|
| 1 | +// Foundation under one or more agreements. |
| 2 | +// The .NET Foundation licenses this file to you under the MIT license. |
| 3 | +// See the LICENSE file in the project root for more information. |
| 4 | + |
| 5 | +using System; |
| 6 | +using System.Collections.Generic; |
| 7 | + |
| 8 | +namespace Microsoft.ML.Auto |
| 9 | +{ |
| 10 | + public abstract class ExperimentBase<TMetrics> where TMetrics : class |
| 11 | + { |
| 12 | + protected readonly MLContext Context; |
| 13 | + |
| 14 | + private readonly IMetricsAgent<TMetrics> _metricsAgent; |
| 15 | + private readonly OptimizingMetricInfo _optimizingMetricInfo; |
| 16 | + private readonly ExperimentSettings _settings; |
| 17 | + private readonly TaskKind _task; |
| 18 | + private readonly IEnumerable<TrainerName> _trainerWhitelist; |
| 19 | + |
| 20 | + internal ExperimentBase(MLContext context, |
| 21 | + IMetricsAgent<TMetrics> metricsAgent, |
| 22 | + OptimizingMetricInfo optimizingMetricInfo, |
| 23 | + ExperimentSettings settings, |
| 24 | + TaskKind task, |
| 25 | + IEnumerable<TrainerName> trainerWhitelist) |
| 26 | + { |
| 27 | + Context = context; |
| 28 | + _metricsAgent = metricsAgent; |
| 29 | + _optimizingMetricInfo = optimizingMetricInfo; |
| 30 | + _settings = settings; |
| 31 | + _task = task; |
| 32 | + _trainerWhitelist = trainerWhitelist; |
| 33 | + } |
| 34 | + |
| 35 | + public IEnumerable<RunDetails<TMetrics>> Execute(IDataView trainData, string labelColumn = DefaultColumnNames.Label, |
| 36 | + string samplingKeyColumn = null, IEstimator<ITransformer> preFeaturizers = null, IProgress<RunDetails<TMetrics>> progressHandler = null) |
| 37 | + { |
| 38 | + var columnInformation = new ColumnInformation() |
| 39 | + { |
| 40 | + LabelColumn = labelColumn, |
| 41 | + SamplingKeyColumn = samplingKeyColumn |
| 42 | + }; |
| 43 | + return Execute(trainData, columnInformation, preFeaturizers, progressHandler); |
| 44 | + } |
| 45 | + |
| 46 | + public IEnumerable<RunDetails<TMetrics>> Execute(IDataView trainData, ColumnInformation columnInformation, |
| 47 | + IEstimator<ITransformer> preFeaturizer = null, IProgress<RunDetails<TMetrics>> progressHandler = null) |
| 48 | + { |
| 49 | + // Cross val threshold for # of dataset rows -- |
| 50 | + // If dataset has < threshold # of rows, use cross val. |
| 51 | + // Else, use run experiment using train-validate split. |
| 52 | + const int crossValRowCountThreshold = 15000; |
| 53 | + |
| 54 | + var rowCount = DatasetDimensionsUtil.CountRows(trainData, crossValRowCountThreshold); |
| 55 | + |
| 56 | + if (rowCount < crossValRowCountThreshold) |
| 57 | + { |
| 58 | + const int numCrossValFolds = 10; |
| 59 | + var splitResult = SplitUtil.CrossValSplit(Context, trainData, numCrossValFolds, columnInformation?.SamplingKeyColumn); |
| 60 | + return ExecuteCrossValSummary(splitResult.trainDatasets, columnInformation, splitResult.validationDatasets, preFeaturizer, progressHandler); |
| 61 | + } |
| 62 | + else |
| 63 | + { |
| 64 | + var splitResult = SplitUtil.TrainValidateSplit(Context, trainData, columnInformation?.SamplingKeyColumn); |
| 65 | + return ExecuteTrainValidate(splitResult.trainData, columnInformation, splitResult.validationData, preFeaturizer, progressHandler); |
| 66 | + } |
| 67 | + } |
| 68 | + |
| 69 | + public IEnumerable<RunDetails<TMetrics>> Execute(IDataView trainData, IDataView validationData, string labelColumn = DefaultColumnNames.Label, IEstimator<ITransformer> preFeaturizer = null, IProgress<RunDetails<TMetrics>> progressHandler = null) |
| 70 | + { |
| 71 | + var columnInformation = new ColumnInformation() { LabelColumn = labelColumn }; |
| 72 | + return Execute(trainData, validationData, columnInformation, preFeaturizer, progressHandler); |
| 73 | + } |
| 74 | + |
| 75 | + public IEnumerable<RunDetails<TMetrics>> Execute(IDataView trainData, IDataView validationData, ColumnInformation columnInformation, IEstimator<ITransformer> preFeaturizer = null, IProgress<RunDetails<TMetrics>> progressHandler = null) |
| 76 | + { |
| 77 | + if (validationData == null) |
| 78 | + { |
| 79 | + var splitResult = SplitUtil.TrainValidateSplit(Context, trainData, columnInformation?.SamplingKeyColumn); |
| 80 | + trainData = splitResult.trainData; |
| 81 | + validationData = splitResult.validationData; |
| 82 | + } |
| 83 | + return ExecuteTrainValidate(trainData, columnInformation, validationData, preFeaturizer, progressHandler); |
| 84 | + } |
| 85 | + |
| 86 | + public IEnumerable<CrossValidationRunDetails<TMetrics>> Execute(IDataView trainData, uint numberOfCVFolds, ColumnInformation columnInformation = null, IEstimator<ITransformer> preFeaturizers = null, IProgress<CrossValidationRunDetails<TMetrics>> progressHandler = null) |
| 87 | + { |
| 88 | + UserInputValidationUtil.ValidateNumberOfCVFoldsArg(numberOfCVFolds); |
| 89 | + var splitResult = SplitUtil.CrossValSplit(Context, trainData, numberOfCVFolds, columnInformation?.SamplingKeyColumn); |
| 90 | + return ExecuteCrossVal(splitResult.trainDatasets, columnInformation, splitResult.validationDatasets, preFeaturizers, progressHandler); |
| 91 | + } |
| 92 | + |
| 93 | + public IEnumerable<CrossValidationRunDetails<TMetrics>> Execute(IDataView trainData, |
| 94 | + uint numberOfCVFolds, string labelColumn = DefaultColumnNames.Label, |
| 95 | + string samplingKeyColumn = null, IEstimator<ITransformer> preFeaturizers = null, |
| 96 | + Progress<CrossValidationRunDetails<TMetrics>> progressHandler = null) |
| 97 | + { |
| 98 | + var columnInformation = new ColumnInformation() |
| 99 | + { |
| 100 | + LabelColumn = labelColumn, |
| 101 | + SamplingKeyColumn = samplingKeyColumn |
| 102 | + }; |
| 103 | + return Execute(trainData, numberOfCVFolds, columnInformation, preFeaturizers, progressHandler); |
| 104 | + } |
| 105 | + |
| 106 | + private IEnumerable<RunDetails<TMetrics>> ExecuteTrainValidate(IDataView trainData, |
| 107 | + ColumnInformation columnInfo, |
| 108 | + IDataView validationData, |
| 109 | + IEstimator<ITransformer> preFeaturizer, |
| 110 | + IProgress<RunDetails<TMetrics>> progressHandler) |
| 111 | + { |
| 112 | + columnInfo = columnInfo ?? new ColumnInformation(); |
| 113 | + UserInputValidationUtil.ValidateExperimentExecuteArgs(trainData, columnInfo, validationData); |
| 114 | + var runner = new TrainValidateRunner<TMetrics>(Context, trainData, validationData, columnInfo.LabelColumn, _metricsAgent, |
| 115 | + preFeaturizer, _settings.DebugLogger); |
| 116 | + var columns = DatasetColumnInfoUtil.GetDatasetColumnInfo(Context, trainData, columnInfo); |
| 117 | + return Execute(columnInfo, columns, preFeaturizer, progressHandler, runner); |
| 118 | + } |
| 119 | + |
| 120 | + private IEnumerable<CrossValidationRunDetails<TMetrics>> ExecuteCrossVal(IDataView[] trainDatasets, |
| 121 | + ColumnInformation columnInfo, |
| 122 | + IDataView[] validationDatasets, |
| 123 | + IEstimator<ITransformer> preFeaturizer, |
| 124 | + IProgress<CrossValidationRunDetails<TMetrics>> progressHandler) |
| 125 | + { |
| 126 | + columnInfo = columnInfo ?? new ColumnInformation(); |
| 127 | + UserInputValidationUtil.ValidateExperimentExecuteArgs(trainDatasets[0], columnInfo, validationDatasets[0]); |
| 128 | + var runner = new CrossValRunner<TMetrics>(Context, trainDatasets, validationDatasets, _metricsAgent, preFeaturizer, |
| 129 | + columnInfo.LabelColumn, _settings.DebugLogger); |
| 130 | + var columns = DatasetColumnInfoUtil.GetDatasetColumnInfo(Context, trainDatasets[0], columnInfo); |
| 131 | + return Execute(columnInfo, columns, preFeaturizer, progressHandler, runner); |
| 132 | + } |
| 133 | + |
| 134 | + private IEnumerable<RunDetails<TMetrics>> ExecuteCrossValSummary(IDataView[] trainDatasets, |
| 135 | + ColumnInformation columnInfo, |
| 136 | + IDataView[] validationDatasets, |
| 137 | + IEstimator<ITransformer> preFeaturizer, |
| 138 | + IProgress<RunDetails<TMetrics>> progressHandler) |
| 139 | + { |
| 140 | + columnInfo = columnInfo ?? new ColumnInformation(); |
| 141 | + UserInputValidationUtil.ValidateExperimentExecuteArgs(trainDatasets[0], columnInfo, validationDatasets[0]); |
| 142 | + var runner = new CrossValSummaryRunner<TMetrics>(Context, trainDatasets, validationDatasets, _metricsAgent, preFeaturizer, |
| 143 | + columnInfo.LabelColumn, _optimizingMetricInfo, _settings.DebugLogger); |
| 144 | + var columns = DatasetColumnInfoUtil.GetDatasetColumnInfo(Context, trainDatasets[0], columnInfo); |
| 145 | + return Execute(columnInfo, columns, preFeaturizer, progressHandler, runner); |
| 146 | + } |
| 147 | + |
| 148 | + private IEnumerable<TRunDetails> Execute<TRunDetails>(ColumnInformation columnInfo, |
| 149 | + DatasetColumnInfo[] columns, |
| 150 | + IEstimator<ITransformer> preFeaturizer, |
| 151 | + IProgress<TRunDetails> progressHandler, |
| 152 | + IRunner<TRunDetails> runner) |
| 153 | + where TRunDetails : RunDetails |
| 154 | + { |
| 155 | + // Execute experiment & get all pipelines run |
| 156 | + var experiment = new Experiment<TRunDetails, TMetrics>(Context, _task, _optimizingMetricInfo, progressHandler, |
| 157 | + _settings, _metricsAgent, _trainerWhitelist, columns, runner); |
| 158 | + |
| 159 | + return experiment.Execute(); |
| 160 | + } |
| 161 | + } |
| 162 | +} |
0 commit comments