Skip to content

Commit 211bfed

Browse files
authored
Merge pull request #133 from EvolvingLMMs-Lab/dev/wild_vision
Add wild vision bench
2 parents 7c208b7 + 79514ee commit 211bfed

File tree

4 files changed

+226
-1
lines changed

4 files changed

+226
-1
lines changed

lmms_eval/evaluator.py

Lines changed: 6 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -325,7 +325,12 @@ def evaluate(
325325
# hack: remove image columns to speed avoid loading images and speed up postprocessing
326326
# reason: doc_iterator will actually load image if it's in the doc.
327327
docs = task.test_docs() if task.has_test_docs() else task.validation_docs()
328-
if "d170" not in task_name and "dc100" not in task_name and "dc200" not in task_name and "llava_wilder" not in task_name and "livebench" not in task_name:
328+
if "d170" not in task_name \
329+
and "dc100" not in task_name \
330+
and "dc200" not in task_name \
331+
and "llava_wilder" not in task_name \
332+
and "livebench" not in task_name \
333+
and "wildvision" not in task_name:
329334
remove_cols = []
330335
features = docs.features
331336
# If it is an Image instance or a Sequence of Image instance. Remove it
Lines changed: 23 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,23 @@
1+
dataset_path: WildVision/wildvision-arena-data
2+
dataset_kwargs:
3+
token: True
4+
output_type: generate_until
5+
doc_to_visual: !function utils.wild_vision_doc_to_visual
6+
doc_to_text: !function utils.wild_vision_doc_to_text
7+
doc_to_target: !function utils.wild_vision_doc_to_target
8+
generation_kwargs:
9+
max_new_tokens: 4096
10+
temperature: 0
11+
top_p: 1.0
12+
num_beams: 1
13+
do_sample: false
14+
# The return value of process_results will be used by metrics
15+
process_results: !function utils.wild_vision_process_results
16+
# Note that the metric name can be either a registed metric function (such as the case for GQA) or a key name returned by process_results
17+
metric_list:
18+
- metric: gpt_eval_score
19+
aggregation: !function utils.wild_vision_aggregation
20+
higher_is_better: true
21+
metadata:
22+
judge_model: gpt-4o
23+
baseline_model: claude-3-sonnet-20240229
Lines changed: 188 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,188 @@
1+
import json
2+
import re
3+
import os
4+
import requests
5+
import numpy as np
6+
import time
7+
import yaml
8+
from pathlib import Path
9+
from copy import deepcopy
10+
from io import BytesIO
11+
import base64
12+
13+
from loguru import logger as eval_logger
14+
15+
NUM_SECONDS_TO_SLEEP = 5
16+
17+
18+
with open(Path(__file__).parent / "_default_template_yaml", "r") as f:
19+
raw_data = f.readlines()
20+
safe_data = []
21+
for i, line in enumerate(raw_data):
22+
# remove function definition since yaml load cannot handle it
23+
if "!function" not in line:
24+
safe_data.append(line)
25+
26+
config = yaml.safe_load("".join(safe_data))
27+
28+
GPT_EVAL_MODEL_NAME = config["metadata"]["judge_model"]
29+
BASELINE_MODEL_NAME = config["metadata"]["baseline_model"]
30+
31+
API_TYPE = os.getenv("API_TYPE", "openai")
32+
33+
if API_TYPE == "openai":
34+
API_URL = os.getenv("OPENAI_API_URL", "https://api.openai.com/v1/chat/completions")
35+
API_KEY = os.getenv("OPENAI_API_KEY", "YOUR_API_KEY")
36+
headers = {
37+
"Authorization": f"Bearer {API_KEY}",
38+
"Content-Type": "application/json",
39+
}
40+
elif API_TYPE == "azure":
41+
API_URL = os.getenv("AZURE_ENDPOINT", "https://api.cognitive.microsoft.com/sts/v1.0/issueToken")
42+
API_KEY = os.getenv("AZURE_API_KEY", "YOUR_API_KEY")
43+
headers = {
44+
"api-key": API_KEY,
45+
"Content-Type": "application/json",
46+
}
47+
48+
system_prompt = """\
49+
Please act as an impartial judge and evaluate the quality of the responses provided by two AI assistants to the user prompt displayed below. You will be given assistant A's answer and assistant B's answer. Your job is to evaluate which assistant's answer is better.
50+
51+
Begin your evaluation by generating your own answer to the prompt. You must provide your answers before judging any answers.
52+
53+
When evaluating the assistants' answers, compare both assistants' answers with your answer. You must identify and correct any mistakes or inaccurate information.
54+
55+
Then consider if the assistant's answers are helpful, relevant, and concise. Helpful means the answer correctly responds to the prompt or follows the instructions. Note when user prompt has any ambiguity or more than one interpretation, it is more helpful and appropriate to ask for clarifications or more information from the user than providing an answer based on assumptions. Relevant means all parts of the response closely connect or are appropriate to what is being asked. Concise means the response is clear and not verbose or excessive.
56+
57+
Then consider the creativity and novelty of the assistant's answers when needed. Finally, identify any missing important information in the assistants' answers that would be beneficial to include when responding to the user prompt.
58+
59+
After providing your explanation, you must output only one of the following choices as your final verdict with a label:
60+
61+
1. Assistant A is significantly better: [[A>>B]]
62+
2. Assistant A is slightly better: [[A>B]]
63+
3. Tie, relatively the same: [[A=B]]
64+
4. Assistant B is slightly better: [[B>A]]
65+
5. Assistant B is significantly better: [[B>>A]]
66+
67+
Example output: "My final verdict is tie: [[A=B]]".\
68+
"""
69+
70+
prompt_template = "<|User Prompt|>\n{question_1}\n\n<|The Start of Assistant A's Answer|>\n{answer_1}\n<|The End of Assistant A's Answer|>\n\n<|The Start of Assistant B's Answer|>\n{answer_2}\n<|The End of Assistant B's Answer|>"
71+
72+
def get_chat_response(base64_image, prompt, max_retries=5, wait_time=10):
73+
headers = {
74+
"Authorization": f"Bearer {API_KEY}",
75+
"Content-Type": "application/json",
76+
}
77+
78+
payload = {
79+
"model": GPT_EVAL_MODEL_NAME,
80+
"messages": [
81+
{"role": "system", "content": [{"type": "text", "text": system_prompt}]},
82+
{
83+
"role": "user",
84+
"content": [
85+
{"type": "text", "text": prompt},
86+
{"type": "image_url",
87+
"image_url" : {
88+
"url" : f"data:image/jpeg;base64, {base64_image}"
89+
}
90+
},
91+
],
92+
}
93+
],
94+
"max_tokens": 1024,
95+
"temperature": 0.0,
96+
}
97+
98+
for attempt in range(max_retries):
99+
try:
100+
response = requests.post(API_URL, headers=headers, json=payload, timeout=60)
101+
response.raise_for_status()
102+
response_data = response.json()
103+
return response_data["choices"][0]["message"]["content"], GPT_EVAL_MODEL_NAME
104+
except requests.exceptions.RequestException as e:
105+
print(f"Request failed on attempt {attempt+1}: {e}")
106+
if attempt == max_retries - 1:
107+
print(f"Failed to get response after {max_retries} attempts")
108+
return "", GPT_EVAL_MODEL_NAME
109+
except Exception as e:
110+
print(f"Error on attempt {attempt+1}: {e}")
111+
return "", GPT_EVAL_MODEL_NAME
112+
113+
114+
115+
def image_to_base64(pil_image):
116+
buffered = BytesIO()
117+
pil_image.save(buffered, format="PNG")
118+
return base64.b64encode(buffered.getvalue()).decode("utf-8")
119+
120+
def get_score(judgement, pattern, pairwise=True):
121+
matches = pattern.findall(judgement)
122+
matches = [m for m in matches if m != ""]
123+
if len(set(matches)) == 0:
124+
return None, True
125+
elif len(set(matches)) == 1:
126+
if pairwise:
127+
return matches[0].strip("\n"), False
128+
return int(matches[0])
129+
else:
130+
return None, False
131+
132+
def wild_vision_doc_to_visual(doc):
133+
return [doc["image"].convert('RGB')]
134+
135+
136+
def wild_vision_doc_to_text(doc, model_specific_prompt_kwargs=None):
137+
question = doc["instruction"].strip()
138+
if "pre_prompt" in model_specific_prompt_kwargs and model_specific_prompt_kwargs["pre_prompt"] != "":
139+
question = f"{model_specific_prompt_kwargs['pre_prompt']}{question}"
140+
if "post_prompt" in model_specific_prompt_kwargs and model_specific_prompt_kwargs["post_prompt"] != "":
141+
question = f"{question}{model_specific_prompt_kwargs['post_prompt']}"
142+
return question
143+
144+
def wild_vision_doc_to_target(doc):
145+
return doc[BASELINE_MODEL_NAME]
146+
147+
148+
def wild_vision_process_results(doc, results):
149+
pred = results[0]
150+
user_prompt = prompt_template.format(question_1=doc["instruction"], answer_1=doc[BASELINE_MODEL_NAME], answer_2=pred)
151+
base64_image = image_to_base64(doc["image"])
152+
resps, gpt_name = get_chat_response(base64_image, user_prompt)
153+
score, _ = get_score(resps, pattern=re.compile("\[\[([AB<>=]+)\]\]"))
154+
155+
if score is None:
156+
score = resps
157+
158+
if "A>B" in score:
159+
final_score = -1
160+
judgement = "Worse" #Baseline better
161+
elif "A>>B" in score:
162+
final_score = -2
163+
judgement = "Worse++"
164+
elif "A=B" in score:
165+
final_score = 0
166+
judgement = "Tie"
167+
elif "B>A" in score:
168+
final_score = 1
169+
judgement = "Better"
170+
elif "B>>A" in score:
171+
final_score = 2
172+
judgement = "Better++"
173+
else:
174+
final_score = 0
175+
judgement = "Unclear"
176+
177+
178+
return {"gpt_eval_score" : {"question" : doc["instruction"], "score" : final_score, "gpt_resps" : resps, "ans_1" : doc[BASELINE_MODEL_NAME], "ans_2" : pred, "filtered_resps" : score, "judgement" : judgement}}
179+
180+
181+
def wild_vision_aggregation(results):
182+
score = 0
183+
for res in results:
184+
score += res["score"]
185+
186+
return score / len(results)
187+
188+
Lines changed: 9 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,9 @@
1+
task: wildvision_0617
2+
dataset_name: release_bench_0617_with_modelresponse
3+
test_split: test500
4+
output_type: generate_until
5+
include: _default_template_yaml
6+
model_specific_prompt_kwargs:
7+
default:
8+
pre_prompt: ""
9+
post_prompt: ""

0 commit comments

Comments
 (0)