Skip to content

Commit 9826bf6

Browse files
authored
[Term Entry] Python:NumPy Built-In Functions: .tile()
* Added file on tile * minor * Minor changes ---------
1 parent 58b13c8 commit 9826bf6

File tree

1 file changed

+143
-0
lines changed
  • content/numpy/concepts/built-in-functions/terms/tile

1 file changed

+143
-0
lines changed
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,143 @@
1+
---
2+
Title: '.tile()'
3+
Description: 'Constructs a new array by repeating the input array’s elements a specified number of times.'
4+
Subjects:
5+
- 'Computer Science'
6+
- 'Data Science'
7+
Tags:
8+
- 'Linear Algebra'
9+
- 'Machine Learning'
10+
- 'NumPy'
11+
CatalogContent:
12+
- 'learn-python-3'
13+
- 'paths/computer-science'
14+
---
15+
16+
In NumPy, the **`.tile()`** function constructs a new [array](https://www.codecademy.com/resources/docs/numpy/ndarray) by repeating the input array `A` according to the specified number of repetitions `reps`.
17+
18+
- If `A.ndim < len(reps)`, dimensions of `A` are promoted by prepending ones to match the length of `reps`. For example, an array with shape `(3,)` will be treated as `(1, 3)`.
19+
- If `A.ndim > len(reps)`, the `reps` tuple is extended by prepending ones. For example, `reps=2` is treated as `(1, 2)`.
20+
21+
## Syntax
22+
23+
```pseudo
24+
numpy.tile(A, reps)
25+
```
26+
27+
**Parameters:**
28+
29+
- `A`: The input array.
30+
- `reps`: The number of times the values need to be repeated.
31+
32+
**Return value:**
33+
34+
Returns a new array containing the input array's elements repeated a specific number of times.
35+
36+
## Example: Repeating Elements in 1D, 2D, and 3D Arrays
37+
38+
The following example shows how 1D, 2D, and 3D arrays interact with `.tile()`:
39+
40+
```py
41+
import numpy as np
42+
43+
# Create a 1D array
44+
a = np.array([3,2,1])
45+
print("Shape of a:",np.shape(a))
46+
print("a:",a)
47+
48+
# Use .tile() to repeat the values twice horizontally
49+
b = np.tile(a,2)
50+
print("b:",b)
51+
52+
# Use .tile() to create a 2D array
53+
c = np.tile(a,(1,2))
54+
d = np.tile(a,(2,1))
55+
print("c:",c)
56+
print("d:",d)
57+
58+
# Use .tile() to create a 3D array
59+
e = np.tile(a,(2,1,2))
60+
print("e:",e)
61+
62+
print("\n\n")
63+
64+
# Create a 2D array
65+
m = np.array([[5,7,8],[8,2,0]])
66+
print("Shape of m:",np.shape(m))
67+
print("m:",m)
68+
69+
# Use .tile() to repeat the values twice horizontally
70+
n = np.tile(m,2)
71+
print("n:",n)
72+
73+
# To repeat the values horizontally only
74+
o = np.tile(m,(1,2))
75+
print("o:",o)
76+
77+
# To repeat the values horizontally and vertically
78+
p = np.tile(m,(2,2))
79+
print("p:",p)
80+
81+
# To create a 3D array
82+
q = np.tile(m,(2,1,2))
83+
print("q:",q)
84+
```
85+
86+
This produces the following output:
87+
88+
```shell
89+
Shape of a: (3,)
90+
a: [3 2 1]
91+
b: [3 2 1 3 2 1]
92+
c: [[3 2 1 3 2 1]]
93+
d: [[3 2 1]
94+
[3 2 1]]
95+
e: [[[3 2 1 3 2 1]]
96+
97+
[[3 2 1 3 2 1]]]
98+
99+
100+
101+
Shape of m: (2, 3)
102+
m: [[5 7 8]
103+
[8 2 0]]
104+
n: [[5 7 8 5 7 8]
105+
[8 2 0 8 2 0]]
106+
o: [[5 7 8 5 7 8]
107+
[8 2 0 8 2 0]]
108+
p: [[5 7 8 5 7 8]
109+
[8 2 0 8 2 0]
110+
[5 7 8 5 7 8]
111+
[8 2 0 8 2 0]]
112+
q: [[[5 7 8 5 7 8]
113+
[8 2 0 8 2 0]]
114+
115+
[[5 7 8 5 7 8]
116+
[8 2 0 8 2 0]]]
117+
```
118+
119+
## Codebyte Example: Practical Usage of `.tile()`
120+
121+
The following codebyte example shows the usage of the `.tile()` function:
122+
123+
```codebyte/python
124+
import numpy as np
125+
126+
# Create a 1D and 2D array
127+
a = np.array([3,7,6])
128+
b = np.array([[5,-2,8],[8,2,0]])
129+
130+
print("Shape of a:",np.shape(a))
131+
print("a:",a)
132+
print("Shape of b:",np.shape(b))
133+
print("b:",b)
134+
135+
c = np.tile(a,(2,2))
136+
d = np.tile(a,(4,1))
137+
e = np.tile(b,1)
138+
f = np.tile(b,(3,1))
139+
140+
print("\n")
141+
print("c:",c,"\t\n","d:",d,"\t\n")
142+
print("e:",e,"\t\n","f:",f,"\t\n")
143+
```

0 commit comments

Comments
 (0)