|
52 | 52 | "outputs": [
|
53 | 53 | {
|
54 | 54 | "data": {
|
55 |
| - "text/html": [ |
56 |
| - "<pre style=\"word-wrap: normal;white-space: pre;background: #fff0;line-height: 1.1;font-family: "Courier New",Courier,monospace\"> ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐\n", |
57 |
| - "q_0: ┤ RY(θ[0]) ├─■─┤ RY(θ[2]) ├─■─┤ RY(θ[4]) ├─■─┤ RY(θ[6]) ├\n", |
58 |
| - " ├──────────┤ │ ├──────────┤ │ ├──────────┤ │ ├──────────┤\n", |
59 |
| - "q_1: ┤ RY(θ[1]) ├─■─┤ RY(θ[3]) ├─■─┤ RY(θ[5]) ├─■─┤ RY(θ[7]) ├\n", |
60 |
| - " └──────────┘ └──────────┘ └──────────┘ └──────────┘</pre>" |
61 |
| - ], |
| 55 | + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAB7CAYAAACIG9xhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAV50lEQVR4nO3de1hUBf7H8ffMgAKCCqKSWAoilCiUl1K8oOWurD9/pmuWl9o0f1nolkputam1G6Vl2br7VFZb6rabukmmrmuWJeAFu2ipoBbeyUupqQmKIDC/PyZRAoajyJyZ6fN6nnmEc87DfPg4zHfOmcPBYrfb7YiIiBhgNTuAiIh4Dg0NERExTENDREQM09AQERHDNDRERMQwDQ0RETFMQ0NERAzT0BAREcM0NERExDANDRERMUxDQ0REDNPQEBERwzQ0RETEMA0NERExTENDREQM09AQERHDNDRERMQwDQ0RETFMQ0NERAzT0BAREcM0NERExDANDRERMUxDQ0REDNPQEBERwzQ0RETEMA0NERExzMfsAO7umzWQf9Sc+w5qBjG3mnPfZlDXrqOuXcesruuqZw2NGuQfhVMHzU7xy6CuXUddu463da3DUyIiYpiGhoiIGKahISIihmloiIiIYXoj/Cp5ZE5vdh7YiM3mi9VqIyw4ghG3TSExfqjZ0byKenYdde06ntS1hsZVNLLvNEb2nUppaQnLsl5mxoIRRIXfRHholNnRvIp6dh117Tqe0rUOT9UBm82H39xyP6VlJew5vMXsOF5LPbuOunYdd+9aQ6MOnC8pZkXWHABahkabnMZ7qWfXUdeu4+5da2hcRQs+eZZB0xoz4Al/5n04lZShbxLZIg6A6e+M4NMdK8q3fWr+IDZ985FZUatVVAL5hVBSanaS6nlDzwDnzju6Li0zO0n1vKXrwmIoOAdl6rrW3HpolJWV8eKLL9K2bVv8/PyIj48nMzOTmJgYxo4da3a8SkbcNoWlqadI+9Nxbr6+P1t3p5evS759NvM/nEZhUQHrspfQwK8RnWN+bWLaivYchb9nwOP/hmlL4I+L4d3P4YcCs5NV5sk9A+w4BK98DI+/6+h6Shos3QynC81OVpknd223w5f74aVVjsfz1PfgySWwciucLTY7XWWe0rVbD40xY8aQmprKAw88wAcffMCdd97J8OHD2bt3L506dTI7XrWCAoJJGfomn339X7JylgEQHNiMwT0m8Mqyh1nwyTM8OPAvJqe8aNM+eHm148nM/tOy86WwcRfM+gAOnzQ1XrU8rWeA9J3wRgbsvuRaROfOQ8bXjq5PuOGQBs/s+j9fwdsb4NsfLi4rKIKPcuCvH8KZIvOyOePuXbvt0Fi4cCHz589n+fLlTJ48mT59+jBlyhS6detGSUkJHTt2NDuiUw0DQhjSM4W5q56g7Kd94n5dRnHwWC6Duj9Mw4AQkxM6nDwDCzY6hoX9Z+vsQOF5mLsOyn6+0k14Ss/gePJa9qXjY3sVfZ4uhHc2ujbT5fCkrrcfgjU7HR9X9dA9ehre+8KlkS6LO3fttkNj+vTpJCUlkZiYWGF5VFQUvr6+xMU5jvXt37+fxMREoqOj6dChA+vWrTMjbpUG95zAidNHWL357fJlLZpEudUpdFm7nA8Eux2O58Ou71yX6XJ5Qs8A63LB4mS9HcdhwiOnXBToCnhM19+AxUnZdmBLnnseErzAXbt2y6Fx8OBBcnJyGDq08i+25OXlERsbS/369QF44IEHuOuuu8jNzeX1119n2LBhFBfXfMDSYrEYumVmZhjKPCs5g5F9p1ZY1sCvIUuePkG/LqMMfY2fy8zMMJzzSm9vL92IvaqXvZew2+2MnvBsnWcx0nVd9Oyqrj/5Iq/KV70/l3Tn79V1LW/b84qq3Ju7VJkdOiUO8dquL7dno9x2aACEhYVVWF5YWEhmZmb5oanjx4+zfv16xowZA0BCQgItWrQgPT0dMcZitRl4wNixWm0uyePNLAY7VNdXgdXYU5vR/xO5yC2HRmhoKAC5ubkVls+cOZMjR46Uvwmel5dH8+bNy/c6ACIiIjhw4ECN92G32w3dEhN7X71vDHh02HzaR/QwtG1iYm/DOa/0dkfSzTXmsFisvPz843We5Wp2fTk9g2u67tYh3OnhqQvee/uv6rqWt4hmvoa63rD6Xa/t+nJ7NsotLyMSGRlJXFwc06dPJyQkhPDwcNLS0li5ciWAW5855Wm6R8P6XdWvtwAN6kOHa10WyWv1iIZsJ3+MxwI0bwQRTV0WyWv1iHac4FEdiwXaNoemQa7L5C3cck/DarWyePFiYmNjSU5OZvTo0YSGhjJ+/HhsNlv5m+DXXXcd33//PUVFF8+d27dvH61atTIruse5pjEkdXB8/PNXZhYcP1x3dwebWz5SPEt0GCS0rXqdxQK+PjCym/M3cMWYzq2hQ8uq11mAgHowtOadbKmCW+5pAERHR1d6b+Kee+6hXbt2+Pv7A47DWN27d+ett95i3LhxZGVlcejQIfr06WNGZI+VFAfBDWB1Dhy/5PcEIpvB/8Q7/pXas1hgaBdo1hDSd8CPl5y5c8M1MOBGaBFsWjyvYrXCqJ6wervjTKoLv5NhtUDctY6uQ7WXcUXcdmhUZdOmTXTt2rXCstdee41Ro0Yxe/Zs6tWrx8KFC6lXr55JCT3XLW3g5kiYtMDx+dSB+qGqCxYL9L4eekVDykLHsj8NhsYB5ubyRjarYy+6bzuYvMix7M+DIcjf3FyezmOGRkFBAbm5uYwbN67C8sjISNauXWtSKoe3Vv6R7fs3ENu6Oy2bxrAofQYTh7xBfJtE3s14gazty2ge3Io/3DWf8yVFPPpGX8KbRPH4iH+ZmvvnLj0s4q4Do7qumwVfx8xFv8OChdBGLXls+D+xWW1MnTuAgsJTzB6/3uzoFVx6co+7Dgxnj2uAddlLmLNsAgumfkthUYHbPq59LjlByl0HhrOuN+euZtGaGZTZy3jgf2dxbdMYU7v2mCPVgYGBlJaW8tBDD5kdpYJ93+Vw5txpXhq3ltNnf+Bc8RmGJv6B+DaJnCw4ypY96cwev56Ia+LYkLMU//qBTBm5yOzYHslZ14F+jXlm9ApeGreWsJAIPv/acdLEM/etqOGrSlWcdX3Bum1pNG3sOENCj+sr56zrovOF/PfT13lu7GpmJWcQ3bKT6V17zNBwVzn71tM52nHhsI5tf1XhHPvcbzcRH9n7p3V92XnAja8R4QGcdR0UEEwD/0YA+Nh8sVp0/n1tOOsa4LOdK+nYti8Wi55CastZ1zsObMRisfLEm7/huYX3UFh8xqyY5fQ/Xkv5Z0/wj4+e4pE5vVnwybPknz1Rvu7MuVME+DUEoIFfIwrOnTIppXdw1vUFx388zObc1eU/hHJlaup69eZ/cFvHu01K512cdX0y/3tO5B9h+v99QGyrBP678XUTkzp4zHsa7iooIIR7+z1NQuxAPt2xgmM/XjwRv4FfI46dcnx+9txpAv0am5TSOzjrGqC4pIgX/n0vKUP/js2mh3ZtOOv6q91raNeqG74+OuHkaqjpOaR96x7YrDZujLqVxZkvmpjUQXsatdQ+ogfZex1vxG/dk0FZ2cW/XhR9bRe27c0E4MtdH3NDq65Vfg0xxlnXALPTxjIwYTytmrczI55Xcdb1/u9y2Lh9OX/8exIHvt/OvFVTq/syYoCzrmOu7ULeUcflevcc3kJYSIQpGS+loVFLEWHt8bH58sic3vjYfPGr16B8XXBgMzpE9mLiKz3Yc3gLCbGDzAvqBZx1vWP/RtbnLGHJutk8Mqc367PfNzGp53PW9eAeD/PCg2uYcf8qWjWPZXTSMyYm9XzOum4c2JS4yERSXu3Fh1/MY0C3B01M6qB9+KtgTP8Z5R+v3ZbGovTnCA9tS3ybRIb1eYxhfR4rX19YVMBzC+8m5touZkT1eM66Xv5MfqXtp84dQEjDa1wZ0Ws46/qCC6cy63FdO866HtJrEkN6TSpfb3bXFvvlXKnqF2jTIjjl5HpBdalxS+g8zLX3OfEdx7+zR7r2fkFdu5K6dh2zuq6rnrWnUYMgEy+hYeZ9m0Fdu466dh2zvt+6ul8NjRrE3Gp2gl8Ode066tp1vK1rvREuIiKGaWiIiIhhGhoiImKYhoaIiBimoSEiIoZpaIiIiGEaGiIiYpiGhoiIGKahISIihmloiIiIYRoaIiJimIaGiIgYpqEhIiKG6Sq3NfhmDeQfNee+g5p53xUynVHXrqOuXcesruuqZw2NGuQfNe+P1fzSqGvXUdeu421d6/CUiIgYpqEhIiKGaWiIiIhhek/jKnlkTm92HtiIzeaL1WojLDiCEbdNITF+qNnRvIp6dh117Tqe1LWGxlU0su80RvadSmlpCcuyXmbGghFEhd9EeGiU2dG8inp2HXXtOp7StQ5P1QGbzYff3HI/pWUl7Dm8xew4Xks9u466dh1371pDow6cLylmRdYcAFqGRpucxnupZ9dR167j7l1raFxFCz55lkHTGjPgCX/mfTiVlKFvEtkiDoDp74zg0x0ryrd9av4gNn3zkVlRPZp6dh117Tqe0rVbD42ysjJefPFF2rZti5+fH/Hx8WRmZhITE8PYsWPNjlfJiNumsDT1FGl/Os7N1/dn6+708nXJt89m/ofTKCwqYF32Ehr4NaJzzK9NTFuR3Q67v7/4+YotcPS0aXGc8uSeAcrssOPQxc9XZcPJM+blccbTuy4tg615Fz//eDvknzMvjzOe0rVbvxE+ZswYlixZwrRp0+jUqRNZWVkMHz6cY8eOkZKSYna8agUFBJMy9E3ufa4NWTnLSGh/O8GBzRjcYwKvLHuYPYe38PzYj82OWS7/HLyZAQd+uLjs4+2OW7couKML2Nzw5YWn9QzwQwG8nl5xIK/aBh9ug76x0D8eLBbz8lXHE7s+fBLeyIBTZy8uW7EFVm6FgR2h9/VmJXPO3bt2w6cCh4ULFzJ//nyWL1/O5MmT6dOnD1OmTKFbt26UlJTQsWNHsyM61TAghCE9U5i76gnKysoA6NdlFAeP5TKo+8M0DAgxOaFDaRm8tgbyfqh6/cbdsPRL12a6HJ7SM0BhMbz8MRyrYg/ODqzeDp/scHkswzyp61NnHV3/eLbyujI7LN0Mn+1xfS6j3Llrtx0a06dPJykpicTExArLo6Ki8PX1JS7OcazvySefJDo6GqvVSlpamhlRqzW45wROnD7C6s1vly9r0STKrU6hy/4WDp10PGlVZ31u1T987sITegb4fK/jMJSzrj/KgaISl0W6bJ7S9bpv4Gyx864/2AY/PR+7JXft2i0PTx08eJCcnBwmTZpUaV1eXh6xsbHUr18fgKSkJEaNGsV9993n6pgVzErOqLSsgV9Dljx9wvVhLsPne8GC8x8uux2+PAB9bnBVqup5as9grOviEsj5FjpFuCpV9Ty568/21rzNqbOw5yi0Dav7PDXxpK7dck/j4EHHJSHDwir+bxYWFpKZmVnh0FRCQgKRkZGXfR8Wi8XQLTMzo1bfS21kZmYYznmlt/QNm50+iQHYy8p4MvWFOs/i7V3n7jtSY9cA949PUde1vOWfLTWUZcBvh3tt15fbs1FuuacRGhoKQG5uLv379y9fPnPmTI4cOUKnTp3MilZrjw6bb3aECgpPH6WsrBSr1VbtNharlcL84y5MVXvu1jNA4eljBDRsjsXq/LWauq69c2dO4h8UWvN26vqyueXQiIyMJC4ujunTpxMSEkJ4eDhpaWmsXLkS4KoMDbvdyGs+2LTIvGvhJyb2xj7HWM4rtWkf/CvL+TYW4KOFzxMS+HzdZvHyrtfsgOVfOd/G1wZffvI2/vXedr5hLXl71+9vhsyvnW8T5Ad7t66u8zMDzeq6rnp2y8NTVquVxYsXExsbS3JyMqNHjyY0NJTx48djs9nK3wSX2rvxOmga5BgM1bk5EkICXRbJa93SxvFE5exIQJ8bwL+e6zJ5q14xUN/X+eO6Xwf3PJXc3bltZdHR0aSnp3PmzBny8vJITU0lOzubdu3a4e/vb3Y8r+Fjg/F9oXkjx+cWi+MH7cIP202tYOjNZqXzLg3qO7pu9NPD90LXF/SIhiS9HroqmgRC8q0Q4DhfxtH1JWUnxUH3tuZk83RueXiqOps2baJr164Vlk2bNo158+Zx7NgxsrOzmThxIpmZmbRp08aklJ6ncQA82h92HIYtB6DwPAQHOF4ZX9vE7HTeJawRTB0I276F7INwvtTxBNctyrFOrp7WofDUIMeZfzsPO34nKayRo+sm2nO+Yh4zNAoKCsjNzWXcuHEVlqemppKammpSKoe3Vv6R7fs3ENu6Oy2bxrAofQYTh7xBbOsEUl7txb7vsnlt0hbCQ6MoLCrg0Tf6Et4kisdH/MvU3JeyWqF9S8fNnVXXdeuwWJ6cNxCbzZcGfo2Yeve/KSsrdcuufWzQsbXj5s6q6zq+TSK3T2tEVIubAHjq3iU0DAhh6twBFBSeYvb49SYnv6ieD3Rt47i5s+q6buDXiDnLJwJw9OQBBvecwG97TjS1a7c9PPVzgYGBlJaW8tBDD5kdpYJ93+Vw5txpXhq3ltNnf+Bc8RmGJv6B+DaJ2Kw+/HnUUnp2uKN8e//6gUwZucjExJ7LWdeB/sH8Zdx6XkrOJDq8E5/uWKGua8FZ1wARYR2YlZzBrOSM8t9Ofua+Fc6+pFTDWddR4TeW9xxxTRy33DAAMLdrjxka7ipn33o6RzsuHNax7a8qnLpqsVgIDmpuVjSv46xrm9WG9adTWUvtpYSH6oB1bTjrGiDv6E4mvdqTN1c+bvhMRKlaTV0DFBaf4WT+d6b/Njh40OEpd5V/9gQrNr7Ge+v+QkHhKRLj76RxYDOzY3mlmrr+Ou9z/vb+OOr5+DG01yMmJvV8NXU9/7FdBPkH89f3HmTjjv+QEDvQxLSezchzyBdff0DnmCSTElakoVFLQQEh3NvvaRJiB/LpjhUc+9Gkk99/AWrq+vrrbubVCZtYnDmLVV/MZUivypehEWNq6vrCIamE9oPYfegrDY1aMPIcsiHnfe7s/agJ6SrT4alaah/Rg+y9awHYuieDsjJjly+Qy+es6/MlxeUfN/BrSD1fnZZdG866Liw+Q+lPn2/fv4EWTdz8XWY3V9NzSEnpefKO7qRNi3gz4lWioVFLEWHt8bH58sic3vjYfPGr16DC+tR/3snmXR8xc9G9ZOUsMymld3DW9Z7DW0iZk8jk1/rwxder+FWn35mY1PM56/rQsV38/m9dSHm1F8dOfUvPuDucfCWpSU3PIV/tXsONbW41KV1lOjx1FYzpP6P847Xb0liU/hzhoW2Jb5PItHverbBtYVEBzy28m5hru7g6pldw1vVLyZkVtlXXteOs6zkTK/+RlalzBxDS8BpXRvQazrruEtOPLjH9KmxvZtcWu059cMrMa/Q0bgmdh5lz32ZQ166jrl3HrK7rqmftadQgyMQTocy8bzOoa9dR165j1vdbV/erPQ0RETFMb4SLiIhhGhoiImKYhoaIiBimoSEiIoZpaIiIiGEaGiIiYpiGhoiIGKahISIihmloiIiIYRoaIiJimIaGiIgYpqEhIiKGaWiIiIhhGhoiImKYhoaIiBimoSEiIoZpaIiIiGEaGiIiYtj/AztR363q98R/AAAAAElFTkSuQmCC\n", |
62 | 56 | "text/plain": [
|
63 |
| - " ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐\n", |
64 |
| - "q_0: ┤ RY(θ[0]) ├─■─┤ RY(θ[2]) ├─■─┤ RY(θ[4]) ├─■─┤ RY(θ[6]) ├\n", |
65 |
| - " ├──────────┤ │ ├──────────┤ │ ├──────────┤ │ ├──────────┤\n", |
66 |
| - "q_1: ┤ RY(θ[1]) ├─■─┤ RY(θ[3]) ├─■─┤ RY(θ[5]) ├─■─┤ RY(θ[7]) ├\n", |
67 |
| - " └──────────┘ └──────────┘ └──────────┘ └──────────┘" |
| 57 | + "<Figure size 507.852x144.48 with 1 Axes>" |
68 | 58 | ]
|
69 | 59 | },
|
70 | 60 | "execution_count": 2,
|
|
128 | 118 | "source": [
|
129 | 119 | "Note: if you provide the backend directly then internally a QuantumInstance will be created from it, with default settings, so at all times the algorithms are working through a QuantumInstance.\n",
|
130 | 120 | "\n",
|
131 |
| - "So now we would be able to call the [run()](https://qiskit.org/documentation/stubs/qiskit.aqua.algorithms.VQE.run.html) method, which is common to all algorithms and returns a result specific for the algorithm. In this case since VQE is a MinimumEigensolver we could use the [compute_mininum_eigenvalue()](https://qiskit.org/documentation/stubs/qiskit.aqua.algorithms.VQE.compute_minimum_eigenvalue.html) method. The latter is the interface of choice for the application modules, such as Chemistry and Optimization, in order that they can work interchangeably with any algorithm within the specific category." |
| 121 | + "So now we would be able to call the [run()](https://qiskit.org/documentation/stubs/qiskit.aqua.algorithms.VQE.html#qiskit.aqua.algorithms.VQE.run) method, which is common to all algorithms and returns a result specific for the algorithm. In this case since VQE is a MinimumEigensolver we could use the [compute_mininum_eigenvalue()](https://qiskit.org/documentation/stubs/qiskit.aqua.algorithms.VQE.html#qiskit.aqua.algorithms.VQE.compute_minimum_eigenvalue) method. The latter is the interface of choice for the application modules, such as Chemistry and Optimization, in order that they can work interchangeably with any algorithm within the specific category." |
132 | 122 | ]
|
133 | 123 | },
|
134 | 124 | {
|
|
184 | 174 | " 'optimal_parameters': { Parameter(θ[0]): 4.296520551468743,\n",
|
185 | 175 | " Parameter(θ[1]): 4.426962086704216,\n",
|
186 | 176 | " Parameter(θ[2]): 0.5470753710293924,\n",
|
187 |
| - " Parameter(θ[3]): 6.09294789784282,\n", |
188 |
| - " Parameter(θ[4]): -2.598325857134344,\n", |
189 |
| - " Parameter(θ[5]): 1.5683261371389359,\n", |
| 177 | + " Parameter(θ[7]): 0.3602072316165878,\n", |
190 | 178 | " Parameter(θ[6]): -4.717618235040379,\n",
|
191 |
| - " Parameter(θ[7]): 0.3602072316165878},\n", |
| 179 | + " Parameter(θ[5]): 1.5683261371389359,\n", |
| 180 | + " Parameter(θ[3]): 6.09294789784282,\n", |
| 181 | + " Parameter(θ[4]): -2.598325857134344},\n", |
192 | 182 | " 'optimal_point': array([ 4.29652055, 4.42696209, 0.54707537, 6.0929479 , -2.59832586,\n",
|
193 | 183 | " 1.56832614, -4.71761824, 0.36020723]),\n",
|
194 | 184 | " 'optimal_value': -1.857275017559769,\n",
|
195 | 185 | " 'optimizer_evals': 72,\n",
|
196 |
| - " 'optimizer_time': 2.040440559387207}\n" |
| 186 | + " 'optimizer_time': 1.310880184173584}\n" |
197 | 187 | ]
|
198 | 188 | }
|
199 | 189 | ],
|
|
242 | 232 | " 'eigenstate': array([-9.55448660e-05+2.12037105e-17j, 9.93766273e-01+2.25293943e-16j,\n",
|
243 | 233 | " -1.11483565e-01+1.52657541e-16j, -1.77521351e-05+3.71607315e-17j]),\n",
|
244 | 234 | " 'eigenvalue': (-1.857275017559769+0j),\n",
|
245 |
| - " 'optimal_parameters': { Parameter(θ[2]): 0.5470753710293924,\n", |
246 |
| - " Parameter(θ[7]): 0.3602072316165878,\n", |
247 |
| - " Parameter(θ[6]): -4.717618235040379,\n", |
248 |
| - " Parameter(θ[3]): 6.09294789784282,\n", |
| 235 | + " 'optimal_parameters': { Parameter(θ[4]): -2.598325857134344,\n", |
249 | 236 | " Parameter(θ[5]): 1.5683261371389359,\n",
|
250 |
| - " Parameter(θ[0]): 4.296520551468743,\n", |
| 237 | + " Parameter(θ[6]): -4.717618235040379,\n", |
| 238 | + " Parameter(θ[7]): 0.3602072316165878,\n", |
251 | 239 | " Parameter(θ[1]): 4.426962086704216,\n",
|
252 |
| - " Parameter(θ[4]): -2.598325857134344},\n", |
| 240 | + " Parameter(θ[0]): 4.296520551468743,\n", |
| 241 | + " Parameter(θ[2]): 0.5470753710293924,\n", |
| 242 | + " Parameter(θ[3]): 6.09294789784282},\n", |
253 | 243 | " 'optimal_point': array([ 4.29652055, 4.42696209, 0.54707537, 6.0929479 , -2.59832586,\n",
|
254 | 244 | " 1.56832614, -4.71761824, 0.36020723]),\n",
|
255 | 245 | " 'optimal_value': -1.857275017559769,\n",
|
256 | 246 | " 'optimizer_evals': 72,\n",
|
257 |
| - " 'optimizer_time': 1.5368030071258545}\n" |
| 247 | + " 'optimizer_time': 2.8010470867156982}\n" |
258 | 248 | ]
|
259 | 249 | }
|
260 | 250 | ],
|
|
294 | 284 | {
|
295 | 285 | "data": {
|
296 | 286 | "text/html": [
|
297 |
| - "<h3>Version Information</h3><table><tr><th>Qiskit Software</th><th>Version</th></tr><tr><td>Qiskit</td><td>0.23.1</td></tr><tr><td>Terra</td><td>0.16.1</td></tr><tr><td>Aer</td><td>0.7.1</td></tr><tr><td>Ignis</td><td>0.5.1</td></tr><tr><td>Aqua</td><td>0.8.1</td></tr><tr><td>IBM Q Provider</td><td>0.11.1</td></tr><tr><th>System information</th></tr><tr><td>Python</td><td>3.6.1 |Continuum Analytics, Inc.| (default, May 11 2017, 13:09:58) \n", |
298 |
| - "[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]</td></tr><tr><td>OS</td><td>Linux</td></tr><tr><td>CPUs</td><td>1</td></tr><tr><td>Memory (Gb)</td><td>5.827335357666016</td></tr><tr><td colspan='2'>Tue Nov 17 08:50:18 2020 EST</td></tr></table>" |
| 287 | + "<h3>Version Information</h3><table><tr><th>Qiskit Software</th><th>Version</th></tr><tr><td>Qiskit</td><td>0.23.1</td></tr><tr><td>Terra</td><td>0.16.1</td></tr><tr><td>Aer</td><td>0.7.1</td></tr><tr><td>Ignis</td><td>0.5.1</td></tr><tr><td>Aqua</td><td>0.8.1</td></tr><tr><td>IBM Q Provider</td><td>0.11.1</td></tr><tr><th>System information</th></tr><tr><td>Python</td><td>3.7.8 | packaged by conda-forge | (default, Jul 31 2020, 02:25:08) \n", |
| 288 | + "[GCC 7.5.0]</td></tr><tr><td>OS</td><td>Linux</td></tr><tr><td>CPUs</td><td>8</td></tr><tr><td>Memory (Gb)</td><td>31.40900421142578</td></tr><tr><td colspan='2'>Fri Jan 15 12:11:24 2021 UTC</td></tr></table>" |
299 | 289 | ],
|
300 | 290 | "text/plain": [
|
301 | 291 | "<IPython.core.display.HTML object>"
|
|
307 | 297 | {
|
308 | 298 | "data": {
|
309 | 299 | "text/html": [
|
310 |
| - "<div style='width: 100%; background-color:#d5d9e0;padding-left: 10px; padding-bottom: 10px; padding-right: 10px; padding-top: 5px'><h3>This code is a part of Qiskit</h3><p>© Copyright IBM 2017, 2020.</p><p>This code is licensed under the Apache License, Version 2.0. You may<br>obtain a copy of this license in the LICENSE.txt file in the root directory<br> of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.<p>Any modifications or derivative works of this code must retain this<br>copyright notice, and modified files need to carry a notice indicating<br>that they have been altered from the originals.</p></div>" |
| 300 | + "<div style='width: 100%; background-color:#d5d9e0;padding-left: 10px; padding-bottom: 10px; padding-right: 10px; padding-top: 5px'><h3>This code is a part of Qiskit</h3><p>© Copyright IBM 2017, 2021.</p><p>This code is licensed under the Apache License, Version 2.0. You may<br>obtain a copy of this license in the LICENSE.txt file in the root directory<br> of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.<p>Any modifications or derivative works of this code must retain this<br>copyright notice, and modified files need to carry a notice indicating<br>that they have been altered from the originals.</p></div>" |
311 | 301 | ],
|
312 | 302 | "text/plain": [
|
313 | 303 | "<IPython.core.display.HTML object>"
|
|
347 | 337 | "name": "python",
|
348 | 338 | "nbconvert_exporter": "python",
|
349 | 339 | "pygments_lexer": "ipython3",
|
350 |
| - "version": "3.6.1" |
| 340 | + "version": "3.7.8" |
351 | 341 | }
|
352 | 342 | },
|
353 | 343 | "nbformat": 4,
|
|
0 commit comments