|
| 1 | +# original source: |
| 2 | +# https://github.com/AminRezaei0x443/memory-efficient-attention/blob/1bc0d9e6ac5f82ea43a375135c4e1d3896ee1694/memory_efficient_attention/attention_torch.py |
| 3 | +# license: |
| 4 | +# unspecified |
| 5 | +# credit: |
| 6 | +# Amin Rezaei (original author) |
| 7 | +# Alex Birch (optimized algorithm for 3D tensors, at the expense of removing bias, masking and callbacks) |
| 8 | +# implementation of: |
| 9 | +# Self-attention Does Not Need O(n2) Memory": |
| 10 | +# https://arxiv.org/abs/2112.05682v2 |
| 11 | + |
| 12 | +import math |
| 13 | +import torch |
| 14 | +from ..utils.dynamic_slice import dynamic_slice |
| 15 | +from functools import partial |
| 16 | +from torch import Tensor |
| 17 | +from torch.utils.checkpoint import checkpoint |
| 18 | +from typing import Optional, NamedTuple, Protocol, List |
| 19 | + |
| 20 | + |
| 21 | +class AttnChunk(NamedTuple): |
| 22 | + exp_values: Tensor |
| 23 | + exp_weights_sum: Tensor |
| 24 | + max_score: Tensor |
| 25 | + |
| 26 | + |
| 27 | +class SummarizeChunk(Protocol): |
| 28 | + @staticmethod |
| 29 | + def __call__( |
| 30 | + query: Tensor, |
| 31 | + key_t: Tensor, |
| 32 | + value: Tensor, |
| 33 | + ) -> AttnChunk: |
| 34 | + ... |
| 35 | + |
| 36 | + |
| 37 | +class ComputeQueryChunkAttn(Protocol): |
| 38 | + @staticmethod |
| 39 | + def __call__( |
| 40 | + query: Tensor, |
| 41 | + key_t: Tensor, |
| 42 | + value: Tensor, |
| 43 | + ) -> Tensor: |
| 44 | + ... |
| 45 | + |
| 46 | + |
| 47 | +def _summarize_chunk( |
| 48 | + query: Tensor, |
| 49 | + key_t: Tensor, |
| 50 | + value: Tensor, |
| 51 | + scale: float, |
| 52 | +) -> AttnChunk: |
| 53 | + attn_weights = torch.baddbmm( |
| 54 | + torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), |
| 55 | + query, |
| 56 | + key_t, |
| 57 | + alpha=scale, |
| 58 | + beta=0, |
| 59 | + ) |
| 60 | + max_score, _ = torch.max(attn_weights, -1, keepdim=True) |
| 61 | + max_score = max_score.detach() |
| 62 | + exp_weights = torch.exp(attn_weights - max_score) |
| 63 | + exp_values = torch.bmm(exp_weights, value) |
| 64 | + max_score = max_score.squeeze(-1) |
| 65 | + return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score) |
| 66 | + |
| 67 | + |
| 68 | +def _query_chunk_attention( |
| 69 | + query: Tensor, |
| 70 | + key_t: Tensor, |
| 71 | + value: Tensor, |
| 72 | + summarize_chunk: SummarizeChunk, |
| 73 | + kv_chunk_size: int, |
| 74 | +) -> Tensor: |
| 75 | + batch_x_heads, k_channels_per_head, k_tokens = key_t.shape |
| 76 | + _, _, v_channels_per_head = value.shape |
| 77 | + |
| 78 | + def chunk_scanner(chunk_idx: int) -> AttnChunk: |
| 79 | + key_chunk = dynamic_slice(key_t, (0, 0, chunk_idx), (batch_x_heads, k_channels_per_head, kv_chunk_size)) |
| 80 | + value_chunk = dynamic_slice(value, (0, chunk_idx, 0), (batch_x_heads, kv_chunk_size, v_channels_per_head)) |
| 81 | + return summarize_chunk(query, key_chunk, value_chunk) |
| 82 | + |
| 83 | + chunks: List[AttnChunk] = [chunk_scanner(chunk) for chunk in torch.arange(0, k_tokens, kv_chunk_size)] |
| 84 | + acc_chunk = AttnChunk(*map(torch.stack, zip(*chunks))) |
| 85 | + chunk_values, chunk_weights, chunk_max = acc_chunk |
| 86 | + |
| 87 | + global_max, _ = torch.max(chunk_max, 0, keepdim=True) |
| 88 | + max_diffs = torch.exp(chunk_max - global_max) |
| 89 | + chunk_values *= torch.unsqueeze(max_diffs, -1) |
| 90 | + chunk_weights *= max_diffs |
| 91 | + |
| 92 | + all_values = chunk_values.sum(dim=0) |
| 93 | + all_weights = torch.unsqueeze(chunk_weights, -1).sum(dim=0) |
| 94 | + return all_values / all_weights |
| 95 | + |
| 96 | + |
| 97 | +# TODO: refactor CrossAttention#get_attention_scores to share code with this |
| 98 | +def _get_attention_scores_no_kv_chunking( |
| 99 | + query: Tensor, |
| 100 | + key_t: Tensor, |
| 101 | + value: Tensor, |
| 102 | + scale: float, |
| 103 | +) -> Tensor: |
| 104 | + attn_scores = torch.baddbmm( |
| 105 | + torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), |
| 106 | + query, |
| 107 | + key_t, |
| 108 | + alpha=scale, |
| 109 | + beta=0, |
| 110 | + ) |
| 111 | + attn_probs = attn_scores.softmax(dim=-1) |
| 112 | + del attn_scores |
| 113 | + hidden_states_slice = torch.bmm(attn_probs, value) |
| 114 | + return hidden_states_slice |
| 115 | + |
| 116 | + |
| 117 | +class ScannedChunk(NamedTuple): |
| 118 | + chunk_idx: int |
| 119 | + attn_chunk: AttnChunk |
| 120 | + |
| 121 | + |
| 122 | +def efficient_dot_product_attention( |
| 123 | + query: Tensor, |
| 124 | + key_t: Tensor, |
| 125 | + value: Tensor, |
| 126 | + query_chunk_size=1024, |
| 127 | + kv_chunk_size: Optional[int] = None, |
| 128 | + kv_chunk_size_min: Optional[int] = None, |
| 129 | + use_checkpoint=True, |
| 130 | +): |
| 131 | + """Computes efficient dot-product attention given query, transposed key, and value. |
| 132 | + This is efficient version of attention presented in |
| 133 | + https://arxiv.org/abs/2112.05682v2 which comes with O(sqrt(n)) memory requirements. |
| 134 | + Args: |
| 135 | + query: queries for calculating attention with shape of |
| 136 | + `[batch * num_heads, tokens, channels_per_head]`. |
| 137 | + key_t: keys for calculating attention with shape of |
| 138 | + `[batch * num_heads, channels_per_head, tokens]`. |
| 139 | + value: values to be used in attention with shape of |
| 140 | + `[batch * num_heads, tokens, channels_per_head]`. |
| 141 | + query_chunk_size: int: query chunks size |
| 142 | + kv_chunk_size: Optional[int]: key/value chunks size. if None: defaults to sqrt(key_tokens) |
| 143 | + kv_chunk_size_min: Optional[int]: key/value minimum chunk size. only considered when kv_chunk_size is None. changes `sqrt(key_tokens)` into `max(sqrt(key_tokens), kv_chunk_size_min)`, to ensure our chunk sizes don't get too small (smaller chunks = more chunks = less concurrent work done). |
| 144 | + use_checkpoint: bool: whether to use checkpointing (recommended True for training, False for inference) |
| 145 | + Returns: |
| 146 | + Output of shape `[batch * num_heads, query_tokens, channels_per_head]`. |
| 147 | + """ |
| 148 | + batch_x_heads, q_tokens, q_channels_per_head = query.shape |
| 149 | + _, _, k_tokens = key_t.shape |
| 150 | + scale = q_channels_per_head**-0.5 |
| 151 | + |
| 152 | + kv_chunk_size = min(kv_chunk_size or int(math.sqrt(k_tokens)), k_tokens) |
| 153 | + if kv_chunk_size_min is not None: |
| 154 | + kv_chunk_size = max(kv_chunk_size, kv_chunk_size_min) |
| 155 | + |
| 156 | + def get_query_chunk(chunk_idx: int) -> Tensor: |
| 157 | + return dynamic_slice( |
| 158 | + query, (0, chunk_idx, 0), (batch_x_heads, min(query_chunk_size, q_tokens), q_channels_per_head) |
| 159 | + ) |
| 160 | + |
| 161 | + summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale) |
| 162 | + summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk |
| 163 | + compute_query_chunk_attn: ComputeQueryChunkAttn = ( |
| 164 | + partial(_get_attention_scores_no_kv_chunking, scale=scale) |
| 165 | + if k_tokens <= kv_chunk_size |
| 166 | + # fast-path for when there's just 1 key-value chunk per query chunk (this is just sliced attention btw) |
| 167 | + else ( |
| 168 | + partial( |
| 169 | + _query_chunk_attention, |
| 170 | + kv_chunk_size=kv_chunk_size, |
| 171 | + summarize_chunk=summarize_chunk, |
| 172 | + ) |
| 173 | + ) |
| 174 | + ) |
| 175 | + |
| 176 | + if q_tokens <= query_chunk_size: |
| 177 | + # fast-path for when there's just 1 query chunk |
| 178 | + return compute_query_chunk_attn( |
| 179 | + query=query, |
| 180 | + key_t=key_t, |
| 181 | + value=value, |
| 182 | + ) |
| 183 | + |
| 184 | + # TODO: maybe we should use torch.empty_like(query) to allocate storage in-advance, |
| 185 | + # and pass slices to be mutated, instead of torch.cat()ing the returned slices |
| 186 | + res = torch.cat( |
| 187 | + [ |
| 188 | + compute_query_chunk_attn( |
| 189 | + query=get_query_chunk(i * query_chunk_size), |
| 190 | + key_t=key_t, |
| 191 | + value=value, |
| 192 | + ) |
| 193 | + for i in range(math.ceil(q_tokens / query_chunk_size)) |
| 194 | + ], |
| 195 | + dim=1, |
| 196 | + ) |
| 197 | + return res |
0 commit comments