|
| 1 | +//***************************************************************************************** |
| 2 | +//* * |
| 3 | +//* This is an auto-generated file by Microsoft ML.NET CLI (Command-Line Interface) tool. * |
| 4 | +//* * |
| 5 | +//***************************************************************************************** |
| 6 | + |
| 7 | +using System; |
| 8 | +using System.Collections.Generic; |
| 9 | +using System.Linq; |
| 10 | +using Microsoft.ML; |
| 11 | +using Microsoft.ML.Data; |
| 12 | + |
| 13 | +namespace TestNamespace.Train |
| 14 | +{ |
| 15 | + public static class ConsoleHelper |
| 16 | + { |
| 17 | + |
| 18 | + public static void PrintRegressionMetrics(RegressionMetrics metrics) |
| 19 | + { |
| 20 | + Console.WriteLine($"*************************************************"); |
| 21 | + Console.WriteLine($"* Metrics for regression model "); |
| 22 | + Console.WriteLine($"*------------------------------------------------"); |
| 23 | + Console.WriteLine($"* LossFn: {metrics.LossFn:0.##}"); |
| 24 | + Console.WriteLine($"* R2 Score: {metrics.RSquared:0.##}"); |
| 25 | + Console.WriteLine($"* Absolute loss: {metrics.L1:#.##}"); |
| 26 | + Console.WriteLine($"* Squared loss: {metrics.L2:#.##}"); |
| 27 | + Console.WriteLine($"* RMS loss: {metrics.Rms:#.##}"); |
| 28 | + Console.WriteLine($"*************************************************"); |
| 29 | + } |
| 30 | + |
| 31 | + public static void PrintRegressionFoldsAverageMetrics(TrainCatalogBase.CrossValidationResult<RegressionMetrics>[] crossValidationResults) |
| 32 | + { |
| 33 | + var L1 = crossValidationResults.Select(r => r.Metrics.L1); |
| 34 | + var L2 = crossValidationResults.Select(r => r.Metrics.L2); |
| 35 | + var RMS = crossValidationResults.Select(r => r.Metrics.L1); |
| 36 | + var lossFunction = crossValidationResults.Select(r => r.Metrics.LossFn); |
| 37 | + var R2 = crossValidationResults.Select(r => r.Metrics.RSquared); |
| 38 | + |
| 39 | + Console.WriteLine($"*************************************************************************************************************"); |
| 40 | + Console.WriteLine($"* Metrics for Regression model "); |
| 41 | + Console.WriteLine($"*------------------------------------------------------------------------------------------------------------"); |
| 42 | + Console.WriteLine($"* Average L1 Loss: {L1.Average():0.###} "); |
| 43 | + Console.WriteLine($"* Average L2 Loss: {L2.Average():0.###} "); |
| 44 | + Console.WriteLine($"* Average RMS: {RMS.Average():0.###} "); |
| 45 | + Console.WriteLine($"* Average Loss Function: {lossFunction.Average():0.###} "); |
| 46 | + Console.WriteLine($"* Average R-squared: {R2.Average():0.###} "); |
| 47 | + Console.WriteLine($"*************************************************************************************************************"); |
| 48 | + } |
| 49 | + |
| 50 | + public static void PrintBinaryClassificationMetrics(BinaryClassificationMetrics metrics) |
| 51 | + { |
| 52 | + Console.WriteLine($"************************************************************"); |
| 53 | + Console.WriteLine($"* Metrics for binary classification model "); |
| 54 | + Console.WriteLine($"*-----------------------------------------------------------"); |
| 55 | + Console.WriteLine($"* Accuracy: {metrics.Accuracy:P2}"); |
| 56 | + Console.WriteLine($"* Auc: {metrics.Auc:P2}"); |
| 57 | + Console.WriteLine($"************************************************************"); |
| 58 | + } |
| 59 | + |
| 60 | + |
| 61 | + public static void PrintBinaryClassificationFoldsAverageMetrics( |
| 62 | + TrainCatalogBase.CrossValidationResult<BinaryClassificationMetrics>[] crossValResults) |
| 63 | + { |
| 64 | + var metricsInMultipleFolds = crossValResults.Select(r => r.Metrics); |
| 65 | + |
| 66 | + var AccuracyValues = metricsInMultipleFolds.Select(m => m.Accuracy); |
| 67 | + var AccuracyAverage = AccuracyValues.Average(); |
| 68 | + var AccuraciesStdDeviation = CalculateStandardDeviation(AccuracyValues); |
| 69 | + var AccuraciesConfidenceInterval95 = CalculateConfidenceInterval95(AccuracyValues); |
| 70 | + |
| 71 | + |
| 72 | + Console.WriteLine($"*************************************************************************************************************"); |
| 73 | + Console.WriteLine($"* Metrics for Binary Classification model "); |
| 74 | + Console.WriteLine($"*------------------------------------------------------------------------------------------------------------"); |
| 75 | + Console.WriteLine($"* Average Accuracy: {AccuracyAverage:0.###} - Standard deviation: ({AccuraciesStdDeviation:#.###}) - Confidence Interval 95%: ({AccuraciesConfidenceInterval95:#.###})"); |
| 76 | + Console.WriteLine($"*************************************************************************************************************"); |
| 77 | + |
| 78 | + } |
| 79 | + |
| 80 | + public static void PrintMulticlassClassificationFoldsAverageMetrics( |
| 81 | + TrainCatalogBase.CrossValidationResult<MultiClassClassifierMetrics>[] crossValResults) |
| 82 | + { |
| 83 | + var metricsInMultipleFolds = crossValResults.Select(r => r.Metrics); |
| 84 | + |
| 85 | + var microAccuracyValues = metricsInMultipleFolds.Select(m => m.AccuracyMicro); |
| 86 | + var microAccuracyAverage = microAccuracyValues.Average(); |
| 87 | + var microAccuraciesStdDeviation = CalculateStandardDeviation(microAccuracyValues); |
| 88 | + var microAccuraciesConfidenceInterval95 = CalculateConfidenceInterval95(microAccuracyValues); |
| 89 | + |
| 90 | + var macroAccuracyValues = metricsInMultipleFolds.Select(m => m.AccuracyMacro); |
| 91 | + var macroAccuracyAverage = macroAccuracyValues.Average(); |
| 92 | + var macroAccuraciesStdDeviation = CalculateStandardDeviation(macroAccuracyValues); |
| 93 | + var macroAccuraciesConfidenceInterval95 = CalculateConfidenceInterval95(macroAccuracyValues); |
| 94 | + |
| 95 | + var logLossValues = metricsInMultipleFolds.Select(m => m.LogLoss); |
| 96 | + var logLossAverage = logLossValues.Average(); |
| 97 | + var logLossStdDeviation = CalculateStandardDeviation(logLossValues); |
| 98 | + var logLossConfidenceInterval95 = CalculateConfidenceInterval95(logLossValues); |
| 99 | + |
| 100 | + var logLossReductionValues = metricsInMultipleFolds.Select(m => m.LogLossReduction); |
| 101 | + var logLossReductionAverage = logLossReductionValues.Average(); |
| 102 | + var logLossReductionStdDeviation = CalculateStandardDeviation(logLossReductionValues); |
| 103 | + var logLossReductionConfidenceInterval95 = CalculateConfidenceInterval95(logLossReductionValues); |
| 104 | + |
| 105 | + Console.WriteLine($"*************************************************************************************************************"); |
| 106 | + Console.WriteLine($"* Metrics for Multi-class Classification model "); |
| 107 | + Console.WriteLine($"*------------------------------------------------------------------------------------------------------------"); |
| 108 | + Console.WriteLine($"* Average MicroAccuracy: {microAccuracyAverage:0.###} - Standard deviation: ({microAccuraciesStdDeviation:#.###}) - Confidence Interval 95%: ({microAccuraciesConfidenceInterval95:#.###})"); |
| 109 | + Console.WriteLine($"* Average MacroAccuracy: {macroAccuracyAverage:0.###} - Standard deviation: ({macroAccuraciesStdDeviation:#.###}) - Confidence Interval 95%: ({macroAccuraciesConfidenceInterval95:#.###})"); |
| 110 | + Console.WriteLine($"* Average LogLoss: {logLossAverage:#.###} - Standard deviation: ({logLossStdDeviation:#.###}) - Confidence Interval 95%: ({logLossConfidenceInterval95:#.###})"); |
| 111 | + Console.WriteLine($"* Average LogLossReduction: {logLossReductionAverage:#.###} - Standard deviation: ({logLossReductionStdDeviation:#.###}) - Confidence Interval 95%: ({logLossReductionConfidenceInterval95:#.###})"); |
| 112 | + Console.WriteLine($"*************************************************************************************************************"); |
| 113 | + |
| 114 | + } |
| 115 | + |
| 116 | + public static double CalculateStandardDeviation(IEnumerable<double> values) |
| 117 | + { |
| 118 | + double average = values.Average(); |
| 119 | + double sumOfSquaresOfDifferences = values.Select(val => (val - average) * (val - average)).Sum(); |
| 120 | + double standardDeviation = Math.Sqrt(sumOfSquaresOfDifferences / (values.Count() - 1)); |
| 121 | + return standardDeviation; |
| 122 | + } |
| 123 | + |
| 124 | + public static double CalculateConfidenceInterval95(IEnumerable<double> values) |
| 125 | + { |
| 126 | + double confidenceInterval95 = 1.96 * CalculateStandardDeviation(values) / Math.Sqrt((values.Count() - 1)); |
| 127 | + return confidenceInterval95; |
| 128 | + } |
| 129 | + } |
| 130 | +} |
0 commit comments