@@ -26,12 +26,10 @@ def run_quickstart():
26
26
import sys
27
27
import time
28
28
29
- from google .cloud .gapic .videointelligence .v1beta1 import enums
30
- from google .cloud .gapic .videointelligence .v1beta1 import (
31
- video_intelligence_service_client )
29
+ from google .cloud import videointelligence_v1beta2
30
+ from google .cloud .videointelligence_v1beta2 import enums
32
31
33
- video_client = (video_intelligence_service_client .
34
- VideoIntelligenceServiceClient ())
32
+ video_client = videointelligence_v1beta2 .VideoIntelligenceServiceClient ()
35
33
features = [enums .Feature .LABEL_DETECTION ]
36
34
operation = video_client .annotate_video ('gs://demomaker/cat.mp4' , features )
37
35
print ('\n Processing video for label annotations:' )
@@ -46,19 +44,22 @@ def run_quickstart():
46
44
# first result is retrieved because a single video was processed
47
45
results = operation .result ().annotation_results [0 ]
48
46
49
- for label in results .label_annotations :
50
- print ('Label description: {}' .format (label .description ))
51
- print ('Locations:' )
52
-
53
- for l , location in enumerate (label .locations ):
54
- positions = 'Entire video'
55
- if (location .segment .start_time_offset != - 1 or
56
- location .segment .end_time_offset != - 1 ):
57
- positions = '{} to {}' .format (
58
- location .segment .start_time_offset / 1000000.0 ,
59
- location .segment .end_time_offset / 1000000.0 )
60
- print ('\t {}: {}' .format (l , positions ))
47
+ for i , segment_label in enumerate (results .segment_label_annotations ):
48
+ print ('Video label description: {}' .format (
49
+ segment_label .entity .description ))
50
+ for category_entity in segment_label .category_entities :
51
+ print ('\t Label category description: {}' .format (
52
+ category_entity .description ))
61
53
54
+ for i , segment in enumerate (segment_label .segments ):
55
+ start_time = (segment .segment .start_time_offset .seconds +
56
+ segment .segment .start_time_offset .nanos / 1e9 )
57
+ end_time = (segment .segment .end_time_offset .seconds +
58
+ segment .segment .end_time_offset .nanos / 1e9 )
59
+ positions = '{}s to {}s' .format (start_time , end_time )
60
+ confidence = segment .confidence
61
+ print ('\t Segment {}: {}' .format (i , positions ))
62
+ print ('\t Confidence: {}' .format (confidence ))
62
63
print ('\n ' )
63
64
# [END videointelligence_quickstart]
64
65
0 commit comments