@@ -27,9 +27,9 @@ internal AutoCatalog(MLContext context)
27
27
/// <para>See <see cref="RegressionExperiment"/> for a more detailed code example of an AutoML regression experiment.</para>
28
28
/// <para>An experiment may run for longer than <paramref name="maxExperimentTimeInSeconds"/>.
29
29
/// This is because once AutoML starts training an ML.NET model, AutoML lets the
30
- /// model train to completion. For instance, if the first model
30
+ /// model train to completion. For instance, if the first model
31
31
/// AutoML trains takes 4 hours, and the second model trained takes 5 hours,
32
- /// but <paramref name="maxExperimentTimeInSeconds"/> was the number of seconds in 6 hours,
32
+ /// but <paramref name="maxExperimentTimeInSeconds"/> was the number of seconds in 6 hours,
33
33
/// the experiment will run for 4 + 5 = 9 hours (not 6 hours).</para>
34
34
/// </remarks>
35
35
public RegressionExperiment CreateRegressionExperiment ( uint maxExperimentTimeInSeconds )
@@ -62,9 +62,9 @@ public RegressionExperiment CreateRegressionExperiment(RegressionExperimentSetti
62
62
/// <para>See <see cref="BinaryClassificationExperiment"/> for a more detailed code example of an AutoML binary classification experiment.</para>
63
63
/// <para>An experiment may run for longer than <paramref name="maxExperimentTimeInSeconds"/>.
64
64
/// This is because once AutoML starts training an ML.NET model, AutoML lets the
65
- /// model train to completion. For instance, if the first model
65
+ /// model train to completion. For instance, if the first model
66
66
/// AutoML trains takes 4 hours, and the second model trained takes 5 hours,
67
- /// but <paramref name="maxExperimentTimeInSeconds"/> was the number of seconds in 6 hours,
67
+ /// but <paramref name="maxExperimentTimeInSeconds"/> was the number of seconds in 6 hours,
68
68
/// the experiment will run for 4 + 5 = 9 hours (not 6 hours).</para>
69
69
/// </remarks>
70
70
public BinaryClassificationExperiment CreateBinaryClassificationExperiment ( uint maxExperimentTimeInSeconds )
@@ -97,9 +97,9 @@ public BinaryClassificationExperiment CreateBinaryClassificationExperiment(Binar
97
97
/// <para>See <see cref="MulticlassClassificationExperiment"/> for a more detailed code example of an AutoML multiclass classification experiment.</para>
98
98
/// <para>An experiment may run for longer than <paramref name="maxExperimentTimeInSeconds"/>.
99
99
/// This is because once AutoML starts training an ML.NET model, AutoML lets the
100
- /// model train to completion. For instance, if the first model
100
+ /// model train to completion. For instance, if the first model
101
101
/// AutoML trains takes 4 hours, and the second model trained takes 5 hours,
102
- /// but <paramref name="maxExperimentTimeInSeconds"/> was the number of seconds in 6 hours,
102
+ /// but <paramref name="maxExperimentTimeInSeconds"/> was the number of seconds in 6 hours,
103
103
/// the experiment will run for 4 + 5 = 9 hours (not 6 hours).</para>
104
104
/// </remarks>
105
105
public MulticlassClassificationExperiment CreateMulticlassClassificationExperiment ( uint maxExperimentTimeInSeconds )
@@ -136,15 +136,15 @@ public MulticlassClassificationExperiment CreateMulticlassClassificationExperime
136
136
/// <returns>Information inferred about the columns in the provided dataset.</returns>
137
137
/// <remarks>
138
138
/// Infers information about the name, data type, and purpose of each column.
139
- /// The returned <see cref="ColumnInferenceResults.TextLoaderOptions" /> can be used to
140
- /// instantiate a <see cref="TextLoader" />. The <see cref="TextLoader" /> can be used to
141
- /// obtain an <see cref="IDataView"/> that can be fed into an AutoML experiment,
139
+ /// The returned <see cref="ColumnInferenceResults.TextLoaderOptions" /> can be used to
140
+ /// instantiate a <see cref="TextLoader" />. The <see cref="TextLoader" /> can be used to
141
+ /// obtain an <see cref="IDataView"/> that can be fed into an AutoML experiment,
142
142
/// or used elsewhere in the ML.NET ecosystem (ie in <see cref="IEstimator{TTransformer}.Fit(IDataView)"/>.
143
143
/// The <see cref="ColumnInformation"/> contains the inferred purpose of each column in the dataset.
144
144
/// (For instance, is the column categorical, numeric, or text data? Should the column be ignored? Etc.)
145
145
/// The <see cref="ColumnInformation"/> can be inspected and modified (or kept as is) and used by an AutoML experiment.
146
146
/// </remarks>
147
- public ColumnInferenceResults InferColumns ( string path , string labelColumnName = DefaultColumnNames . Label , char ? separatorChar = null , bool ? allowQuoting = null ,
147
+ public ColumnInferenceResults InferColumns ( string path , string labelColumnName = DefaultColumnNames . Label , char ? separatorChar = null , bool ? allowQuoting = null ,
148
148
bool ? allowSparse = null , bool trimWhitespace = false , bool groupColumns = true )
149
149
{
150
150
UserInputValidationUtil . ValidateInferColumnsArgs ( path , labelColumnName ) ;
@@ -164,9 +164,9 @@ public ColumnInferenceResults InferColumns(string path, string labelColumnName =
164
164
/// <returns>Information inferred about the columns in the provided dataset.</returns>
165
165
/// <remarks>
166
166
/// Infers information about the name, data type, and purpose of each column.
167
- /// The returned <see cref="ColumnInferenceResults.TextLoaderOptions" /> can be used to
168
- /// instantiate a <see cref="TextLoader" />. The <see cref="TextLoader" /> can be used to
169
- /// obtain an <see cref="IDataView"/> that can be fed into an AutoML experiment,
167
+ /// The returned <see cref="ColumnInferenceResults.TextLoaderOptions" /> can be used to
168
+ /// instantiate a <see cref="TextLoader" />. The <see cref="TextLoader" /> can be used to
169
+ /// obtain an <see cref="IDataView"/> that can be fed into an AutoML experiment,
170
170
/// or used elsewhere in the ML.NET ecosystem (ie in <see cref="IEstimator{TTransformer}.Fit(IDataView)"/>.
171
171
/// The <see cref="ColumnInformation"/> contains the inferred purpose of each column in the dataset.
172
172
/// (For instance, is the column categorical, numeric, or text data? Should the column be ignored? Etc.)
@@ -194,15 +194,15 @@ public ColumnInferenceResults InferColumns(string path, ColumnInformation column
194
194
/// <returns>Information inferred about the columns in the provided dataset.</returns>
195
195
/// <remarks>
196
196
/// Infers information about the name, data type, and purpose of each column.
197
- /// The returned <see cref="ColumnInferenceResults.TextLoaderOptions" /> can be used to
198
- /// instantiate a <see cref="TextLoader" />. The <see cref="TextLoader" /> can be used to
199
- /// obtain an <see cref="IDataView"/> that can be fed into an AutoML experiment,
197
+ /// The returned <see cref="ColumnInferenceResults.TextLoaderOptions" /> can be used to
198
+ /// instantiate a <see cref="TextLoader" />. The <see cref="TextLoader" /> can be used to
199
+ /// obtain an <see cref="IDataView"/> that can be fed into an AutoML experiment,
200
200
/// or used elsewhere in the ML.NET ecosystem (ie in <see cref="IEstimator{TTransformer}.Fit(IDataView)"/>.
201
201
/// The <see cref="ColumnInformation"/> contains the inferred purpose of each column in the dataset.
202
202
/// (For instance, is the column categorical, numeric, or text data? Should the column be ignored? Etc.)
203
203
/// The <see cref="ColumnInformation"/> can be inspected and modified (or kept as is) and used by an AutoML experiment.
204
204
/// </remarks>
205
- public ColumnInferenceResults InferColumns ( string path , uint labelColumnIndex , bool hasHeader = false , char ? separatorChar = null ,
205
+ public ColumnInferenceResults InferColumns ( string path , uint labelColumnIndex , bool hasHeader = false , char ? separatorChar = null ,
206
206
bool ? allowQuoting = null , bool ? allowSparse = null , bool trimWhitespace = false , bool groupColumns = true )
207
207
{
208
208
UserInputValidationUtil . ValidateInferColumnsArgs ( path ) ;
0 commit comments