|
14 | 14 | # See the License for the specific language governing permissions and
|
15 | 15 | # limitations under the License.
|
16 | 16 |
|
17 |
| -"""This application demonstrates face detection, face emotions |
18 |
| -and speech transcription using the Google Cloud API. |
| 17 | +"""This application demonstrates speech transcription using the |
| 18 | +Google Cloud API. |
19 | 19 |
|
20 | 20 | Usage Examples:
|
21 |
| - python beta_snippets.py boxes \ |
22 |
| - gs://python-docs-samples-tests/video/googlework_short.mp4 |
23 |
| -
|
24 |
| - python beta_snippets.py \ |
25 |
| - emotions gs://python-docs-samples-tests/video/googlework_short.mp4 |
26 |
| -
|
27 | 21 | python beta_snippets.py \
|
28 | 22 | transcription gs://python-docs-samples-tests/video/googlework_short.mp4
|
29 | 23 | """
|
|
33 | 27 | from google.cloud import videointelligence_v1p1beta1 as videointelligence
|
34 | 28 |
|
35 | 29 |
|
36 |
| -# [START video_face_bounding_boxes] |
37 |
| -def face_bounding_boxes(gcs_uri): |
38 |
| - """ Detects faces' bounding boxes. """ |
39 |
| - video_client = videointelligence.VideoIntelligenceServiceClient() |
40 |
| - features = [videointelligence.enums.Feature.FACE_DETECTION] |
41 |
| - |
42 |
| - config = videointelligence.types.FaceConfig( |
43 |
| - include_bounding_boxes=True) |
44 |
| - context = videointelligence.types.VideoContext( |
45 |
| - face_detection_config=config) |
46 |
| - |
47 |
| - operation = video_client.annotate_video( |
48 |
| - gcs_uri, features=features, video_context=context) |
49 |
| - print('\nProcessing video for face annotations:') |
50 |
| - |
51 |
| - result = operation.result(timeout=900) |
52 |
| - print('\nFinished processing.') |
53 |
| - |
54 |
| - # There is only one result because a single video was processed. |
55 |
| - faces = result.annotation_results[0].face_detection_annotations |
56 |
| - for i, face in enumerate(faces): |
57 |
| - print('Face {}'.format(i)) |
58 |
| - |
59 |
| - # Each face_detection_annotation has only one segment. |
60 |
| - segment = face.segments[0] |
61 |
| - start_time = (segment.segment.start_time_offset.seconds + |
62 |
| - segment.segment.start_time_offset.nanos / 1e9) |
63 |
| - end_time = (segment.segment.end_time_offset.seconds + |
64 |
| - segment.segment.end_time_offset.nanos / 1e9) |
65 |
| - positions = '{}s to {}s'.format(start_time, end_time) |
66 |
| - print('\tSegment: {}\n'.format(positions)) |
67 |
| - |
68 |
| - # Each detected face may appear in many frames of the video. |
69 |
| - # Here we process only the first frame. |
70 |
| - frame = face.frames[0] |
71 |
| - |
72 |
| - time_offset = (frame.time_offset.seconds + |
73 |
| - frame.time_offset.nanos / 1e9) |
74 |
| - box = frame.attributes[0].normalized_bounding_box |
75 |
| - |
76 |
| - print('First frame time offset: {}s\n'.format(time_offset)) |
77 |
| - |
78 |
| - print('First frame normalized bounding box:') |
79 |
| - print('\tleft : {}'.format(box.left)) |
80 |
| - print('\ttop : {}'.format(box.top)) |
81 |
| - print('\tright : {}'.format(box.right)) |
82 |
| - print('\tbottom: {}'.format(box.bottom)) |
83 |
| - print('\n') |
84 |
| -# [END video_face_bounding_boxes] |
85 |
| - |
86 |
| - |
87 |
| -# [START video_face_emotions] |
88 |
| -def face_emotions(gcs_uri): |
89 |
| - """ Analyze faces' emotions over frames. """ |
90 |
| - video_client = videointelligence.VideoIntelligenceServiceClient() |
91 |
| - features = [videointelligence.enums.Feature.FACE_DETECTION] |
92 |
| - |
93 |
| - config = videointelligence.types.FaceConfig( |
94 |
| - include_emotions=True) |
95 |
| - context = videointelligence.types.VideoContext( |
96 |
| - face_detection_config=config) |
97 |
| - |
98 |
| - operation = video_client.annotate_video( |
99 |
| - gcs_uri, features=features, video_context=context) |
100 |
| - print('\nProcessing video for face annotations:') |
101 |
| - |
102 |
| - result = operation.result(timeout=600) |
103 |
| - print('\nFinished processing.') |
104 |
| - |
105 |
| - # There is only one result because a single video was processed. |
106 |
| - faces = result.annotation_results[0].face_detection_annotations |
107 |
| - for i, face in enumerate(faces): |
108 |
| - for j, frame in enumerate(face.frames): |
109 |
| - time_offset = (frame.time_offset.seconds + |
110 |
| - frame.time_offset.nanos / 1e9) |
111 |
| - emotions = frame.attributes[0].emotions |
112 |
| - |
113 |
| - print('Face {}, frame {}, time_offset {}\n'.format( |
114 |
| - i, j, time_offset)) |
115 |
| - |
116 |
| - # from videointelligence.enums |
117 |
| - emotion_labels = ( |
118 |
| - 'EMOTION_UNSPECIFIED', 'AMUSEMENT', 'ANGER', |
119 |
| - 'CONCENTRATION', 'CONTENTMENT', 'DESIRE', |
120 |
| - 'DISAPPOINTMENT', 'DISGUST', 'ELATION', |
121 |
| - 'EMBARRASSMENT', 'INTEREST', 'PRIDE', 'SADNESS', |
122 |
| - 'SURPRISE') |
123 |
| - |
124 |
| - for emotion in emotions: |
125 |
| - emotion_index = emotion.emotion |
126 |
| - emotion_label = emotion_labels[emotion_index] |
127 |
| - emotion_score = emotion.score |
128 |
| - |
129 |
| - print('emotion: {} (confidence score: {})'.format( |
130 |
| - emotion_label, emotion_score)) |
131 |
| - |
132 |
| - print('\n') |
133 |
| - |
134 |
| - print('\n') |
135 |
| -# [END video_face_emotions] |
136 |
| - |
137 |
| - |
138 | 30 | # [START video_speech_transcription]
|
139 | 31 | def speech_transcription(input_uri):
|
140 | 32 | """Transcribe speech from a video stored on GCS."""
|
@@ -181,23 +73,12 @@ def speech_transcription(input_uri):
|
181 | 73 | description=__doc__,
|
182 | 74 | formatter_class=argparse.RawDescriptionHelpFormatter)
|
183 | 75 | subparsers = parser.add_subparsers(dest='command')
|
184 |
| - analyze_faces_parser = subparsers.add_parser( |
185 |
| - 'boxes', help=face_bounding_boxes.__doc__) |
186 |
| - analyze_faces_parser.add_argument('gcs_uri') |
187 |
| - |
188 |
| - analyze_emotions_parser = subparsers.add_parser( |
189 |
| - 'emotions', help=face_emotions.__doc__) |
190 |
| - analyze_emotions_parser.add_argument('gcs_uri') |
191 | 76 |
|
192 | 77 | speech_transcription_parser = subparsers.add_parser(
|
193 | 78 | 'transcription', help=speech_transcription.__doc__)
|
194 | 79 | speech_transcription_parser.add_argument('gcs_uri')
|
195 | 80 |
|
196 | 81 | args = parser.parse_args()
|
197 | 82 |
|
198 |
| - if args.command == 'boxes': |
199 |
| - face_bounding_boxes(args.gcs_uri) |
200 |
| - elif args.command == 'emotions': |
201 |
| - face_emotions(args.gcs_uri) |
202 |
| - elif args.command == 'transcription': |
| 83 | + if args.command == 'transcription': |
203 | 84 | speech_transcription(args.gcs_uri)
|
0 commit comments