|
| 1 | +#!/usr/bin/env python |
| 2 | + |
| 3 | +# Copyright 2018 Google LLC |
| 4 | +# |
| 5 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | +# you may not use this file except in compliance with the License. |
| 7 | +# You may obtain a copy of the License at |
| 8 | +# |
| 9 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +# |
| 11 | +# Unless required by applicable law or agreed to in writing, software |
| 12 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | +# See the License for the specific language governing permissions and |
| 15 | +# limitations under the License. |
| 16 | + |
| 17 | +"""This application demonstrates how to perform basic operations on Dataset |
| 18 | +with the Google AutoML Natural Language API. |
| 19 | +
|
| 20 | +For more information, see the tutorial page at |
| 21 | +https://cloud.google.com/natural-language/automl/docs/ |
| 22 | +""" |
| 23 | + |
| 24 | +import argparse |
| 25 | +import os |
| 26 | + |
| 27 | + |
| 28 | +def create_dataset(project_id, compute_region, dataset_name, multilabel=False): |
| 29 | + """Create a dataset.""" |
| 30 | + # [START automl_natural_language_create_dataset] |
| 31 | + # TODO(developer): Uncomment and set the following variables |
| 32 | + # project_id = 'PROJECT_ID_HERE' |
| 33 | + # compute_region = 'COMPUTE_REGION_HERE' |
| 34 | + # dataset_name = 'DATASET_NAME_HERE' |
| 35 | + # multilabel = True for multilabel or False for multiclass |
| 36 | + |
| 37 | + from google.cloud import automl_v1beta1 as automl |
| 38 | + |
| 39 | + client = automl.AutoMlClient() |
| 40 | + |
| 41 | + # A resource that represents Google Cloud Platform location. |
| 42 | + project_location = client.location_path(project_id, compute_region) |
| 43 | + |
| 44 | + # Classification type is assigned based on multilabel value. |
| 45 | + classification_type = "MULTICLASS" |
| 46 | + if multilabel: |
| 47 | + classification_type = "MULTILABEL" |
| 48 | + |
| 49 | + # Specify the text classification type for the dataset. |
| 50 | + dataset_metadata = {"classification_type": classification_type} |
| 51 | + |
| 52 | + # Set dataset name and metadata. |
| 53 | + my_dataset = { |
| 54 | + "display_name": dataset_name, |
| 55 | + "text_classification_dataset_metadata": dataset_metadata, |
| 56 | + } |
| 57 | + |
| 58 | + # Create a dataset with the dataset metadata in the region. |
| 59 | + dataset = client.create_dataset(project_location, my_dataset) |
| 60 | + |
| 61 | + # Display the dataset information. |
| 62 | + print("Dataset name: {}".format(dataset.name)) |
| 63 | + print("Dataset id: {}".format(dataset.name.split("/")[-1])) |
| 64 | + print("Dataset display name: {}".format(dataset.display_name)) |
| 65 | + print("Text classification dataset metadata:") |
| 66 | + print("\t{}".format(dataset.text_classification_dataset_metadata)) |
| 67 | + print("Dataset example count: {}".format(dataset.example_count)) |
| 68 | + print("Dataset create time:") |
| 69 | + print("\tseconds: {}".format(dataset.create_time.seconds)) |
| 70 | + print("\tnanos: {}".format(dataset.create_time.nanos)) |
| 71 | + |
| 72 | + # [END automl_natural_language_create_dataset] |
| 73 | + |
| 74 | + |
| 75 | +def list_datasets(project_id, compute_region, filter_): |
| 76 | + """List all datasets.""" |
| 77 | + # [START automl_natural_language_list_datasets] |
| 78 | + # TODO(developer): Uncomment and set the following variables |
| 79 | + # project_id = 'PROJECT_ID_HERE' |
| 80 | + # compute_region = 'COMPUTE_REGION_HERE' |
| 81 | + # filter_ = 'filter expression here' |
| 82 | + |
| 83 | + from google.cloud import automl_v1beta1 as automl |
| 84 | + |
| 85 | + client = automl.AutoMlClient() |
| 86 | + |
| 87 | + # A resource that represents Google Cloud Platform location. |
| 88 | + project_location = client.location_path(project_id, compute_region) |
| 89 | + |
| 90 | + # List all the datasets available in the region by applying filter. |
| 91 | + response = client.list_datasets(project_location, filter_) |
| 92 | + |
| 93 | + print("List of datasets:") |
| 94 | + for dataset in response: |
| 95 | + # Display the dataset information. |
| 96 | + print("Dataset name: {}".format(dataset.name)) |
| 97 | + print("Dataset id: {}".format(dataset.name.split("/")[-1])) |
| 98 | + print("Dataset display name: {}".format(dataset.display_name)) |
| 99 | + print("Text classification dataset metadata:") |
| 100 | + print("\t{}".format(dataset.text_classification_dataset_metadata)) |
| 101 | + print("Dataset example count: {}".format(dataset.example_count)) |
| 102 | + print("Dataset create time:") |
| 103 | + print("\tseconds: {}".format(dataset.create_time.seconds)) |
| 104 | + print("\tnanos: {}".format(dataset.create_time.nanos)) |
| 105 | + |
| 106 | + # [END automl_natural_language_list_datasets] |
| 107 | + |
| 108 | + |
| 109 | +def get_dataset(project_id, compute_region, dataset_id): |
| 110 | + """Get the dataset.""" |
| 111 | + # [START automl_natural_language_get_dataset] |
| 112 | + # TODO(developer): Uncomment and set the following variables |
| 113 | + # project_id = 'PROJECT_ID_HERE' |
| 114 | + # compute_region = 'COMPUTE_REGION_HERE' |
| 115 | + # dataset_id = 'DATASET_ID_HERE' |
| 116 | + |
| 117 | + from google.cloud import automl_v1beta1 as automl |
| 118 | + |
| 119 | + client = automl.AutoMlClient() |
| 120 | + |
| 121 | + # Get the full path of the dataset |
| 122 | + dataset_full_id = client.dataset_path( |
| 123 | + project_id, compute_region, dataset_id |
| 124 | + ) |
| 125 | + |
| 126 | + # Get complete detail of the dataset. |
| 127 | + dataset = client.get_dataset(dataset_full_id) |
| 128 | + |
| 129 | + # Display the dataset information. |
| 130 | + print("Dataset name: {}".format(dataset.name)) |
| 131 | + print("Dataset id: {}".format(dataset.name.split("/")[-1])) |
| 132 | + print("Dataset display name: {}".format(dataset.display_name)) |
| 133 | + print("Text classification dataset metadata:") |
| 134 | + print("\t{}".format(dataset.text_classification_dataset_metadata)) |
| 135 | + print("Dataset example count: {}".format(dataset.example_count)) |
| 136 | + print("Dataset create time:") |
| 137 | + print("\tseconds: {}".format(dataset.create_time.seconds)) |
| 138 | + print("\tnanos: {}".format(dataset.create_time.nanos)) |
| 139 | + |
| 140 | + # [END automl_natural_language_get_dataset] |
| 141 | + |
| 142 | + |
| 143 | +def import_data(project_id, compute_region, dataset_id, path): |
| 144 | + """Import labelled items.""" |
| 145 | + # [START automl_natural_language_import_data] |
| 146 | + # TODO(developer): Uncomment and set the following variables |
| 147 | + # project_id = 'PROJECT_ID_HERE' |
| 148 | + # compute_region = 'COMPUTE_REGION_HERE' |
| 149 | + # dataset_id = 'DATASET_ID_HERE' |
| 150 | + # path = 'gs://path/to/file.csv' |
| 151 | + |
| 152 | + from google.cloud import automl_v1beta1 as automl |
| 153 | + |
| 154 | + client = automl.AutoMlClient() |
| 155 | + |
| 156 | + # Get the full path of the dataset. |
| 157 | + dataset_full_id = client.dataset_path( |
| 158 | + project_id, compute_region, dataset_id |
| 159 | + ) |
| 160 | + |
| 161 | + # Get the multiple Google Cloud Storage URIs. |
| 162 | + input_uris = path.split(",") |
| 163 | + input_config = {"gcs_source": {"input_uris": input_uris}} |
| 164 | + |
| 165 | + # Import the dataset from the input URI. |
| 166 | + response = client.import_data(dataset_full_id, input_config) |
| 167 | + |
| 168 | + print("Processing import...") |
| 169 | + # synchronous check of operation status. |
| 170 | + print("Data imported. {}".format(response.result())) |
| 171 | + |
| 172 | + # [END automl_natural_language_import_data] |
| 173 | + |
| 174 | + |
| 175 | +def export_data(project_id, compute_region, dataset_id, output_uri): |
| 176 | + """Export a dataset to a Google Cloud Storage bucket.""" |
| 177 | + # [START automl_natural_language_export_data] |
| 178 | + # TODO(developer): Uncomment and set the following variables |
| 179 | + # project_id = 'PROJECT_ID_HERE' |
| 180 | + # compute_region = 'COMPUTE_REGION_HERE' |
| 181 | + # dataset_id = 'DATASET_ID_HERE' |
| 182 | + # output_uri: 'gs://location/to/export/data' |
| 183 | + |
| 184 | + from google.cloud import automl_v1beta1 as automl |
| 185 | + |
| 186 | + client = automl.AutoMlClient() |
| 187 | + |
| 188 | + # Get the full path of the dataset. |
| 189 | + dataset_full_id = client.dataset_path( |
| 190 | + project_id, compute_region, dataset_id |
| 191 | + ) |
| 192 | + |
| 193 | + # Set the output URI |
| 194 | + output_config = {"gcs_destination": {"output_uri_prefix": output_uri}} |
| 195 | + |
| 196 | + # Export the data to the output URI. |
| 197 | + response = client.export_data(dataset_full_id, output_config) |
| 198 | + |
| 199 | + print("Processing export...") |
| 200 | + # synchronous check of operation status. |
| 201 | + print("Data exported. {}".format(response.result())) |
| 202 | + |
| 203 | + # [END automl_natural_language_export_data] |
| 204 | + |
| 205 | + |
| 206 | +def delete_dataset(project_id, compute_region, dataset_id): |
| 207 | + """Delete a dataset.""" |
| 208 | + # [START automl_natural_language_delete_dataset] |
| 209 | + # TODO(developer): Uncomment and set the following variables |
| 210 | + # project_id = 'PROJECT_ID_HERE' |
| 211 | + # compute_region = 'COMPUTE_REGION_HERE' |
| 212 | + # dataset_id = 'DATASET_ID_HERE' |
| 213 | + |
| 214 | + from google.cloud import automl_v1beta1 as automl |
| 215 | + |
| 216 | + client = automl.AutoMlClient() |
| 217 | + |
| 218 | + # Get the full path of the dataset. |
| 219 | + dataset_full_id = client.dataset_path( |
| 220 | + project_id, compute_region, dataset_id |
| 221 | + ) |
| 222 | + |
| 223 | + # Delete a dataset. |
| 224 | + response = client.delete_dataset(dataset_full_id) |
| 225 | + |
| 226 | + # synchronous check of operation status. |
| 227 | + print("Dataset deleted. {}".format(response.result())) |
| 228 | + |
| 229 | + # [END automl_natural_language_delete_dataset] |
| 230 | + |
| 231 | + |
| 232 | +if __name__ == "__main__": |
| 233 | + parser = argparse.ArgumentParser( |
| 234 | + description=__doc__, |
| 235 | + formatter_class=argparse.RawDescriptionHelpFormatter, |
| 236 | + ) |
| 237 | + subparsers = parser.add_subparsers(dest="command") |
| 238 | + |
| 239 | + create_dataset_parser = subparsers.add_parser( |
| 240 | + "create_dataset", help=create_dataset.__doc__ |
| 241 | + ) |
| 242 | + create_dataset_parser.add_argument("dataset_name") |
| 243 | + create_dataset_parser.add_argument( |
| 244 | + "multilabel", nargs="?", choices=["False", "True"], default="False" |
| 245 | + ) |
| 246 | + |
| 247 | + list_datasets_parser = subparsers.add_parser( |
| 248 | + "list_datasets", help=list_datasets.__doc__ |
| 249 | + ) |
| 250 | + list_datasets_parser.add_argument( |
| 251 | + "filter_", nargs="?", default="text_classification_dataset_metadata:*" |
| 252 | + ) |
| 253 | + |
| 254 | + get_dataset_parser = subparsers.add_parser( |
| 255 | + "get_dataset", help=get_dataset.__doc__ |
| 256 | + ) |
| 257 | + get_dataset_parser.add_argument("dataset_id") |
| 258 | + |
| 259 | + import_data_parser = subparsers.add_parser( |
| 260 | + "import_data", help=import_data.__doc__ |
| 261 | + ) |
| 262 | + import_data_parser.add_argument("dataset_id") |
| 263 | + import_data_parser.add_argument("path") |
| 264 | + |
| 265 | + export_data_parser = subparsers.add_parser( |
| 266 | + "export_data", help=export_data.__doc__ |
| 267 | + ) |
| 268 | + export_data_parser.add_argument("dataset_id") |
| 269 | + export_data_parser.add_argument("output_uri") |
| 270 | + |
| 271 | + delete_dataset_parser = subparsers.add_parser( |
| 272 | + "delete_dataset", help=delete_dataset.__doc__ |
| 273 | + ) |
| 274 | + delete_dataset_parser.add_argument("dataset_id") |
| 275 | + |
| 276 | + project_id = os.environ["PROJECT_ID"] |
| 277 | + compute_region = os.environ["REGION_NAME"] |
| 278 | + |
| 279 | + args = parser.parse_args() |
| 280 | + |
| 281 | + if args.command == "create_dataset": |
| 282 | + multilabel = True if args.multilabel == "True" else False |
| 283 | + create_dataset( |
| 284 | + project_id, compute_region, args.dataset_name, multilabel |
| 285 | + ) |
| 286 | + if args.command == "list_datasets": |
| 287 | + list_datasets(project_id, compute_region, args.filter_) |
| 288 | + if args.command == "get_dataset": |
| 289 | + get_dataset(project_id, compute_region, args.dataset_id) |
| 290 | + if args.command == "import_data": |
| 291 | + import_data(project_id, compute_region, args.dataset_id, args.path) |
| 292 | + if args.command == "export_data": |
| 293 | + export_data( |
| 294 | + project_id, compute_region, args.dataset_id, args.output_uri |
| 295 | + ) |
| 296 | + if args.command == "delete_dataset": |
| 297 | + delete_dataset(project_id, compute_region, args.dataset_id) |
0 commit comments