Skip to content

Commit c26732f

Browse files
committed
1 parent 67d011b commit c26732f

File tree

4 files changed

+138
-19
lines changed

4 files changed

+138
-19
lines changed

modules/processing.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -360,7 +360,7 @@ def infotext(iteration=0, position_in_batch=0):
360360
#c = p.sd_model.get_learned_conditioning(prompts)
361361
with devices.autocast():
362362
uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps)
363-
c = prompt_parser.get_learned_conditioning(shared.sd_model, prompts, p.steps)
363+
c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps)
364364

365365
if len(model_hijack.comments) > 0:
366366
for comment in model_hijack.comments:

modules/prompt_parser.py

+108-6
Original file line numberDiff line numberDiff line change
@@ -97,10 +97,26 @@ def get_schedule(prompt):
9797

9898

9999
ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"])
100-
ScheduledPromptBatch = namedtuple("ScheduledPromptBatch", ["shape", "schedules"])
101100

102101

103102
def get_learned_conditioning(model, prompts, steps):
103+
"""converts a list of prompts into a list of prompt schedules - each schedule is a list of ScheduledPromptConditioning, specifying the comdition (cond),
104+
and the sampling step at which this condition is to be replaced by the next one.
105+
106+
Input:
107+
(model, ['a red crown', 'a [blue:green:5] jeweled crown'], 20)
108+
109+
Output:
110+
[
111+
[
112+
ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0523, ..., -0.4901, -0.3066, 0.0674], ..., [ 0.3317, -0.5102, -0.4066, ..., 0.4119, -0.7647, -1.0160]], device='cuda:0'))
113+
],
114+
[
115+
ScheduledPromptConditioning(end_at_step=5, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.0192, 0.3867, -0.4644, ..., 0.1135, -0.3696, -0.4625]], device='cuda:0')),
116+
ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.7352, -0.4356, -0.7888, ..., 0.6994, -0.4312, -1.2593]], device='cuda:0'))
117+
]
118+
]
119+
"""
104120
res = []
105121

106122
prompt_schedules = get_learned_conditioning_prompt_schedules(prompts, steps)
@@ -123,13 +139,75 @@ def get_learned_conditioning(model, prompts, steps):
123139
cache[prompt] = cond_schedule
124140
res.append(cond_schedule)
125141

126-
return ScheduledPromptBatch((len(prompts),) + res[0][0].cond.shape, res)
142+
return res
143+
144+
145+
re_AND = re.compile(r"\bAND\b")
146+
re_weight = re.compile(r"^(.*?)(?:\s*:\s*([-+]?\s*(?:\d+|\d*\.\d+)?))?\s*$")
147+
148+
149+
def get_multicond_prompt_list(prompts):
150+
res_indexes = []
151+
152+
prompt_flat_list = []
153+
prompt_indexes = {}
154+
155+
for prompt in prompts:
156+
subprompts = re_AND.split(prompt)
157+
158+
indexes = []
159+
for subprompt in subprompts:
160+
text, weight = re_weight.search(subprompt).groups()
161+
162+
weight = float(weight) if weight is not None else 1.0
163+
164+
index = prompt_indexes.get(text, None)
165+
if index is None:
166+
index = len(prompt_flat_list)
167+
prompt_flat_list.append(text)
168+
prompt_indexes[text] = index
169+
170+
indexes.append((index, weight))
171+
172+
res_indexes.append(indexes)
173+
174+
return res_indexes, prompt_flat_list, prompt_indexes
175+
176+
177+
class ComposableScheduledPromptConditioning:
178+
def __init__(self, schedules, weight=1.0):
179+
self.schedules: list[ScheduledPromptConditioning] = schedules
180+
self.weight: float = weight
181+
182+
183+
class MulticondLearnedConditioning:
184+
def __init__(self, shape, batch):
185+
self.shape: tuple = shape # the shape field is needed to send this object to DDIM/PLMS
186+
self.batch: list[list[ComposableScheduledPromptConditioning]] = batch
127187

128188

129-
def reconstruct_cond_batch(c: ScheduledPromptBatch, current_step):
130-
param = c.schedules[0][0].cond
131-
res = torch.zeros(c.shape, device=param.device, dtype=param.dtype)
132-
for i, cond_schedule in enumerate(c.schedules):
189+
def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning:
190+
"""same as get_learned_conditioning, but returns a list of ScheduledPromptConditioning along with the weight objects for each prompt.
191+
For each prompt, the list is obtained by splitting the prompt using the AND separator.
192+
193+
https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/
194+
"""
195+
196+
res_indexes, prompt_flat_list, prompt_indexes = get_multicond_prompt_list(prompts)
197+
198+
learned_conditioning = get_learned_conditioning(model, prompt_flat_list, steps)
199+
200+
res = []
201+
for indexes in res_indexes:
202+
res.append([ComposableScheduledPromptConditioning(learned_conditioning[i], weight) for i, weight in indexes])
203+
204+
return MulticondLearnedConditioning(shape=(len(prompts),), batch=res)
205+
206+
207+
def reconstruct_cond_batch(c: list[list[ScheduledPromptConditioning]], current_step):
208+
param = c[0][0].cond
209+
res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype)
210+
for i, cond_schedule in enumerate(c):
133211
target_index = 0
134212
for current, (end_at, cond) in enumerate(cond_schedule):
135213
if current_step <= end_at:
@@ -140,6 +218,30 @@ def reconstruct_cond_batch(c: ScheduledPromptBatch, current_step):
140218
return res
141219

142220

221+
def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step):
222+
param = c.batch[0][0].schedules[0].cond
223+
224+
tensors = []
225+
conds_list = []
226+
227+
for batch_no, composable_prompts in enumerate(c.batch):
228+
conds_for_batch = []
229+
230+
for cond_index, composable_prompt in enumerate(composable_prompts):
231+
target_index = 0
232+
for current, (end_at, cond) in enumerate(composable_prompt.schedules):
233+
if current_step <= end_at:
234+
target_index = current
235+
break
236+
237+
conds_for_batch.append((len(tensors), composable_prompt.weight))
238+
tensors.append(composable_prompt.schedules[target_index].cond)
239+
240+
conds_list.append(conds_for_batch)
241+
242+
return conds_list, torch.stack(tensors).to(device=param.device, dtype=param.dtype)
243+
244+
143245
re_attention = re.compile(r"""
144246
\\\(|
145247
\\\)|

modules/sd_samplers.py

+25-10
Original file line numberDiff line numberDiff line change
@@ -109,9 +109,12 @@ def number_of_needed_noises(self, p):
109109
return 0
110110

111111
def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs):
112-
cond = prompt_parser.reconstruct_cond_batch(cond, self.step)
112+
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
113113
unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
114114

115+
assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers'
116+
cond = tensor
117+
115118
if self.mask is not None:
116119
img_orig = self.sampler.model.q_sample(self.init_latent, ts)
117120
x_dec = img_orig * self.mask + self.nmask * x_dec
@@ -183,19 +186,31 @@ def __init__(self, model):
183186
self.step = 0
184187

185188
def forward(self, x, sigma, uncond, cond, cond_scale):
186-
cond = prompt_parser.reconstruct_cond_batch(cond, self.step)
189+
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
187190
uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
188191

192+
batch_size = len(conds_list)
193+
repeats = [len(conds_list[i]) for i in range(batch_size)]
194+
195+
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
196+
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
197+
cond_in = torch.cat([tensor, uncond])
198+
189199
if shared.batch_cond_uncond:
190-
x_in = torch.cat([x] * 2)
191-
sigma_in = torch.cat([sigma] * 2)
192-
cond_in = torch.cat([uncond, cond])
193-
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
194-
denoised = uncond + (cond - uncond) * cond_scale
200+
x_out = self.inner_model(x_in, sigma_in, cond=cond_in)
195201
else:
196-
uncond = self.inner_model(x, sigma, cond=uncond)
197-
cond = self.inner_model(x, sigma, cond=cond)
198-
denoised = uncond + (cond - uncond) * cond_scale
202+
x_out = torch.zeros_like(x_in)
203+
for batch_offset in range(0, x_out.shape[0], batch_size):
204+
a = batch_offset
205+
b = a + batch_size
206+
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=cond_in[a:b])
207+
208+
denoised_uncond = x_out[-batch_size:]
209+
denoised = torch.clone(denoised_uncond)
210+
211+
for i, conds in enumerate(conds_list):
212+
for cond_index, weight in conds:
213+
denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
199214

200215
if self.mask is not None:
201216
denoised = self.init_latent * self.mask + self.nmask * denoised

modules/ui.py

+4-2
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@
3434
import modules.codeformer_model
3535
import modules.styles
3636
import modules.generation_parameters_copypaste
37-
from modules.prompt_parser import get_learned_conditioning_prompt_schedules
37+
from modules import prompt_parser
3838
from modules.images import apply_filename_pattern, get_next_sequence_number
3939
import modules.textual_inversion.ui
4040

@@ -394,7 +394,9 @@ def copy_seed(gen_info_string: str, index):
394394

395395
def update_token_counter(text, steps):
396396
try:
397-
prompt_schedules = get_learned_conditioning_prompt_schedules([text], steps)
397+
_, prompt_flat_list, _ = prompt_parser.get_multicond_prompt_list([text])
398+
prompt_schedules = prompt_parser.get_learned_conditioning_prompt_schedules(prompt_flat_list, steps)
399+
398400
except Exception:
399401
# a parsing error can happen here during typing, and we don't want to bother the user with
400402
# messages related to it in console

0 commit comments

Comments
 (0)