|
| 1 | +/* |
| 2 | + * Copyright 2018 Google LLC. |
| 3 | + * |
| 4 | + * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | + * you may not use this file except in compliance with the License. |
| 6 | + * You may obtain a copy of the License at |
| 7 | + * |
| 8 | + * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | + * |
| 10 | + * Unless required by applicable law or agreed to in writing, software |
| 11 | + * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | + * See the License for the specific language governing permissions and |
| 14 | + * limitations under the License. |
| 15 | + */ |
| 16 | + |
| 17 | +package com.google.cloud.vision.samples.automl; |
| 18 | + |
| 19 | +// Imports the Google Cloud client library |
| 20 | +import com.google.cloud.automl.v1beta1.AutoMlClient; |
| 21 | +import com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationType; |
| 22 | +import com.google.cloud.automl.v1beta1.Dataset; |
| 23 | +import com.google.cloud.automl.v1beta1.DatasetName; |
| 24 | +import com.google.cloud.automl.v1beta1.GcsDestination; |
| 25 | +import com.google.cloud.automl.v1beta1.GcsSource; |
| 26 | +import com.google.cloud.automl.v1beta1.ImageClassificationDatasetMetadata; |
| 27 | +import com.google.cloud.automl.v1beta1.InputConfig; |
| 28 | +import com.google.cloud.automl.v1beta1.ListDatasetsRequest; |
| 29 | +import com.google.cloud.automl.v1beta1.LocationName; |
| 30 | + |
| 31 | +import com.google.cloud.automl.v1beta1.OutputConfig; |
| 32 | +import com.google.protobuf.Empty; |
| 33 | +import java.io.IOException; |
| 34 | +import java.io.PrintStream; |
| 35 | + |
| 36 | +import net.sourceforge.argparse4j.ArgumentParsers; |
| 37 | +import net.sourceforge.argparse4j.inf.ArgumentParser; |
| 38 | +import net.sourceforge.argparse4j.inf.ArgumentParserException; |
| 39 | +import net.sourceforge.argparse4j.inf.Namespace; |
| 40 | +import net.sourceforge.argparse4j.inf.Subparser; |
| 41 | +import net.sourceforge.argparse4j.inf.Subparsers; |
| 42 | + |
| 43 | +/** |
| 44 | + * Google Cloud AutoML Vision API sample application. Example usage: mvn package exec:java |
| 45 | + * -Dexec.mainClass ='com.google.cloud.vision.samples.automl.DatasetAPI' -Dexec.args='create_dataset |
| 46 | + * test_dataset' |
| 47 | + */ |
| 48 | +public class DatasetApi { |
| 49 | + |
| 50 | + // [START automl_vision_create_dataset] |
| 51 | + |
| 52 | + /** |
| 53 | + * Demonstrates using the AutoML client to create a dataset |
| 54 | + * |
| 55 | + * @param projectId the Google Cloud Project ID. |
| 56 | + * @param computeRegion the Region name. (e.g., "us-central1") |
| 57 | + * @param datasetName the name of the dataset to be created. |
| 58 | + * @param multiLabel the type of classification problem. Set to FALSE by default. |
| 59 | + * @throws IOException on Input/Output errors. |
| 60 | + */ |
| 61 | + public static void createDataset( |
| 62 | + String projectId, String computeRegion, String datasetName, Boolean multiLabel) |
| 63 | + throws IOException { |
| 64 | + // Instantiates a client |
| 65 | + AutoMlClient client = AutoMlClient.create(); |
| 66 | + |
| 67 | + // Resource representing the Google Cloud Platform location |
| 68 | + LocationName projectLocation = LocationName.of(projectId, computeRegion); |
| 69 | + |
| 70 | + // Classification type assigned based on multiLabel value. |
| 71 | + ClassificationType classificationType = |
| 72 | + multiLabel ? ClassificationType.MULTILABEL : ClassificationType.MULTICLASS; |
| 73 | + |
| 74 | + // Specify the image classification type for the dataset. |
| 75 | + ImageClassificationDatasetMetadata imageClassificationDatasetMetadata = |
| 76 | + ImageClassificationDatasetMetadata.newBuilder() |
| 77 | + .setClassificationType(classificationType) |
| 78 | + .build(); |
| 79 | + |
| 80 | + // Create a dataset with dataset name and set the dataset metadata. |
| 81 | + Dataset myDataset = |
| 82 | + Dataset.newBuilder() |
| 83 | + .setDisplayName(datasetName) |
| 84 | + .setImageClassificationDatasetMetadata(imageClassificationDatasetMetadata) |
| 85 | + .build(); |
| 86 | + |
| 87 | + // Create dataset with the dataset metadata in the region. |
| 88 | + Dataset dataset = client.createDataset(projectLocation, myDataset); |
| 89 | + |
| 90 | + // Display the dataset information |
| 91 | + System.out.println(String.format("Dataset name: %s", dataset.getName())); |
| 92 | + System.out.println( |
| 93 | + String.format( |
| 94 | + "Dataset id: %s", |
| 95 | + dataset.getName().split("/")[dataset.getName().split("/").length - 1])); |
| 96 | + System.out.println(String.format("Dataset display name: %s", dataset.getDisplayName())); |
| 97 | + System.out.println("Image classification dataset specification:"); |
| 98 | + System.out.print(String.format("\t%s", dataset.getImageClassificationDatasetMetadata())); |
| 99 | + System.out.println(String.format("Dataset example count: %d", dataset.getExampleCount())); |
| 100 | + System.out.println("Dataset create time:"); |
| 101 | + System.out.println(String.format("\tseconds: %s", dataset.getCreateTime().getSeconds())); |
| 102 | + System.out.println(String.format("\tnanos: %s", dataset.getCreateTime().getNanos())); |
| 103 | + } |
| 104 | + // [END automl_vision_create_dataset] |
| 105 | + |
| 106 | + // [START automl_vision_listdatasets] |
| 107 | + /** |
| 108 | + * Demonstrates using the AutoML client to list all datasets. |
| 109 | + * |
| 110 | + * @param projectId - Id of the project. |
| 111 | + * @param computeRegion - Region name. |
| 112 | + * @param filter - Filter expression. |
| 113 | + * @throws IOException on Input/Output errors. |
| 114 | + */ |
| 115 | + public static void listDatasets(String projectId, String computeRegion, String filter) |
| 116 | + throws IOException { |
| 117 | + // Instantiates a client |
| 118 | + AutoMlClient client = AutoMlClient.create(); |
| 119 | + |
| 120 | + // A resource that represents Google Cloud Platform location. |
| 121 | + LocationName projectLocation = LocationName.of(projectId, computeRegion); |
| 122 | + |
| 123 | + // Build the List datasets request |
| 124 | + ListDatasetsRequest request = |
| 125 | + ListDatasetsRequest.newBuilder() |
| 126 | + .setParent(projectLocation.toString()) |
| 127 | + .setFilter(filter) |
| 128 | + .build(); |
| 129 | + |
| 130 | + // List all the datasets available in the region by applying the filter. |
| 131 | + System.out.println("List of datasets:"); |
| 132 | + for (Dataset dataset : client.listDatasets(request).iterateAll()) { |
| 133 | + // Display the dataset information |
| 134 | + System.out.println(String.format("\nDataset name: %s", dataset.getName())); |
| 135 | + System.out.println( |
| 136 | + String.format( |
| 137 | + "Dataset id: %s", |
| 138 | + dataset.getName().split("/")[dataset.getName().split("/").length - 1])); |
| 139 | + System.out.println(String.format("Dataset display name: %s", dataset.getDisplayName())); |
| 140 | + System.out.println("Image classification dataset specification:"); |
| 141 | + System.out.print(String.format("\t%s", dataset.getImageClassificationDatasetMetadata())); |
| 142 | + System.out.println(String.format("Dataset example count: %d", dataset.getExampleCount())); |
| 143 | + System.out.println("Dataset create time:"); |
| 144 | + System.out.println(String.format("\tseconds: %s", dataset.getCreateTime().getSeconds())); |
| 145 | + System.out.println(String.format("\tnanos: %s", dataset.getCreateTime().getNanos())); |
| 146 | + } |
| 147 | + } |
| 148 | + // [END automl_vision_listdatasets] |
| 149 | + |
| 150 | + // [START automl_vision_getdataset] |
| 151 | + /** |
| 152 | + * Demonstrates using the AutoML client to get a dataset by ID. |
| 153 | + * |
| 154 | + * @param projectId - Id of the project. |
| 155 | + * @param computeRegion - Region name. |
| 156 | + * @param datasetId - Id of the dataset. |
| 157 | + * @throws IOException on Input/Output errors. |
| 158 | + */ |
| 159 | + public static void getDataset(String projectId, String computeRegion, String datasetId) |
| 160 | + throws IOException { |
| 161 | + // Instantiates a client |
| 162 | + AutoMlClient client = AutoMlClient.create(); |
| 163 | + |
| 164 | + // Get the complete path of the dataset. |
| 165 | + DatasetName datasetFullId = DatasetName.of(projectId, computeRegion, datasetId); |
| 166 | + |
| 167 | + // Get all the information about a given dataset. |
| 168 | + Dataset dataset = client.getDataset(datasetFullId); |
| 169 | + |
| 170 | + // Display the dataset information. |
| 171 | + System.out.println(String.format("Dataset name: %s", dataset.getName())); |
| 172 | + System.out.println( |
| 173 | + String.format( |
| 174 | + "Dataset id: %s", |
| 175 | + dataset.getName().split("/")[dataset.getName().split("/").length - 1])); |
| 176 | + System.out.println(String.format("Dataset display name: %s", dataset.getDisplayName())); |
| 177 | + System.out.println("Image classification dataset specification:"); |
| 178 | + System.out.print(String.format("\t%s", dataset.getImageClassificationDatasetMetadata())); |
| 179 | + System.out.println(String.format("Dataset example count: %d", dataset.getExampleCount())); |
| 180 | + System.out.println("Dataset create time:"); |
| 181 | + System.out.println(String.format("\tseconds: %s", dataset.getCreateTime().getSeconds())); |
| 182 | + System.out.println(String.format("\tnanos: %s", dataset.getCreateTime().getNanos())); |
| 183 | + } |
| 184 | + // [END automl_vision_getdataset] |
| 185 | + |
| 186 | + // [START automl_vision_importdata] |
| 187 | + /** |
| 188 | + * Demonstrates using the AutoML client to import labeled images. |
| 189 | + * |
| 190 | + * @param projectId - Id of the project. |
| 191 | + * @param computeRegion - Region name. |
| 192 | + * @param datasetId - Id of the dataset to which the training data will be imported. |
| 193 | + * @param path - Google Cloud Storage URIs. Target files must be in AutoML vision CSV format. |
| 194 | + * @throws Exception on AutoML Client errors |
| 195 | + */ |
| 196 | + public static void importData( |
| 197 | + String projectId, String computeRegion, String datasetId, String path) throws Exception { |
| 198 | + // Instantiates a client |
| 199 | + AutoMlClient client = AutoMlClient.create(); |
| 200 | + |
| 201 | + // Get the complete path of the dataset. |
| 202 | + DatasetName datasetFullId = DatasetName.of(projectId, computeRegion, datasetId); |
| 203 | + |
| 204 | + GcsSource.Builder gcsSource = GcsSource.newBuilder(); |
| 205 | + |
| 206 | + // Get multiple training data files to be imported |
| 207 | + String[] inputUris = path.split(","); |
| 208 | + for (String inputUri : inputUris) { |
| 209 | + gcsSource.addInputUris(inputUri); |
| 210 | + } |
| 211 | + |
| 212 | + // Import data |
| 213 | + InputConfig inputConfig = InputConfig.newBuilder().setGcsSource(gcsSource).build(); |
| 214 | + System.out.println("Processing import..."); |
| 215 | + Empty response = client.importDataAsync(datasetFullId.toString(), inputConfig).get(); |
| 216 | + System.out.println(String.format("Dataset imported. %s", response)); |
| 217 | + } |
| 218 | + // [END automl_vision_importdata] |
| 219 | + |
| 220 | + // [START automl_vision_exportdata] |
| 221 | + /** |
| 222 | + * Demonstrates using the AutoML client to export a dataset to a Google Cloud Storage bucket. |
| 223 | + * |
| 224 | + * @param projectId - Id of the project. |
| 225 | + * @param computeRegion - Region name. |
| 226 | + * @param datasetId - Id of the dataset. |
| 227 | + * @param gcsUri - Destination URI (Google Cloud Storage) |
| 228 | + * @throws Exception on AutoML Client errors |
| 229 | + */ |
| 230 | + public static void exportData( |
| 231 | + String projectId, String computeRegion, String datasetId, String gcsUri) throws Exception { |
| 232 | + // Instantiates a client |
| 233 | + AutoMlClient client = AutoMlClient.create(); |
| 234 | + |
| 235 | + // Get the complete path of the dataset. |
| 236 | + DatasetName datasetFullId = DatasetName.of(projectId, computeRegion, datasetId); |
| 237 | + |
| 238 | + // Set the output URI |
| 239 | + GcsDestination gcsDestination = GcsDestination.newBuilder().setOutputUriPrefix(gcsUri).build(); |
| 240 | + |
| 241 | + // Export the dataset to the output URI. |
| 242 | + OutputConfig outputConfig = OutputConfig.newBuilder().setGcsDestination(gcsDestination).build(); |
| 243 | + System.out.println("Processing export..."); |
| 244 | + |
| 245 | + Empty response = client.exportDataAsync(datasetFullId, outputConfig).get(); |
| 246 | + System.out.println(String.format("Dataset exported. %s", response)); |
| 247 | + } |
| 248 | + // [END automl_vision_exportdata] |
| 249 | + |
| 250 | + // [START automl_vision_deletedataset] |
| 251 | + /** |
| 252 | + * Delete a dataset. |
| 253 | + * |
| 254 | + * @param projectId - Id of the project. |
| 255 | + * @param computeRegion - Region name. |
| 256 | + * @param datasetId - Id of the dataset. |
| 257 | + * @throws Exception on AutoML Client errors |
| 258 | + */ |
| 259 | + public static void deleteDataset(String projectId, String computeRegion, String datasetId) |
| 260 | + throws Exception { |
| 261 | + // Instantiates a client |
| 262 | + AutoMlClient client = AutoMlClient.create(); |
| 263 | + |
| 264 | + // Get the complete path of the dataset. |
| 265 | + DatasetName datasetFullId = DatasetName.of(projectId, computeRegion, datasetId); |
| 266 | + |
| 267 | + // Delete a dataset. |
| 268 | + Empty response = client.deleteDatasetAsync(datasetFullId).get(); |
| 269 | + |
| 270 | + System.out.println(String.format("Dataset deleted. %s", response)); |
| 271 | + } |
| 272 | + // [END automl_vision_deleteDataset] |
| 273 | + |
| 274 | + public static void main(String[] args) throws Exception { |
| 275 | + DatasetApi datasetApi = new DatasetApi(); |
| 276 | + datasetApi.argsHelper(args, System.out); |
| 277 | + } |
| 278 | + |
| 279 | + public static void argsHelper(String[] args, PrintStream out) throws Exception { |
| 280 | + ArgumentParser parser = |
| 281 | + ArgumentParsers.newFor("DatasetAPI") |
| 282 | + .build() |
| 283 | + .defaultHelp(true) |
| 284 | + .description("Dataset API operations."); |
| 285 | + Subparsers subparsers = parser.addSubparsers().dest("command"); |
| 286 | + |
| 287 | + Subparser createDatasetParser = subparsers.addParser("create_dataset"); |
| 288 | + createDatasetParser.addArgument("datasetName"); |
| 289 | + createDatasetParser |
| 290 | + .addArgument("multiLabel") |
| 291 | + .nargs("?") |
| 292 | + .type(Boolean.class) |
| 293 | + .choices(Boolean.FALSE, Boolean.TRUE) |
| 294 | + .setDefault(Boolean.FALSE); |
| 295 | + |
| 296 | + Subparser listDatasetsParser = subparsers.addParser("list_datasets"); |
| 297 | + listDatasetsParser |
| 298 | + .addArgument("filter") |
| 299 | + .nargs("?") |
| 300 | + .setDefault("imageClassificationDatasetMetadata:*"); |
| 301 | + |
| 302 | + Subparser getDatasetParser = subparsers.addParser("get_dataset"); |
| 303 | + getDatasetParser.addArgument("datasetId"); |
| 304 | + |
| 305 | + Subparser importDataParser = subparsers.addParser("import_data"); |
| 306 | + importDataParser.addArgument("datasetId"); |
| 307 | + importDataParser.addArgument("path"); |
| 308 | + |
| 309 | + Subparser exportDataParser = subparsers.addParser("export_data"); |
| 310 | + exportDataParser.addArgument("datasetId"); |
| 311 | + exportDataParser.addArgument("gcsUri"); |
| 312 | + |
| 313 | + Subparser deleteDatasetParser = subparsers.addParser("delete_dataset"); |
| 314 | + deleteDatasetParser.addArgument("datasetId"); |
| 315 | + |
| 316 | + String projectId = System.getenv("PROJECT_ID"); |
| 317 | + String computeRegion = System.getenv("REGION_NAME"); |
| 318 | + |
| 319 | + Namespace ns = null; |
| 320 | + try { |
| 321 | + ns = parser.parseArgs(args); |
| 322 | + |
| 323 | + if (ns.get("command").equals("create_dataset")) { |
| 324 | + createDataset( |
| 325 | + projectId, computeRegion, ns.getString("datasetName"), ns.getBoolean("multiLabel")); |
| 326 | + } |
| 327 | + if (ns.get("command").equals("list_datasets")) { |
| 328 | + listDatasets(projectId, computeRegion, ns.getString("filter")); |
| 329 | + } |
| 330 | + if (ns.get("command").equals("get_dataset")) { |
| 331 | + getDataset(projectId, computeRegion, ns.getString("datasetId")); |
| 332 | + } |
| 333 | + if (ns.get("command").equals("import_data")) { |
| 334 | + importData(projectId, computeRegion, ns.getString("datasetId"), ns.getString("path")); |
| 335 | + } |
| 336 | + if (ns.get("command").equals("export_data")) { |
| 337 | + exportData(projectId, computeRegion, ns.getString("datasetId"), ns.getString("gcsUri")); |
| 338 | + } |
| 339 | + if (ns.get("command").equals("delete_dataset")) { |
| 340 | + deleteDataset(projectId, computeRegion, ns.getString("datasetId")); |
| 341 | + } |
| 342 | + |
| 343 | + } catch (ArgumentParserException e) { |
| 344 | + parser.handleError(e); |
| 345 | + } |
| 346 | + } |
| 347 | +} |
0 commit comments