The following 2 code snippets show the same neural network implementation in both Neureka and Numpy!
Neureka (Groovy) | Numpy (Python) |
---|---|
var X = Tensor.of(Double, [[0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 1] ])
var y = Tensor.of(Double, [[0,1,1,0]]).T
var W1 = Tensor.ofRandom(Double, 3,4)
var W2 = Tensor.ofRandom(Double, 4,1)
60_000.times {
var l1 = Tensor.of('sig(',X.dot(W1),')')
var l2 = Tensor.of('sig(',l1.dot(W2),')')
var l2_delta = (y - l2)*(l2*(-l2+1))
var l1_delta = l2_delta.dot(W2.T) * (l1 * (-l1+1))
W2 += l1.T.dot(l2_delta)
W1 += X.T.dot(l1_delta)
} |
X = np.array([ [0,0,1],[0,1,1],[1,0,1],[1,1,1] ])
y = np.array([[0,1,1,0]]).T
W1 = 2*np.random.random((3,4)) - 1
W2 = 2*np.random.random((4,1)) - 1
for j in xrange(60000):
l1 = 1/(1+np.exp(-(np.dot(X,W1))))
l2 = 1/(1+np.exp(-(np.dot(l1,W2))))
l2_delta = (y - l2)*(l2*(1-l2))
l1_delta = l2_delta.dot(W2.T) * (l1 * (1-l1))
W2 += l1.T.dot(l2_delta)
W1 += X.T.dot(l1_delta) |
All of this l1_delta
and l2_delta
stuff looks really
complicated and is really distracting from the actual architecture
of the network... That is why Neureka has this part
of building a neural network automated for you!
You simply specify which tensors require gradients,
and then you send the error values through the backward
method to your weights (and their gradients).
After each pass you tell your weights to apply their gradients.
Done!
Neureka (Groovy) | Numpy (Python) |
---|---|
var X = Tensor.of(Double, [[0, 0, 1], [0, 1, 1], [1, 0, 1], [1, 1, 1]])
var y = Tensor.of(Double, [[0, 1, 1, 0]]).T
var W1 = Tensor.ofRandom(Double, 3, 4).setRqsGradient(true)
var W2 = Tensor.ofRandom(Double, 4, 1).setRqsGradient(true)
60_000.times {
var l2 = Tensor.of('sig(',Tensor.of('sig(',X.dot(W1),')').dot(W2),')')
l2.backward(y - l2) // Back-propagating the error!
W1.applyGradient(); W2.applyGradient()
} |
X = np.array([ [0,0,1],[0,1,1],[1,0,1],[1,1,1] ])
y = np.array([[0,1,1,0]]).T
W1 = 2*np.random.random((3,4)) - 1
W2 = 2*np.random.random((4,1)) - 1
for j in xrange(60000):
l1 = 1/(1+np.exp(-(np.dot(X,W1))))
l2 = 1/(1+np.exp(-(np.dot(l1,W2))))
l2_delta = (y - l2)*(l2*(1-l2))
l1_delta = l2_delta.dot(W2.T) * (l1 * (1-l1))
W2 += l1.T.dot(l2_delta)
W1 += X.T.dot(l1_delta) |