Skip to content

Commit ac02578

Browse files
[Term Entry] Python Pillow - Image: .frombuffer() (#6441)
* [Term Entry] Python Pillow - Image: .frombuffer() * Add files via upload * fixed image links * Update frombuffer.md ---------
1 parent 18ee5ad commit ac02578

File tree

4 files changed

+150
-0
lines changed

4 files changed

+150
-0
lines changed
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,150 @@
1+
---
2+
Title: '.frombuffer()'
3+
Description: 'Creates an image memory from a bytes or buffer object containing raw pixel data.'
4+
Subjects:
5+
- 'Data Visualization'
6+
- 'Data Science'
7+
Tags:
8+
- 'Data'
9+
- 'Images'
10+
- 'Libraries'
11+
- 'Pillow'
12+
CatalogContent:
13+
- 'learn-python-3'
14+
- 'paths/data-science'
15+
---
16+
17+
The **`.frombuffer()`** method in the Pillow Image module creates an image memory from a bytes or buffer object containing raw pixel data. It provides a powerful way to create Image objects directly from binary data without reading from a file. This method is particularly useful when working with image data generated in memory, data received from network connections, or when interfacing with other libraries that produce raw pixel data like NumPy arrays.
18+
19+
`.frombuffer()` enables efficient manipulation of image data by avoiding unnecessary file I/O operations, making it ideal for applications requiring high-performance image processing, computer vision tasks, or when generating images procedurally.
20+
21+
## Syntax
22+
23+
```pseudo
24+
PIL.Image.frombuffer(mode, size, data, decoder_name='raw', *args)
25+
```
26+
27+
**Parameters:**
28+
29+
- `mode`: The image mode. Common values include `'RGB'`, `'RGBA'`, `'L'` (for grayscale), etc. This defines how the bytes in the buffer should be interpreted.
30+
- `size`: A tuple of `(width, height)` defining the dimensions of the image.
31+
- `data`: A bytes or buffer object containing the raw pixel data.
32+
- `decoder_name`: The decoder to use. Default is `'raw'`.
33+
- `*args`: Additional arguments to pass to the decoder.
34+
35+
**Return value:**
36+
37+
The `.frombuffer()` method returns an `Image` object.
38+
39+
## Example 1: Creating an Image from Raw RGB Data
40+
41+
This example demonstrates how to create an image from raw RGB pixel data stored in a bytes object. Each pixel requires 3 bytes (one for each color channel), so the total buffer size should match width × height × 3. Here is the code:
42+
43+
```py
44+
from PIL import Image
45+
import numpy as np
46+
47+
# Create some sample data - a gradient from black to red
48+
width, height = 256, 100
49+
data = bytearray()
50+
for y in range(height):
51+
for x in range(width):
52+
# Red channel increases with x position
53+
data.extend([x, 0, 0]) # R, G, B values
54+
55+
# Create image from the raw buffer data
56+
image = Image.frombuffer('RGB', (width, height), bytes(data))
57+
58+
# Save the result
59+
image.save('red_gradient.png')
60+
# Display the image
61+
image.show()
62+
```
63+
64+
It produces the output as follows:
65+
66+
![A horizontal gradient image transitioning from black to red, created using raw RGB pixel data](https://raw.githubusercontent.com/Codecademy/docs/main/media/red_gradient.png)
67+
68+
This code generates an image with a horizontal gradient from black to red, demonstrating how to directly create an image from raw pixel data in memory.
69+
70+
## Example 2: Converting NumPy Arrays to Pillow Images
71+
72+
This example shows a common real-world use case where `.frombuffer()` is used to efficiently convert a NumPy array to a Pillow Image without copying the underlying data:
73+
74+
```py
75+
from PIL import Image
76+
import numpy as np
77+
78+
# Create a NumPy array with some image data
79+
# Generate a gradient with NumPy (more efficient than the previous example)
80+
width, height = 256, 100
81+
array = np.zeros((height, width, 3), dtype=np.uint8)
82+
array[:, :, 0] = np.linspace(0, 255, width) # Red channel
83+
array[:, :, 1] = np.linspace(0, 255, height)[:, np.newaxis] # Green channel
84+
85+
# Convert NumPy array to Pillow Image with frombuffer()
86+
# Note: We need to ensure the array is contiguous in memory
87+
if not array.flags.contiguous:
88+
array = np.ascontiguousarray(array)
89+
90+
# Create image from buffer
91+
image = Image.frombuffer('RGB', (width, height), array, 'raw', 'RGB', 0, 1)
92+
93+
# Save the result
94+
image.save('numpy_gradient.png')
95+
# Display the image
96+
image.show()
97+
```
98+
99+
It produces the output as follows:
100+
101+
![A smooth gradient transitioning from black to yellow using NumPy-generated pixel values](https://raw.githubusercontent.com/Codecademy/docs/main/media/numpy_gradient.png)
102+
103+
This demonstrates how to convert a NumPy array to a Pillow Image efficiently, creating a gradient that transitions from black to yellow (combination of red and green channels).
104+
105+
## Example 3: Processing Image Data from External Sources
106+
107+
This example illustrates how to use `.frombuffer()` when receiving raw image data from an external source, such as a web API or a binary file:
108+
109+
```py
110+
from PIL import Image
111+
import requests
112+
import io
113+
import struct
114+
115+
# Function to read raw image data from a binary file
116+
def read_raw_image(filename, width, height, mode='RGB'):
117+
with open(filename, 'rb') as f:
118+
raw_data = f.read()
119+
120+
# Create image from raw data
121+
return Image.frombuffer(mode, (width, height), raw_data)
122+
123+
# Example: Generate a simple raw file with RGB data
124+
def create_sample_raw_file(filename, width, height):
125+
# Create a checkerboard pattern
126+
with open(filename, 'wb') as f:
127+
for y in range(height):
128+
for x in range(width):
129+
# Create a checkerboard pattern (black and white)
130+
if (x + y) % 2 == 0:
131+
f.write(struct.pack('BBB', 255, 255, 255)) # White pixel
132+
else:
133+
f.write(struct.pack('BBB', 0, 0, 0)) # Black pixel
134+
135+
# Create a sample raw file
136+
width, height = 100, 100
137+
raw_filename = 'checkerboard.raw'
138+
create_sample_raw_file(raw_filename, width, height)
139+
140+
# Read and display the raw image data
141+
image = read_raw_image(raw_filename, width, height, 'RGB')
142+
image.save('checkerboard.png')
143+
image.show()
144+
```
145+
146+
It produces the output as follows:
147+
148+
![A black-and-white checkerboard pattern image created from raw binary pixel data](https://raw.githubusercontent.com/Codecademy/docs/main/media/checkerboard.png)
149+
150+
This example demonstrates reading raw image data from a binary file, which is similar to processing raw image data received from external sources or hardware devices.

Diff for: media/checkerboard.png

293 Bytes
Loading

Diff for: media/numpy_gradient.png

374 Bytes
Loading

Diff for: media/red_gradient.png

345 Bytes
Loading

0 commit comments

Comments
 (0)