forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_pixtral.py
236 lines (189 loc) · 7.66 KB
/
test_pixtral.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# SPDX-License-Identifier: Apache-2.0
"""Compare the outputs of HF and vLLM for Mistral models using greedy sampling.
Run `pytest tests/models/test_mistral.py`.
"""
import json
from dataclasses import asdict
from typing import TYPE_CHECKING, Any, Optional
import pytest
from mistral_common.multimodal import download_image
from mistral_common.protocol.instruct.messages import ImageURLChunk
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.tokens.tokenizers.multimodal import image_from_chunk
from transformers import AutoProcessor
from vllm import RequestOutput, SamplingParams, TextPrompt, TokensPrompt
from vllm.multimodal import MultiModalDataBuiltins
from vllm.multimodal.inputs import PlaceholderRange
from vllm.sequence import Logprob, SampleLogprobs
from ....utils import VLLM_PATH, large_gpu_test
from ...utils import check_logprobs_close
if TYPE_CHECKING:
from _typeshed import StrPath
PIXTRAL_ID = "mistralai/Pixtral-12B-2409"
MISTRAL_SMALL_3_1_ID = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
MODELS = [PIXTRAL_ID, MISTRAL_SMALL_3_1_ID]
IMG_URLS = [
"https://picsum.photos/id/237/400/300",
"https://picsum.photos/id/231/200/300",
"https://picsum.photos/id/27/500/500",
"https://picsum.photos/id/17/150/600",
]
PROMPT = "Describe each image in one short sentence."
def _create_msg_format(urls: list[str]) -> list[dict[str, Any]]:
return [{
"role":
"user",
"content": [{
"type": "text",
"text": PROMPT,
}] + [{
"type": "image_url",
"image_url": {
"url": url
}
} for url in urls],
}]
def _create_msg_format_hf(urls: list[str]) -> list[dict[str, Any]]:
return [{
"role":
"user",
"content": [{
"type": "text",
"content": PROMPT,
}, *({
"type": "image",
"image": download_image(url)
} for url in urls)],
}]
def _create_engine_inputs(urls: list[str]) -> TokensPrompt:
msg = _create_msg_format(urls)
tokenizer = MistralTokenizer.from_model("pixtral")
request = ChatCompletionRequest(messages=msg) # type: ignore[type-var]
tokenized = tokenizer.encode_chat_completion(request)
engine_inputs = TokensPrompt(prompt_token_ids=tokenized.tokens)
images = []
for chunk in request.messages[0].content:
if isinstance(chunk, ImageURLChunk):
images.append(image_from_chunk(chunk))
mm_data = MultiModalDataBuiltins(image=images)
engine_inputs["multi_modal_data"] = mm_data
return engine_inputs
def _create_engine_inputs_hf(urls: list[str]) -> TextPrompt:
msg = _create_msg_format_hf(urls)
tokenizer = AutoProcessor.from_pretrained("mistral-community/pixtral-12b")
prompt = tokenizer.apply_chat_template(msg)
images = []
for chunk in msg[0]["content"]:
if chunk["type"] == "image":
images.append(chunk["image"])
mm_data = MultiModalDataBuiltins(image=images)
engine_inputs = TextPrompt(prompt=prompt, multi_modal_data=mm_data)
return engine_inputs
MSGS = [
_create_msg_format(IMG_URLS[:1]),
_create_msg_format(IMG_URLS[:2]),
_create_msg_format(IMG_URLS),
]
ENGINE_INPUTS = [
_create_engine_inputs(IMG_URLS[:1]),
_create_engine_inputs(IMG_URLS[:2]),
_create_engine_inputs(IMG_URLS),
]
SAMPLING_PARAMS = SamplingParams(max_tokens=512, temperature=0.0, logprobs=5)
LIMIT_MM_PER_PROMPT = dict(image=4)
MAX_MODEL_LEN = [8192, 65536]
FIXTURES_PATH = VLLM_PATH / "tests/models/fixtures"
assert FIXTURES_PATH.exists()
FIXTURE_LOGPROBS_CHAT = {
PIXTRAL_ID: FIXTURES_PATH / "pixtral_chat.json",
MISTRAL_SMALL_3_1_ID: FIXTURES_PATH / "mistral_small_3_chat.json",
}
OutputsLogprobs = list[tuple[list[int], str, Optional[SampleLogprobs]]]
# For the test author to store golden output in JSON
def _dump_outputs_w_logprobs(
outputs: OutputsLogprobs,
filename: "StrPath",
) -> None:
json_data = [(tokens, text, [{
k: asdict(v)
for k, v in token_logprobs.items()
} for token_logprobs in (logprobs or [])])
for tokens, text, logprobs in outputs]
with open(filename, "w") as f:
json.dump(json_data, f)
def load_outputs_w_logprobs(filename: "StrPath") -> OutputsLogprobs:
with open(filename, "rb") as f:
json_data = json.load(f)
return [(tokens, text, [{
int(k): Logprob(**v)
for k, v in token_logprobs.items()
} for token_logprobs in logprobs]) for tokens, text, logprobs in json_data]
@large_gpu_test(min_gb=80)
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("max_model_len", MAX_MODEL_LEN)
@pytest.mark.parametrize("dtype", ["bfloat16"])
def test_chat(
vllm_runner,
max_model_len: int,
model: str,
dtype: str,
) -> None:
EXPECTED_CHAT_LOGPROBS = load_outputs_w_logprobs(
FIXTURE_LOGPROBS_CHAT[model])
with vllm_runner(
model,
dtype=dtype,
tokenizer_mode="mistral",
max_model_len=max_model_len,
limit_mm_per_prompt=LIMIT_MM_PER_PROMPT,
) as vllm_model:
outputs = []
for msg in MSGS:
output = vllm_model.model.chat(msg,
sampling_params=SAMPLING_PARAMS)
outputs.extend(output)
logprobs = vllm_runner._final_steps_generate_w_logprobs(outputs)
# Remove last `None` prompt_logprobs to compare with fixture
for i in range(len(logprobs)):
assert logprobs[i][-1] is None
logprobs[i] = logprobs[i][:-1]
check_logprobs_close(outputs_0_lst=EXPECTED_CHAT_LOGPROBS,
outputs_1_lst=logprobs,
name_0="h100_ref",
name_1="output")
@large_gpu_test(min_gb=48)
@pytest.mark.parametrize("prompt,expected_ranges",
[(_create_engine_inputs_hf(IMG_URLS[:1]),
[PlaceholderRange(offset=11, length=494)]),
(_create_engine_inputs_hf(IMG_URLS[1:4]), [
PlaceholderRange(offset=11, length=266),
PlaceholderRange(offset=277, length=1056),
PlaceholderRange(offset=1333, length=418)
])])
def test_multi_modal_placeholders(vllm_runner, prompt,
expected_ranges: list[PlaceholderRange],
monkeypatch) -> None:
# This placeholder checking test only works with V0 engine
# where `multi_modal_placeholders` is returned with `RequestOutput`
monkeypatch.setenv("VLLM_USE_V1", "0")
with vllm_runner(
"mistral-community/pixtral-12b",
max_model_len=8192,
limit_mm_per_prompt=LIMIT_MM_PER_PROMPT,
) as vllm_model:
outputs = vllm_model.model.generate(prompt)
assert len(outputs) == 1, f"{len(outputs)=}"
output: RequestOutput = outputs[0]
assert hasattr(output,
"multi_modal_placeholders"), f"{output.__dict__=}"
assert "image" in output.multi_modal_placeholders, \
f"{output.multi_modal_placeholders.keys()=}"
image_placeholder_ranges: list[
PlaceholderRange] = output.multi_modal_placeholders["image"]
assert len(image_placeholder_ranges) == len(
expected_ranges), f"{image_placeholder_ranges=}"
for real_range, expected_range in zip(image_placeholder_ranges,
expected_ranges):
assert real_range == expected_range, \
f"{real_range=} {expected_range=}"