Skip to content

Commit 5b019e2

Browse files
Merge pull request #1976 from Azure/release_update_stablev2/Release-247
update samples from Release-247 as a part of 1.59.0 SDK stable release
2 parents eaa7c56 + bf4cb1e commit 5b019e2

File tree

12 files changed

+17
-20
lines changed

12 files changed

+17
-20
lines changed

configuration.ipynb

+1-1
Original file line numberDiff line numberDiff line change
@@ -103,7 +103,7 @@
103103
"source": [
104104
"import azureml.core\n",
105105
"\n",
106-
"print(\"This notebook was created using version 1.58.0 of the Azure ML SDK\")\n",
106+
"print(\"This notebook was created using version 1.59.0 of the Azure ML SDK\")\n",
107107
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
108108
]
109109
},

how-to-use-azureml/automated-machine-learning/automl_env.yml

+3-4
Original file line numberDiff line numberDiff line change
@@ -14,13 +14,12 @@ dependencies:
1414

1515
- pip:
1616
# Required packages for AzureML execution, history, and data preparation.
17-
- azureml-widgets~=1.58.0
18-
- azureml-defaults~=1.58.0
19-
- -r https://automlsdkdataresources.blob.core.windows.net/validated-requirements/1.58.0/validated_win32_requirements.txt [--no-deps]
17+
- azureml-widgets~=1.59.0
18+
- azureml-defaults~=1.59.0
19+
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.59.0/validated_win32_requirements.txt [--no-deps]
2020
- matplotlib==3.7.1
2121
- xgboost==1.5.2
2222
- prophet==1.1.4
23-
- pandas==1.3.5
2423
- setuptools-git==1.2
2524
- spacy==3.7.4
2625
- https://aka.ms/automl-resources/packages/en_core_web_sm-3.7.1.tar.gz

how-to-use-azureml/automated-machine-learning/automl_env_linux.yml

+3-3
Original file line numberDiff line numberDiff line change
@@ -20,11 +20,11 @@ dependencies:
2020

2121
- pip:
2222
# Required packages for AzureML execution, history, and data preparation.
23-
- azureml-widgets~=1.58.0
24-
- azureml-defaults~=1.58.0
23+
- azureml-widgets~=1.59.0
24+
- azureml-defaults~=1.59.0
2525
- pytorch-transformers==1.0.0
2626
- spacy==3.7.4
2727
- xgboost==1.5.2
2828
- prophet==1.1.4
2929
- https://aka.ms/automl-resources/packages/en_core_web_sm-3.7.1.tar.gz
30-
- -r https://automlsdkdataresources.blob.core.windows.net/validated-requirements/1.58.0/validated_linux_requirements.txt [--no-deps]
30+
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.59.0/validated_linux_requirements.txt [--no-deps]

how-to-use-azureml/automated-machine-learning/automl_env_mac.yml

+3-3
Original file line numberDiff line numberDiff line change
@@ -15,12 +15,12 @@ dependencies:
1515

1616
- pip:
1717
# Required packages for AzureML execution, history, and data preparation.
18-
- azureml-widgets~=1.58.0
19-
- azureml-defaults~=1.58.0
18+
- azureml-widgets~=1.59.0
19+
- azureml-defaults~=1.59.0
2020
- pytorch-transformers==1.0.0
2121
- prophet==1.1.4
2222
- xgboost==1.5.2
2323
- spacy==3.7.4
2424
- matplotlib==3.7.1
2525
- https://aka.ms/automl-resources/packages/en_core_web_sm-3.7.1.tar.gz
26-
- -r https://automlsdkdataresources.blob.core.windows.net/validated-requirements/1.58.0/validated_darwin_requirements.txt [--no-deps]
26+
- -r https://automlcesdkdataresources.blob.core.windows.net/validated-requirements/1.59.0/validated_darwin_requirements.txt [--no-deps]

how-to-use-azureml/automated-machine-learning/experimental/autofeaturization-codegen/codegen-for-autofeaturization.ipynb

+1-1
Original file line numberDiff line numberDiff line change
@@ -97,7 +97,7 @@
9797
"metadata": {},
9898
"outputs": [],
9999
"source": [
100-
"print(\"This notebook was created using version 1.58.0 of the Azure ML SDK\")\n",
100+
"print(\"This notebook was created using version 1.59.0 of the Azure ML SDK\")\n",
101101
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
102102
]
103103
},

how-to-use-azureml/automated-machine-learning/experimental/autofeaturization-custom-model-training/custom-model-training-from-autofeaturization-run.ipynb

+1-1
Original file line numberDiff line numberDiff line change
@@ -97,7 +97,7 @@
9797
"metadata": {},
9898
"outputs": [],
9999
"source": [
100-
"print(\"This notebook was created using version 1.58.0 of the Azure ML SDK\")\n",
100+
"print(\"This notebook was created using version 1.59.0 of the Azure ML SDK\")\n",
101101
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
102102
]
103103
},

how-to-use-azureml/automated-machine-learning/experimental/regression-model-proxy/auto-ml-regression-model-proxy.ipynb

+1-1
Original file line numberDiff line numberDiff line change
@@ -91,7 +91,7 @@
9191
"metadata": {},
9292
"outputs": [],
9393
"source": [
94-
"print(\"This notebook was created using version 1.58.0 of the Azure ML SDK\")\n",
94+
"print(\"This notebook was created using version 1.59.0 of the Azure ML SDK\")\n",
9595
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
9696
]
9797
},

how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-parameter-tuning-with-hyperdrive.ipynb

+1-1
Original file line numberDiff line numberDiff line change
@@ -292,7 +292,7 @@
292292
"metadata": {},
293293
"outputs": [],
294294
"source": [
295-
"tf_env = Environment.get(ws, name='AzureML-tensorflow-2.16-cuda11')"
295+
"tf_env = Environment.get(ws, name='AzureML-tensorflow-2.16-cuda12')"
296296
]
297297
},
298298
{

how-to-use-azureml/track-and-monitor-experiments/logging-api/logging-api.ipynb

+1-1
Original file line numberDiff line numberDiff line change
@@ -101,7 +101,7 @@
101101
"\n",
102102
"# Check core SDK version number\n",
103103
"\n",
104-
"print(\"This notebook was created using SDK version 1.58.0, you are currently running version\", azureml.core.VERSION)"
104+
"print(\"This notebook was created using SDK version 1.59.0, you are currently running version\", azureml.core.VERSION)"
105105
]
106106
},
107107
{

how-to-use-azureml/track-and-monitor-experiments/using-mlflow/train-remote/train-remote.ipynb

+1-1
Original file line numberDiff line numberDiff line change
@@ -186,7 +186,7 @@
186186
"\n",
187187
"# Specify conda dependencies with scikit-learn and temporary pointers to mlflow extensions\n",
188188
"cd = CondaDependencies.create(\n",
189-
" pip_packages=[\"azureml-mlflow\", \"scikit-learn\", \"matplotlib\", \"pandas\", \"numpy\"]\n",
189+
" pip_packages=[\"azureml-mlflow\", \"scikit-learn\", \"matplotlib\", \"pandas\", \"numpy\", \"protobuf==5.28.3\"]\n",
190190
" )\n",
191191
"\n",
192192
"env.python.conda_dependencies = cd"

index.md

-2
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,6 @@ Machine Learning notebook samples and encourage efficient retrieval of topics an
1818
| [Forecasting BikeShare Demand](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/forecasting-bike-share/auto-ml-forecasting-bike-share.ipynb) | Forecasting | BikeShare | Remote | None | Azure ML AutoML | Forecasting |
1919
| [Forecasting orange juice sales with deployment](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/forecasting-orange-juice-sales/auto-ml-forecasting-orange-juice-sales.ipynb) | Forecasting | Orange Juice Sales | Remote | Azure Container Instance | Azure ML AutoML | None |
2020
| [Forecasting orange juice sales with deployment](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/forecasting-pipelines/auto-ml-forecasting-pipelines.ipynb) | Forecasting | Orange Juice Sales | Remote | Azure Container Instance | Azure ML AutoML | None |
21-
| :star:[Data drift quickdemo](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/datadrift-tutorial/datadrift-tutorial.ipynb) | Filtering | NOAA | Remote | None | Azure ML | Dataset, Timeseries, Drift |
2221
| :star:[Datasets with ML Pipeline](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/datasets-tutorial/pipeline-with-datasets/pipeline-for-image-classification.ipynb) | Train | Fashion MNIST | Remote | None | Azure ML | Dataset, Pipeline, Estimator, ScriptRun |
2322
| :star:[Filtering data using Tabular Timeseiries Dataset related API](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/datasets-tutorial/timeseries-datasets/tabular-timeseries-dataset-filtering.ipynb) | Filtering | NOAA | Local | None | Azure ML | Dataset, Tabular Timeseries |
2423
| :star:[Train with Datasets (Tabular and File)](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/datasets-tutorial/train-with-datasets/train-with-datasets.ipynb) | Train | Iris, Diabetes | Remote | None | Azure ML | Dataset, Estimator, ScriptRun |
@@ -62,7 +61,6 @@ Machine Learning notebook samples and encourage efficient retrieval of topics an
6261
| [Training with hyperparameter tuning using PyTorch](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/pytorch/train-hyperparameter-tune-deploy-with-pytorch/train-hyperparameter-tune-deploy-with-pytorch.ipynb) | Train an image classification model using transfer learning with the PyTorch estimator | ImageNet | AML Compute | Azure Container Instance | PyTorch | None |
6362
| [Training and hyperparameter tuning with Scikit-learn](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/scikit-learn/train-hyperparameter-tune-deploy-with-sklearn/train-hyperparameter-tune-deploy-with-sklearn.ipynb) | Train a support vector machine (SVM) to perform classification | Iris | AML Compute | None | Scikit-learn | None |
6463
| [Hyperparameter tuning and warm start using the TensorFlow estimator](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/tensorflow/hyperparameter-tune-and-warm-start-with-tensorflow/hyperparameter-tune-and-warm-start-with-tensorflow.ipynb) | Train a deep neural network | MNIST | AML Compute | Azure Container Instance | TensorFlow | None |
65-
| [Training and hyperparameter tuning using the TensorFlow estimator](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/tensorflow/train-hyperparameter-tune-deploy-with-tensorflow/train-hyperparameter-tune-deploy-with-tensorflow.ipynb) | Train a deep neural network | MNIST | AML Compute | Azure Container Instance | TensorFlow | None |
6664
| [Resuming a model](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/ml-frameworks/tensorflow/train-tensorflow-resume-training/train-tensorflow-resume-training.ipynb) | Resume a model in TensorFlow from a previously submitted run | MNIST | AML Compute | None | TensorFlow | None |
6765
| [Using Tensorboard](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/track-and-monitor-experiments/tensorboard/export-run-history-to-tensorboard/export-run-history-to-tensorboard.ipynb) | Export the run history as Tensorboard logs | None | None | None | TensorFlow | None |
6866
| [Training in Spark](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training/train-in-spark/train-in-spark.ipynb) | Submiting a run on a spark cluster | None | HDI cluster | None | PySpark | None |

setup-environment/configuration.ipynb

+1-1
Original file line numberDiff line numberDiff line change
@@ -102,7 +102,7 @@
102102
"source": [
103103
"import azureml.core\n",
104104
"\n",
105-
"print(\"This notebook was created using version 1.58.0 of the Azure ML SDK\")\n",
105+
"print(\"This notebook was created using version 1.59.0 of the Azure ML SDK\")\n",
106106
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
107107
]
108108
},

0 commit comments

Comments
 (0)