-
Notifications
You must be signed in to change notification settings - Fork 6k
/
Copy pathtest_llm.py
966 lines (786 loc) Β· 34.4 KB
/
test_llm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
import copy
import tempfile
from pathlib import Path
from unittest.mock import MagicMock, patch
import pytest
from litellm import PromptTokensDetails
from litellm.exceptions import (
RateLimitError,
)
from openhands.core.config import LLMConfig
from openhands.core.exceptions import LLMNoResponseError, OperationCancelled
from openhands.core.message import Message, TextContent
from openhands.llm.llm import LLM
from openhands.llm.metrics import Metrics, TokenUsage
@pytest.fixture(autouse=True)
def mock_logger(monkeypatch):
# suppress logging of completion data to file
mock_logger = MagicMock()
monkeypatch.setattr('openhands.llm.debug_mixin.llm_prompt_logger', mock_logger)
monkeypatch.setattr('openhands.llm.debug_mixin.llm_response_logger', mock_logger)
monkeypatch.setattr('openhands.llm.llm.logger', mock_logger)
return mock_logger
@pytest.fixture
def default_config():
return LLMConfig(
model='gpt-4o',
api_key='test_key',
num_retries=2,
retry_min_wait=1,
retry_max_wait=2,
)
def test_llm_init_with_default_config(default_config):
llm = LLM(default_config)
assert llm.config.model == 'gpt-4o'
assert llm.config.api_key.get_secret_value() == 'test_key'
assert isinstance(llm.metrics, Metrics)
assert llm.metrics.model_name == 'gpt-4o'
def test_token_usage_add():
"""Test that TokenUsage instances can be added together."""
# Create two TokenUsage instances
usage1 = TokenUsage(
model='model1',
prompt_tokens=10,
completion_tokens=5,
cache_read_tokens=3,
cache_write_tokens=2,
response_id='response-1',
)
usage2 = TokenUsage(
model='model2',
prompt_tokens=8,
completion_tokens=6,
cache_read_tokens=2,
cache_write_tokens=4,
response_id='response-2',
)
# Add them together
combined = usage1 + usage2
# Verify the result
assert combined.model == 'model1' # Should keep the model from the first instance
assert combined.prompt_tokens == 18 # 10 + 8
assert combined.completion_tokens == 11 # 5 + 6
assert combined.cache_read_tokens == 5 # 3 + 2
assert combined.cache_write_tokens == 6 # 2 + 4
assert (
combined.response_id == 'response-1'
) # Should keep the response_id from the first instance
def test_metrics_merge_accumulated_token_usage():
"""Test that accumulated token usage is properly merged between two Metrics instances."""
# Create two Metrics instances
metrics1 = Metrics(model_name='model1')
metrics2 = Metrics(model_name='model2')
# Add token usage to each
metrics1.add_token_usage(10, 5, 3, 2, 'response-1')
metrics2.add_token_usage(8, 6, 2, 4, 'response-2')
# Verify initial accumulated token usage
metrics1_data = metrics1.get()
accumulated1 = metrics1_data['accumulated_token_usage']
assert accumulated1['prompt_tokens'] == 10
assert accumulated1['completion_tokens'] == 5
assert accumulated1['cache_read_tokens'] == 3
assert accumulated1['cache_write_tokens'] == 2
metrics2_data = metrics2.get()
accumulated2 = metrics2_data['accumulated_token_usage']
assert accumulated2['prompt_tokens'] == 8
assert accumulated2['completion_tokens'] == 6
assert accumulated2['cache_read_tokens'] == 2
assert accumulated2['cache_write_tokens'] == 4
# Merge metrics2 into metrics1
metrics1.merge(metrics2)
# Verify merged accumulated token usage
merged_data = metrics1.get()
merged_accumulated = merged_data['accumulated_token_usage']
assert merged_accumulated['prompt_tokens'] == 18 # 10 + 8
assert merged_accumulated['completion_tokens'] == 11 # 5 + 6
assert merged_accumulated['cache_read_tokens'] == 5 # 3 + 2
assert merged_accumulated['cache_write_tokens'] == 6 # 2 + 4
# Verify individual token usage records are maintained
token_usages = merged_data['token_usages']
assert len(token_usages) == 2
assert token_usages[0]['response_id'] == 'response-1'
assert token_usages[1]['response_id'] == 'response-2'
@patch('openhands.llm.llm.litellm.get_model_info')
def test_llm_init_with_model_info(mock_get_model_info, default_config):
mock_get_model_info.return_value = {
'max_input_tokens': 8000,
'max_output_tokens': 2000,
}
llm = LLM(default_config)
llm.init_model_info()
assert llm.config.max_input_tokens == 8000
assert llm.config.max_output_tokens == 2000
@patch('openhands.llm.llm.litellm.get_model_info')
def test_llm_init_without_model_info(mock_get_model_info, default_config):
mock_get_model_info.side_effect = Exception('Model info not available')
llm = LLM(default_config)
llm.init_model_info()
assert llm.config.max_input_tokens == 4096
assert llm.config.max_output_tokens == 4096
def test_llm_init_with_custom_config():
custom_config = LLMConfig(
model='custom-model',
api_key='custom_key',
max_input_tokens=5000,
max_output_tokens=1500,
temperature=0.8,
top_p=0.9,
)
llm = LLM(custom_config)
assert llm.config.model == 'custom-model'
assert llm.config.api_key.get_secret_value() == 'custom_key'
assert llm.config.max_input_tokens == 5000
assert llm.config.max_output_tokens == 1500
assert llm.config.temperature == 0.8
assert llm.config.top_p == 0.9
def test_llm_init_with_metrics():
config = LLMConfig(model='gpt-4o', api_key='test_key')
metrics = Metrics()
llm = LLM(config, metrics=metrics)
assert llm.metrics is metrics
assert (
llm.metrics.model_name == 'default'
) # because we didn't specify model_name in Metrics init
@patch('openhands.llm.llm.litellm_completion')
@patch('time.time')
def test_response_latency_tracking(mock_time, mock_litellm_completion):
# Mock time.time() to return controlled values
mock_time.side_effect = [1000.0, 1002.5] # Start time, end time (2.5s difference)
# Mock the completion response with a specific ID
mock_response = {
'id': 'test-response-123',
'choices': [{'message': {'content': 'Test response'}}],
}
mock_litellm_completion.return_value = mock_response
# Create LLM instance and make a completion call
config = LLMConfig(model='gpt-4o', api_key='test_key')
llm = LLM(config)
response = llm.completion(messages=[{'role': 'user', 'content': 'Hello!'}])
# Verify the response latency was tracked correctly
assert len(llm.metrics.response_latencies) == 1
latency_record = llm.metrics.response_latencies[0]
assert latency_record.model == 'gpt-4o'
assert (
latency_record.latency == 2.5
) # Should be the difference between our mocked times
assert latency_record.response_id == 'test-response-123'
# Verify the completion response was returned correctly
assert response['id'] == 'test-response-123'
assert response['choices'][0]['message']['content'] == 'Test response'
# To make sure the metrics fail gracefully, set the start/end time to go backwards.
mock_time.side_effect = [1000.0, 999.0]
llm.completion(messages=[{'role': 'user', 'content': 'Hello!'}])
# There should now be 2 latencies, the last of which has the value clipped to 0
assert len(llm.metrics.response_latencies) == 2
latency_record = llm.metrics.response_latencies[-1]
assert latency_record.latency == 0.0 # Should be lifted to 0 instead of being -1!
def test_llm_reset():
llm = LLM(LLMConfig(model='gpt-4o-mini', api_key='test_key'))
initial_metrics = copy.deepcopy(llm.metrics)
initial_metrics.add_cost(1.0)
initial_metrics.add_response_latency(0.5, 'test-id')
initial_metrics.add_token_usage(10, 5, 3, 2, 'test-id')
llm.reset()
assert llm.metrics.accumulated_cost != initial_metrics.accumulated_cost
assert llm.metrics.costs != initial_metrics.costs
assert llm.metrics.response_latencies != initial_metrics.response_latencies
assert llm.metrics.token_usages != initial_metrics.token_usages
assert isinstance(llm.metrics, Metrics)
# Check that accumulated token usage is reset
metrics_data = llm.metrics.get()
accumulated_usage = metrics_data['accumulated_token_usage']
assert accumulated_usage['prompt_tokens'] == 0
assert accumulated_usage['completion_tokens'] == 0
assert accumulated_usage['cache_read_tokens'] == 0
assert accumulated_usage['cache_write_tokens'] == 0
@patch('openhands.llm.llm.litellm.get_model_info')
def test_llm_init_with_openrouter_model(mock_get_model_info, default_config):
default_config.model = 'openrouter:gpt-4o-mini'
mock_get_model_info.return_value = {
'max_input_tokens': 7000,
'max_output_tokens': 1500,
}
llm = LLM(default_config)
llm.init_model_info()
assert llm.config.max_input_tokens == 7000
assert llm.config.max_output_tokens == 1500
mock_get_model_info.assert_called_once_with('openrouter:gpt-4o-mini')
# Tests involving completion and retries
@patch('openhands.llm.llm.litellm_completion')
def test_completion_with_mocked_logger(
mock_litellm_completion, default_config, mock_logger
):
mock_litellm_completion.return_value = {
'choices': [{'message': {'content': 'Test response'}}]
}
llm = LLM(config=default_config)
response = llm.completion(
messages=[{'role': 'user', 'content': 'Hello!'}],
stream=False,
)
assert response['choices'][0]['message']['content'] == 'Test response'
assert mock_litellm_completion.call_count == 1
mock_logger.debug.assert_called()
@pytest.mark.parametrize(
'exception_class,extra_args,expected_retries',
[
(RateLimitError, {'llm_provider': 'test_provider', 'model': 'test_model'}, 2),
],
)
@patch('openhands.llm.llm.litellm_completion')
def test_completion_retries(
mock_litellm_completion,
default_config,
exception_class,
extra_args,
expected_retries,
):
mock_litellm_completion.side_effect = [
exception_class('Test error message', **extra_args),
{'choices': [{'message': {'content': 'Retry successful'}}]},
]
llm = LLM(config=default_config)
response = llm.completion(
messages=[{'role': 'user', 'content': 'Hello!'}],
stream=False,
)
assert response['choices'][0]['message']['content'] == 'Retry successful'
assert mock_litellm_completion.call_count == expected_retries
@patch('openhands.llm.llm.litellm_completion')
def test_completion_rate_limit_wait_time(mock_litellm_completion, default_config):
with patch('time.sleep') as mock_sleep:
mock_litellm_completion.side_effect = [
RateLimitError(
'Rate limit exceeded', llm_provider='test_provider', model='test_model'
),
{'choices': [{'message': {'content': 'Retry successful'}}]},
]
llm = LLM(config=default_config)
response = llm.completion(
messages=[{'role': 'user', 'content': 'Hello!'}],
stream=False,
)
assert response['choices'][0]['message']['content'] == 'Retry successful'
assert mock_litellm_completion.call_count == 2
mock_sleep.assert_called_once()
wait_time = mock_sleep.call_args[0][0]
assert (
default_config.retry_min_wait <= wait_time <= default_config.retry_max_wait
), f'Expected wait time between {default_config.retry_min_wait} and {default_config.retry_max_wait} seconds, but got {wait_time}'
@patch('openhands.llm.llm.litellm_completion')
def test_completion_operation_cancelled(mock_litellm_completion, default_config):
mock_litellm_completion.side_effect = OperationCancelled('Operation cancelled')
llm = LLM(config=default_config)
with pytest.raises(OperationCancelled):
llm.completion(
messages=[{'role': 'user', 'content': 'Hello!'}],
stream=False,
)
assert mock_litellm_completion.call_count == 1
@patch('openhands.llm.llm.litellm_completion')
def test_completion_keyboard_interrupt(mock_litellm_completion, default_config):
def side_effect(*args, **kwargs):
raise KeyboardInterrupt('Simulated KeyboardInterrupt')
mock_litellm_completion.side_effect = side_effect
llm = LLM(config=default_config)
with pytest.raises(OperationCancelled):
try:
llm.completion(
messages=[{'role': 'user', 'content': 'Hello!'}],
stream=False,
)
except KeyboardInterrupt:
raise OperationCancelled('Operation cancelled due to KeyboardInterrupt')
assert mock_litellm_completion.call_count == 1
@patch('openhands.llm.llm.litellm_completion')
def test_completion_keyboard_interrupt_handler(mock_litellm_completion, default_config):
global _should_exit
def side_effect(*args, **kwargs):
global _should_exit
_should_exit = True
return {'choices': [{'message': {'content': 'Simulated interrupt response'}}]}
mock_litellm_completion.side_effect = side_effect
llm = LLM(config=default_config)
result = llm.completion(
messages=[{'role': 'user', 'content': 'Hello!'}],
stream=False,
)
assert mock_litellm_completion.call_count == 1
assert result['choices'][0]['message']['content'] == 'Simulated interrupt response'
assert _should_exit
_should_exit = False
@patch('openhands.llm.llm.litellm_completion')
def test_completion_retry_with_llm_no_response_error_zero_temp(
mock_litellm_completion, default_config
):
"""
Test that the retry decorator properly handles LLMNoResponseError by:
1. First call to llm_completion uses temperature=0 and throws LLMNoResponseError
2. Second call should have temperature=0.2 and return a successful response
"""
# Define a side effect function that checks the temperature parameter
# and returns different responses based on it
def side_effect(*args, **kwargs):
temperature = kwargs.get('temperature', 0)
# First call with temperature=0 should raise LLMNoResponseError
if temperature == 0:
raise LLMNoResponseError('LLM did not return a response')
else:
return {
'choices': [
{'message': {'content': f'Response with temperature={temperature}'}}
]
}
mock_litellm_completion.side_effect = side_effect
# Create LLM instance and make a completion call
llm = LLM(config=default_config)
response = llm.completion(
messages=[{'role': 'user', 'content': 'Hello!'}],
stream=False,
temperature=0, # Initial temperature is 0
)
# Verify the response after retry
assert (
response['choices'][0]['message']['content'] == 'Response with temperature=1.0'
)
# Verify that litellm_completion was called twice
assert mock_litellm_completion.call_count == 2
# Check the temperature in the first call (should be 0)
first_call_kwargs = mock_litellm_completion.call_args_list[0][1]
assert first_call_kwargs.get('temperature') == 0
# Check the temperature in the second call (should be 1.0)
second_call_kwargs = mock_litellm_completion.call_args_list[1][1]
assert second_call_kwargs.get('temperature') == 1.0
@patch('openhands.llm.llm.litellm_completion')
def test_completion_retry_with_llm_no_response_error_nonzero_temp(
mock_litellm_completion, default_config
):
"""
Test that the retry decorator works for LLMNoResponseError when initial temperature is non-zero,
and keeps the original temperature on retry.
This test verifies that when LLMNoResponseError is raised with a non-zero temperature:
1. The retry mechanism is triggered
2. The temperature remains unchanged (not set to 0.2)
3. After all retries are exhausted, the error is raised
"""
mock_litellm_completion.side_effect = LLMNoResponseError(
'LLM did not return a response'
)
llm = LLM(config=default_config)
with pytest.raises(LLMNoResponseError):
llm.completion(
messages=[{'role': 'user', 'content': 'Hello!'}],
stream=False,
temperature=0.7, # Non-zero temperature
)
# Verify that litellm_completion was called the expected number of times
assert mock_litellm_completion.call_count == default_config.num_retries
# Check that all calls used the original temperature
for call in mock_litellm_completion.call_args_list:
assert call[1].get('temperature') == 0.7
@patch('openhands.llm.llm.litellm.get_model_info')
@patch('openhands.llm.llm.httpx.get')
def test_gemini_25_pro_function_calling(mock_httpx_get, mock_get_model_info):
"""
Test that Gemini 2.5 Pro models have function calling enabled by default.
This includes testing various model name formats with different prefixes.
"""
# Mock the model info response
mock_get_model_info.return_value = {
'max_input_tokens': 8000,
'max_output_tokens': 2000,
}
# Mock the httpx response for litellm proxy
mock_response = MagicMock()
mock_response.json.return_value = {
'data': [
{
'model_name': 'gemini-2.5-pro-preview-03-25',
'model_info': {
'max_input_tokens': 8000,
'max_output_tokens': 2000,
},
}
]
}
mock_httpx_get.return_value = mock_response
# Test cases with model names and expected function calling support
test_cases = [
# Base model names
('gemini-2.5-pro-preview-03-25', True),
('gemini-2.5-pro-exp-03-25', True),
# With gemini/ prefix
('gemini/gemini-2.5-pro-preview-03-25', True),
('gemini/gemini-2.5-pro-exp-03-25', True),
# With litellm_proxy/ prefix
('litellm_proxy/gemini-2.5-pro-preview-03-25', True),
('litellm_proxy/gemini-2.5-pro-exp-03-25', True),
# With openrouter/gemini/ prefix
('openrouter/gemini/gemini-2.5-pro-preview-03-25', True),
('openrouter/gemini/gemini-2.5-pro-exp-03-25', True),
# With litellm_proxy/gemini/ prefix
('litellm_proxy/gemini/gemini-2.5-pro-preview-03-25', True),
('litellm_proxy/gemini/gemini-2.5-pro-exp-03-25', True),
# Control case - a model that shouldn't have function calling
('gemini-1.0-pro', False),
]
for model_name, expected_support in test_cases:
config = LLMConfig(model=model_name, api_key='test_key')
llm = LLM(config)
assert (
llm.is_function_calling_active() == expected_support
), f'Expected function calling support to be {expected_support} for model {model_name}'
@patch('openhands.llm.llm.litellm_completion')
def test_completion_retry_with_llm_no_response_error_nonzero_temp_successful_retry(
mock_litellm_completion, default_config
):
"""
Test that the retry decorator works for LLMNoResponseError with non-zero temperature
and successfully retries while preserving the original temperature.
This test verifies that:
1. First call to llm_completion with temperature=0.7 throws LLMNoResponseError
2. Second call with the same temperature=0.7 returns a successful response
"""
# Define a side effect function that raises LLMNoResponseError on first call
# and returns a successful response on second call
def side_effect(*args, **kwargs):
temperature = kwargs.get('temperature', 0)
if mock_litellm_completion.call_count == 1:
# First call should raise LLMNoResponseError
raise LLMNoResponseError('LLM did not return a response')
else:
# Second call should return a successful response
return {
'choices': [
{
'message': {
'content': f'Successful response with temperature={temperature}'
}
}
]
}
mock_litellm_completion.side_effect = side_effect
# Create LLM instance and make a completion call with non-zero temperature
llm = LLM(config=default_config)
response = llm.completion(
messages=[{'role': 'user', 'content': 'Hello!'}],
stream=False,
temperature=0.7, # Non-zero temperature
)
# Verify the response after retry
assert (
response['choices'][0]['message']['content']
== 'Successful response with temperature=0.7'
)
# Verify that litellm_completion was called twice
assert mock_litellm_completion.call_count == 2
# Check the temperature in the first call (should be 0.7)
first_call_kwargs = mock_litellm_completion.call_args_list[0][1]
assert first_call_kwargs.get('temperature') == 0.7
# Check the temperature in the second call (should still be 0.7)
second_call_kwargs = mock_litellm_completion.call_args_list[1][1]
assert second_call_kwargs.get('temperature') == 0.7
@patch('openhands.llm.llm.litellm_completion')
def test_completion_retry_with_llm_no_response_error_successful_retry(
mock_litellm_completion, default_config
):
"""
Test that the retry decorator works for LLMNoResponseError with zero temperature
and successfully retries with temperature=0.2.
This test verifies that:
1. First call to llm_completion with temperature=0 throws LLMNoResponseError
2. Second call with temperature=0.2 returns a successful response
"""
# Define a side effect function that raises LLMNoResponseError on first call
# and returns a successful response on second call
def side_effect(*args, **kwargs):
temperature = kwargs.get('temperature', 0)
if mock_litellm_completion.call_count == 1:
# First call should raise LLMNoResponseError
raise LLMNoResponseError('LLM did not return a response')
else:
# Second call should return a successful response
return {
'choices': [
{
'message': {
'content': f'Successful response with temperature={temperature}'
}
}
]
}
mock_litellm_completion.side_effect = side_effect
# Create LLM instance and make a completion call with explicit temperature=0
llm = LLM(config=default_config)
response = llm.completion(
messages=[{'role': 'user', 'content': 'Hello!'}],
stream=False,
temperature=0, # Explicitly set temperature to 0
)
# Verify the response after retry
assert (
response['choices'][0]['message']['content']
== 'Successful response with temperature=1.0'
)
# Verify that litellm_completion was called twice
assert mock_litellm_completion.call_count == 2
# Check the temperature in the first call (should be 0)
first_call_kwargs = mock_litellm_completion.call_args_list[0][1]
assert first_call_kwargs.get('temperature') == 0
# Check the temperature in the second call (should be 1.0)
second_call_kwargs = mock_litellm_completion.call_args_list[1][1]
assert second_call_kwargs.get('temperature') == 1.0
@patch('openhands.llm.llm.litellm_completion')
def test_completion_with_litellm_mock(mock_litellm_completion, default_config):
mock_response = {
'choices': [{'message': {'content': 'This is a mocked response.'}}]
}
mock_litellm_completion.return_value = mock_response
test_llm = LLM(config=default_config)
response = test_llm.completion(
messages=[{'role': 'user', 'content': 'Hello!'}],
stream=False,
drop_params=True,
)
# Assertions
assert response['choices'][0]['message']['content'] == 'This is a mocked response.'
mock_litellm_completion.assert_called_once()
# Check if the correct arguments were passed to litellm_completion
call_args = mock_litellm_completion.call_args[1] # Get keyword arguments
assert call_args['model'] == default_config.model
assert call_args['messages'] == [{'role': 'user', 'content': 'Hello!'}]
assert not call_args['stream']
@patch('openhands.llm.llm.litellm_completion')
def test_completion_with_two_positional_args(mock_litellm_completion, default_config):
mock_response = {
'choices': [{'message': {'content': 'Response to positional args.'}}]
}
mock_litellm_completion.return_value = mock_response
test_llm = LLM(config=default_config)
response = test_llm.completion(
'some-model-to-be-ignored',
[{'role': 'user', 'content': 'Hello from positional args!'}],
stream=False,
)
# Assertions
assert (
response['choices'][0]['message']['content'] == 'Response to positional args.'
)
mock_litellm_completion.assert_called_once()
# Check if the correct arguments were passed to litellm_completion
call_args, call_kwargs = mock_litellm_completion.call_args
assert (
call_kwargs['model'] == default_config.model
) # Should use the model from config, not the first arg
assert call_kwargs['messages'] == [
{'role': 'user', 'content': 'Hello from positional args!'}
]
assert not call_kwargs['stream']
# Ensure the first positional argument (model) was ignored
assert (
len(call_args) == 0
) # No positional args should be passed to litellm_completion here
@patch('openhands.llm.llm.litellm.token_counter')
def test_get_token_count_with_dict_messages(mock_token_counter, default_config):
mock_token_counter.return_value = 42
llm = LLM(default_config)
messages = [{'role': 'user', 'content': 'Hello!'}]
token_count = llm.get_token_count(messages)
assert token_count == 42
mock_token_counter.assert_called_once_with(
model=default_config.model, messages=messages, custom_tokenizer=None
)
@patch('openhands.llm.llm.litellm.token_counter')
def test_get_token_count_with_message_objects(
mock_token_counter, default_config, mock_logger
):
llm = LLM(default_config)
# Create a Message object and its equivalent dict
message_obj = Message(role='user', content=[TextContent(text='Hello!')])
message_dict = {'role': 'user', 'content': 'Hello!'}
# Mock token counter to return different values for each call
mock_token_counter.side_effect = [42, 42] # Same value for both cases
# Get token counts for both formats
token_count_obj = llm.get_token_count([message_obj])
token_count_dict = llm.get_token_count([message_dict])
# Verify both formats get the same token count
assert token_count_obj == token_count_dict
assert mock_token_counter.call_count == 2
@patch('openhands.llm.llm.litellm.token_counter')
@patch('openhands.llm.llm.create_pretrained_tokenizer')
def test_get_token_count_with_custom_tokenizer(
mock_create_tokenizer, mock_token_counter, default_config
):
mock_tokenizer = MagicMock()
mock_create_tokenizer.return_value = mock_tokenizer
mock_token_counter.return_value = 42
config = copy.deepcopy(default_config)
config.custom_tokenizer = 'custom/tokenizer'
llm = LLM(config)
messages = [{'role': 'user', 'content': 'Hello!'}]
token_count = llm.get_token_count(messages)
assert token_count == 42
mock_create_tokenizer.assert_called_once_with('custom/tokenizer')
mock_token_counter.assert_called_once_with(
model=config.model, messages=messages, custom_tokenizer=mock_tokenizer
)
@patch('openhands.llm.llm.litellm.token_counter')
def test_get_token_count_error_handling(
mock_token_counter, default_config, mock_logger
):
mock_token_counter.side_effect = Exception('Token counting failed')
llm = LLM(default_config)
messages = [{'role': 'user', 'content': 'Hello!'}]
token_count = llm.get_token_count(messages)
assert token_count == 0
mock_token_counter.assert_called_once()
mock_logger.error.assert_called_once_with(
'Error getting token count for\n model gpt-4o\nToken counting failed'
)
@patch('openhands.llm.llm.litellm_completion')
def test_llm_token_usage(mock_litellm_completion, default_config):
# This mock response includes usage details with prompt_tokens,
# completion_tokens, prompt_tokens_details.cached_tokens, and model_extra.cache_creation_input_tokens
mock_response_1 = {
'id': 'test-response-usage',
'choices': [{'message': {'content': 'Usage test response'}}],
'usage': {
'prompt_tokens': 12,
'completion_tokens': 3,
'prompt_tokens_details': PromptTokensDetails(cached_tokens=2),
'model_extra': {'cache_creation_input_tokens': 5},
},
}
# Create a second usage scenario to test accumulation and a different response_id
mock_response_2 = {
'id': 'test-response-usage-2',
'choices': [{'message': {'content': 'Second usage test response'}}],
'usage': {
'prompt_tokens': 7,
'completion_tokens': 2,
'prompt_tokens_details': PromptTokensDetails(cached_tokens=1),
'model_extra': {'cache_creation_input_tokens': 3},
},
}
# We'll make mock_litellm_completion return these responses in sequence
mock_litellm_completion.side_effect = [mock_response_1, mock_response_2]
llm = LLM(config=default_config)
# First call
llm.completion(messages=[{'role': 'user', 'content': 'Hello usage!'}])
# Verify we have exactly one usage record after first call
token_usage_list = llm.metrics.get()['token_usages']
assert len(token_usage_list) == 1
usage_entry_1 = token_usage_list[0]
assert usage_entry_1['prompt_tokens'] == 12
assert usage_entry_1['completion_tokens'] == 3
assert usage_entry_1['cache_read_tokens'] == 2
assert usage_entry_1['cache_write_tokens'] == 5
assert usage_entry_1['response_id'] == 'test-response-usage'
# Second call
llm.completion(messages=[{'role': 'user', 'content': 'Hello again!'}])
# Now we expect two usage records total
token_usage_list = llm.metrics.get()['token_usages']
assert len(token_usage_list) == 2
usage_entry_2 = token_usage_list[-1]
assert usage_entry_2['prompt_tokens'] == 7
assert usage_entry_2['completion_tokens'] == 2
assert usage_entry_2['cache_read_tokens'] == 1
assert usage_entry_2['cache_write_tokens'] == 3
assert usage_entry_2['response_id'] == 'test-response-usage-2'
@patch('openhands.llm.llm.litellm_completion')
def test_accumulated_token_usage(mock_litellm_completion, default_config):
"""Test that token usage is properly accumulated across multiple LLM calls."""
# Mock responses with token usage information
mock_response_1 = {
'id': 'test-response-1',
'choices': [{'message': {'content': 'First response'}}],
'usage': {
'prompt_tokens': 10,
'completion_tokens': 5,
'prompt_tokens_details': PromptTokensDetails(cached_tokens=3),
'model_extra': {'cache_creation_input_tokens': 4},
},
}
mock_response_2 = {
'id': 'test-response-2',
'choices': [{'message': {'content': 'Second response'}}],
'usage': {
'prompt_tokens': 8,
'completion_tokens': 6,
'prompt_tokens_details': PromptTokensDetails(cached_tokens=2),
'model_extra': {'cache_creation_input_tokens': 3},
},
}
# Set up the mock to return these responses in sequence
mock_litellm_completion.side_effect = [mock_response_1, mock_response_2]
# Create LLM instance
llm = LLM(config=default_config)
# First call
llm.completion(messages=[{'role': 'user', 'content': 'First message'}])
# Check accumulated token usage after first call
metrics_data = llm.metrics.get()
accumulated_usage = metrics_data['accumulated_token_usage']
assert accumulated_usage['prompt_tokens'] == 10
assert accumulated_usage['completion_tokens'] == 5
assert accumulated_usage['cache_read_tokens'] == 3
assert accumulated_usage['cache_write_tokens'] == 4
# Second call
llm.completion(messages=[{'role': 'user', 'content': 'Second message'}])
# Check accumulated token usage after second call
metrics_data = llm.metrics.get()
accumulated_usage = metrics_data['accumulated_token_usage']
# Values should be the sum of both calls
assert accumulated_usage['prompt_tokens'] == 18 # 10 + 8
assert accumulated_usage['completion_tokens'] == 11 # 5 + 6
assert accumulated_usage['cache_read_tokens'] == 5 # 3 + 2
assert accumulated_usage['cache_write_tokens'] == 7 # 4 + 3
# Verify individual token usage records are still maintained
token_usages = metrics_data['token_usages']
assert len(token_usages) == 2
# First record
assert token_usages[0]['prompt_tokens'] == 10
assert token_usages[0]['completion_tokens'] == 5
assert token_usages[0]['cache_read_tokens'] == 3
assert token_usages[0]['cache_write_tokens'] == 4
assert token_usages[0]['response_id'] == 'test-response-1'
# Second record
assert token_usages[1]['prompt_tokens'] == 8
assert token_usages[1]['completion_tokens'] == 6
assert token_usages[1]['cache_read_tokens'] == 2
assert token_usages[1]['cache_write_tokens'] == 3
assert token_usages[1]['response_id'] == 'test-response-2'
@patch('openhands.llm.llm.litellm_completion')
def test_completion_with_log_completions(mock_litellm_completion, default_config):
with tempfile.TemporaryDirectory() as temp_dir:
default_config.log_completions = True
default_config.log_completions_folder = temp_dir
mock_response = {
'choices': [{'message': {'content': 'This is a mocked response.'}}]
}
mock_litellm_completion.return_value = mock_response
test_llm = LLM(config=default_config)
response = test_llm.completion(
messages=[{'role': 'user', 'content': 'Hello!'}],
stream=False,
drop_params=True,
)
assert (
response['choices'][0]['message']['content'] == 'This is a mocked response.'
)
files = list(Path(temp_dir).iterdir())
# Expect a log to be generated
assert len(files) == 1
@patch('httpx.get')
def test_llm_base_url_auto_protocol_patch(mock_get):
"""Test that LLM base_url without protocol is automatically fixed with 'http://'."""
config = LLMConfig(
model='litellm_proxy/test-model',
api_key='fake-key',
base_url=' api.example.com ',
)
mock_get.return_value.status_code = 200
mock_get.return_value.json.return_value = {'model': 'fake'}
llm = LLM(config=config)
llm.init_model_info()
called_url = mock_get.call_args[0][0]
assert called_url.startswith('http://') or called_url.startswith('https://')