forked from xlite-dev/lite.ai.toolkit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathncnn_yolo5face.cpp
467 lines (422 loc) · 14.7 KB
/
ncnn_yolo5face.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
//
// Created by DefTruth on 2022/1/16.
//
#include "ncnn_yolo5face.h"
using ncnncv::NCNNYOLO5Face;
NCNNYOLO5Face::NCNNYOLO5Face(const std::string &_param_path,
const std::string &_bin_path,
unsigned int _num_threads,
int _input_height,
int _input_width) :
log_id(_param_path.data()), param_path(_param_path.data()),
bin_path(_bin_path.data()), num_threads(_num_threads),
input_height(_input_height), input_width(_input_width)
{
net = new ncnn::Net();
// init net, change this setting for better performance.
net->opt.use_fp16_arithmetic = false;
net->opt.use_vulkan_compute = false; // default
// yolo5face --> no Focus layer in yolo5face
net->load_param(param_path);
net->load_model(bin_path);
#ifdef LITENCNN_DEBUG
this->print_debug_string();
#endif
}
NCNNYOLO5Face::~NCNNYOLO5Face()
{
if (net) delete net;
net = nullptr;
}
void NCNNYOLO5Face::transform(const cv::Mat &mat_rs, ncnn::Mat &in)
{
// BGR NHWC -> RGB NCHW
in = ncnn::Mat::from_pixels(mat_rs.data, ncnn::Mat::PIXEL_BGR2RGB, input_width, input_height);
in.substract_mean_normalize(mean_vals, norm_vals);
}
void NCNNYOLO5Face::resize_unscale(const cv::Mat &mat, cv::Mat &mat_rs,
int target_height, int target_width,
YOLO5FaceScaleParams &scale_params)
{
if (mat.empty()) return;
int img_height = static_cast<int>(mat.rows);
int img_width = static_cast<int>(mat.cols);
mat_rs = cv::Mat(target_height, target_width, CV_8UC3,
cv::Scalar(0, 0, 0));
// scale ratio (new / old) new_shape(h,w)
float w_r = (float) target_width / (float) img_width;
float h_r = (float) target_height / (float) img_height;
float r = std::min(w_r, h_r);
// compute padding
int new_unpad_w = static_cast<int>((float) img_width * r); // floor
int new_unpad_h = static_cast<int>((float) img_height * r); // floor
int pad_w = target_width - new_unpad_w; // >=0
int pad_h = target_height - new_unpad_h; // >=0
int dw = pad_w / 2;
int dh = pad_h / 2;
// resize with unscaling
cv::Mat new_unpad_mat;
// cv::Mat new_unpad_mat = mat.clone(); // may not need clone.
cv::resize(mat, new_unpad_mat, cv::Size(new_unpad_w, new_unpad_h));
new_unpad_mat.copyTo(mat_rs(cv::Rect(dw, dh, new_unpad_w, new_unpad_h)));
// record scale params.
scale_params.ratio = r;
scale_params.dw = dw;
scale_params.dh = dh;
scale_params.flag = true;
}
void NCNNYOLO5Face::detect(const cv::Mat &mat, std::vector<types::BoxfWithLandmarks> &detected_boxes_kps,
float score_threshold, float iou_threshold, unsigned int topk)
{
if (mat.empty()) return;
int img_height = static_cast<int>(mat.rows);
int img_width = static_cast<int>(mat.cols);
// resize & unscale
cv::Mat mat_rs;
YOLO5FaceScaleParams scale_params;
this->resize_unscale(mat, mat_rs, input_height, input_width, scale_params);
// 1. make input tensor
ncnn::Mat input;
this->transform(mat_rs, input);
// 2. inference & extract
auto extractor = net->create_extractor();
extractor.set_light_mode(false); // default
extractor.set_num_threads(num_threads);
extractor.input("input", input);
// 3. rescale & exclude.
std::vector<types::BoxfWithLandmarks> bbox_kps_collection;
this->generate_bboxes_kps(scale_params, bbox_kps_collection, extractor,
score_threshold, img_height, img_width);
// 4. hard nms with topk.
this->nms_bboxes_kps(bbox_kps_collection, detected_boxes_kps, iou_threshold, topk);
}
void NCNNYOLO5Face::generate_anchors(unsigned int target_height, unsigned int target_width)
{
if (center_anchors_is_update) return;
for (auto stride : strides)
{
unsigned int num_grid_w = target_width / stride;
unsigned int num_grid_h = target_height / stride;
std::vector<YOLO5FaceAnchor> anchors;
if (stride == 8)
{
// 0 anchor
for (unsigned int g1 = 0; g1 < num_grid_h; ++g1)
{
for (unsigned int g0 = 0; g0 < num_grid_w; ++g0)
{
YOLO5FaceAnchor anchor;
anchor.grid0 = g0;
anchor.grid1 = g1;
anchor.stride = stride;
anchor.width = 4.f;
anchor.height = 5.f;
anchors.push_back(anchor);
}
}
// 1 anchor
for (unsigned int g1 = 0; g1 < num_grid_h; ++g1)
{
for (unsigned int g0 = 0; g0 < num_grid_w; ++g0)
{
YOLO5FaceAnchor anchor;
anchor.grid0 = g0;
anchor.grid1 = g1;
anchor.stride = stride;
anchor.width = 8.f;
anchor.height = 10.f;
anchors.push_back(anchor);
}
}
// 2 anchor
for (unsigned int g1 = 0; g1 < num_grid_h; ++g1)
{
for (unsigned int g0 = 0; g0 < num_grid_w; ++g0)
{
YOLO5FaceAnchor anchor;
anchor.grid0 = g0;
anchor.grid1 = g1;
anchor.stride = stride;
anchor.width = 13.f;
anchor.height = 16.f;
anchors.push_back(anchor);
}
}
} // 16
else if (stride == 16)
{
// 0 anchor
for (unsigned int g1 = 0; g1 < num_grid_h; ++g1)
{
for (unsigned int g0 = 0; g0 < num_grid_w; ++g0)
{
YOLO5FaceAnchor anchor;
anchor.grid0 = g0;
anchor.grid1 = g1;
anchor.stride = stride;
anchor.width = 23.f;
anchor.height = 29.f;
anchors.push_back(anchor);
}
}
// 1 anchor
for (unsigned int g1 = 0; g1 < num_grid_h; ++g1)
{
for (unsigned int g0 = 0; g0 < num_grid_w; ++g0)
{
YOLO5FaceAnchor anchor;
anchor.grid0 = g0;
anchor.grid1 = g1;
anchor.stride = stride;
anchor.width = 43.f;
anchor.height = 55.f;
anchors.push_back(anchor);
}
}
// 2 anchor
for (unsigned int g1 = 0; g1 < num_grid_h; ++g1)
{
for (unsigned int g0 = 0; g0 < num_grid_w; ++g0)
{
YOLO5FaceAnchor anchor;
anchor.grid0 = g0;
anchor.grid1 = g1;
anchor.stride = stride;
anchor.width = 73.f;
anchor.height = 105.f;
anchors.push_back(anchor);
}
}
} // 32
else
{
// 0 anchor
for (unsigned int g1 = 0; g1 < num_grid_h; ++g1)
{
for (unsigned int g0 = 0; g0 < num_grid_w; ++g0)
{
YOLO5FaceAnchor anchor;
anchor.grid0 = g0;
anchor.grid1 = g1;
anchor.stride = stride;
anchor.width = 146.f;
anchor.height = 217.f;
anchors.push_back(anchor);
}
}
// 1 anchor
for (unsigned int g1 = 0; g1 < num_grid_h; ++g1)
{
for (unsigned int g0 = 0; g0 < num_grid_w; ++g0)
{
YOLO5FaceAnchor anchor;
anchor.grid0 = g0;
anchor.grid1 = g1;
anchor.stride = stride;
anchor.width = 231.f;
anchor.height = 300.f;
anchors.push_back(anchor);
}
}
// 2 anchor
for (unsigned int g1 = 0; g1 < num_grid_h; ++g1)
{
for (unsigned int g0 = 0; g0 < num_grid_w; ++g0)
{
YOLO5FaceAnchor anchor;
anchor.grid0 = g0;
anchor.grid1 = g1;
anchor.stride = stride;
anchor.width = 335.f;
anchor.height = 433.f;
anchors.push_back(anchor);
}
}
}
center_anchors[stride] = anchors;
}
center_anchors_is_update = true;
}
void NCNNYOLO5Face::generate_bboxes_kps(const YOLO5FaceScaleParams &scale_params,
std::vector<types::BoxfWithLandmarks> &bbox_kps_collection,
ncnn::Extractor &extractor, float score_threshold,
float img_height, float img_width)
{
// (1,n,16=4+1+10+1=cxcy+cwch+obj_conf+5kps+cls_conf)
ncnn::Mat det_stride_8, det_stride_16, det_stride_32;
extractor.extract("det_stride_8", det_stride_8);
extractor.extract("det_stride_16", det_stride_16);
extractor.extract("det_stride_32", det_stride_32);
this->generate_anchors(input_height, input_width);
// generate bounding boxes.
bbox_kps_collection.clear();
this->generate_bboxes_kps_single_stride(scale_params, det_stride_8, 8, score_threshold,
img_height, img_width, bbox_kps_collection);
this->generate_bboxes_kps_single_stride(scale_params, det_stride_16, 16, score_threshold,
img_height, img_width, bbox_kps_collection);
this->generate_bboxes_kps_single_stride(scale_params, det_stride_32, 32, score_threshold,
img_height, img_width, bbox_kps_collection);
#if LITENCNN_DEBUG
std::cout << "generate_bboxes_kps num: " << bbox_kps_collection.size() << "\n";
#endif
}
// inner function
static inline float sigmoid(float x)
{
return static_cast<float>(1.f / (1.f + std::exp(-x)));
}
void NCNNYOLO5Face::generate_bboxes_kps_single_stride(
const YOLO5FaceScaleParams &scale_params,
ncnn::Mat &det_pred, unsigned int stride,
float score_threshold, float img_height, float img_width,
std::vector<types::BoxfWithLandmarks> &bbox_kps_collection)
{
unsigned int nms_pre_ = (stride / 8) * nms_pre; // 1 * 1000,2*1000,...
nms_pre_ = nms_pre_ >= nms_pre ? nms_pre_ : nms_pre;
const unsigned int f_h = (unsigned int) input_height / stride;
const unsigned int f_w = (unsigned int) input_width / stride;
// e.g, 3*80*80 + 3*40*40 + 3*20*20 = 25200
const unsigned int num_anchors = 3 * f_h * f_w;
const float *output_ptr = (float *) det_pred.data;
float r_ = scale_params.ratio;
int dw_ = scale_params.dw;
int dh_ = scale_params.dh;
// have c=3 indicate 3 anchors at one grid
unsigned int count = 0;
auto &stride_anchors = center_anchors[stride];
for (unsigned int i = 0; i < num_anchors; ++i)
{
const float *row_ptr = output_ptr + i * 16;
float obj_conf = sigmoid(row_ptr[4]);
if (obj_conf < score_threshold) continue; // filter first.
float cls_conf = sigmoid(row_ptr[15]);
if (cls_conf < score_threshold) continue; // face score.
int grid0 = stride_anchors.at(i).grid0; // w
int grid1 = stride_anchors.at(i).grid1; // h
float anchor_w = stride_anchors.at(i).width;
float anchor_h = stride_anchors.at(i).height;
// bounding box
const float *offsets = row_ptr;
float dx = sigmoid(offsets[0]);
float dy = sigmoid(offsets[1]);
float dw = sigmoid(offsets[2]);
float dh = sigmoid(offsets[3]);
float cx = (dx * 2.f - 0.5f + (float) grid0) * (float) stride;
float cy = (dy * 2.f - 0.5f + (float) grid1) * (float) stride;
float w = std::pow(dw * 2.f, 2) * anchor_w;
float h = std::pow(dh * 2.f, 2) * anchor_h;
types::BoxfWithLandmarks box_kps;
float x1 = ((cx - w / 2.f) - (float) dw_) / r_;
float y1 = ((cy - h / 2.f) - (float) dh_) / r_;
float x2 = ((cx + w / 2.f) - (float) dw_) / r_;
float y2 = ((cy + h / 2.f) - (float) dh_) / r_;
box_kps.box.x1 = std::max(0.f, x1);
box_kps.box.y1 = std::max(0.f, y1);
box_kps.box.x2 = std::min(img_width - 1.f, x2);
box_kps.box.y2 = std::min(img_height - 1.f, y2);
box_kps.box.score = cls_conf;
box_kps.box.label = 1;
box_kps.box.label_text = "face";
box_kps.box.flag = true;
// landmarks
const float *kps_offsets = row_ptr + 5;
for (unsigned int j = 0; j < 10; j += 2)
{
float kps_dx = kps_offsets[j];
float kps_dy = kps_offsets[j + 1];
float kps_x = (kps_dx * anchor_w + grid0 * (float) stride);
float kps_y = (kps_dy * anchor_h + grid1 * (float) stride);
cv::Point2f kps;
kps_x = (kps_x - (float) dw_) / r_;
kps_y = (kps_y - (float) dh_) / r_;
kps.x = std::min(std::max(0.f, kps_x), img_width - 1.f);
kps.y = std::min(std::max(0.f, kps_y), img_height - 1.f);
box_kps.landmarks.points.push_back(kps);
}
box_kps.landmarks.flag = true;
box_kps.flag = true;
bbox_kps_collection.push_back(box_kps);
count += 1; // limit boxes for nms.
if (count > max_nms)
break;
}
if (bbox_kps_collection.size() > nms_pre_)
{
std::sort(
bbox_kps_collection.begin(), bbox_kps_collection.end(),
[](const types::BoxfWithLandmarks &a, const types::BoxfWithLandmarks &b)
{ return a.box.score > b.box.score; }
); // sort inplace
// trunc
bbox_kps_collection.resize(nms_pre_);
}
}
void NCNNYOLO5Face::nms_bboxes_kps(std::vector<types::BoxfWithLandmarks> &input,
std::vector<types::BoxfWithLandmarks> &output,
float iou_threshold, unsigned int topk)
{
if (input.empty()) return;
std::sort(
input.begin(), input.end(),
[](const types::BoxfWithLandmarks &a, const types::BoxfWithLandmarks &b)
{ return a.box.score > b.box.score; }
);
const unsigned int box_num = input.size();
std::vector<int> merged(box_num, 0);
unsigned int count = 0;
for (unsigned int i = 0; i < box_num; ++i)
{
if (merged[i]) continue;
std::vector<types::BoxfWithLandmarks> buf;
buf.push_back(input[i]);
merged[i] = 1;
for (unsigned int j = i + 1; j < box_num; ++j)
{
if (merged[j]) continue;
float iou = static_cast<float>(input[i].box.iou_of(input[j].box));
if (iou > iou_threshold)
{
merged[j] = 1;
buf.push_back(input[j]);
}
}
output.push_back(buf[0]);
// keep top k
count += 1;
if (count >= topk)
break;
}
}
void NCNNYOLO5Face::print_debug_string()
{
std::cout << "LITENCNN_DEBUG LogId: " << log_id << "\n";
input_indexes = net->input_indexes();
output_indexes = net->output_indexes();
#ifdef NCNN_STRING
input_names = net->input_names();
output_names = net->output_names();
#endif
std::cout << "=============== Input-Dims ==============\n";
for (int i = 0; i < input_indexes.size(); ++i)
{
std::cout << "Input: ";
auto tmp_in_blob = net->blobs().at(input_indexes.at(i));
#ifdef NCNN_STRING
std::cout << input_names.at(i) << ": ";
#endif
std::cout << "shape: c=" << tmp_in_blob.shape.c
<< " h=" << tmp_in_blob.shape.h << " w=" << tmp_in_blob.shape.w << "\n";
}
std::cout << "=============== Output-Dims ==============\n";
for (int i = 0; i < output_indexes.size(); ++i)
{
auto tmp_out_blob = net->blobs().at(output_indexes.at(i));
std::cout << "Output: ";
#ifdef NCNN_STRING
std::cout << output_names.at(i) << ": ";
#endif
std::cout << "shape: c=" << tmp_out_blob.shape.c
<< " h=" << tmp_out_blob.shape.h << " w=" << tmp_out_blob.shape.w << "\n";
}
std::cout << "========================================\n";
}