|
| 1 | +using System; |
| 2 | +using System.Collections.Generic; |
| 3 | +using System.Linq; |
| 4 | +using System.Text; |
| 5 | +using System.Threading; |
| 6 | +using Microsoft.Data.DataView; |
| 7 | +using Microsoft.ML.Core.Data; |
| 8 | +using Microsoft.ML.Data; |
| 9 | + |
| 10 | +namespace Microsoft.ML.Auto.APINew |
| 11 | +{ |
| 12 | + public static class MLContextExtension |
| 13 | + { |
| 14 | + public static AutoInfereceCataglog AutoInference(this MLContext mlContext) |
| 15 | + { |
| 16 | + return new AutoInfereceCataglog(); |
| 17 | + } |
| 18 | + } |
| 19 | + |
| 20 | + public class ExperimentSettings |
| 21 | + { |
| 22 | + public uint MaxInferenceTimeInSeconds; |
| 23 | + public bool EnableCaching; |
| 24 | + public CancellationToken CancellationToken; |
| 25 | + } |
| 26 | + |
| 27 | + public class RegressionExperimentSettings : ExperimentSettings |
| 28 | + { |
| 29 | + public IProgress<Data.RegressionMetrics> ProgressCallback; |
| 30 | + public Data.RegressionMetrics OptimizingMetrics; |
| 31 | + public RegressionTrainer[] WhitelistedTrainers; |
| 32 | + } |
| 33 | + |
| 34 | + public enum RegressionMetric |
| 35 | + { |
| 36 | + RSquared |
| 37 | + } |
| 38 | + |
| 39 | + public enum RegressionTrainer |
| 40 | + { |
| 41 | + LightGbm |
| 42 | + } |
| 43 | + |
| 44 | + public class ColumnInfereceResults |
| 45 | + { |
| 46 | + public TextLoader.Arguments TextLoaderArgs; |
| 47 | + public ColumnInformation ColumnInformation; |
| 48 | + } |
| 49 | + |
| 50 | + public class ColumnInformation |
| 51 | + { |
| 52 | + public string LableColumn; |
| 53 | + public string WeightColumn; |
| 54 | + public IEnumerable<string> CategoricalColumns; |
| 55 | + } |
| 56 | + |
| 57 | + public class RegressionExperiment |
| 58 | + { |
| 59 | + public RunResult<RegressionMetric> Execute(IDataView testData, ColumnInformation columnInformation = null, IEstimator<ITransformer> preFeaturizers = null) |
| 60 | + { |
| 61 | + throw new NotImplementedException(); |
| 62 | + } |
| 63 | + |
| 64 | + public RunResult<RegressionMetric> Execute(IDataView testData, IDataView validationData, ColumnInformation columnInformation = null, IEstimator<ITransformer> preFeaturizers = null) |
| 65 | + { |
| 66 | + throw new NotImplementedException(); |
| 67 | + } |
| 68 | + |
| 69 | + public RunResult<RegressionMetric> Execute(IDataView testData, uint numberOfCVFolds, ColumnInformation columnInformation = null, IEstimator<ITransformer> preFeaturizers = null) |
| 70 | + { |
| 71 | + throw new NotImplementedException(); |
| 72 | + } |
| 73 | + } |
| 74 | + |
| 75 | + public class AutoInfereceCataglog |
| 76 | + { |
| 77 | + RegressionExperiment CreateRegressionExperiment(uint maxInferenceTimeInSeconds) |
| 78 | + { |
| 79 | + return new RegressionExperiment(); |
| 80 | + } |
| 81 | + |
| 82 | + RegressionExperiment CreateRegressionExperiment(RegressionExperimentSettings experimentSettings) |
| 83 | + { |
| 84 | + return new RegressionExperiment(); |
| 85 | + } |
| 86 | + |
| 87 | + public ColumnInfereceResults InferColumns() |
| 88 | + { |
| 89 | + throw new NotImplementedException(); |
| 90 | + } |
| 91 | + } |
| 92 | + |
| 93 | + public class RunResult<T> |
| 94 | + { |
| 95 | + public readonly T Metrics; |
| 96 | + public readonly ITransformer Model; |
| 97 | + public readonly Exception Exception; |
| 98 | + public readonly string TrainerName; |
| 99 | + public readonly int RuntimeInSeconds; |
| 100 | + |
| 101 | + internal readonly Pipeline Pipeline; |
| 102 | + internal readonly int PipelineInferenceTimeInSeconds; |
| 103 | + |
| 104 | + internal RunResult( |
| 105 | + ITransformer model, |
| 106 | + T metrics, |
| 107 | + Pipeline pipeline, |
| 108 | + Exception exception, |
| 109 | + int runtimeInSeconds, |
| 110 | + int pipelineInferenceTimeInSeconds) |
| 111 | + { |
| 112 | + Model = model; |
| 113 | + Metrics = metrics; |
| 114 | + Pipeline = pipeline; |
| 115 | + Exception = exception; |
| 116 | + RuntimeInSeconds = runtimeInSeconds; |
| 117 | + PipelineInferenceTimeInSeconds = pipelineInferenceTimeInSeconds; |
| 118 | + |
| 119 | + TrainerName = pipeline?.Nodes.Where(n => n.NodeType == PipelineNodeType.Trainer).Last().Name; |
| 120 | + } |
| 121 | + } |
| 122 | +} |
0 commit comments