@@ -34,25 +34,25 @@ internal static void PrintMetrics(int iteration, string trainerName, RegressionM
34
34
35
35
internal static void PrintBinaryClassificationMetricsHeader ( LogLevel logLevel )
36
36
{
37
- logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------") ;
37
+ logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------------------------------------ ") ;
38
38
logger . Log ( logLevel , $ "{ Strings . MetricsForBinaryClassModels } ") ;
39
- logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------") ;
39
+ logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------------------------------------ ") ;
40
40
logger . Log ( logLevel , $ "{ " " , - 4 } { "Trainer" , - 35 } { "Accuracy" , 9 } { "AUC" , 8 } { "AUPRC" , 8 } { "F1-score" , 9 } { "Best" , 8 } { "Duration" , 9 } ") ;
41
41
}
42
42
43
43
internal static void PrintMulticlassClassificationMetricsHeader ( LogLevel logLevel )
44
44
{
45
- logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------") ;
45
+ logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------------------------------------ ") ;
46
46
logger . Log ( logLevel , $ "{ Strings . MetricsForMulticlassModels } ") ;
47
- logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------") ;
47
+ logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------------------------------------ ") ;
48
48
logger . Log ( logLevel , $ "{ " " , - 4 } { "Trainer" , - 35 } { "AccuracyMicro" , 14 } { "AccuracyMacro" , 14 } { "Best" , 14 } { "Duration" , 9 } ") ;
49
49
}
50
50
51
51
internal static void PrintRegressionMetricsHeader ( LogLevel logLevel )
52
52
{
53
- logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------") ;
53
+ logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------------------------------------ ") ;
54
54
logger . Log ( logLevel , $ "{ Strings . MetricsForRegressionModels } ") ;
55
- logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------") ;
55
+ logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------------------------------------ ") ;
56
56
logger . Log ( logLevel , $ "{ " " , - 4 } { "Trainer" , - 35 } { "R2-Score" , 9 } { "LossFn" , 12 } { "Absolute-loss" , 15 } { "Squared-loss" , 15 } { "RMS-loss" , 12 } { "Best" , 12 } { "Duration" , 9 } ") ;
57
57
}
58
58
@@ -70,61 +70,61 @@ internal static void PrintTopNHeader(int count)
70
70
71
71
internal static void ExperimentResultsHeader ( LogLevel logLevel , string mltask , string datasetName , string labelName , string time , int numModelsExplored )
72
72
{
73
- logger . Log ( logLevel , $ "===============================Experiment Results===================================") ;
74
- logger . Log ( logLevel , $ "------------------------------------------------------------------------------------") ;
73
+ logger . Log ( logLevel , $ "============================================== Experiment Results=============== ===================================") ;
74
+ logger . Log ( logLevel , $ "------------------------------------------------------------------------------------------------------------------ ") ;
75
75
logger . Log ( logLevel , $ "{ "ML Task" , - 7 } : { mltask , - 20 } ") ;
76
76
logger . Log ( logLevel , $ "{ "Dataset" , - 7 } : { datasetName , - 25 } ") ;
77
77
logger . Log ( logLevel , $ "{ "Label" , - 6 } : { labelName , - 25 } ") ;
78
78
logger . Log ( logLevel , $ "{ "Exploration time" , - 20 } : { time } Secs") ;
79
79
logger . Log ( logLevel , $ "{ "Total number of models explored" , - 30 } : { numModelsExplored } ") ;
80
- logger . Log ( logLevel , $ "------------------------------------------------------------------------------------") ;
80
+ logger . Log ( logLevel , $ "------------------------------------------------------------------------------------------------------------------ ") ;
81
81
}
82
82
internal static void PrintIterationSummary ( IEnumerable < RunResult < BinaryClassificationMetrics > > results , BinaryClassificationMetric optimizationMetric , int count )
83
83
{
84
84
var metricsAgent = new BinaryMetricsAgent ( optimizationMetric ) ;
85
85
var topNResults = RunResultUtil . GetTopNRunResults ( results , metricsAgent , count ) ;
86
- logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------") ;
86
+ logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------------------------------------ ") ;
87
87
logger . Log ( LogLevel . Info , $ "Top { topNResults ? . Count ( ) } models explored ") ;
88
- logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------") ;
88
+ logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------------------------------------ ") ;
89
89
PrintBinaryClassificationMetricsHeader ( LogLevel . Info ) ;
90
90
int i = 0 ;
91
91
foreach ( var result in topNResults )
92
92
{
93
93
PrintMetrics ( ++ i , result . TrainerName , result . ValidationMetrics , metricsAgent . GetScore ( result . ValidationMetrics ) , result . RuntimeInSeconds , LogLevel . Info ) ;
94
94
}
95
- logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------") ;
95
+ logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------------------------------------ ") ;
96
96
}
97
97
98
98
internal static void PrintIterationSummary ( IEnumerable < RunResult < RegressionMetrics > > results , RegressionMetric optimizationMetric , int count )
99
99
{
100
100
var metricsAgent = new RegressionMetricsAgent ( optimizationMetric ) ;
101
101
var topNResults = RunResultUtil . GetTopNRunResults ( results , metricsAgent , count ) ;
102
- logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------") ;
102
+ logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------------------------------------ ") ;
103
103
logger . Log ( LogLevel . Info , $ "Top { topNResults ? . Count ( ) } models explored ") ;
104
- logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------") ;
104
+ logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------------------------------------ ") ;
105
105
PrintRegressionMetricsHeader ( LogLevel . Info ) ;
106
106
int i = 0 ;
107
107
foreach ( var result in topNResults )
108
108
{
109
109
PrintMetrics ( ++ i , result . TrainerName , result . ValidationMetrics , metricsAgent . GetScore ( result . ValidationMetrics ) , result . RuntimeInSeconds , LogLevel . Info ) ;
110
110
}
111
- logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------") ;
111
+ logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------------------------------------ ") ;
112
112
}
113
113
114
114
internal static void PrintIterationSummary ( IEnumerable < RunResult < MultiClassClassifierMetrics > > results , MulticlassClassificationMetric optimizationMetric , int count )
115
115
{
116
116
var metricsAgent = new MultiMetricsAgent ( optimizationMetric ) ;
117
117
var topNResults = RunResultUtil . GetTopNRunResults ( results , metricsAgent , count ) ;
118
- logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------") ;
118
+ logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------------------------------------ ") ;
119
119
logger . Log ( LogLevel . Info , $ "Top { topNResults ? . Count ( ) } models explored ") ;
120
- logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------") ;
120
+ logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------------------------------------ ") ;
121
121
PrintMulticlassClassificationMetricsHeader ( LogLevel . Info ) ;
122
122
int i = 0 ;
123
123
foreach ( var result in topNResults )
124
124
{
125
125
PrintMetrics ( ++ i , result . TrainerName , result . ValidationMetrics , metricsAgent . GetScore ( result . ValidationMetrics ) , result . RuntimeInSeconds , LogLevel . Info ) ;
126
126
}
127
- logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------") ;
127
+ logger . Log ( LogLevel . Info , $ "------------------------------------------------------------------------------------------------------------------ ") ;
128
128
}
129
129
}
130
130
}
0 commit comments