| 95 | + chunk_weights *= max_diffs |
| 96 | + |
| 97 | + all_values = chunk_values.sum(dim=0) |
| 98 | + all_weights = torch.unsqueeze(chunk_weights, -1).sum(dim=0) |
| 99 | + return all_values / all_weights |
| 100 | + |
| 101 | +class ScannedChunk(NamedTuple): |
| 102 | + chunk_idx: int |
| 103 | + attn_chunk: AttnChunk |
| 104 | + |
| 105 | +def efficient_dot_product_attention( |
| 106 | + query: Tensor, |
| 107 | + key: Tensor, |
| 108 | + value: Tensor, |
| 109 | + query_chunk_size=1024, |
| 110 | + key_chunk_size: Optional[int] = None, |
| 111 | + use_checkpoint=True, |
| 112 | +): |
| 113 | + """Computes efficient dot-product attention given query, key, and value. |
| 114 | + This is efficient version of attention presented in |
| 115 | + https://arxiv.org/abs/2112.05682v2 which comes with O(sqrt(n)) memory requirements. |
| 116 | + Args: |
| 117 | + query: queries for calculating attention with shape of |
| 118 | + `[batch * num_heads, tokens, channels_per_head]`. |
| 119 | + key: keys for calculating attention with shape of |
| 120 | + `[batch * num_heads, tokens, channels_per_head]`. |
| 121 | + value: values to be used in attention with shape of |
| 122 | + `[batch * num_heads, tokens, channels_per_head]`. |
| 123 | + query_chunk_size: int: query chunks size |
| 124 | + key_chunk_size: int: key chunks size |
| 125 | + use_checkpoint: bool: whether to use checkpointing (recommended True for training, False for inference) |
| 126 | + Returns: |
| 127 | + Output of shape `[batch * num_heads, query_tokens, channels_per_head]`. |
| 128 | + """ |
| 129 | + batch_x_heads, q_tokens, q_channels_per_head = query.shape |
| 130 | + |
| 131 | + def chunk_scanner(chunk_idx: int) -> Tensor: |
| 132 | + query_chunk = dynamic_slice( |
| 133 | + query, |
| 134 | + (0, chunk_idx, 0), |
| 135 | + (batch_x_heads, min(query_chunk_size, q_tokens), q_channels_per_head) |
| 136 | + ) |
| 137 | + |
| 138 | + return _query_chunk_attention( |
| 139 | + query_chunk, |
| 140 | + key, |
| 141 | + value, |
| 142 | + key_chunk_size=key_chunk_size, |
| 143 | + use_checkpoint=use_checkpoint, |
| 144 | + ) |
| 145 | + |
| 146 | + res = torch.cat([ |
| 147 | + chunk_scanner(i * query_chunk_size) for i in range(math.ceil(q_tokens / query_chunk_size)) |
| 148 | + ], dim=1) |
| 149 | + return res |
0 commit comments