This file is automatically generated from the def files via this script. Do not modify directly and instead edit operator definitions.
- ai.onnx (default)
- Abs
- Acos
- Acosh
- Add
- And
- ArgMax
- ArgMin
- Asin
- Asinh
- Atan
- Atanh
- AveragePool
- BatchNormalization
- Cast
- Ceil
- Clip
- Compress
- Concat
- Constant
- ConstantLike
- Conv
- ConvTranspose
- Cos
- Cosh
- DepthToSpace
- Div
- Dropout
- Elu
- Equal
- Erf
- Exp
- Expand
- EyeLike
- Flatten
- Floor
- GRU
- Gather
- Gemm
- GlobalAveragePool
- GlobalLpPool
- GlobalMaxPool
- Greater
- HardSigmoid
- Hardmax
- Identity
- If
- InstanceNormalization
- IsNaN
- LRN
- LSTM
- LeakyRelu
- Less
- Log
- LogSoftmax
- Loop
- LpNormalization
- LpPool
- MatMul
- Max
- MaxPool
- MaxRoiPool
- MaxUnpool
- Mean
- Min
- Mul
- Multinomial
- Neg
- Not
- OneHot
- Or
- PRelu
- Pad
- Pow
- RNN
- RandomNormal
- RandomNormalLike
- RandomUniform
- RandomUniformLike
- Reciprocal
- ReduceL1
- ReduceL2
- ReduceLogSum
- ReduceLogSumExp
- ReduceMax
- ReduceMean
- ReduceMin
- ReduceProd
- ReduceSum
- ReduceSumSquare
- Relu
- Reshape
- Scan
- Scatter
- Selu
- Shape
- Sigmoid
- Sign
- Sin
- Sinh
- Size
- Slice
- Softmax
- Softplus
- Softsign
- SpaceToDepth
- Split
- Sqrt
- Squeeze
- Sub
- Sum
- Tan
- Tanh
- Tile
- TopK
- Transpose
- Unsqueeze
- Upsample
- Xor
- experimental ATen
- experimental Affine
- experimental ConstantFill
- experimental Crop
- experimental DynamicSlice
- experimental GRUUnit
- experimental GivenTensorFill
- experimental ImageScaler
- experimental ParametricSoftplus
- experimental Scale
- experimental ScaledTanh
- experimental ThresholdedRelu
Absolute takes one input data (Tensor) and produces one output data (Tensor) where the absolute is, y = abs(x), is applied to the tensor elementwise.
This version of the operator has been available since version 6 of the default ONNX operator set.
Other versions of this operator: Abs-1
- X : T
- Input tensor
- Y : T
- Output tensor
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to all numeric tensors.
abs
node = onnx.helper.make_node(
'Abs',
inputs=['x'],
outputs=['y'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.abs(x)
expect(node, inputs=[x], outputs=[y],
name='test_abs')
Calculates the arccosine (inverse of cosine) of the given input tensor, element-wise.
This version of the operator has been available since version 7 of the default ONNX operator set.
- input : T
- Input tensor
- output : T
- The arccosine of the input tensor computed element-wise
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
acos
node = onnx.helper.make_node(
'Acos',
inputs=['x'],
outputs=['y'],
)
x = np.array([-0.5, 0, 0.5]).astype(np.float32)
y = np.arccos(x)
expect(node, inputs=[x], outputs=[y],
name='test_acos_example')
x = np.random.rand(3, 4, 5).astype(np.float32)
y = np.arccos(x)
expect(node, inputs=[x], outputs=[y],
name='test_acos')
Calculates the hyperbolic arccosine of the given input tensor element-wise.
This version of the operator has been available since version 9 of the default ONNX operator set.
- input : T
- Input tensor
- output : T
- The hyperbolic arccosine values of the input tensor computed element-wise
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
acosh
node = onnx.helper.make_node(
'Acosh',
inputs=['x'],
outputs=['y'],
)
x = np.array([10, np.e, 1]).astype(np.float32)
y = np.arccosh(x) # expected output [2.99322295, 1.65745449, 0.]
expect(node, inputs=[x], outputs=[y],
name='test_acosh_example')
x = np.random.uniform(1.0, 10.0, (3, 4, 5)).astype(np.float32)
y = np.arccosh(x)
expect(node, inputs=[x], outputs=[y],
name='test_acosh')
Performs element-wise binary addition (with Numpy-style broadcasting support).
This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc.
This version of the operator has been available since version 7 of the default ONNX operator set.
Other versions of this operator: Add-1, Add-6
- A : T
- First operand.
- B : T
- Second operand.
- C : T
- Result, has same element type as two inputs
- T : tensor(uint32), tensor(uint64), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to high-precision numeric tensors.
add
node = onnx.helper.make_node(
'Add',
inputs=['x', 'y'],
outputs=['sum'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.random.randn(3, 4, 5).astype(np.float32)
expect(node, inputs=[x, y], outputs=[x + y],
name='test_add')
add_broadcast
node = onnx.helper.make_node(
'Add',
inputs=['x', 'y'],
outputs=['sum'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.random.randn(5).astype(np.float32)
expect(node, inputs=[x, y], outputs=[x + y],
name='test_add_bcast')
Returns the tensor resulted from performing the and
logical operation
elementwise on the input tensors A
and B
(with Numpy-style broadcasting support).
This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc.
This version of the operator has been available since version 7 of the default ONNX operator set.
Other versions of this operator: And-1
- A : T
- First input operand for the logical operator.
- B : T
- Second input operand for the logical operator.
- C : T1
- Result tensor.
- T : tensor(bool)
- Constrains input to boolean tensor.
- T1 : tensor(bool)
- Constrains output to boolean tensor.
and
node = onnx.helper.make_node(
'And',
inputs=['x', 'y'],
outputs=['and'],
)
# 2d
x = (np.random.randn(3, 4) > 0).astype(np.bool)
y = (np.random.randn(3, 4) > 0).astype(np.bool)
z = np.logical_and(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_and2d')
# 3d
x = (np.random.randn(3, 4, 5) > 0).astype(np.bool)
y = (np.random.randn(3, 4, 5) > 0).astype(np.bool)
z = np.logical_and(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_and3d')
# 4d
x = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool)
y = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool)
z = np.logical_and(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_and4d')
and_broadcast
node = onnx.helper.make_node(
'And',
inputs=['x', 'y'],
outputs=['and'],
)
# 3d vs 1d
x = (np.random.randn(3, 4, 5) > 0).astype(np.bool)
y = (np.random.randn(5) > 0).astype(np.bool)
z = np.logical_and(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_and_bcast3v1d')
# 3d vs 2d
x = (np.random.randn(3, 4, 5) > 0).astype(np.bool)
y = (np.random.randn(4, 5) > 0).astype(np.bool)
z = np.logical_and(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_and_bcast3v2d')
# 4d vs 2d
x = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool)
y = (np.random.randn(5, 6) > 0).astype(np.bool)
z = np.logical_and(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_and_bcast4v2d')
# 4d vs 3d
x = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool)
y = (np.random.randn(4, 5, 6) > 0).astype(np.bool)
z = np.logical_and(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_and_bcast4v3d')
# 4d vs 4d
x = (np.random.randn(1, 4, 1, 6) > 0).astype(np.bool)
y = (np.random.randn(3, 1, 5, 6) > 0).astype(np.bool)
z = np.logical_and(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_and_bcast4v4d')
Computes the indices of the max elements of the input tensor's element along the provided axis. The resulted tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then the resulted tensor have the reduced dimension pruned. The type of the output tensor is integer.
This version of the operator has been available since version 1 of the default ONNX operator set.
- axis : int (default is 0)
- The axis in which to compute the arg indices.
- keepdims : int (default is 1)
- Keep the reduced dimension or not, default 1 mean keep reduced dimension.
- data : T
- An input tensor.
- reduced : tensor(int64)
- Reduced output tensor with integer data type.
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to all numeric tensors.
default_axes_keepdims
data = np.array([[2, 1], [3, 10]], dtype=np.float32)
keepdims = 1
node = onnx.helper.make_node(
'ArgMax',
inputs=['data'],
outputs=['result'],
keepdims=keepdims)
# result: [[1], [1]]
result = argmax_use_numpy(data, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmax_default_axis_example')
data = np.random.uniform(-10, 10, [2, 3, 4]).astype(np.float32)
# result's shape: [1, 3, 4]
result = argmax_use_numpy(data, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmax_default_axis_random')
keepdims
data = np.array([[2, 1], [3, 10]], dtype=np.float32)
axis = 1
keepdims = 1
node = onnx.helper.make_node(
'ArgMax',
inputs=['data'],
outputs=['result'],
axis=axis,
keepdims=keepdims)
# result: [[0], [1]]
result = argmax_use_numpy(data, axis=axis, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmax_keepdims_example')
data = np.random.uniform(-10, 10, [2, 3, 4]).astype(np.float32)
# result's shape: [2, 1, 4]
result = argmax_use_numpy(data, axis=axis, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmax_keepdims_random')
no_keepdims
data = np.array([[2, 1], [3, 10]], dtype=np.float32)
axis = 1
keepdims = 0
node = onnx.helper.make_node(
'ArgMax',
inputs=['data'],
outputs=['result'],
axis=axis,
keepdims=keepdims)
# result: [[0, 1]]
result = argmax_use_numpy(data, axis=axis, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmax_no_keepdims_example')
data = np.random.uniform(-10, 10, [2, 3, 4]).astype(np.float32)
# result's shape: [2, 4]
result = argmax_use_numpy(data, axis=axis, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmax_no_keepdims_random')
Computes the indices of the min elements of the input tensor's element along the provided axis. The resulted tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then the resulted tensor have the reduced dimension pruned. The type of the output tensor is integer.
This version of the operator has been available since version 1 of the default ONNX operator set.
- axis : int (default is 0)
- The axis in which to compute the arg indices.
- keepdims : int (default is 1)
- Keep the reduced dimension or not, default 1 mean keep reduced dimension.
- data : T
- An input tensor.
- reduced : tensor(int64)
- Reduced output tensor with integer data type.
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to all numeric tensors.
default_axes_keepdims
data = np.array([[2, 1], [3, 10]], dtype=np.float32)
keepdims = 1
node = onnx.helper.make_node(
'ArgMin',
inputs=['data'],
outputs=['result'],
keepdims=keepdims)
# result: [[0], [0]]
result = argmin_use_numpy(data, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmin_default_axis_example')
data = np.random.uniform(-10, 10, [2, 3, 4]).astype(np.float32)
# result's shape: [1, 3, 4]
result = argmin_use_numpy(data, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmin_default_axis_random')
keepdims
data = np.array([[2, 1], [3, 10]], dtype=np.float32)
axis = 1
keepdims = 1
node = onnx.helper.make_node(
'ArgMin',
inputs=['data'],
outputs=['result'],
axis=axis,
keepdims=keepdims)
# result: [[1], [0]]
result = argmin_use_numpy(data, axis=axis, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmin_keepdims_example')
data = np.random.uniform(-10, 10, [2, 3, 4]).astype(np.float32)
# result's shape: [2, 1, 4]
result = argmin_use_numpy(data, axis=axis, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmin_keepdims_random')
no_keepdims
data = np.array([[2, 1], [3, 10]], dtype=np.float32)
axis = 1
keepdims = 0
node = onnx.helper.make_node(
'ArgMin',
inputs=['data'],
outputs=['result'],
axis=axis,
keepdims=keepdims)
# result: [[1, 0]]
result = argmin_use_numpy(data, axis=axis, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmin_no_keepdims_example')
data = np.random.uniform(-10, 10, [2, 3, 4]).astype(np.float32)
# result's shape: [2, 4]
result = argmin_use_numpy(data, axis=axis, keepdims=keepdims)
expect(node, inputs=[data], outputs=[result], name='test_argmin_no_keepdims_random')
Calculates the arcsine (inverse of sine) of the given input tensor, element-wise.
This version of the operator has been available since version 7 of the default ONNX operator set.
- input : T
- Input tensor
- output : T
- The arcsine of the input tensor computed element-wise
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
asin
node = onnx.helper.make_node(
'Asin',
inputs=['x'],
outputs=['y'],
)
x = np.array([-0.5, 0, 0.5]).astype(np.float32)
y = np.arcsin(x)
expect(node, inputs=[x], outputs=[y],
name='test_asin_example')
x = np.random.rand(3, 4, 5).astype(np.float32)
y = np.arcsin(x)
expect(node, inputs=[x], outputs=[y],
name='test_asin')
Calculates the hyperbolic arcsine of the given input tensor element-wise.
This version of the operator has been available since version 9 of the default ONNX operator set.
- input : T
- Input tensor
- output : T
- The hyperbolic arcsine values of the input tensor computed element-wise
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
asinh
node = onnx.helper.make_node(
'Asinh',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.arcsinh(x) # expected output [-0.88137358, 0., 0.88137358]
expect(node, inputs=[x], outputs=[y],
name='test_asinh_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.arcsinh(x)
expect(node, inputs=[x], outputs=[y],
name='test_asinh')
Calculates the arctangent (inverse of tangent) of the given input tensor, element-wise.
This version of the operator has been available since version 7 of the default ONNX operator set.
- input : T
- Input tensor
- output : T
- The arctangent of the input tensor computed element-wise
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
atan
node = onnx.helper.make_node(
'Atan',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.arctan(x)
expect(node, inputs=[x], outputs=[y],
name='test_atan_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.arctan(x)
expect(node, inputs=[x], outputs=[y],
name='test_atan')
Calculates the hyperbolic arctangent of the given input tensor element-wise.
This version of the operator has been available since version 9 of the default ONNX operator set.
- input : T
- Input tensor
- output : T
- The hyperbolic arctangent values of the input tensor computed element-wise
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
atanh
node = onnx.helper.make_node(
'Atanh',
inputs=['x'],
outputs=['y'],
)
x = np.array([-0.5, 0, 0.5]).astype(np.float32)
y = np.arctanh(x) # expected output [-0.54930615, 0., 0.54930615]
expect(node, inputs=[x], outputs=[y],
name='test_atanh_example')
x = np.random.uniform(0.0, 1.0, (3, 4, 5)).astype(np.float32)
y = np.arctanh(x)
expect(node, inputs=[x], outputs=[y],
name='test_atanh')
AveragePool consumes an input tensor X and applies average pooling across the tensor according to kernel sizes, stride sizes, and pad lengths. average pooling consisting of computing the average on all values of a subset of the input tensor according to the kernel size and downsampling the data into the output tensor Y for further processing. The output spatial shape will be following:
output_spatial_shape[i] = floor((input_spatial_shape[i] + pad_shape[i] - kernel_spatial_shape[i]) / strides_spatial_shape[i] + 1)
* pad_shape[i] is sum of pads along axis i
auto_pad
is a DEPRECATED attribute. If you are using them currently, the output spatial shape will be following:
VALID: output_spatial_shape[i] = ceil((input_spatial_shape[i] - kernel_spatial_shape[i] + 1) / strides_spatial_shape[i])
SAME_UPPER or SAME_LOWER: output_spatial_shape[i] = ceil(input_spatial_shape[i] / strides_spatial_shape[i])
And pad shape will be following if SAME_UPPER
or SAME_LOWER
:
pad_shape[i] = (output_spatial_shape[i] - 1) * strides_spatial_shape[i] + kernel_spatial_shape[i] - input_spatial_shape[i]
The output of each pooling window is divided by the number of elements (exclude pad when attribute count_include_pad is zero).
This version of the operator has been available since version 7 of the default ONNX operator set.
Other versions of this operator: AveragePool-1
- auto_pad : string (default is NOTSET)
- auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. Where default value is NOTSET, which means explicit padding is used. SAME_UPPER or SAME_LOWER mean pad the input so that the output size match the input.In case of odd number add the extra padding at the end for SAME_UPPER and at the beginning for SAME_LOWER. VALID mean no padding. DEPRECATION NOTE: auto_pad is only intended to support legacy uses, and for framework authors, one is explicitly encouraged to use explicit padding specified in the pads attribute.
- count_include_pad : int (default is 0)
- Whether include pad pixels when calculating values for the edges. Default is 0, doesn't count include pad.
- kernel_shape : list of ints (required)
- The size of the kernel along each axis.
- pads : list of ints
- Padding for the beginning and ending along each axis, it can take any value greater than or equal to 0. The value represent the number of pixels added to the beginning and end part of the corresponding axis. `pads` format should be as follow [x1_begin, x2_begin...x1_end, x2_end,...], where xi_begin the number of pixels added at the beginning of axis `i` and xi_end, the number of pixels added at the end of axis `i`. This attribute cannot be used simultaneously with auto_pad attribute. If not present, the padding defaults to 0 along start and end of each axis.
- strides : list of ints
- Stride along each axis.
- X : T
- Input data tensor from the previous operator; dimensions for image case are (N x C x H x W), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of (N x C x D1 x D2 ... Dn), where N is the batch size. Optionally, if dimension denotation is in effect, the operation expects the input data tensor to arrive with the dimension denotation of [DATA_BATCH, DATA_CHANNEL, DATA_FEATURE, DATA_FEATURE ...].
- Y : T
- Output data tensor from average or max pooling across the input tensor. Dimensions will vary based on various kernel, stride, and pad sizes. Floor value of the dimension is used
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
averagepool_1d_default
"""
input_shape: [1, 3, 32]
output_shape: [1, 3, 31]
"""
node = onnx.helper.make_node(
'AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2],
)
x = np.random.randn(1, 3, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = [2]
strides = [1]
out_shape = get_output_shape('VALID', x_shape[2:], kernel_shape, strides)
padded = x
y = pool(padded, x_shape, kernel_shape, strides, out_shape, [0], 'AVG')
expect(node, inputs=[x], outputs=[y], name='test_averagepool_1d_default')
averagepool_2d_default
"""
input_shape: [1, 3, 32, 32]
output_shape: [1, 3, 31, 31]
"""
node = onnx.helper.make_node(
'AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2, 2],
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (2, 2)
strides = (1, 1)
out_shape = get_output_shape('VALID', x_shape[2:], kernel_shape, strides)
padded = x
y = pool(padded, x_shape, kernel_shape, strides, out_shape, (0, 0), 'AVG')
expect(node, inputs=[x], outputs=[y], name='test_averagepool_2d_default')
averagepool_2d_pads
"""
input_shape: [1, 3, 28, 28]
output_shape: [1, 3, 30, 30]
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
"""
node = onnx.helper.make_node(
'AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[3, 3],
pads=[2, 2, 2, 2]
)
x = np.random.randn(1, 3, 28, 28).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (3, 3)
strides = (1, 1)
pad_bottom = 2
pad_top = 2
pad_right = 2
pad_left = 2
pad_shape = [pad_top + pad_bottom, pad_left + pad_right]
out_shape = get_output_shape('VALID', np.add(x_shape[2:], pad_shape), kernel_shape, strides)
padded = np.pad(x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), mode='constant',
constant_values=np.nan)
y = pool(padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'AVG')
expect(node, inputs=[x], outputs=[y], name='test_averagepool_2d_pads')
averagepool_2d_pads_count_include_pad
"""
input_shape: [1, 3, 28, 28]
output_shape: [1, 3, 30, 30]
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
"""
node = onnx.helper.make_node(
'AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[3, 3],
pads=[2, 2, 2, 2],
count_include_pad=1,
)
x = np.random.randn(1, 3, 28, 28).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (3, 3)
strides = (1, 1)
pad_bottom = 2
pad_top = 2
pad_right = 2
pad_left = 2
pad_shape = [pad_top + pad_bottom, pad_left + pad_right]
out_shape = get_output_shape('VALID', np.add(x_shape[2:], pad_shape), kernel_shape, strides)
padded = np.pad(x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), mode='constant',
constant_values=0)
y = pool(padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'AVG', count_include_pad=1)
expect(node, inputs=[x], outputs=[y], name='test_averagepool_2d_pads_count_include_pad')
averagepool_2d_precomputed_pads
"""
input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 5, 5]
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
"""
node = onnx.helper.make_node(
'AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[5, 5],
pads=[2, 2, 2, 2]
)
x = np.array([[[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
]]]).astype(np.float32)
y = np.array([[[[7, 7.5, 8, 8.5, 9],
[9.5, 10, 10.5, 11, 11.5],
[12, 12.5, 13, 13.5, 14],
[14.5, 15, 15.5, 16, 16.5],
[17, 17.5, 18, 18.5, 19]]]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name='test_averagepool_2d_precomputed_pads')
averagepool_2d_precomputed_pads_count_include_pad
"""
input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 5, 5]
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
"""
node = onnx.helper.make_node(
'AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[5, 5],
pads=[2, 2, 2, 2],
count_include_pad=1
)
x = np.array([[[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
]]]).astype(np.float32)
y = np.array([[[[2.5200, 3.6000, 4.8000, 4.0800, 3.2400],
[4.5600, 6.4000, 8.4000, 7.0400, 5.5200],
[7.2000, 10.0000, 13.0000, 10.8000, 8.4000],
[6.9600, 9.6000, 12.4000, 10.2400, 7.9200],
[6.1200, 8.4000, 10.8000, 8.8800, 6.8400]]]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name='test_averagepool_2d_precomputed_pads_count_include_pad')
averagepool_2d_precomputed_same_upper
"""
input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 3, 3]
pad_shape: [2, 2] -> [1, 1, 1, 1] by axis
"""
node = onnx.helper.make_node(
'AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[3, 3],
strides=[2, 2],
auto_pad='SAME_UPPER'
)
x = np.array([[[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
]]]).astype(np.float32)
y = np.array([[[[4, 5.5, 7],
[11.5, 13, 14.5],
[19, 20.5, 22]]]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name='test_averagepool_2d_precomputed_same_upper')
averagepool_2d_precomputed_strides
"""
input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 2, 2]
"""
node = onnx.helper.make_node(
'AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2, 2],
strides=[2, 2]
)
x = np.array([[[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
]]]).astype(np.float32)
y = np.array([[[[4, 6],
[14, 16]]]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name='test_averagepool_2d_precomputed_strides')
averagepool_2d_same_lower
"""
iutput_shape: [1, 3, 32, 32]
output_shape: [1, 3, 32, 32]
pad_shape: [1, 1] -> [1, 0, 1, 0] by axis
"""
node = onnx.helper.make_node(
'AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2, 2],
auto_pad='SAME_LOWER'
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (2, 2)
strides = (1, 1)
out_shape = get_output_shape('SAME_LOWER', x_shape[2:], kernel_shape, strides)
pad_shape = get_pad_shape('SAME_LOWER', x_shape[2:], kernel_shape, strides, out_shape)
pad_bottom = pad_shape[0] // 2
pad_top = pad_shape[0] - pad_bottom
pad_right = pad_shape[1] // 2
pad_left = pad_shape[1] - pad_right
padded = np.pad(x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), mode='constant',
constant_values=np.nan)
y = pool(padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'AVG')
expect(node, inputs=[x], outputs=[y], name='test_averagepool_2d_same_lower')
averagepool_2d_same_upper
"""
iutput_shape: [1, 3, 32, 32]
output_shape: [1, 3, 32, 32]
pad_shape: [1, 1] -> [0, 1, 0, 1] by axis
"""
node = onnx.helper.make_node(
'AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2, 2],
auto_pad='SAME_UPPER'
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (2, 2)
strides = (1, 1)
out_shape = get_output_shape('SAME_UPPER', x_shape[2:], kernel_shape, strides)
pad_shape = get_pad_shape('SAME_UPPER', x_shape[2:], kernel_shape, strides, out_shape)
pad_top = pad_shape[0] // 2
pad_bottom = pad_shape[0] - pad_top
pad_left = pad_shape[1] // 2
pad_right = pad_shape[1] - pad_left
padded = np.pad(x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), mode='constant',
constant_values=np.nan)
y = pool(padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'AVG')
expect(node, inputs=[x], outputs=[y], name='test_averagepool_2d_same_upper')
averagepool_2d_strides
"""
input_shape: [1, 3, 32, 32]
output_shape: [1, 3, 10, 10]
"""
node = onnx.helper.make_node(
'AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[5, 5],
strides=[3, 3]
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (5, 5)
strides = (3, 3)
out_shape = get_output_shape('VALID', x_shape[2:], kernel_shape, strides)
padded = x
y = pool(padded, x_shape, kernel_shape, strides, out_shape, (0, 0), 'AVG')
expect(node, inputs=[x], outputs=[y], name='test_averagepool_2d_strides')
averagepool_3d_default
"""
input_shape: [1, 3, 32, 32, 32]
output_shape: [1, 3, 31, 31, 31]
"""
node = onnx.helper.make_node(
'AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2, 2, 2],
)
x = np.random.randn(1, 3, 32, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = [2, 2, 2]
strides = [1, 1, 1]
out_shape = get_output_shape('VALID', x_shape[2:], kernel_shape, strides)
padded = x
y = pool(padded, x_shape, kernel_shape, strides, out_shape, [0, 0, 0], 'AVG')
expect(node, inputs=[x], outputs=[y], name='test_averagepool_3d_default')
Carries out batch normalization as described in the paper https://arxiv.org/abs/1502.03167. Depending on the mode it is being run, there are multiple cases for the number of outputs, which we list below:
Output case #1: Y, mean, var, saved_mean, saved_var (training mode) Output case #2: Y (test mode) This operator has optional inputs/outputs. See the doc for more details about the representation of optional arguments. An empty string may be used in the place of an actual argument's name to indicate a missing argument. Trailing optional arguments (those not followed by an argument that is present) may also be simply omitted.
This version of the operator has been available since version 7 of the default ONNX operator set.
Other versions of this operator: BatchNormalization-1, BatchNormalization-6
- epsilon : float (default is 1e-05)
- The epsilon value to use to avoid division by zero.
- momentum : float (default is 0.9)
- Factor used in computing the running mean and variance.e.g., running_mean = running_mean * momentum + mean * (1 - momentum).
- spatial : int (default is 1)
- If true, compute the mean and variance across per activation. If false, compute the mean and variance across per feature over each mini-batch.
- X : T
- Input data tensor from the previous operator; dimensions for image case are (N x C x H x W), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of (N x C x D1 x D2 ... Dn), where N is the batch size.
- scale : T
- If spatial is true, the dimension of scale is (C). If spatial is false, the dimensions of scale are (C x D1 x ... x Dn)
- B : T
- If spatial is true, the dimension of bias is (C). If spatial is false, the dimensions of bias are (C x D1 x ... x Dn)
- mean : T
- If spatial is true, the dimension of the running mean (training) or the estimated mean (testing) is (C). If spatial is false, the dimensions of the running mean (training) or the estimated mean (testing) are (C x D1 x ... x Dn).
- var : T
- If spatial is true, the dimension of the running variance(training) or the estimated variance (testing) is (C). If spatial is false, the dimensions of the running variance(training) or the estimated variance (testing) are (C x D1 x ... x Dn).
- Y : T
- The output tensor of the same shape as X
- mean (optional) : T
- The running mean after the BatchNormalization operator.
- var (optional) : T
- The running variance after the BatchNormalization operator.
- saved_mean (optional) : T
- Saved mean used during training to speed up gradient computation.
- saved_var (optional) : T
- Saved variance used during training to speed up gradient computation.
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
batchnormalization
def _batchnorm_test_mode(x, s, bias, mean, var, epsilon=1e-5): # type: ignore
dims_x = len(x.shape)
dim_ones = (1,) * (dims_x - 2)
s = s.reshape(-1, *dim_ones)
bias = bias.reshape(-1, *dim_ones)
mean = mean.reshape(-1, *dim_ones)
var = var.reshape(-1, *dim_ones)
return s * (x - mean) / np.sqrt(var + epsilon) + bias
# input size: (1, 2, 1, 3)
x = np.array([[[[-1, 0, 1]], [[2, 3, 4]]]]).astype(np.float32)
s = np.array([1.0, 1.5]).astype(np.float32)
bias = np.array([0, 1]).astype(np.float32)
mean = np.array([0, 3]).astype(np.float32)
var = np.array([1, 1.5]).astype(np.float32)
y = _batchnorm_test_mode(x, s, bias, mean, var).astype(np.float32)
node = onnx.helper.make_node(
'BatchNormalization',
inputs=['x', 's', 'bias', 'mean', 'var'],
outputs=['y'],
)
# output size: (1, 2, 1, 3)
expect(node, inputs=[x, s, bias, mean, var], outputs=[y],
name='test_batchnorm_example')
# input size: (2, 3, 4, 5)
x = np.random.randn(2, 3, 4, 5).astype(np.float32)
s = np.random.randn(3).astype(np.float32)
bias = np.random.randn(3).astype(np.float32)
mean = np.random.randn(3).astype(np.float32)
var = np.random.rand(3).astype(np.float32)
epsilon = 1e-2
y = _batchnorm_test_mode(x, s, bias, mean, var, epsilon).astype(np.float32)
node = onnx.helper.make_node(
'BatchNormalization',
inputs=['x', 's', 'bias', 'mean', 'var'],
outputs=['y'],
epsilon=epsilon,
)
# output size: (2, 3, 4, 5)
expect(node, inputs=[x, s, bias, mean, var], outputs=[y],
name='test_batchnorm_epsilon')
The operator casts the elements of a given input tensor to a data type specified by the 'to' argument and returns an output tensor of the same size in the converted type. The 'to' argument must be one of the data types specified in the 'DataType' enum field in the TensorProto message. NOTE: Casting to and from strings is not supported yet.
This version of the operator has been available since version 6 of the default ONNX operator set.
Other versions of this operator: Cast-1
- to : int (required)
- The data type to which the elements of the input tensor are cast.Strictly must be one of the types from DataType enum in TensorProto
- input : T1
- Input tensor to be cast.
- output : T2
- Output tensor with the same shape as input with type specified by the 'to' argument
- T1 : tensor(float16), tensor(float), tensor(double), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(bool)
- Constrain input types. Casting from strings and complex are not supported.
- T2 : tensor(float16), tensor(float), tensor(double), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(bool)
- Constrain output types. Casting to strings and complex are not supported.
cast
shape = (3, 4)
test_cases = [
('FLOAT', 'FLOAT16'),
('FLOAT', 'DOUBLE'),
('FLOAT16', 'FLOAT'),
('FLOAT16', 'DOUBLE'),
('DOUBLE', 'FLOAT'),
('DOUBLE', 'FLOAT16'),
]
for from_type, to_type in test_cases:
input = np.random.random_sample(shape).astype(
TENSOR_TYPE_TO_NP_TYPE[getattr(TensorProto, from_type)])
node = onnx.helper.make_node(
'Cast',
inputs=['input'],
outputs=['output'],
to=getattr(TensorProto, to_type),
)
output = input.astype(TENSOR_TYPE_TO_NP_TYPE[getattr(TensorProto, to_type)])
expect(node, inputs=[input], outputs=[output],
name='test_cast_' + from_type + '_to_' + to_type)
Ceil takes one input data (Tensor) and produces one output data (Tensor) where the ceil is, y = ceil(x), is applied to the tensor elementwise.
This version of the operator has been available since version 6 of the default ONNX operator set.
Other versions of this operator: Ceil-1
- X : T
- Input tensor
- Y : T
- Output tensor
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
ceil
node = onnx.helper.make_node(
'Ceil',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1.5, 1.2]).astype(np.float32)
y = np.ceil(x) # expected output [-1., 2.]
expect(node, inputs=[x], outputs=[y],
name='test_ceil_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.ceil(x)
expect(node, inputs=[x], outputs=[y],
name='test_ceil')
Clip operator limits the given input within an interval. The interval is specified with arguments 'min' and 'max'. They default to numeric_limits::lowest() and numeric_limits::max() respectively.
This version of the operator has been available since version 6 of the default ONNX operator set.
Other versions of this operator: Clip-1
- max : float (default is 3.4028234663852886e+38)
- Maximum value, above which element is replaced by max
- min : float (default is -3.4028234663852886e+38)
- Minimum value, under which element is replaced by min
- input : T
- Input tensor whose elements to be clipped
- output : T
- Output tensor with clipped input elements
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
clip
node = onnx.helper.make_node(
'Clip',
inputs=['x'],
outputs=['y'],
min=-1.0,
max=1.0
)
x = np.array([-2, 0, 2]).astype(np.float32)
y = np.clip(x, -1, 1) # expected output [-1., 0., 1.]
expect(node, inputs=[x], outputs=[y],
name='test_clip_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, -1.0, 1.0)
expect(node, inputs=[x], outputs=[y],
name='test_clip')
node = onnx.helper.make_node(
'Clip',
inputs=['x'],
outputs=['y'],
min=-5.0,
max=5.0,
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.array([-1, 0, 1]).astype(np.float32)
expect(node, inputs=[x], outputs=[y],
name='test_clip_inbounds')
x = np.array([-6, 0, 6]).astype(np.float32)
y = np.array([-5, 0, 5]).astype(np.float32)
expect(node, inputs=[x], outputs=[y],
name='test_clip_outbounds')
x = np.array([-1, 0, 6]).astype(np.float32)
y = np.array([-1, 0, 5]).astype(np.float32)
expect(node, inputs=[x], outputs=[y],
name='test_clip_splitbounds')
clip_default
node = onnx.helper.make_node(
'Clip',
inputs=['x'],
outputs=['y'],
min=0.0
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, 0.0, np.inf)
expect(node, inputs=[x], outputs=[y],
name='test_clip_default_min')
node = onnx.helper.make_node(
'Clip',
inputs=['x'],
outputs=['y'],
max=0.0
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, -np.inf, 0.0)
expect(node, inputs=[x], outputs=[y],
name='test_clip_default_max')
node = onnx.helper.make_node(
'Clip',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.array([-1, 0, 1]).astype(np.float32)
expect(node, inputs=[x], outputs=[y],
name='test_clip_default_inbounds')
Selects slices from an input tensor along a given axis where condition evaluates to True for each axis index. In case axis is not provided, input is flattened before elements are selected. Compress behaves like numpy.compress: https://docs.scipy.org/doc/numpy/reference/generated/numpy.compress.html
This version of the operator has been available since version 9 of the default ONNX operator set.
- axis : int
- (Optional) Axis along which to take slices. If not specified, input is flattened before elements being selected.
- input : T
- Tensor of rank r >= 1.
- condition : T1
- Rank 1 tensor of booleans to indicate which slices or data elements to be selected. Its length can be less than the input length alone the axis or the flattened input size if axis is not specified. In such cases data slices or elements exceeding the condition length are discarded.
- output : T
- Tensor of rank r if axis is specified. Otherwise output is a Tensor of rank 1.
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- Constrain input and output types to all tensor types.
- T1 : tensor(bool)
- Constrains to boolean tensors.
compress_0
node = onnx.helper.make_node(
'Compress',
inputs=['input', 'condition'],
outputs=['output'],
axis=0,
)
input = np.array([[1, 2], [3, 4], [5, 6]]).astype(np.float32)
condition = np.array([0, 1, 1])
output = np.compress(condition, input, axis=0)
#print(output)
#[[ 3. 4.]
# [ 5. 6.]]
expect(node, inputs=[input, condition.astype(np.bool)], outputs=[output],
name='test_compress_0')
compress_1
node = onnx.helper.make_node(
'Compress',
inputs=['input', 'condition'],
outputs=['output'],
axis=1,
)
input = np.array([[1, 2], [3, 4], [5, 6]]).astype(np.float32)
condition = np.array([0, 1])
output = np.compress(condition, input, axis=1)
#print(output)
#[[ 2.]
# [ 4.]
# [ 6.]]
expect(node, inputs=[input, condition.astype(np.bool)], outputs=[output],
name='test_compress_1')
compress_default_axis
node = onnx.helper.make_node(
'Compress',
inputs=['input', 'condition'],
outputs=['output'],
)
input = np.array([[1, 2], [3, 4], [5, 6]]).astype(np.float32)
condition = np.array([0, 1, 0, 0, 1])
output = np.compress(condition, input)
#print(output)
#[ 2., 5.]
expect(node, inputs=[input, condition.astype(np.bool)], outputs=[output],
name='test_compress_default_axis')
Concatenate a list of tensors into a single tensor
This version of the operator has been available since version 4 of the default ONNX operator set.
Other versions of this operator: Concat-1
- axis : int (required)
- Which axis to concat on
- inputs (variadic) : T
- List of tensors for concatenation
- concat_result : T
- Concatenated tensor
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- Constrain output types to any tensor type.
concat
test_cases = {
'1d': ([1, 2],
[3, 4]),
'2d': ([[1, 2], [3, 4]],
[[5, 6], [7, 8]]),
'3d': ([[[1, 2], [3, 4]], [[5, 6], [7, 8]]],
[[[9, 10], [11, 12]], [[13, 14], [15, 16]]])
} # type: Dict[Text, Sequence[Any]]
for test_case, values_ in test_cases.items():
values = [np.asarray(v, dtype=np.float32) for v in values_]
for i in range(len(values[0].shape)):
in_args = ['value' + str(k) for k in range(len(values))]
node = onnx.helper.make_node(
'Concat',
inputs=[s for s in in_args],
outputs=['output'],
axis=i
)
output = np.concatenate(values, i)
expect(node, inputs=[v for v in values], outputs=[output],
name='test_concat_' + test_case + '_axis_' + str(i))
A constant tensor.
This version of the operator has been available since version 9 of the default ONNX operator set.
Other versions of this operator: Constant-1
- value : tensor (required)
- The value for the elements of the output tensor.
- output : T
- Output tensor containing the same value of the provided tensor.
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- Constrain input and output types to all tensor types.
constant
values = np.random.randn(5, 5).astype(np.float32)
node = onnx.helper.make_node(
'Constant',
inputs=[],
outputs=['values'],
value=onnx.helper.make_tensor(
name='const_tensor',
data_type=onnx.TensorProto.FLOAT,
dims=values.shape,
vals=values.flatten().astype(float),
),
)
expect(node, inputs=[], outputs=[values],
name='test_constant')
Generate a tensor with specific constant value. The value can be specified by the 'value' attribute. The shape of the output tensor is the same as the input tensor, if the input tensor is provided, or the shape provided in the 'shape' attribute (if both are provided, the input tensor shape takes precendence). The data type can be specified by the 'dtype' argument. If 'dtype' is not specified, then the type of input tensor is used. If input tensor is also not specified, then the type defaults to 'float'.
The 'dtype' argument must be one of the data types specified in the 'DataType' enum field in the TensorProto message and be valid as an output type.
This version of the operator has been available since version 9 of the default ONNX operator set.
- dtype : int
- (Optional) The data type for the elements of the output tensor. If not specified,the data type of the input tensor T1 is used. If input tensor T1 is also not specified, then output tensor type defaults to 'float'.
- shape : list of ints
- (Optional) The shape of the output tensor. If input tensor T1 is provided, then 'shape' attribute is ignored and the output follows the shape of the input. One of either input tensor T1 or 'shape' attribute must be provided.
- value : float (default is 0.0)
- (Optional) The value for the elements of the output tensor.
- input (optional) : T1
- Input tensor to copy shape, and optionally, type information from. One of either input tensor T1 or 'shape' attribute must be provided.
- output : T2
- Output tensor, same shape as input tensor T1.
- T1 : tensor(float16), tensor(float), tensor(double), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(bool)
- Constrain input types. Strings and complex are not supported.
- T2 : tensor(float16), tensor(float), tensor(double), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(bool)
- Constrain output types. Strings and complex are not supported.
ones_with_input
shape = (4, 3, 2)
node = onnx.helper.make_node(
'ConstantLike',
inputs=['x'],
outputs=['y'],
value=1.0,
)
x = np.random.randint(0, 100, size=shape, dtype=np.int32)
y = np.ones(shape, dtype=np.int32)
expect(node, inputs=[x], outputs=[y], name='test_constantlike_ones_with_input')
threes_with_shape_and_dtype
shape = (3, 4)
node = onnx.helper.make_node(
'ConstantLike',
shape=shape,
inputs=[],
outputs=['y'],
value=3.0,
dtype=onnx.TensorProto.DOUBLE, # 11: DOUBLE
)
y = 3.0 * np.ones(shape, dtype=np.float64)
expect(node, inputs=[], outputs=[y], name='test_constantlike_threes_with_shape_and_dtype')
zeros_without_input_dtype
shape = (2, 5, 1)
node = onnx.helper.make_node(
'ConstantLike',
inputs=[],
outputs=['y'],
shape=shape,
)
y = np.zeros(shape, dtype=np.float32)
expect(node, inputs=[], outputs=[y], name='test_constantlike_zeros_without_input_dtype')
The convolution operator consumes an input tensor and a filter, and computes the output.
This version of the operator has been available since version 1 of the default ONNX operator set.
- auto_pad : string (default is NOTSET)
- auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. Where default value is NOTSET, which means explicit padding is used. SAME_UPPER or SAME_LOWER mean pad the input so that the output size match the input.In case of odd number add the extra padding at the end for SAME_UPPER and at the beginning for SAME_LOWER. VALID mean no padding. DEPRECATION NOTE: auto_pad is only intended to support legacy uses, and for framework authors, one is explicitly encouraged to use explicit padding specified in the pads attribute.
- dilations : list of ints
- dilation value along each axis of the filter.
- group : int (default is 1)
- number of groups input channels and output channels are divided into.
- kernel_shape : list of ints
- The shape of the convolution kernel. If not present, should be inferred from input W.
- pads : list of ints
- Padding for the beginning and ending along each axis, it can take any value greater than or equal to 0. The value represent the number of pixels added to the beginning and end part of the corresponding axis. `pads` format should be as follow [x1_begin, x2_begin...x1_end, x2_end,...], where xi_begin the number of pixels added at the beginning of axis `i` and xi_end, the number of pixels added at the end of axis `i`. This attribute cannot be used simultaneously with auto_pad attribute. If not present, the padding defaults to 0 along start and end of each axis.
- strides : list of ints
- Stride along each axis.
- X : T
- Input data tensor from previous layer; has size (N x C x H x W), where N is the batch size, C is the number of channels, and H and W are the height and width. Note that this is for the 2D image. Otherwise the size is (N x C x D1 x D2 ... x Dn). Optionally, if dimension denotation is in effect, the operation expects input data tensor to arrive with the dimension denotation of [DATA_BATCH, DATA_CHANNEL, DATA_FEATURE, DATA_FEATURE ...].
- W : T
- The weight tensor that will be used in the convolutions; has size (M x C/group x kH x kW), where C is the number of channels, and kH and kW are the height and width of the kernel, and M is the number of feature maps. For more than 2 dimensions, the kernel shape will be (M x C/group x k1 x k2 x ... x kn), where (k1 x k2 x ... kn) is the dimension of the kernel. Optionally, if dimension denotation is in effect, the operation expects the weight tensor to arrive with the dimension denotation of [FILTER_OUT_CHANNEL, FILTER_IN_CHANNEL, FILTER_SPATIAL, FILTER_SPATIAL ...]. X.shape[1] == (W.shape[1] * group) == C (assuming zero based indices for the shape array). Or in other words FILTER_IN_CHANNEL should be equal to DATA_CHANNEL.
- B (optional) : T
- Optional 1D bias to be added to the convolution, has size of M.
- Y : T
- Output data tensor that contains the result of the convolution. The output dimensions are functions of the kernel size, stride size, and pad lengths.
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
conv
x = np.array([[[[0., 1., 2., 3., 4.], # (1, 1, 5, 5) input tensor
[5., 6., 7., 8., 9.],
[10., 11., 12., 13., 14.],
[15., 16., 17., 18., 19.],
[20., 21., 22., 23., 24.]]]]).astype(np.float32)
W = np.array([[[[1., 1., 1.], # (1, 1, 3, 3) tensor for convolution weights
[1., 1., 1.],
[1., 1., 1.]]]]).astype(np.float32)
# Convolution with padding
node_with_padding = onnx.helper.make_node(
'Conv',
inputs=['x', 'W'],
outputs=['y'],
kernel_shape=[3, 3],
# Default values for other attributes: strides=[1, 1], dilations=[1, 1], groups=1
pads=[1, 1, 1, 1],
)
y_with_padding = np.array([[[[12., 21., 27., 33., 24.], # (1, 1, 5, 5) output tensor
[33., 54., 63., 72., 51.],
[63., 99., 108., 117., 81.],
[93., 144., 153., 162., 111.],
[72., 111., 117., 123., 84.]]]]).astype(np.float32)
expect(node_with_padding, inputs=[x, W], outputs=[y_with_padding],
name='test_basic_conv_with_padding')
# Convolution without padding
node_without_padding = onnx.helper.make_node(
'Conv',
inputs=['x', 'W'],
outputs=['y'],
kernel_shape=[3, 3],
# Default values for other attributes: strides=[1, 1], dilations=[1, 1], groups=1
pads=[0, 0, 0, 0],
)
y_without_padding = np.array([[[[54., 63., 72.], # (1, 1, 3, 3) output tensor
[99., 108., 117.],
[144., 153., 162.]]]]).astype(np.float32)
expect(node_without_padding, inputs=[x, W], outputs=[y_without_padding],
name='test_basic_conv_without_padding')
conv_with_strides
x = np.array([[[[0., 1., 2., 3., 4.], # (1, 1, 7, 5) input tensor
[5., 6., 7., 8., 9.],
[10., 11., 12., 13., 14.],
[15., 16., 17., 18., 19.],
[20., 21., 22., 23., 24.],
[25., 26., 27., 28., 29.],
[30., 31., 32., 33., 34.]]]]).astype(np.float32)
W = np.array([[[[1., 1., 1.], # (1, 1, 3, 3) tensor for convolution weights
[1., 1., 1.],
[1., 1., 1.]]]]).astype(np.float32)
# Convolution with strides=2 and padding
node_with_padding = onnx.helper.make_node(
'Conv',
inputs=['x', 'W'],
outputs=['y'],
kernel_shape=[3, 3],
pads=[1, 1, 1, 1],
strides=[2, 2], # Default values for other attributes: dilations=[1, 1], groups=1
)
y_with_padding = np.array([[[[12., 27., 24.], # (1, 1, 4, 3) output tensor
[63., 108., 81.],
[123., 198., 141.],
[112., 177., 124.]]]]).astype(np.float32)
expect(node_with_padding, inputs=[x, W], outputs=[y_with_padding],
name='test_conv_with_strides_padding')
# Convolution with strides=2 and no padding
node_without_padding = onnx.helper.make_node(
'Conv',
inputs=['x', 'W'],
outputs=['y'],
kernel_shape=[3, 3],
pads=[0, 0, 0, 0],
strides=[2, 2], # Default values for other attributes: dilations=[1, 1], groups=1
)
y_without_padding = np.array([[[[54., 72.], # (1, 1, 3, 2) output tensor
[144., 162.],
[234., 252.]]]]).astype(np.float32)
expect(node_without_padding, inputs=[x, W], outputs=[y_without_padding],
name='test_conv_with_strides_no_padding')
# Convolution with strides=2 and padding only along one dimension (the H dimension in NxCxHxW tensor)
node_with_asymmetric_padding = onnx.helper.make_node(
'Conv',
inputs=['x', 'W'],
outputs=['y'],
kernel_shape=[3, 3],
pads=[1, 0, 1, 0],
strides=[2, 2], # Default values for other attributes: dilations=[1, 1], groups=1
)
y_with_asymmetric_padding = np.array([[[[21., 33.], # (1, 1, 4, 2) output tensor
[99., 117.],
[189., 207.],
[171., 183.]]]]).astype(np.float32)
expect(node_with_asymmetric_padding, inputs=[x, W], outputs=[y_with_asymmetric_padding],
name='test_conv_with_strides_and_asymmetric_padding')
The convolution transpose operator consumes an input tensor and a filter, and computes the output.
If the pads parameter is provided the shape of the output is calculated via the following equation:
output_shape[i] = stride[i] * (input_size[i] - 1) + output_padding[i] + kernel_shape[i] - pads[start_i] - pads[end_i]
output_shape can also be explicitly specified in which case pads values are auto generated using these equations:
total_padding[i] = stride[i] * (input_size[i] - 1) + output_padding[i] + kernel_shape[i] - output_shape[i]
If (auto_pads != SAME_UPPER): pads[start_i] = total_padding[i]/2; pads[end_i] = total_padding[i] - (total_padding[i]/2)
Else: pads[start_i] = total_padding[i] - (total_padding[i]/2); pads[end_i] = (total_padding[i]/2).
This version of the operator has been available since version 1 of the default ONNX operator set.
- auto_pad : string (default is NOTSET)
- auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. Where default value is NOTSET, which means explicit padding is used. SAME_UPPER or SAME_LOWER mean pad the input so that the output size match the input.In case of odd number add the extra padding at the end for SAME_UPPER and at the beginning for SAME_LOWER. VALID mean no padding. DEPRECATION NOTE: auto_pad is only intended to support legacy uses, and for framework authors, one is explicitly encouraged to use explicit padding specified in the pads attribute.
- dilations : list of ints
- dilation value along each axis of the filter.
- group : int (default is 1)
- number of groups input channels and output channels are divided into.
- kernel_shape : list of ints
- The shape of the convolution kernel. If not present, should be inferred from input W.
- output_padding : list of ints
- The zero-padding added to one side of the output. This is also called adjs/adjustment in some frameworks.
- output_shape : list of ints
- The shape of the output can be explicitly set which will cause pads values to be auto generated. If output_shape is specified pads values are ignored. See doc for details for equations to generate pads
- pads : list of ints
- Padding for the beginning and ending along each axis, it can take any value greater than or equal to 0. The value represent the number of pixels added to the beginning and end part of the corresponding axis. `pads` format should be as follow [x1_begin, x2_begin...x1_end, x2_end,...], where xi_begin the number of pixels added at the beginning of axis `i` and xi_end, the number of pixels added at the end of axis `i`. This attribute cannot be used simultaneously with auto_pad attribute. If not present, the padding defaults to 0 along start and end of each axis.
- strides : list of ints
- Stride along each axis.
- X : T
- Input data tensor from previous layer; has size (N x C x H x W), where N is the batch size, C is the number of channels, and H and W are the height and width. Note that this is for the 2D image. Otherwise the size is (N x C x D1 x D2 ... x Dn)
- W : T
- The weight tensor that will be used in the convolutions; has size (C x M/group x kH x kW), where C is the number of channels, and kH and kW are the height and width of the kernel, and M is the number of feature maps. For more than 2 dimensions, the weight shape will be (C x M/group x k1 x k2 x ... x kn), where (k1 x k2 x ... x kn) is the dimension of the kernel. The number of channels in the output should be equal to W.shape[1] * group (assuming zero based indices of the shape array)
- B (optional) : T
- Optional 1D bias to be added to the convolution, has size of M.
- Y : T
- Output data tensor that contains the result of the convolution. The output dimensions are functions of the kernel size, stride size, pad lengths and group count. The number of channels in the output should be equal to W.shape[1] * group (assuming zero based indices of the shape array)
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
convtranspose
x = np.array([[[[0., 1., 2.], # (1, 1, 3, 3)
[3., 4., 5.],
[6., 7., 8.]]]]).astype(np.float32)
W = np.array([[[[1., 1., 1.], # (1, 2, 3, 3)
[1., 1., 1.],
[1., 1., 1.]],
[[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]]]]).astype(np.float32)
node = onnx.helper.make_node("ConvTranspose", ["X", "W"], ["Y"])
y = np.array([[[[0., 1., 3., 3., 2.], # (1, 2, 5, 5)
[3., 8., 15., 12., 7.],
[9., 21., 36., 27., 15.],
[9., 20., 33., 24., 13.],
[6., 13., 21., 15., 8.]],
[[0., 1., 3., 3., 2.],
[3., 8., 15., 12., 7.],
[9., 21., 36., 27., 15.],
[9., 20., 33., 24., 13.],
[6., 13., 21., 15., 8.]]]]).astype(np.float32)
expect(node, inputs=[x, W], outputs=[y], name='test_convtranspose')
convtranspose_1d
x = np.array([[[0., 1., 2.]]]).astype(np.float32) # (1, 1, 3)
W = np.array([[[1., 1., 1.], # (1, 2, 3)
[1., 1., 1.]]]).astype(np.float32)
node = onnx.helper.make_node("ConvTranspose", ["X", "W"], ["Y"])
y = np.array([[[0., 1., 3., 3., 2.], # (1, 2, 5)
[0., 1., 3., 3., 2.]]]).astype(np.float32)
expect(node, inputs=[x, W], outputs=[y], name='test_convtranspose_1d')
convtranspose_3d
x = np.array([[[[[0., 1., 2., 3., 4.], # (1, 1, 3, 4, 5)
[5., 6., 7., 8., 9.],
[10., 11., 12., 13., 14.],
[15., 16., 17., 18., 19.]],
[[20., 21., 22., 23., 24.],
[25., 26., 27., 28., 29.],
[30., 31., 32., 33., 34.],
[35., 36., 37., 38., 39.]],
[[40., 41., 42., 43., 44.],
[45., 46., 47., 48., 49.],
[50., 51., 52., 53., 54.],
[55., 56., 57., 58., 59.]]]]]).astype(np.float32)
W = np.array([[[[[1., 1., 1.], # (1, 2, 3, 3, 3)
[1., 1., 1.],
[1., 1., 1.]],
[[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]],
[[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]]],
[[[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]],
[[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]],
[[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]]]]]).astype(np.float32)
node = onnx.helper.make_node("ConvTranspose", ["X", "W"], ["Y"])
y = np.array([[[[[0., 1., 3., 6., 9., 7., 4.], # (1, 2, 5, 6, 7)
[5., 12., 21., 27., 33., 24., 13.],
[15., 33., 54., 63., 72., 51., 27.],
[30., 63., 99., 108., 117., 81., 42.],
[25., 52., 81., 87., 93., 64., 33.],
[15., 31., 48., 51., 54., 37., 19.]],
[[20., 42., 66., 72., 78., 54., 28.],
[50., 104., 162., 174., 186., 128., 66.],
[90., 186., 288., 306., 324., 222., 114.],
[120., 246., 378., 396., 414., 282., 144.],
[90., 184., 282., 294., 306., 208., 106.],
[50., 102., 156., 162., 168., 114., 58.]],
[[60., 123., 189., 198., 207., 141., 72.],
[135., 276., 423., 441., 459., 312., 159.],
[225., 459., 702., 729., 756., 513., 261.],
[270., 549., 837., 864., 891., 603., 306.],
[195., 396., 603., 621., 639., 432., 219.],
[105., 213., 324., 333., 342., 231., 117.]],
[[60., 122., 186., 192., 198., 134., 68.],
[130., 264., 402., 414., 426., 288., 146.],
[210., 426., 648., 666., 684., 462., 234.],
[240., 486., 738., 756., 774., 522., 264.],
[170., 344., 522., 534., 546., 368., 186.],
[90., 182., 276., 282., 288., 194., 98.]],
[[40., 81., 123., 126., 129., 87., 44.],
[85., 172., 261., 267., 273., 184., 93.],
[135., 273., 414., 423., 432., 291., 147.],
[150., 303., 459., 468., 477., 321., 162.],
[105., 212., 321., 327., 333., 224., 113.],
[55., 111., 168., 171., 174., 117., 59.]]],
[[[0., 1., 3., 6., 9., 7., 4.],
[5., 12., 21., 27., 33., 24., 13.],
[15., 33., 54., 63., 72., 51., 27.],
[30., 63., 99., 108., 117., 81., 42.],
[25., 52., 81., 87., 93., 64., 33.],
[15., 31., 48., 51., 54., 37., 19.]],
[[20., 42., 66., 72., 78., 54., 28.],
[50., 104., 162., 174., 186., 128., 66.],
[90., 186., 288., 306., 324., 222., 114.],
[120., 246., 378., 396., 414., 282., 144.],
[90., 184., 282., 294., 306., 208., 106.],
[50., 102., 156., 162., 168., 114., 58.]],
[[60., 123., 189., 198., 207., 141., 72.],
[135., 276., 423., 441., 459., 312., 159.],
[225., 459., 702., 729., 756., 513., 261.],
[270., 549., 837., 864., 891., 603., 306.],
[195., 396., 603., 621., 639., 432., 219.],
[105., 213., 324., 333., 342., 231., 117.]],
[[60., 122., 186., 192., 198., 134., 68.],
[130., 264., 402., 414., 426., 288., 146.],
[210., 426., 648., 666., 684., 462., 234.],
[240., 486., 738., 756., 774., 522., 264.],
[170., 344., 522., 534., 546., 368., 186.],
[90., 182., 276., 282., 288., 194., 98.]],
[[40., 81., 123., 126., 129., 87., 44.],
[85., 172., 261., 267., 273., 184., 93.],
[135., 273., 414., 423., 432., 291., 147.],
[150., 303., 459., 468., 477., 321., 162.],
[105., 212., 321., 327., 333., 224., 113.],
[55., 111., 168., 171., 174., 117., 59.]]]]]).astype(np.float32)
expect(node, inputs=[x, W], outputs=[y], name='test_convtranspose_3d')
convtranspose_attributes
x = np.array([[[[0., 1., 2.], # (1, 1, 3, 3)
[3., 4., 5.],
[6., 7., 8.]]]]).astype(np.float32)
W = np.array([[[[1., 1., 1.], # (1, 2, 3, 3)
[1., 1., 1.],
[1., 1., 1.]],
[[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]]]]).astype(np.float32)
y = np.array([[[[0., 0., 1., 1., 3., 2., 2., 0.], # (1, 2, 10, 8)
[0., 0., 1., 1., 3., 2., 2., 0.],
[0., 0., 1., 1., 3., 2., 2., 0.],
[3., 3., 7., 4., 9., 5., 5., 0.],
[3., 3., 7., 4., 9., 5., 5., 0.],
[3., 3., 7., 4., 9., 5., 5., 0.],
[6., 6., 13., 7., 15., 8., 8., 0.],
[6., 6., 13., 7., 15., 8., 8., 0.],
[6., 6., 13., 7., 15., 8., 8., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]],
[[0., 0., 1., 1., 3., 2., 2., 0.],
[0., 0., 1., 1., 3., 2., 2., 0.],
[0., 0., 1., 1., 3., 2., 2., 0.],
[3., 3., 7., 4., 9., 5., 5., 0.],
[3., 3., 7., 4., 9., 5., 5., 0.],
[3., 3., 7., 4., 9., 5., 5., 0.],
[6., 6., 13., 7., 15., 8., 8., 0.],
[6., 6., 13., 7., 15., 8., 8., 0.],
[6., 6., 13., 7., 15., 8., 8., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]]]]).astype(np.float32)
node = onnx.helper.make_node("ConvTranspose", ["X", "W"], ["Y"],
strides=[3, 2],
output_shape=[10, 8])
expect(node, inputs=[x, W], outputs=[y], name='test_convtranspose_output_shape')
node = onnx.helper.make_node("ConvTranspose", ["X", "W"], ["Y"],
strides=[3, 2],
output_padding=[1, 1])
expect(node, inputs=[x, W], outputs=[y], name='test_convtranspose_pad')
node = onnx.helper.make_node(
'ConvTranspose', ['X', 'W'], ['Y'],
name='test',
strides=[3, 2],
output_shape=[10, 8],
kernel_shape=[3, 3],
output_padding=[1, 1]
)
expect(node, inputs=[x, W], outputs=[y],
name='test_convtranspose_kernel_shape')
convtranspose_pads
x = np.array([[[[0., 1., 2.], # (1, 1, 3, 3)
[3., 4., 5.],
[6., 7., 8.]]]]).astype(np.float32)
W = np.array([[[[1., 1., 1.], # (1, 2, 3, 3)
[1., 1., 1.],
[1., 1., 1.]],
[[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.]]]]).astype(np.float32)
node = onnx.helper.make_node("ConvTranspose", ["X", "W"], ["Y"],
strides=[3, 2],
pads=[1, 2, 1, 2])
y = np.array([[[[1., 1., 3.], # (1, 2, 7, 3)
[1., 1., 3.],
[7., 4., 9.],
[7., 4., 9.],
[7., 4., 9.],
[13., 7., 15.],
[13., 7., 15.]],
[[1., 1., 3.],
[1., 1., 3.],
[7., 4., 9.],
[7., 4., 9.],
[7., 4., 9.],
[13., 7., 15.],
[13., 7., 15.]]]]).astype(np.float32)
expect(node, inputs=[x, W], outputs=[y], name='test_convtranspose_pads')
Calculates the cosine of the given input tensor, element-wise.
This version of the operator has been available since version 7 of the default ONNX operator set.
- input : T
- Input tensor
- output : T
- The cosine of the input tensor computed element-wise
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
cos
node = onnx.helper.make_node(
'Cos',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.cos(x)
expect(node, inputs=[x], outputs=[y],
name='test_cos_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.cos(x)
expect(node, inputs=[x], outputs=[y],
name='test_cos')
Calculates the hyperbolic cosine of the given input tensor element-wise.
This version of the operator has been available since version 9 of the default ONNX operator set.
- input : T
- Input tensor
- output : T
- The hyperbolic cosine values of the input tensor computed element-wise
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
cosh
node = onnx.helper.make_node(
'Cosh',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.cosh(x) # expected output [1.54308069, 1., 1.54308069]
expect(node, inputs=[x], outputs=[y],
name='test_cosh_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.cosh(x)
expect(node, inputs=[x], outputs=[y],
name='test_cosh')
DepthToSpace rearranges (permutes) data from depth into blocks of spatial data. This is the reverse transformation of SpaceToDepth. More specifically, this op outputs a copy of the input tensor where values from the depth dimension are moved in spatial blocks to the height and width dimensions.
This version of the operator has been available since version 1 of the default ONNX operator set.
- blocksize : int (required)
- Blocks of [blocksize, blocksize] are moved.
- input : T
- Input tensor of [N,C,H,W], where N is the batch axis, C is the channel or depth, H is the height and W is the width.
- output : T
- Output tensor of [N, C/(blocksize * blocksize), H * blocksize, W * blocksize].
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- Constrain input and output types to all tensor types.
depthtospace
b, c, h, w = shape = (2, 8, 3, 3)
blocksize = 2
node = onnx.helper.make_node(
'DepthToSpace',
inputs=['x'],
outputs=['y'],
blocksize=blocksize,
)
x = np.random.random_sample(shape).astype(np.float32)
tmp = np.reshape(x, [b, blocksize, blocksize, c // (blocksize**2), h, w])
tmp = np.transpose(tmp, [0, 3, 4, 1, 5, 2])
y = np.reshape(tmp, [b, c // (blocksize**2), h * blocksize, w * blocksize])
expect(node, inputs=[x], outputs=[y],
name='test_depthtospace')
example
node = onnx.helper.make_node(
'DepthToSpace',
inputs=['x'],
outputs=['y'],
blocksize=2,
)
# (1, 4, 2, 3) input tensor
x = np.array([[[[0, 1, 2],
[3, 4, 5]],
[[6, 7, 8],
[9, 10, 11]],
[[12, 13, 14],
[15, 16, 17]],
[[18, 19, 20],
[21, 22, 23]]]]).astype(np.float32)
# (1, 1, 4, 6) output tensor
y = np.array([[[[0, 6, 1, 7, 2, 8],
[12, 18, 13, 19, 14, 20],
[3, 9, 4, 10, 5, 11],
[15, 21, 16, 22, 17, 23]]]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y],
name='test_depthtospace_example')
Performs element-wise binary division (with Numpy-style broadcasting support).
This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc.
This version of the operator has been available since version 7 of the default ONNX operator set.
Other versions of this operator: Div-1, Div-6
- A : T
- First operand.
- B : T
- Second operand.
- C : T
- Result, has same element type as two inputs
- T : tensor(uint32), tensor(uint64), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to high-precision numeric tensors.
div
node = onnx.helper.make_node(
'Div',
inputs=['x', 'y'],
outputs=['z'],
)
x = np.array([3, 4]).astype(np.float32)
y = np.array([1, 2]).astype(np.float32)
z = x / y # expected output [3., 2.]
expect(node, inputs=[x, y], outputs=[z],
name='test_div_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.random.rand(3, 4, 5).astype(np.float32) + 1.0
z = x / y
expect(node, inputs=[x, y], outputs=[z],
name='test_div')
div_broadcast
node = onnx.helper.make_node(
'Div',
inputs=['x', 'y'],
outputs=['z'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.random.rand(5).astype(np.float32) + 1.0
z = x / y
expect(node, inputs=[x, y], outputs=[z],
name='test_div_bcast')
Dropout takes one input data (Tensor) and produces two Tensor outputs, output (Tensor) and mask (Tensor). Depending on whether it is in test mode or not, the output Y will either be a random dropout, or a simple copy of the input. Note that our implementation of Dropout does scaling in the training phase, so during testing nothing needs to be done. This operator has optional inputs/outputs. See the doc for more details about the representation of optional arguments. An empty string may be used in the place of an actual argument's name to indicate a missing argument. Trailing optional arguments (those not followed by an argument that is present) may also be simply omitted.
This version of the operator has been available since version 7 of the default ONNX operator set.
Other versions of this operator: Dropout-1, Dropout-6
- ratio : float (default is 0.5)
- The ratio of random dropout
- data : T
- The input data as Tensor.
- output : T
- The output.
- mask (optional) : T
- The output mask.
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
default
node = onnx.helper.make_node(
'Dropout',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = x
expect(node, inputs=[x], outputs=[y],
name='test_dropout_default')
random
node = onnx.helper.make_node(
'Dropout',
inputs=['x'],
outputs=['y'],
ratio=.2,
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = x
expect(node, inputs=[x], outputs=[y],
name='test_dropout_random')
Elu takes one input data (Tensor) and produces one output data
(Tensor) where the function f(x) = alpha * (exp(x) - 1.) for x < 0
, f(x) = x for x >= 0
., is applied to the tensor elementwise.
This version of the operator has been available since version 6 of the default ONNX operator set.
Other versions of this operator: Elu-1
- alpha : float (default is 1.0)
- Coefficient of ELU.
- X : T
- 1D input tensor
- Y : T
- 1D input tensor
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
elu
node = onnx.helper.make_node(
'Elu',
inputs=['x'],
outputs=['y'],
alpha=2.0
)
x = np.array([-1, 0, 1]).astype(np.float32)
# expected output [-1.2642411, 0., 1.]
y = np.clip(x, 0, np.inf) + (np.exp(np.clip(x, -np.inf, 0)) - 1) * 2.0
expect(node, inputs=[x], outputs=[y],
name='test_elu_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, 0, np.inf) + (np.exp(np.clip(x, -np.inf, 0)) - 1) * 2.0
expect(node, inputs=[x], outputs=[y],
name='test_elu')
elu_default
default_alpha = 1.0
node = onnx.helper.make_node(
'Elu',
inputs=['x'],
outputs=['y'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, 0, np.inf) + (np.exp(np.clip(x, -np.inf, 0)) - 1) * default_alpha
expect(node, inputs=[x], outputs=[y],
name='test_elu_default')
Returns the tensor resulted from performing the equal
logical operation
elementwise on the input tensors A
and B
(with Numpy-style broadcasting support).
This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc.
This version of the operator has been available since version 7 of the default ONNX operator set.
Other versions of this operator: Equal-1
- A : T
- First input operand for the logical operator.
- B : T
- Second input operand for the logical operator.
- C : T1
- Result tensor.
- T : tensor(bool), tensor(int32), tensor(int64)
- Constrains input to integral tensors.
- T1 : tensor(bool)
- Constrains output to boolean tensor.
equal
node = onnx.helper.make_node(
'Equal',
inputs=['x', 'y'],
outputs=['z'],
)
x = (np.random.randn(3, 4, 5) * 10).astype(np.int32)
y = (np.random.randn(3, 4, 5) * 10).astype(np.int32)
z = np.equal(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_equal')
equal_broadcast
node = onnx.helper.make_node(
'Equal',
inputs=['x', 'y'],
outputs=['z'],
)
x = (np.random.randn(3, 4, 5) * 10).astype(np.int32)
y = (np.random.randn(5) * 10).astype(np.int32)
z = np.equal(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_equal_bcast')
Computes the error function of the given input tensor element-wise.
This version of the operator has been available since version 9 of the default ONNX operator set.
- input : T
- Input tensor
- output : T
- The error function of the input tensor computed element-wise. It has the same shape and type of the input.
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to all numeric tensors.
erf
node = onnx.helper.make_node(
'Erf',
inputs=['x'],
outputs=['y'],
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
y = np.vectorize(math.erf)(x).astype(np.float32)
expect(node, inputs=[x], outputs=[y],
name='test_erf')
Calculates the exponential of the given input tensor, element-wise.
This version of the operator has been available since version 6 of the default ONNX operator set.
Other versions of this operator: Exp-1
- input : T
- Input tensor
- output : T
- The exponential of the input tensor computed element-wise
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
exp
node = onnx.helper.make_node(
'Exp',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.exp(x) # expected output [0.36787945, 1., 2.71828175]
expect(node, inputs=[x], outputs=[y],
name='test_exp_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.exp(x)
expect(node, inputs=[x], outputs=[y],
name='test_exp')
Broadcast the input tensor following the given shape and the broadcast rule. The broadcast rule is similar to numpy.array(input) * numpy.ones(shape): Dimensions are right alignment; Two corresponding dimension must have the same value, or one of them is equal to 1. Also, this operator is similar to numpy.broadcast_to(input, shape), but the major difference is numpy.broadcast_to() does not allow shape to be smaller than input.size(). It is possible that the output.shape is not equal to shape, when some dimensions in shape is equal to 1, or the shape.ndim < input.shape.ndim.
This version of the operator has been available since version 8 of the default ONNX operator set.
- input : T
- Input tensor
- shape : tensor(int64)
- A 1-D tensor indicates the shape you want to expand to, following the broadcast rule
- output : T
- Output tensor
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- Constrain input and output types to all tensors.
dim_changed
node = onnx.helper.make_node(
'Expand',
inputs=['data', 'new_shape'],
outputs=['expanded'],
)
shape = [3, 1]
data = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape)
#print(data)
#[[1.], [2.], [3.]]
new_shape = [2, 1, 6]
expanded = data * np.ones(new_shape, dtype=np.float32)
#print(expanded)
#[[[1., 1., 1., 1., 1., 1.],
# [2., 2., 2., 2., 2., 2.],
# [3., 3., 3., 3., 3., 3.]],
#
# [[1., 1., 1., 1., 1., 1.],
# [2., 2., 2., 2., 2., 2.],
# [3., 3., 3., 3., 3., 3.]]]
new_shape = np.array(new_shape, dtype=np.int64)
expect(node, inputs=[data, new_shape], outputs=[expanded],
name='test_expand_dim_changed')
dim_unchanged
node = onnx.helper.make_node(
'Expand',
inputs=['data', 'new_shape'],
outputs=['expanded'],
)
shape = [3, 1]
new_shape = [3, 4]
data = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape)
#print(data)
#[[1.], [2.], [3.]]
expanded = np.tile(data, 4)
#print(expanded)
#[[1., 1., 1., 1.],
# [2., 2., 2., 2.],
# [3., 3., 3., 3.]]
new_shape = np.array(new_shape, dtype=np.int64)
expect(node, inputs=[data, new_shape], outputs=[expanded],
name='test_expand_dim_unchanged')
Generate a 2D tensor (matrix) with ones on the diagonal and zeros everywhere else. Only 2D tensors are supported, i.e. input T1 must be of rank 2. The shape of the output tensor is the same as the input tensor. The data type can be specified by the 'dtype' argument. If 'dtype' is not specified, then the type of input tensor is used. By default, the main diagonal is populated with ones, but attribute 'k' can be used to populate upper or lower diagonals.
The 'dtype' argument must be one of the data types specified in the 'DataType' enum field in the TensorProto message and be valid as an output type.
This version of the operator has been available since version 9 of the default ONNX operator set.
- dtype : int
- (Optional) The data type for the elements of the output tensor. If not specified,the data type of the input tensor T1 is used. If input tensor T1 is also notspecified, then type defaults to 'float'.
- k : int (default is 0)
- (Optional) Index of the diagonal to be populated with ones. Default is 0. If T2 is the output, this op sets T2[i, i+k] = 1. k = 0 populates the main diagonal, k > 0 populates an upper diagonal, and k < 0 populates a lower diagonal.
- input : T1
- 2D input tensor to copy shape, and optionally, type information from.
- output : T2
- Output tensor, same shape as input tensor T1.
- T1 : tensor(float16), tensor(float), tensor(double), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(bool)
- Constrain input types. Strings and complex are not supported.
- T2 : tensor(float16), tensor(float), tensor(double), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(bool)
- Constrain output types. Strings and complex are not supported.
populate_off_main_diagonal
shape = (4, 5)
off_diagonal_offset = 1
node = onnx.helper.make_node(
'EyeLike',
inputs=['x'],
outputs=['y'],
k=off_diagonal_offset,
dtype=onnx.TensorProto.FLOAT,
)
x = np.random.randint(0, 100, size=shape, dtype=np.int32)
y = np.eye(shape[0], shape[1], k=off_diagonal_offset, dtype=np.float32)
expect(node, inputs=[x], outputs=[y], name='test_eyelike_populate_off_main_diagonal')
with_dtype
shape = (3, 4)
node = onnx.helper.make_node(
'EyeLike',
inputs=['x'],
outputs=['y'],
dtype=onnx.TensorProto.DOUBLE,
)
x = np.random.randint(0, 100, size=shape, dtype=np.int32)
y = np.eye(shape[0], shape[1], dtype=np.float64)
expect(node, inputs=[x], outputs=[y], name='test_eyelike_with_dtype')
without_dtype
shape = (4, 4)
node = onnx.helper.make_node(
'EyeLike',
inputs=['x'],
outputs=['y'],
)
x = np.random.randint(0, 100, size=shape, dtype=np.int32)
y = np.eye(shape[0], shape[1], dtype=np.int32)
expect(node, inputs=[x], outputs=[y], name='test_eyelike_without_dtype')
Flattens the input tensor into a 2D matrix. If input tensor has shape (d_0, d_1, ... d_n) then the output will have shape (d_0 X d_1 ... d_(axis-1), d_axis X d_(axis+1) ... X dn).
This version of the operator has been available since version 9 of the default ONNX operator set.
Other versions of this operator: Flatten-1
- axis : int (default is 1)
- Indicate up to which input dimensions (exclusive) should be flattened to the outer dimension of the output. The value for axis must be in the range [0, R], where R is the rank of the input tensor. When axis = 0, the shape of the output tensor is (1, (d_0 X d_1 ... d_n), where the shape of the input tensor is (d_0, d_1, ... d_n).
- input : T
- A tensor of rank >= axis.
- output : T
- A 2D tensor with the contents of the input tensor, with input dimensions up to axis flattened to the outer dimension of the output and remaining input dimensions flattened into the inner dimension of the output.
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- Constrain input and output to all tensor types.
flatten
shape = (2, 3, 4, 5)
a = np.random.random_sample(shape).astype(np.float32)
for i in range(len(shape)):
node = onnx.helper.make_node(
'Flatten',
inputs=['a'],
outputs=['b'],
axis=i,
)
new_shape = (1, -1) if i == 0 else (np.prod(shape[0:i]).astype(int), -1)
b = np.reshape(a, new_shape)
expect(node, inputs=[a], outputs=[b],
name='test_flatten_axis' + str(i))
flatten_with_default_axis
node = onnx.helper.make_node(
'Flatten',
inputs=['a'],
outputs=['b'], # Default value for axis: axis=1
)
shape = (5, 4, 3, 2)
a = np.random.random_sample(shape).astype(np.float32)
new_shape = (5, 24)
b = np.reshape(a, new_shape)
expect(node, inputs=[a], outputs=[b],
name='test_flatten_default_axis')
Floor takes one input data (Tensor) and produces one output data (Tensor) where the floor is, y = floor(x), is applied to the tensor elementwise.
This version of the operator has been available since version 6 of the default ONNX operator set.
Other versions of this operator: Floor-1
- X : T
- Input tensor
- Y : T
- Output tensor
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
floor
node = onnx.helper.make_node(
'Floor',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1.5, 1.2, 2]).astype(np.float32)
y = np.floor(x) # expected output [-2., 1., 2.]
expect(node, inputs=[x], outputs=[y],
name='test_floor_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.floor(x)
expect(node, inputs=[x], outputs=[y],
name='test_floor')
Computes an one-layer GRU. This operator is usually supported via some custom implementation such as CuDNN.
Notations:
X
- input tensor
z
- update gate
r
- reset gate
h
- hidden gate
t
- time step (t-1 means previous time step)
W[zrh]
- W parameter weight matrix for update, reset, and hidden gates
R[zrh]
- R recurrence weight matrix for update, reset, and hidden gates
Wb[zrh]
- W bias vectors for update, reset, and hidden gates
Rb[zrh]
- R bias vectors for update, reset, and hidden gates
WB[zrh]
- W parameter weight matrix for backward update, reset, and hidden gates
RB[zrh]
- R recurrence weight matrix for backward update, reset, and hidden gates
WBb[zrh]
- W bias vectors for backward update, reset, and hidden gates
RBb[zrh]
- R bias vectors for backward update, reset, and hidden gates
H
- Hidden state
num_directions
- 2 if direction == bidirectional else 1
Activation functions:
Relu(x) - max(0, x)
Tanh(x) - (1 - e^{-2x})/(1 + e^{-2x})
Sigmoid(x) - 1/(1 + e^{-x})
(NOTE: Below are optional)
Affine(x) - alpha*x + beta
LeakyRelu(x) - x if x >= 0 else alpha * x
ThresholdedRelu(x) - x if x >= alpha else 0
ScaledTanh(x) - alpha*Tanh(beta*x)
HardSigmoid(x) - min(max(alpha*x + beta, 0), 1)
Elu(x) - x if x >= 0 else alpha*(e^x - 1)
Softsign(x) - x/(1 + |x|)
Softplus(x) - log(1 + e^x)
Equations (Default: f=Sigmoid, g=Tanh):
- zt = f(Xt*(Wz^T) + Ht-1*(Rz^T) + Wbz + Rbz)
- rt = f(Xt*(Wr^T) + Ht-1*(Rr^T) + Wbr + Rbr)
- ht = g(Xt*(Wh^T) + (rt (.) Ht-1)*(Rh^T) + Rbh + Wbh) # default, when linear_before_reset = 0
- ht = g(Xt*(Wh^T) + (rt (.) (Ht-1*(Rh^T) + Rbh)) + Wbh) # when linear_before_reset != 0
- Ht = (1 - zt) (.) ht + zt (.) Ht-1
This operator has optional inputs/outputs. See the doc for more details about the representation of optional arguments. An empty string may be used in the place of an actual argument's name to indicate a missing argument. Trailing optional arguments (those not followed by an argument that is present) may also be simply omitted.
This version of the operator has been available since version 7 of the default ONNX operator set.
Other versions of this operator: GRU-1, GRU-3
- activation_alpha : list of floats
- Optional scaling values used by some activation functions. The values are consumed in the order of activation functions, for example (f, g, h) in LSTM. Default values are the same as of corresponding ONNX operators.For example with LeakyRelu, the default alpha is 0.01.
- activation_beta : list of floats
- Optional scaling values used by some activation functions. The values are consumed in the order of activation functions, for example (f, g, h) in LSTM. Default values are the same as of corresponding ONNX operators.
- activations : list of strings
- A list of 2 (or 4 if bidirectional) activation functions for update, reset, and hidden gates. The activation functions must be one of the activation functions specified above. Optional: See the equations for default if not specified.
- clip : float
- Cell clip threshold. Clipping bounds the elements of a tensor in the range of [-threshold, +threshold] and is applied to the input of activations. No clip if not specified.
- direction : string (default is forward)
- Specify if the RNN is forward, reverse, or bidirectional. Must be one of forward (default), reverse, or bidirectional.
- hidden_size : int
- Number of neurons in the hidden layer
- linear_before_reset : int (default is 0)
- When computing the output of the hidden gate, apply the linear transformation before multiplying by the output of the reset gate.
- X : T
- The input sequences packed (and potentially padded) into one 3-D tensor with the shape of `[seq_length, batch_size, input_size]`.
- W : T
- The weight tensor for the gates. Concatenation of `W[zrh]` and `WB[zrh]` (if bidirectional) along dimension 0. This tensor has shape `[num_directions, 3*hidden_size, input_size]`.
- R : T
- The recurrence weight tensor. Concatenation of `R[zrh]` and `RB[zrh]` (if bidirectional) along dimension 0. This tensor has shape `[num_directions, 3*hidden_size, hidden_size]`.
- B (optional) : T
- The bias tensor for the gates. Concatenation of `[Wb[zrh], Rb[zrh]]` and `[WBb[zrh], RBb[zrh]]` (if bidirectional) along dimension 0. This tensor has shape `[num_directions, 6*hidden_size]`. Optional: If not specified - assumed to be 0
- sequence_lens (optional) : T1
- Optional tensor specifying lengths of the sequences in a batch. If not specified - assumed all sequences in the batch to have length `seq_length`. It has shape `[batch_size]`.
- initial_h (optional) : T
- Optional initial value of the hidden. If not specified - assumed to be 0. It has shape `[num_directions, batch_size, hidden_size]`.
- Y (optional) : T
- A tensor that concats all the intermediate output values of the hidden. It has shape `[seq_length, num_directions, batch_size, hidden_size]`.
- Y_h (optional) : T
- The last output value of the hidden. It has shape `[num_directions, batch_size, hidden_size]`.
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
- T1 : tensor(int32)
- Constrain seq_lens to integer tensor.
defaults
input = np.array([[[1., 2.], [3., 4.], [5., 6.]]]).astype(np.float32)
input_size = 2
hidden_size = 5
weight_scale = 0.1
number_of_gates = 3
node = onnx.helper.make_node(
'GRU',
inputs=['X', 'W', 'R'],
outputs=['', 'Y'],
hidden_size=hidden_size
)
W = weight_scale * np.ones((1, number_of_gates * hidden_size, input_size)).astype(np.float32)
R = weight_scale * np.ones((1, number_of_gates * hidden_size, hidden_size)).astype(np.float32)
gru = GRU_Helper(X=input, W=W, R=R)
_, Y_h = gru.step()
expect(node, inputs=[input, W, R], outputs=[Y_h.astype(np.float32)], name='test_gru_defaults')
initial_bias
input = np.array([[[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]]).astype(np.float32)
input_size = 3
hidden_size = 3
weight_scale = 0.1
custom_bias = 0.1
number_of_gates = 3
node = onnx.helper.make_node(
'GRU',
inputs=['X', 'W', 'R', 'B'],
outputs=['', 'Y'],
hidden_size=hidden_size
)
W = weight_scale * np.ones((1, number_of_gates * hidden_size, input_size)).astype(np.float32)
R = weight_scale * np.ones((1, number_of_gates * hidden_size, hidden_size)).astype(np.float32)
# Adding custom bias
W_B = custom_bias * np.ones((1, number_of_gates * hidden_size)).astype(np.float32)
R_B = np.zeros((1, number_of_gates * hidden_size)).astype(np.float32)
B = np.concatenate((W_B, R_B), axis=1)
gru = GRU_Helper(X=input, W=W, R=R, B=B)
_, Y_h = gru.step()
expect(node, inputs=[input, W, R, B], outputs=[Y_h.astype(np.float32)], name='test_gru_with_initial_bias')
seq_length
input = np.array([[[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]],
[[10., 11., 12.], [13., 14., 15.], [16., 17., 18.]]]).astype(np.float32)
input_size = 3
hidden_size = 5
number_of_gates = 3
node = onnx.helper.make_node(
'GRU',
inputs=['X', 'W', 'R', 'B'],
outputs=['', 'Y'],
hidden_size=hidden_size
)
W = np.random.randn(1, number_of_gates * hidden_size, input_size).astype(np.float32)
R = np.random.randn(1, number_of_gates * hidden_size, hidden_size).astype(np.float32)
# Adding custom bias
W_B = np.random.randn(1, number_of_gates * hidden_size).astype(np.float32)
R_B = np.random.randn(1, number_of_gates * hidden_size).astype(np.float32)
B = np.concatenate((W_B, R_B), axis=1)
gru = GRU_Helper(X=input, W=W, R=R, B=B)
_, Y_h = gru.step()
expect(node, inputs=[input, W, R, B], outputs=[Y_h.astype(np.float32)], name='test_gru_seq_length')
Given data
tensor of rank r >= 1, and indices
tensor of rank q, gather
entries of the axis dimension of data
(by default outer-most one as axis=0) indexed by indices
, and concatenates
them in an output tensor of rank q + (r - 1).
Example 1:
data = [
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
indices = [
[0, 1],
[1, 2],
]
output = [
[
[1.0, 1.2],
[2.3, 3.4],
],
[
[2.3, 3.4],
[4.5, 5.7],
],
]
Example 2:
data = [
[1.0, 1.2, 1.9],
[2.3, 3.4, 3.9],
[4.5, 5.7, 5.9],
]
indices = [
[0, 2],
]
axis = 1,
output = [
[
[1.0, 1.9],
[2.3, 3.9],
[4.5, 5.9],
],
]
This version of the operator has been available since version 1 of the default ONNX operator set.
- axis : int (default is 0)
- Which axis to gather on. Negative value means counting dimensions from the back. Accepted range in [-r, r-1]
- data : T
- Tensor of rank r >= 1.
- indices : Tind
- Tensor of int32/int64 indices, of any rank q.
- output : T
- Tensor of rank q + (r - 1).
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- Constrain input and output types to any tensor type.
- Tind : tensor(int32), tensor(int64)
- Constrain indices to integer types
gather_0
node = onnx.helper.make_node(
'Gather',
inputs=['data', 'indices'],
outputs=['y'],
axis=0,
)
data = np.random.randn(5, 4, 3, 2).astype(np.float32)
indices = np.array([0, 1, 3])
y = np.take(data, indices, axis=0)
expect(node, inputs=[data, indices.astype(np.int64)], outputs=[y],
name='test_gather_0')
gather_1
node = onnx.helper.make_node(
'Gather',
inputs=['data', 'indices'],
outputs=['y'],
axis=1,
)
data = np.random.randn(5, 4, 3, 2).astype(np.float32)
indices = np.array([0, 1, 3])
y = np.take(data, indices, axis=1)
expect(node, inputs=[data, indices.astype(np.int64)], outputs=[y],
name='test_gather_1')
General Matrix multiplication: https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms#Level_3
A' = transpose(A) if transA else A
B' = transpose(B) if transB else B
Compute Y = alpha * A' * B' + beta * C, where input tensor A has shape (M, K) or (K, M), input tensor B has shape (K, N) or (N, K), input tensor C is broadcastable to shape (M, N), and output tensor Y has shape (M, N). A will be transposed before doing the computation if attribute transA is non-zero, same for B and transB. This operator supports unidirectional broadcasting (tensor C should be unidirectional broadcastable to tensor A * B); for more details please check the doc.
This version of the operator has been available since version 9 of the default ONNX operator set.
Other versions of this operator: Gemm-1, Gemm-6, Gemm-7
- alpha : float (default is 1.0)
- Scalar multiplier for the product of input tensors A * B.
- beta : float (default is 1.0)
- Scalar multiplier for input tensor C.
- transA : int (default is 0)
- Whether A should be transposed
- transB : int (default is 0)
- Whether B should be transposed
- A : T
- Input tensor A. The shape of A should be (M, K) if transA is 0, or (K, M) if transA is non-zero.
- B : T
- Input tensor B. The shape of B should be (K, N) if transB is 0, or (N, K) if transB is non-zero.
- C : T
- Input tensor C. The shape of C should be unidirectional broadcastable to (M, N).
- Y : T
- Output tensor of shape (M, N).
- T : tensor(float16), tensor(float), tensor(double), tensor(uint32), tensor(uint64), tensor(int32), tensor(int64)
- Constrain input and output types to float/int tensors.
notranspose
node = onnx.helper.make_node(
'Gemm',
inputs=['a', 'b', 'c'],
outputs=['y'],
alpha=0.5,
beta=0.5
)
a = np.random.ranf([3, 6]).astype(np.float32)
b = np.random.ranf([6, 4]).astype(np.float32)
c = np.random.ranf([3, 4]).astype(np.float32)
y = 0.5 * np.dot(a, b) + 0.5 * c
expect(node, inputs=[a, b, c], outputs=[y],
name='test_gemm_nobroadcast')
transpose
node = onnx.helper.make_node(
'Gemm',
inputs=['a', 'b', 'c'],
outputs=['y'],
alpha=0.5,
beta=0.5,
transA=1,
transB=1
)
a = np.random.ranf([6, 3]).astype(np.float32)
b = np.random.ranf([4, 6]).astype(np.float32)
c = np.random.ranf([1, 1]).astype(np.float32)
y = 0.5 * np.dot(a.T, b.T) + 0.5 * c
expect(node, inputs=[a, b, c], outputs=[y],
name='test_gemm_broadcast')
GlobalAveragePool consumes an input tensor X and applies average pooling across the values in the same channel. This is equivalent to AveragePool with kernel size equal to the spatial dimension of input tensor.
This version of the operator has been available since version 1 of the default ONNX operator set.
- X : T
- Input data tensor from the previous operator; dimensions for image case are (N x C x H x W), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of (N x C x D1 x D2 ... Dn), where N is the batch size.
- Y : T
- Output data tensor from pooling across the input tensor. Dimensions will be N x C x 1 x 1
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
globalaveragepool
node = onnx.helper.make_node(
'GlobalAveragePool',
inputs=['x'],
outputs=['y'],
)
x = np.random.randn(1, 3, 5, 5).astype(np.float32)
spatial_shape = np.ndim(x) - 2
y = np.average(x, axis=tuple(range(spatial_shape, spatial_shape + 2)))
for _ in range(spatial_shape):
y = np.expand_dims(y, -1)
expect(node, inputs=[x], outputs=[y], name='test_globalaveragepool')
globalaveragepool_precomputed
node = onnx.helper.make_node(
'GlobalAveragePool',
inputs=['x'],
outputs=['y'],
)
x = np.array([[[
[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
]]]).astype(np.float32)
y = np.array([[[[5]]]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name='test_globalaveragepool_precomputed')
GlobalLpPool consumes an input tensor X and applies lp pool pooling across the values in the same channel. This is equivalent to LpPool with kernel size equal to the spatial dimension of input tensor.
This version of the operator has been available since version 2 of the default ONNX operator set.
Other versions of this operator: GlobalLpPool-1
- p : int (default is 2)
- p value of the Lp norm used to pool over the input data.
- X : T
- Input data tensor from the previous operator; dimensions for image case are (N x C x H x W), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of (N x C x D1 x D2 ... Dn), where N is the batch size.
- Y : T
- Output data tensor from pooling across the input tensor. Dimensions will be N x C x 1 x 1
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
GlobalMaxPool consumes an input tensor X and applies max pooling across the values in the same channel. This is equivalent to MaxPool with kernel size equal to the spatial dimension of input tensor.
This version of the operator has been available since version 1 of the default ONNX operator set.
- X : T
- Input data tensor from the previous operator; dimensions for image case are (N x C x H x W), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of (N x C x D1 x D2 ... Dn), where N is the batch size.
- Y : T
- Output data tensor from pooling across the input tensor. Dimensions will be N x C x 1 x 1
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
globalmaxpool
node = onnx.helper.make_node(
'GlobalMaxPool',
inputs=['x'],
outputs=['y'],
)
x = np.random.randn(1, 3, 5, 5).astype(np.float32)
spatial_shape = np.ndim(x) - 2
y = np.max(x, axis=tuple(range(spatial_shape, spatial_shape + 2)))
for _ in range(spatial_shape):
y = np.expand_dims(y, -1)
expect(node, inputs=[x], outputs=[y], name='test_globalmaxpool')
globalmaxpool_precomputed
node = onnx.helper.make_node(
'GlobalMaxPool',
inputs=['x'],
outputs=['y'],
)
x = np.array([[[
[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
]]]).astype(np.float32)
y = np.array([[[[9]]]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name='test_globalmaxpool_precomputed')
Returns the tensor resulted from performing the greater
logical operation
elementwise on the input tensors A
and B
(with Numpy-style broadcasting support).
This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc.
This version of the operator has been available since version 9 of the default ONNX operator set.
Other versions of this operator: Greater-1, Greater-7
- A : T
- First input operand for the logical operator.
- B : T
- Second input operand for the logical operator.
- C : T1
- Result tensor.
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double)
- Constrains input to float tensors.
- T1 : tensor(bool)
- Constrains output to boolean tensor.
greater
node = onnx.helper.make_node(
'Greater',
inputs=['x', 'y'],
outputs=['greater'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.random.randn(3, 4, 5).astype(np.float32)
z = np.greater(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_greater')
greater_broadcast
node = onnx.helper.make_node(
'Greater',
inputs=['x', 'y'],
outputs=['greater'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.random.randn(5).astype(np.float32)
z = np.greater(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_greater_bcast')
HardSigmoid takes one input data (Tensor) and produces one output data (Tensor) where the HardSigmoid function, y = max(0, min(1, alpha * x + beta)), is applied to the tensor elementwise.
This version of the operator has been available since version 6 of the default ONNX operator set.
Other versions of this operator: HardSigmoid-1
- alpha : float (default is 0.2)
- Value of alpha.
- beta : float (default is 0.5)
- Value of beta.
- X : T
- Input tensor
- Y : T
- Output tensor
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
hardsigmoid
node = onnx.helper.make_node(
'HardSigmoid',
inputs=['x'],
outputs=['y'],
alpha=0.5,
beta=0.6
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.clip(x * 0.5 + 0.6, 0, 1) # expected output [0.1, 0.6, 1.]
expect(node, inputs=[x], outputs=[y],
name='test_hardsigmoid_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x * 0.5 + 0.6, 0, 1)
expect(node, inputs=[x], outputs=[y],
name='test_hardsigmoid')
hardsigmoid_default
default_alpha = 0.2
default_beta = 0.5
node = onnx.helper.make_node(
'HardSigmoid',
inputs=['x'],
outputs=['y'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x * default_alpha + default_beta, 0, 1)
expect(node, inputs=[x], outputs=[y],
name='test_hardsigmoid_default')
The operator computes the hardmax (1 for the first maximum value, and 0 for all others) values for each layer in the batch of the given input. The input is a 2-D tensor (Tensor) of size (batch_size x input_feature_dimensions). The output tensor has the same shape and contains the hardmax values of the corresponding input.
Input does not need to explicitly be a 2D vector; rather, it will be coerced into one. For an arbitrary n-dimensional tensor input \in [a_0, a_1, ..., a_{k-1}, a_k, ..., a_{n-1}] and k is the axis provided, then input will be coerced into a 2-dimensional tensor with dimensions [a_0 * ... * a_{k-1}, a_k * ... * a_{n-1}]. For the default case where axis=1, this means the input tensor will be coerced into a 2D tensor of dimensions [a_0, a_1 * ... * a_{n-1}], where a_0 is often the batch size. In this situation, we must have a_0 = N and a_1 * ... * a_{n-1} = D. Each of these dimensions must be matched correctly, or else the operator will throw errors.
This version of the operator has been available since version 1 of the default ONNX operator set.
- axis : int (default is 1)
- Describes the axis of the inputs when coerced to 2D; defaults to one because the 0th axis most likely describes the batch_size
- input : T
- The input tensor that's coerced into a 2D matrix of size (NxD) as described above.
- output : T
- The output values with the same shape as input tensor (the original size without coercion).
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
hardmax
node = onnx.helper.make_node(
'Hardmax',
inputs=['x'],
outputs=['y'],
)
x = np.array([[3, 0, 1, 2], [2, 5, 1, 0], [0, 1, 3, 2], [0, 1, 2, 3]]).astype(np.float32)
y = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y],
name='test_hardmax_example')
# For multiple occurrances of the maximal values, the first occurrence is selected for one-hot output
x = np.array([[3, 3, 3, 1]]).astype(np.float32)
y = np.array([[1, 0, 0, 0]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y],
name='test_hardmax_one_hot')
hardmax_axis
def hardmax_2d(x): # type: (np.ndarray) -> np.ndarray
return np.eye(x.shape[1], dtype=x.dtype)[np.argmax(x, axis=1)]
x = np.random.randn(3, 4, 5).astype(np.float32)
node = onnx.helper.make_node(
'Hardmax',
inputs=['x'],
outputs=['y'],
axis=0,
)
y = hardmax_2d(x.reshape(1, 60)).reshape(3, 4, 5)
expect(node, inputs=[x], outputs=[y],
name='test_hardmax_axis_0')
node = onnx.helper.make_node(
'Hardmax',
inputs=['x'],
outputs=['y'],
axis=1,
)
y = hardmax_2d(x.reshape(3, 20)).reshape(3, 4, 5)
expect(node, inputs=[x], outputs=[y],
name='test_hardmax_axis_1')
# default axis is 1
node = onnx.helper.make_node(
'Hardmax',
inputs=['x'],
outputs=['y'],
)
expect(node, inputs=[x], outputs=[y],
name='test_hardmax_default_axis')
node = onnx.helper.make_node(
'Hardmax',
inputs=['x'],
outputs=['y'],
axis=2,
)
y = hardmax_2d(x.reshape(12, 5)).reshape(3, 4, 5)
expect(node, inputs=[x], outputs=[y],
name='test_hardmax_axis_2')
Identity operator
This version of the operator has been available since version 1 of the default ONNX operator set.
- input : T
- Input tensor
- output : T
- Tensor to copy input into.
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- Constrain input and output types to all tensor types.
identity
node = onnx.helper.make_node(
'Identity',
inputs=['x'],
outputs=['y'],
)
data = np.array([[[
[1, 2],
[3, 4],
]]], dtype=np.float32)
expect(node, inputs=[data], outputs=[data],
name='test_identity')
If conditional
This version of the operator has been available since version 1 of the default ONNX operator set.
- else_branch : graph (required)
- Graph to run if condition is false. Has N outputs: values you wish to be live-out to the enclosing scope. The number of outputs must match the number of outputs in the then_branch.
- then_branch : graph (required)
- Graph to run if condition is true. Has N outputs: values you wish to be live-out to the enclosing scope. The number of outputs must match the number of outputs in the else_branch.
- cond : B
- Condition for the if
- outputs (variadic, heterogeneous) : V
- Values that are live-out to the enclosing scope. The return values in the `then_branch` and `else_branch` must be of the same shape and same data type.
- V : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- All Tensor types
- B : tensor(bool)
- Only bool
Carries out instance normalization as described in the paper https://arxiv.org/abs/1607.08022.
y = scale * (x - mean) / sqrt(variance + epsilon) + B, where mean and variance are computed per instance per channel.
This version of the operator has been available since version 6 of the default ONNX operator set.
Other versions of this operator: InstanceNormalization-1
- epsilon : float (default is 1e-05)
- The epsilon value to use to avoid division by zero.
- input : T
- Input data tensor from the previous operator; dimensions for image case are (N x C x H x W), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of (N x C x D1 x D2 ... Dn), where N is the batch size.
- scale : T
- The input 1-dimensional scale tensor of size C.
- B : T
- The input 1-dimensional bias tensor of size C.
- output : T
- The output tensor of the same shape as input.
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
instancenormalization
def _instancenorm_test_mode(x, s, bias, epsilon=1e-5): # type: ignore
dims_x = len(x.shape)
axis = tuple(range(2, dims_x))
mean = np.mean(x, axis=axis, keepdims=True)
var = np.var(x, axis=axis, keepdims=True)
dim_ones = (1,) * (dims_x - 2)
s = s.reshape(-1, *dim_ones)
bias = bias.reshape(-1, *dim_ones)
return s * (x - mean) / np.sqrt(var + epsilon) + bias
# input size: (1, 2, 1, 3)
x = np.array([[[[-1, 0, 1]], [[2, 3, 4]]]]).astype(np.float32)
s = np.array([1.0, 1.5]).astype(np.float32)
bias = np.array([0, 1]).astype(np.float32)
y = _instancenorm_test_mode(x, s, bias).astype(np.float32)
node = onnx.helper.make_node(
'InstanceNormalization',
inputs=['x', 's', 'bias'],
outputs=['y'],
)
# output size: (1, 2, 1, 3)
expect(node, inputs=[x, s, bias], outputs=[y],
name='test_instancenorm_example')
# input size: (2, 3, 4, 5)
x = np.random.randn(2, 3, 4, 5).astype(np.float32)
s = np.random.randn(3).astype(np.float32)
bias = np.random.randn(3).astype(np.float32)
epsilon = 1e-2
y = _instancenorm_test_mode(x, s, bias, epsilon).astype(np.float32)
node = onnx.helper.make_node(
'InstanceNormalization',
inputs=['x', 's', 'bias'],
outputs=['y'],
epsilon=epsilon,
)
# output size: (2, 3, 4, 5)
expect(node, inputs=[x, s, bias], outputs=[y],
name='test_instancenorm_epsilon')
Returns which elements of the input are NaN.
This version of the operator has been available since version 9 of the default ONNX operator set.
- X : T1
- input
- Y : T2
- output
- T1 : tensor(float16), tensor(float), tensor(double)
- Constrain input types to float tensors.
- T2 : tensor(bool)
- Constrain output types to boolean tensors.
isnan
node = onnx.helper.make_node(
'IsNaN',
inputs=['x'],
outputs=['y'],
)
x = np.array([3.0, np.nan, 4.0, np.nan], dtype=np.float32)
y = np.isnan(x)
expect(node, inputs=[x], outputs=[y], name='test_isnan')
Local Response Normalization proposed in the AlexNet paper. It normalizes over local input regions. The local region is defined across the channels. For an element X[n, c, d1, ..., dk] in a tensor of shape (N x C x D1 x D2, ..., Dk), its region is {X[n, i, d1, ..., dk] | max(0, c - floor((size - 1) / 2)) <= i <= min(C - 1, c + ceil((size - 1) / 2))}.
square_sum[n, c, d1, ..., dk] = sum(X[n, i, d1, ..., dk] ^ 2), where max(0, c - floor((size - 1) / 2)) <= i <= min(C - 1, c + ceil((size - 1) / 2)).
Y[n, c, d1, ..., dk] = X[n, c, d1, ..., dk] / (bias + alpha / size * square_sum[n, c, d1, ..., dk] ) ^ beta
This version of the operator has been available since version 1 of the default ONNX operator set.
- alpha : float (default is 0.0001)
- Scaling parameter.
- beta : float (default is 0.75)
- The exponent.
- bias : float (default is 1.0)
- size : int (required)
- The number of channels to sum over
- X : T
- Input data tensor from the previous operator; dimensions for image case are (N x C x H x W), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of (N x C x D1 x D2 ... Dn), where N is the batch size. Optionally, if dimension denotation is in effect, the operation expects the input data tensor to arrive with the dimension denotation of [DATA_BATCH, DATA_CHANNEL, DATA_FEATURE, DATA_FEATURE ...].
- Y : T
- Output tensor, which has the shape and type as input tensor
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
default
alpha = 0.0001
beta = 0.75
bias = 1.0
nsize = 3
node = onnx.helper.make_node(
'LRN',
inputs=['x'],
outputs=['y'],
size=3
)
x = np.random.randn(5, 5, 5, 5).astype(np.float32)
square_sum = np.zeros((5, 5, 5, 5)).astype(np.float32)
for n, c, h, w in np.ndindex(x.shape):
square_sum[n, c, h, w] = sum(x[n,
max(0, c - int(math.floor((nsize - 1) / 2))):min(5, c + int(math.ceil((nsize - 1) / 2)) + 1),
h,
w] ** 2)
y = x / ((bias + (alpha / nsize) * square_sum) ** beta)
expect(node, inputs=[x], outputs=[y],
name='test_lrn_default')
lrn
alpha = 0.0002
beta = 0.5
bias = 2.0
nsize = 3
node = onnx.helper.make_node(
'LRN',
inputs=['x'],
outputs=['y'],
alpha=alpha,
beta=beta,
bias=bias,
size=nsize
)
x = np.random.randn(5, 5, 5, 5).astype(np.float32)
square_sum = np.zeros((5, 5, 5, 5)).astype(np.float32)
for n, c, h, w in np.ndindex(x.shape):
square_sum[n, c, h, w] = sum(x[n,
max(0, c - int(math.floor((nsize - 1) / 2))):min(5, c + int(math.ceil((nsize - 1) / 2)) + 1),
h,
w] ** 2)
y = x / ((bias + (alpha / nsize) * square_sum) ** beta)
expect(node, inputs=[x], outputs=[y],
name='test_lrn')
Computes an one-layer LSTM. This operator is usually supported via some custom implementation such as CuDNN.
Notations:
X
- input tensor
i
- input gate
o
- output gate
f
- forget gate
c
- cell gate
t
- time step (t-1 means previous time step)
W[iofc]
- W parameter weight matrix for input, output, forget, and cell gates
R[iofc]
- R recurrence weight matrix for input, output, forget, and cell gates
Wb[iofc]
- W bias vectors for input, output, forget, and cell gates
Rb[iofc]
- R bias vectors for input, output, forget, and cell gates
P[iof]
- P peephole weight vector for input, output, and forget gates
WB[iofc]
- W parameter weight matrix for backward input, output, forget, and cell gates
RB[iofc]
- R recurrence weight matrix for backward input, output, forget, and cell gates
WBb[iofc]
- W bias vectors for backward input, output, forget, and cell gates
RBb[iofc]
- R bias vectors for backward input, output, forget, and cell gates
PB[iof]
- P peephole weight vector for backward input, output, and forget gates
H
- Hidden state
num_directions
- 2 if direction == bidirectional else 1
Activation functions:
Relu(x) - max(0, x)
Tanh(x) - (1 - e^{-2x})/(1 + e^{-2x})
Sigmoid(x) - 1/(1 + e^{-x})
(NOTE: Below are optional)
Affine(x) - alpha*x + beta
LeakyRelu(x) - x if x >= 0 else alpha * x
ThresholdedRelu(x) - x if x >= alpha else 0
ScaledTanh(x) - alpha*Tanh(beta*x)
HardSigmoid(x) - min(max(alpha*x + beta, 0), 1)
Elu(x) - x if x >= 0 else alpha*(e^x - 1)
Softsign(x) - x/(1 + |x|)
Softplus(x) - log(1 + e^x)
Equations (Default: f=Sigmoid, g=Tanh, h=Tanh):
- it = f(Xt*(Wi^T) + Ht-1*(Ri^T) + Pi (.) Ct-1 + Wbi + Rbi)
- ft = f(Xt*(Wf^T) + Ht-1*(Rf^T) + Pf (.) Ct-1 + Wbf + Rbf)
- ct = g(Xt*(Wc^T) + Ht-1*(Rc^T) + Wbc + Rbc)
- Ct = ft (.) Ct-1 + it (.) ct
- ot = f(Xt*(Wo^T) + Ht-1*(Ro^T) + Po (.) Ct + Wbo + Rbo)
- Ht = ot (.) h(Ct)
This operator has optional inputs/outputs. See the doc for more details about the representation of optional arguments. An empty string may be used in the place of an actual argument's name to indicate a missing argument. Trailing optional arguments (those not followed by an argument that is present) may also be simply omitted.
This version of the operator has been available since version 7 of the default ONNX operator set.
Other versions of this operator: LSTM-1
- activation_alpha : list of floats
- Optional scaling values used by some activation functions. The values are consumed in the order of activation functions, for example (f, g, h) in LSTM. Default values are the same as of corresponding ONNX operators.For example with LeakyRelu, the default alpha is 0.01.
- activation_beta : list of floats
- Optional scaling values used by some activation functions. The values are consumed in the order of activation functions, for example (f, g, h) in LSTM. Default values are the same as of corresponding ONNX operators.
- activations : list of strings
- A list of 3 (or 6 if bidirectional) activation functions for input, output, forget, cell, and hidden. The activation functions must be one of the activation functions specified above. Optional: See the equations for default if not specified.
- clip : float
- Cell clip threshold. Clipping bounds the elements of a tensor in the range of [-threshold, +threshold] and is applied to the input of activations. No clip if not specified.
- direction : string (default is forward)
- Specify if the RNN is forward, reverse, or bidirectional. Must be one of forward (default), reverse, or bidirectional.
- hidden_size : int
- Number of neurons in the hidden layer
- input_forget : int (default is 0)
- Couple the input and forget gates if 1.
- X : T
- The input sequences packed (and potentially padded) into one 3-D tensor with the shape of `[seq_length, batch_size, input_size]`.
- W : T
- The weight tensor for the gates. Concatenation of `W[iofc]` and `WB[iofc]` (if bidirectional) along dimension 0. The tensor has shape `[num_directions, 4*hidden_size, input_size]`.
- R : T
- The recurrence weight tensor. Concatenation of `R[iofc]` and `RB[iofc]` (if bidirectional) along dimension 0. This tensor has shape `[num_directions, 4*hidden_size, hidden_size]`.
- B (optional) : T
- The bias tensor for input gate. Concatenation of `[Wb[iofc], Rb[iofc]]`, and `[WBb[iofc], RBb[iofc]]` (if bidirectional) along dimension 0. This tensor has shape `[num_directions, 8*hidden_size]`. Optional: If not specified - assumed to be 0.
- sequence_lens (optional) : T1
- Optional tensor specifying lengths of the sequences in a batch. If not specified - assumed all sequences in the batch to have length `seq_length`. It has shape `[batch_size]`.
- initial_h (optional) : T
- Optional initial value of the hidden. If not specified - assumed to be 0. It has shape `[num_directions, batch_size, hidden_size]`.
- initial_c (optional) : T
- Optional initial value of the cell. If not specified - assumed to be 0. It has shape `[num_directions, batch_size, hidden_size]`.
- P (optional) : T
- The weight tensor for peepholes. Concatenation of `P[iof]` and `PB[iof]` (if bidirectional) along dimension 0. It has shape `[num_directions, 3*hidde_size]`. Optional: If not specified - assumed to be 0.
- Y (optional) : T
- A tensor that concats all the intermediate output values of the hidden. It has shape `[seq_length, num_directions, batch_size, hidden_size]`.
- Y_h (optional) : T
- The last output value of the hidden. It has shape `[num_directions, batch_size, hidden_size]`.
- Y_c (optional) : T
- The last output value of the cell. It has shape `[num_directions, batch_size, hidden_size]`.
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
- T1 : tensor(int32)
- Constrain seq_lens to integer tensor.
defaults
input = np.array([[[1., 2.], [3., 4.], [5., 6.]]]).astype(np.float32)
input_size = 2
hidden_size = 3
weight_scale = 0.1
number_of_gates = 4
node = onnx.helper.make_node(
'LSTM',
inputs=['X', 'W', 'R'],
outputs=['', 'Y'],
hidden_size=hidden_size
)
W = weight_scale * np.ones((1, number_of_gates * hidden_size, input_size)).astype(np.float32)
R = weight_scale * np.ones((1, number_of_gates * hidden_size, hidden_size)).astype(np.float32)
lstm = LSTM_Helper(X=input, W=W, R=R)
_, Y_h = lstm.step()
expect(node, inputs=[input, W, R], outputs=[Y_h.astype(np.float32)], name='test_lstm_defaults')
initial_bias
input = np.array([[[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]]).astype(np.float32)
input_size = 3
hidden_size = 4
weight_scale = 0.1
custom_bias = 0.1
number_of_gates = 4
node = onnx.helper.make_node(
'LSTM',
inputs=['X', 'W', 'R', 'B'],
outputs=['', 'Y'],
hidden_size=hidden_size
)
W = weight_scale * np.ones((1, number_of_gates * hidden_size, input_size)).astype(np.float32)
R = weight_scale * np.ones((1, number_of_gates * hidden_size, hidden_size)).astype(np.float32)
# Adding custom bias
W_B = custom_bias * np.ones((1, number_of_gates * hidden_size)).astype(np.float32)
R_B = np.zeros((1, number_of_gates * hidden_size)).astype(np.float32)
B = np.concatenate((W_B, R_B), 1)
lstm = LSTM_Helper(X=input, W=W, R=R, B=B)
_, Y_h = lstm.step()
expect(node, inputs=[input, W, R, B], outputs=[Y_h.astype(np.float32)], name='test_lstm_with_initial_bias')
peepholes
input = np.array([[[1., 2., 3., 4.], [5., 6., 7., 8.]]]).astype(np.float32)
input_size = 4
hidden_size = 3
weight_scale = 0.1
number_of_gates = 4
number_of_peepholes = 3
node = onnx.helper.make_node(
'LSTM',
inputs=['X', 'W', 'R', 'B', 'sequence_lens', 'initial_h', 'initial_c', 'P'],
outputs=['', 'Y'],
hidden_size=hidden_size
)
# Initializing Inputs
W = weight_scale * np.ones((1, number_of_gates * hidden_size, input_size)).astype(np.float32)
R = weight_scale * np.ones((1, number_of_gates * hidden_size, hidden_size)).astype(np.float32)
B = np.zeros((1, 2 * number_of_gates * hidden_size)).astype(np.float32)
seq_lens = np.repeat(input.shape[0], input.shape[1]).astype(np.int32)
init_h = np.zeros((1, input.shape[1], hidden_size)).astype(np.float32)
init_c = np.zeros((1, input.shape[1], hidden_size)).astype(np.float32)
P = weight_scale * np.ones((1, number_of_peepholes * hidden_size)).astype(np.float32)
lstm = LSTM_Helper(X=input, W=W, R=R, B=B, P=P, initial_c=init_c, initial_h=init_h)
_, Y_h = lstm.step()
expect(node, inputs=[input, W, R, B, seq_lens, init_h, init_c, P], outputs=[Y_h.astype(np.float32)],
name='test_lstm_with_peepholes')
LeakyRelu takes input data (Tensor) and an argument alpha, and produces one
output data (Tensor) where the function f(x) = alpha * x for x < 0
,
f(x) = x for x >= 0
, is applied to the data tensor elementwise.
This version of the operator has been available since version 6 of the default ONNX operator set.
Other versions of this operator: LeakyRelu-1
- alpha : float (default is 0.01)
- Coefficient of leakage.
- X : T
- Input tensor
- Y : T
- Output tensor
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
leakyrelu
node = onnx.helper.make_node(
'LeakyRelu',
inputs=['x'],
outputs=['y'],
alpha=0.1
)
x = np.array([-1, 0, 1]).astype(np.float32)
# expected output [-0.1, 0., 1.]
y = np.clip(x, 0, np.inf) + np.clip(x, -np.inf, 0) * 0.1
expect(node, inputs=[x], outputs=[y],
name='test_leakyrelu_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, 0, np.inf) + np.clip(x, -np.inf, 0) * 0.1
expect(node, inputs=[x], outputs=[y],
name='test_leakyrelu')
leakyrelu_default
default_alpha = 0.01
node = onnx.helper.make_node(
'LeakyRelu',
inputs=['x'],
outputs=['y'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, 0, np.inf) + np.clip(x, -np.inf, 0) * default_alpha
expect(node, inputs=[x], outputs=[y],
name='test_leakyrelu_default')
Returns the tensor resulted from performing the less
logical operation
elementwise on the input tensors A
and B
(with Numpy-style broadcasting support).
This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc.
This version of the operator has been available since version 9 of the default ONNX operator set.
Other versions of this operator: Less-1, Less-7
- A : T
- First input operand for the logical operator.
- B : T
- Second input operand for the logical operator.
- C : T1
- Result tensor.
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double)
- Constrains input to float tensors.
- T1 : tensor(bool)
- Constrains output to boolean tensor.
less
node = onnx.helper.make_node(
'Less',
inputs=['x', 'y'],
outputs=['less'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.random.randn(3, 4, 5).astype(np.float32)
z = np.less(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_less')
less_broadcast
node = onnx.helper.make_node(
'Less',
inputs=['x', 'y'],
outputs=['less'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.random.randn(5).astype(np.float32)
z = np.less(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_less_bcast')
Calculates the natural log of the given input tensor, element-wise.
This version of the operator has been available since version 6 of the default ONNX operator set.
Other versions of this operator: Log-1
- input : T
- Input tensor
- output : T
- The natural log of the input tensor computed element-wise
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
log
node = onnx.helper.make_node(
'Log',
inputs=['x'],
outputs=['y'],
)
x = np.array([1, 10]).astype(np.float32)
y = np.log(x) # expected output [0., 2.30258512]
expect(node, inputs=[x], outputs=[y],
name='test_log_example')
x = np.exp(np.random.randn(3, 4, 5).astype(np.float32))
y = np.log(x)
expect(node, inputs=[x], outputs=[y],
name='test_log')
The operator computes the logsoftmax (log of softmax) values for each layer in the batch of the given input. The input is a 2-D tensor (Tensor) of size (batch_size x input_feature_dimensions). The output tensor has the same shape and contains the logsoftmax values of the corresponding input.
Input does not need to explicitly be a 2D vector; rather, it will be coerced into one. For an arbitrary n-dimensional tensor input \in [a_0, a_1, ..., a_{k-1}, a_k, ..., a_{n-1}] and k is the axis provided, then input will be coerced into a 2-dimensional tensor with dimensions [a_0 * ... * a_{k-1}, a_k * ... * a_{n-1}]. For the default case where axis=1, this means the input tensor will be coerced into a 2D tensor of dimensions [a_0, a_1 * ... * a_{n-1}], where a_0 is often the batch size. In this situation, we must have a_0 = N and a_1 * ... * a_{n-1} = D. Each of these dimensions must be matched correctly, or else the operator will throw errors.
This version of the operator has been available since version 1 of the default ONNX operator set.
- axis : int (default is 1)
- Describes the axis of the inputs when coerced to 2D; defaults to one because the 0th axis most likely describes the batch_size
- input : T
- The input tensor that's coerced into a 2D matrix of size (NxD) as described above.
- output : T
- The output values with the same shape as input tensor (the original size without coercion).
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
logsoftmax
node = onnx.helper.make_node(
'LogSoftmax',
inputs=['x'],
outputs=['y'],
)
x = np.array([[-1, 0, 1]]).astype(np.float32)
# expected output [[-2.40760589, -1.40760589, -0.40760589]]
y = x - np.log(np.sum(np.exp(x), axis=1))
expect(node, inputs=[x], outputs=[y],
name='test_logsoftmax_example_1')
logsoftmax_axis
def logsoftmax_2d(x): # type: (np.ndarray) -> np.ndarray
max_x = np.max(x, axis=1).reshape((-1, 1))
exp_x = np.exp(x - max_x)
return x - max_x - np.log(np.sum(exp_x, axis=1).reshape((-1, 1)))
x = np.array([[0, 1, 2, 3], [10000, 10001, 10002, 10003]]).astype(np.float32)
# expected output [[-3.4401896, -2.4401896, -1.44018972, -0.44018969],
# [-3.4401896, -2.4401896, -1.44018972, -0.44018969]]
y = logsoftmax_2d(x)
node = onnx.helper.make_node(
'LogSoftmax',
inputs=['x'],
outputs=['y'],
)
expect(node, inputs=[x], outputs=[y],
name='test_logsoftmax_large_number')
x = np.abs(np.random.randn(3, 4, 5).astype(np.float32))
node = onnx.helper.make_node(
'LogSoftmax',
inputs=['x'],
outputs=['y'],
axis=0,
)
y = logsoftmax_2d(x.reshape(1, 60)).reshape(3, 4, 5)
expect(node, inputs=[x], outputs=[y],
name='test_logsoftmax_axis_0')
node = onnx.helper.make_node(
'LogSoftmax',
inputs=['x'],
outputs=['y'],
axis=1,
)
y = logsoftmax_2d(x.reshape(3, 20)).reshape(3, 4, 5)
expect(node, inputs=[x], outputs=[y],
name='test_logsoftmax_axis_1')
# default axis is 1
node = onnx.helper.make_node(
'LogSoftmax',
inputs=['x'],
outputs=['y'],
)
expect(node, inputs=[x], outputs=[y],
name='test_logsoftmax_default_axis')
node = onnx.helper.make_node(
'LogSoftmax',
inputs=['x'],
outputs=['y'],
axis=2,
)
y = logsoftmax_2d(x.reshape(12, 5)).reshape(3, 4, 5)
expect(node, inputs=[x], outputs=[y],
name='test_logsoftmax_axis_2')
Generic Looping construct. This loop has multiple termination conditions:
- Trip count. Iteration count specified at runtime. Set by specifying the input M. Optional. Set to empty string to omit. Note that a static trip count (specified at graph construction time) can be specified by passing in a constant node for input M.
- Loop termination condition. This is an input to the op that determines whether to run the first iteration and also a loop-carried dependency for the body graph. The body graph must yield a value for the condition variable, whether this input is provided or not.
This table summarizes the operating modes of this operator with equivalent C-style code:
Operator inputs defined as (max_trip_count, condition_var).
input ("", ""):
for (int i=0; ; ++i) {
cond = ... // Note this value is ignored, but is required in the body
}
input ("", cond) // Note this is analogous to a while loop
bool cond = ...;
for (int i=0; cond; ++i) {
cond = ...;
}
input ("", 1) // Note this is analogous to a do-while loop
bool cond = true
for (int i=0; cond; ++i) {
cond = ...;
}
input (trip_count, "") // Note this is analogous to a for loop
int trip_count = ...
for (int i=0; i < trip_count; ++i) {
cond = ...; // ignored
}
input (trip_count, cond)
int trip_count = ...;
bool cond = ...;
for (int i=0; i < trip_count && cond; ++i) {
cond = ...;
}
Sample usage - cond as well as trip count
graph predict-net {
%a = Constant[value = <Scalar Tensor [3]>]()
%b = Constant[value = <Scalar Tensor [6]>]()
%keepgoing = Constant[value = <Scalar Tensor [1]>]()
%max_trip_count = Constant[value = <Scalar Tensor [10]>]()
%keepgoing_out, %b_out, %user_defined_vals = Loop[body = <graph body-net>](%max_trip_count, %keepgoing, %b)
return
}
graph body-net (
%i[INT32, scalar]
%keepgoing[BOOL, scalar]
%b[INT32, scalar]
) {
%my_local = Add(%a, %b)
%b_out = Sub(%a, %b)
%keepgoing_out = Greater(%my_local, %b_out)
%user_defined_vals = Add(%b, %b)
return %keepgoing_out, %b_out, %user_defined_vals
}
Sample equivalent C code
{
/* User-defined code (enclosing scope) */
int a = 3, b = 6;
bool keepgoing = true; // Analogous to input cond
/* End user-defined code */
/* Implicitly-defined code */
const int max_trip_count = 10; // Analogous to input M
int user_defined_vals[]; // Imagine this is resizable
/* End implicitly-defined code */
for (int i=0; i < max_trip_count && keepgoing; ++i) {
/* User-defined code (loop body) */
int my_local = a + b; // Reading values in the enclosing scope is fine
b = a - b; // writes fine if we specify b as a loop-carried dependency
keepgoing = my_local > b; // keepgoing is a loop-carried dependency
user_defined_vals[i] = b + b;
/* End user-defined code */
}
// my_local = 123; // Can't do this. my_local was defined in the the body
// These below values are live-out from the loop and therefore accessible
b_out; user_defined_vals; keepgoing_out;
}
There are several things of note in this code snippet:
- Values from the enclosing scope (i.e. variable a here) are in scope and can be referenced in the inputs of the loop.
- Any variables which you wish to make available in the enclosing scope (i.e. the variables b and keepgoing) must be declared as either loop-carried dependencies (both at the op inputs and output and at the body net input and output) or scan_outputs.
- Values created in the body cannot be accessed in the enclosing scope.
Note that the semantics of this op support "diagonal" or "wavefront" execution. (See Step 3 here for an example: https://devblogs.nvidia.com/optimizing-recurrent-neural-networks-cudnn-5/). Frontends should emit multi-layer RNNs as a series of While operators (with time being the inner looping dimension), with each successive layer consuming the scan_outputs from the previous layer, possibly going through several point-wise operators (e.g. dropout, residual connections, linear layer).
This version of the operator has been available since version 1 of the default ONNX operator set.
- body : graph (required)
- The graph run each iteration. It has 2+N inputs: (iteration_num, condition, loop carried dependencies...). It has 1+N+K outputs: (condition, loop carried dependencies..., scan_outputs...). Each scan_output is created by concatenating the value of the specified output value at the end of each iteration of the loop. It is an error if the dimensions or data type of these scan_outputs change across loop iterations.
- M : I
- A maximum trip-count for the loop specified at runtime. Optional. pass empty string to skip.
- cond : B
- A boolean termination condition. Pass empty string to skip.
- v_initial (variadic, heterogeneous) : V
- The initial values of any loop-carried dependencies (values that change across loop iterations)
- v_final_and_scan_outputs (variadic, heterogeneous) : V
- Final N loop carried dependency values then K scan_outputs
- V : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- All Tensor types
- I : int64
- Only int64
- B : bool
- Only bool
Given a matrix, apply Lp-normalization along the provided axis.
This version of the operator has been available since version 1 of the default ONNX operator set.
- axis : int (default is -1)
- The axis on which to apply normalization, -1 mean last axis.
- p : int (default is 2)
- The order of the normalization, only 1 or 2 are supported.
- input : T
- Input matrix
- output : T
- Matrix after normalization
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
LpPool consumes an input tensor X and applies Lp pooling across the tensor according to kernel sizes, stride sizes, and pad lengths. Lp pooling consisting of computing the Lp norm on all values of a subset of the input tensor according to the kernel size and downsampling the data into the output tensor Y for further processing.
This version of the operator has been available since version 2 of the default ONNX operator set.
Other versions of this operator: LpPool-1
- auto_pad : string (default is NOTSET)
- auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. Where default value is NOTSET, which means explicit padding is used. SAME_UPPER or SAME_LOWER mean pad the input so that the output size match the input.In case of odd number add the extra padding at the end for SAME_UPPER and at the beginning for SAME_LOWER. VALID mean no padding. DEPRECATION NOTE: auto_pad is only intended to support legacy uses, and for framework authors, one is explicitly encouraged to use explicit padding specified in the pads attribute.
- kernel_shape : list of ints (required)
- The size of the kernel along each axis.
- p : int (default is 2)
- p value of the Lp norm used to pool over the input data.
- pads : list of ints
- Padding for the beginning and ending along each axis, it can take any value greater than or equal to 0. The value represent the number of pixels added to the beginning and end part of the corresponding axis. `pads` format should be as follow [x1_begin, x2_begin...x1_end, x2_end,...], where xi_begin the number of pixels added at the beginning of axis `i` and xi_end, the number of pixels added at the end of axis `i`. This attribute cannot be used simultaneously with auto_pad attribute. If not present, the padding defaults to 0 along start and end of each axis.
- strides : list of ints
- Stride along each axis.
- X : T
- Input data tensor from the previous operator; dimensions for image case are (N x C x H x W), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of (N x C x D1 x D2 ... Dn), where N is the batch size.
- Y : T
- Output data tensor from Lp pooling across the input tensor. Dimensions will vary based on various kernel, stride, and pad sizes.
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
Matrix product that behaves like numpy.matmul: https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html
This version of the operator has been available since version 9 of the default ONNX operator set.
Other versions of this operator: MatMul-1
- A : T
- N-dimensional matrix A
- B : T
- N-dimensional matrix B
- Y : T
- Matrix multiply results from A * B
- T : tensor(float16), tensor(float), tensor(double), tensor(uint32), tensor(uint64), tensor(int32), tensor(int64)
- Constrain input and output types to float/int tensors.
matmul
node = onnx.helper.make_node(
'MatMul',
inputs=['a', 'b'],
outputs=['c'],
)
# 2d
a = np.random.randn(3, 4).astype(np.float32)
b = np.random.randn(4, 3).astype(np.float32)
c = np.matmul(a, b)
expect(node, inputs=[a, b], outputs=[c],
name='test_matmul_2d')
# 3d
a = np.random.randn(2, 3, 4).astype(np.float32)
b = np.random.randn(2, 4, 3).astype(np.float32)
c = np.matmul(a, b)
expect(node, inputs=[a, b], outputs=[c],
name='test_matmul_3d')
# 4d
a = np.random.randn(1, 2, 3, 4).astype(np.float32)
b = np.random.randn(1, 2, 4, 3).astype(np.float32)
c = np.matmul(a, b)
expect(node, inputs=[a, b], outputs=[c],
name='test_matmul_4d')
Element-wise max of each of the input tensors (with Numpy-style broadcasting support). All inputs and outputs must have the same data type. This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc.
This version of the operator has been available since version 8 of the default ONNX operator set.
Other versions of this operator: Max-1, Max-6
- data_0 (variadic) : T
- List of tensors for max.
- max : T
- Output tensor.
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
max
data_0 = np.array([3, 2, 1]).astype(np.float32)
data_1 = np.array([1, 4, 4]).astype(np.float32)
data_2 = np.array([2, 5, 3]).astype(np.float32)
result = np.array([3, 5, 4]).astype(np.float32)
node = onnx.helper.make_node(
'Max',
inputs=['data_0', 'data_1', 'data_2'],
outputs=['result'],
)
expect(node, inputs=[data_0, data_1, data_2], outputs=[result],
name='test_max_example')
node = onnx.helper.make_node(
'Max',
inputs=['data_0'],
outputs=['result'],
)
expect(node, inputs=[data_0], outputs=[data_0],
name='test_max_one_input')
result = np.maximum(data_0, data_1)
node = onnx.helper.make_node(
'Max',
inputs=['data_0', 'data_1'],
outputs=['result'],
)
expect(node, inputs=[data_0, data_1], outputs=[result],
name='test_max_two_inputs')
MaxPool consumes an input tensor X and applies max pooling across the tensor according to kernel sizes, stride sizes, and pad lengths. max pooling consisting of computing the max on all values of a subset of the input tensor according to the kernel size and downsampling the data into the output tensor Y for further processing. The output spatial shape will be following:
output_spatial_shape[i] = floor((input_spatial_shape[i] + pad_shape[i] - kernel_spatial_shape[i]) / strides_spatial_shape[i] + 1)
* pad_shape[i] is sum of pads along axis i
auto_pad
is a DEPRECATED attribute. If you are using them currently, the output spatial shape will be following:
VALID: output_spatial_shape[i] = ceil((input_spatial_shape[i] - kernel_spatial_shape[i] + 1) / strides_spatial_shape[i])
SAME_UPPER or SAME_LOWER: output_spatial_shape[i] = ceil(input_spatial_shape[i] / strides_spatial_shape[i])
And pad shape will be following if SAME_UPPER
or SAME_LOWER
:
pad_shape[i] = (output_spatial_shape[i] - 1) * strides_spatial_shape[i] + kernel_spatial_shape[i] - input_spatial_shape[i]
The output of each pooling window is maximum number of elements exclude pad.
This version of the operator has been available since version 8 of the default ONNX operator set.
Other versions of this operator: MaxPool-1
- auto_pad : string (default is NOTSET)
- auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. Where default value is NOTSET, which means explicit padding is used. SAME_UPPER or SAME_LOWER mean pad the input so that the output size match the input.In case of odd number add the extra padding at the end for SAME_UPPER and at the beginning for SAME_LOWER. VALID mean no padding. DEPRECATION NOTE: auto_pad is only intended to support legacy uses, and for framework authors, one is explicitly encouraged to use explicit padding specified in the pads attribute.
- kernel_shape : list of ints (required)
- The size of the kernel along each axis.
- pads : list of ints
- Padding for the beginning and ending along each axis, it can take any value greater than or equal to 0. The value represent the number of pixels added to the beginning and end part of the corresponding axis. `pads` format should be as follow [x1_begin, x2_begin...x1_end, x2_end,...], where xi_begin the number of pixels added at the beginning of axis `i` and xi_end, the number of pixels added at the end of axis `i`. This attribute cannot be used simultaneously with auto_pad attribute. If not present, the padding defaults to 0 along start and end of each axis.
- storage_order : int (default is 0)
- The storage order of the tensor. 0 is row major, and 1 is column major.
- strides : list of ints
- Stride along each axis.
- X : T
- Input data tensor from the previous operator; dimensions for image case are (N x C x H x W), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of (N x C x D1 x D2 ... Dn), where N is the batch size. Optionally, if dimension denotation is in effect, the operation expects the input data tensor to arrive with the dimension denotation of [DATA_BATCH, DATA_CHANNEL, DATA_FEATURE, DATA_FEATURE ...].
- Y : T
- Output data tensor from average or max pooling across the input tensor. Dimensions will vary based on various kernel, stride, and pad sizes. Floor value of the dimension is used
- Indices (optional) : I
- Indices tensor from max pooling across the input tensor. The dimensions of indices are the same as output tensor. The values in indices of are the indices of the selected values during pooling. The indices are computed as flatten 1-D tensor, and the indices do not consider padding. So the values in indices are in [0, N x C x D1 x ... x Dn).
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
- I : tensor(int64)
- Constrain index tensor to int64
maxpool_1d_default
"""
iutput_shape: [1, 3, 32]
output_shape: [1, 3, 31]
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2],
)
x = np.random.randn(1, 3, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = [2]
strides = [1]
out_shape = get_output_shape('VALID', x_shape[2:], kernel_shape, strides)
padded = x
y = pool(padded, x_shape, kernel_shape, strides, out_shape, [0], 'MAX')
expect(node, inputs=[x], outputs=[y], name='test_maxpool_1d_default')
maxpool_2d_default
"""
iutput_shape: [1, 3, 32, 32]
output_shape: [1, 3, 31, 31]
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2, 2],
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (2, 2)
strides = (1, 1)
out_shape = get_output_shape('VALID', x_shape[2:], kernel_shape, strides)
padded = x
y = pool(padded, x_shape, kernel_shape, strides, out_shape, (0, 0), 'MAX')
expect(node, inputs=[x], outputs=[y], name='test_maxpool_2d_default')
maxpool_2d_pads
"""
iutput_shape: [1, 3, 28, 28]
output_shape: [1, 3, 30, 30]
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[3, 3],
pads=[2, 2, 2, 2]
)
x = np.random.randn(1, 3, 28, 28).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (3, 3)
strides = (1, 1)
pad_bottom = pad_top = pad_right = pad_left = 2
pad_shape = [pad_top + pad_bottom, pad_left + pad_right]
out_shape = get_output_shape('VALID', np.add(x_shape[2:], pad_shape), kernel_shape, strides)
padded = np.pad(x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), mode='constant',
constant_values=np.nan)
y = pool(padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'MAX')
expect(node, inputs=[x], outputs=[y], name='test_maxpool_2d_pads')
maxpool_2d_precomputed_pads
"""
input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 5, 5]
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[5, 5],
pads=[2, 2, 2, 2]
)
x = np.array([[[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
]]]).astype(np.float32)
y = np.array([[[
[13, 14, 15, 15, 15],
[18, 19, 20, 20, 20],
[23, 24, 25, 25, 25],
[23, 24, 25, 25, 25],
[23, 24, 25, 25, 25]]]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name='test_maxpool_2d_precomputed_pads')
maxpool_2d_precomputed_same_upper
"""
input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 3, 3]
pad_shape: [2, 2] -> [1, 1, 1, 1] by axis
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[3, 3],
strides=[2, 2],
auto_pad='SAME_UPPER'
)
x = np.array([[[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
]]]).astype(np.float32)
y = np.array([[[[7, 9, 10],
[17, 19, 20],
[22, 24, 25]]]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name='test_maxpool_2d_precomputed_same_upper')
maxpool_2d_precomputed_strides
"""
input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 2, 2]
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2, 2],
strides=[2, 2]
)
x = np.array([[[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
]]]).astype(np.float32)
y = np.array([[[[7, 9],
[17, 19]]]]).astype(np.float32)
expect(node, inputs=[x], outputs=[y], name='test_maxpool_2d_precomputed_strides')
maxpool_2d_same_lower
"""
iutput_shape: [1, 3, 32, 32]
output_shape: [1, 3, 32, 32]
pad_shape: [1, 1] -> [1, 0, 1, 0] by axis
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2, 2],
auto_pad='SAME_LOWER'
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (2, 2)
strides = (1, 1)
out_shape = get_output_shape('SAME_LOWER', x_shape[2:], kernel_shape, strides)
pad_shape = get_pad_shape('SAME_LOWER', x_shape[2:], kernel_shape, strides, out_shape)
pad_bottom = pad_shape[0] // 2
pad_top = pad_shape[0] - pad_bottom
pad_right = pad_shape[1] // 2
pad_left = pad_shape[1] - pad_right
padded = np.pad(x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), mode='constant',
constant_values=np.nan)
y = pool(padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'MAX')
expect(node, inputs=[x], outputs=[y], name='test_maxpool_2d_same_lower')
maxpool_2d_same_upper
"""
iutput_shape: [1, 3, 32, 32]
output_shape: [1, 3, 32, 32]
pad_shape: [1, 1] -> [0, 1, 0, 1] by axis
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2, 2],
auto_pad='SAME_UPPER'
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (2, 2)
strides = (1, 1)
out_shape = get_output_shape('SAME_UPPER', x_shape[2:], kernel_shape, strides)
pad_shape = get_pad_shape('SAME_UPPER', x_shape[2:], kernel_shape, strides, out_shape)
pad_top = pad_shape[0] // 2
pad_bottom = pad_shape[0] - pad_top
pad_left = pad_shape[1] // 2
pad_right = pad_shape[1] - pad_left
padded = np.pad(x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), mode='constant',
constant_values=np.nan)
y = pool(padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'MAX')
expect(node, inputs=[x], outputs=[y], name='test_maxpool_2d_same_upper')
maxpool_2d_strides
"""
iutput_shape: [1, 3, 32, 32]
output_shape: [1, 3, 10, 10]
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[5, 5],
strides=[3, 3]
)
x = np.random.randn(1, 3, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = (5, 5)
strides = (3, 3)
out_shape = get_output_shape('VALID', x_shape[2:], kernel_shape, strides)
padded = x
y = pool(padded, x_shape, kernel_shape, strides, out_shape, (0, 0), 'MAX')
expect(node, inputs=[x], outputs=[y], name='test_maxpool_2d_strides')
maxpool_3d_default
"""
iutput_shape: [1, 3, 32, 32, 32]
output_shape: [1, 3, 31, 31, 31]
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2, 2, 2],
)
x = np.random.randn(1, 3, 32, 32, 32).astype(np.float32)
x_shape = np.shape(x)
kernel_shape = [2, 2, 2]
strides = [1, 1, 1]
out_shape = get_output_shape('VALID', x_shape[2:], kernel_shape, strides)
padded = x
y = pool(padded, x_shape, kernel_shape, strides, out_shape, [0, 0, 0], 'MAX')
expect(node, inputs=[x], outputs=[y], name='test_maxpool_3d_default')
maxpool_with_argmax_2d_precomputed_pads
"""
input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 5, 5]
pad_shape: [4, 4] -> [2, 2, 2, 2] by axis
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y', 'z'],
kernel_shape=[5, 5],
pads=[2, 2, 2, 2]
)
x = np.array([[[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
]]]).astype(np.float32)
y = np.array([[[
[13, 14, 15, 15, 15],
[18, 19, 20, 20, 20],
[23, 24, 25, 25, 25],
[23, 24, 25, 25, 25],
[23, 24, 25, 25, 25]]]]).astype(np.float32)
z = np.array([[[
[12, 13, 14, 14, 14],
[17, 18, 19, 19, 19],
[22, 23, 24, 24, 24],
[22, 23, 24, 24, 24],
[22, 23, 24, 24, 24]]]]).astype(np.int64)
expect(node, inputs=[x], outputs=[y, z], name='test_maxpool_with_argmax_2d_precomputed_pads')
maxpool_with_argmax_2d_precomputed_strides
"""
input_shape: [1, 1, 5, 5]
output_shape: [1, 1, 2, 2]
"""
node = onnx.helper.make_node(
'MaxPool',
inputs=['x'],
outputs=['y', 'z'],
kernel_shape=[2, 2],
strides=[2, 2],
storage_order=1
)
x = np.array([[[
[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10],
[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
]]]).astype(np.float32)
y = np.array([[[[7, 9],
[17, 19]]]]).astype(np.float32)
z = np.array([[[[6, 16],
[8, 18]]]]).astype(np.int64)
expect(node, inputs=[x], outputs=[y, z], name='test_maxpool_with_argmax_2d_precomputed_strides')
ROI max pool consumes an input tensor X and region of interests (RoIs) to apply max pooling across each RoI, to produce output 4-D tensor of shape (num_rois, channels, pooled_shape[0], pooled_shape[1]).
This version of the operator has been available since version 1 of the default ONNX operator set.
- pooled_shape : list of ints (required)
- ROI pool output shape (height, width).
- spatial_scale : float (default is 1.0)
- Multiplicative spatial scale factor to translate ROI coordinates from their input scale to the scale used when pooling.
- X : T
- Input data tensor from the previous operator; dimensions for image case are (N x C x H x W), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data.
- rois : T
- RoIs (Regions of Interest) to pool over. Should be a 2-D tensor of shape (num_rois, 5) given as [[batch_id, x1, y1, x2, y2], ...].
- Y : T
- RoI pooled output 4-D tensor of shape (num_rois, channels, pooled_shape[0], pooled_shape[1]).
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
MaxUnpool essentially computes the partial inverse of the MaxPool op. The input information to this op is typically the the output information from a MaxPool op. The first input tensor X is the tensor that needs to be unpooled, which is typically the pooled tensor (first output) from MaxPool. The second input tensor, I, contains the indices to the (locally maximal) elements corrsponding to the elements in the first input tensor X. Input tensor I is typically the second output of the MaxPool op. The third (optional) input is a tensor that specifies the output size of the unpooling operation.
MaxUnpool is intended to do 'partial' inverse of the MaxPool op. 'Partial' because all the non-maximal values from the original input to MaxPool are set to zero in the output of the MaxUnpool op. Pooling the result of an unpooling operation should give back the original input to the unpooling op.
MaxUnpool can produce the same output size for several input sizes, which makes unpooling op ambiguous. The third input argument, output_size, is meant to disambiguate the op and produce output tensor of known/predictable size.
In addition to the inputs, MaxUnpool takes three attributes, namely kernel_shape, strides, and pads, which define the exact unpooling op. The attributes typically have the same values as the corrsponding pooling op that the unpooling op is trying to invert.
This version of the operator has been available since version 9 of the default ONNX operator set.
- kernel_shape : list of ints (required)
- The size of the kernel along each axis.
- pads : list of ints
- Padding for the beginning and ending along each axis, it can take any value greater than or equal to 0. The value represent the number of pixels added to the beginning and end part of the corresponding axis. `pads` format should be as follow [x1_begin, x2_begin...x1_end, x2_end,...], where xi_begin the number of pixels added at the beginning of axis `i` and xi_end, the number of pixels added at the end of axis `i`. This attribute cannot be used simultaneously with auto_pad attribute. If not present, the padding defaults to 0 along start and end of each axis.
- strides : list of ints
- Stride along each axis.
- X : T1
- Input data tensor that has to be unpooled. This tensor is typically the first output of the MaxPool op.Dimensions for image case are (N x C x H x W), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non-image case, the dimensions are in the form of (N x C x D1 x D2 ... Dn), where N is the batch size. Optionally, if dimension denotation is in effect, the operation expects the input data tensor to arrive with the dimension denotation of [DATA_BATCH, DATA_CHANNEL, DATA_FEATURE, DATA_FEATURE ...].
- I : T2
- Input data tensor containing the indices corresponding to elements in the first input tensor X.This tensor is typically the second output of the MaxPool op.Dimensions must be the same as input tensor X. The indices are linear, i.e. computed considering the tensor as flattened 1-D tensor, assuming row-major storage. Also, the linear indices should not consider padding. So the values in indices are in the range [0, N x C x D1 x ... x Dn).
- output_shape (optional) : T2
- The shape of the output can be explicitly set which will cause pads values to be auto generated. If 'output_shape' is specified, 'pads' values are ignored.
- output : T1
- Output data tensor that contains the result of the unpooling.
- T1 : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
- T2 : tensor(int64)
- Constrain index tensor to int64
with_output_shape
node = onnx.helper.make_node(
'MaxUnpool',
inputs=['xT', 'xI', 'output_shape'],
outputs=['y'],
kernel_shape=[2, 2],
strides=[2, 2]
)
xT = np.array([[[[5, 6],
[7, 8]]]], dtype=np.float32)
xI = np.array([[[[5, 7],
[13, 15]]]], dtype=np.int64)
output_shape = np.array((1, 1, 5, 5), dtype=np.int64)
y = np.array([[[[0, 0, 0, 0, 0],
[0, 5, 0, 6, 0],
[0, 0, 0, 0, 0],
[0, 7, 0, 8, 0],
[0, 0, 0, 0, 0]]]], dtype=np.float32)
expect(node, inputs=[xT, xI, output_shape], outputs=[y], name='test_maxunpool_export_with_output_shape')
without_output_shape
node = onnx.helper.make_node(
'MaxUnpool',
inputs=['xT', 'xI'],
outputs=['y'],
kernel_shape=[2, 2],
strides=[2, 2]
)
xT = np.array([[[[1, 2],
[3, 4]]]], dtype=np.float32)
xI = np.array([[[[5, 7],
[13, 15]]]], dtype=np.int64)
y = np.array([[[[0, 0, 0, 0],
[0, 1, 0, 2],
[0, 0, 0, 0],
[0, 3, 0, 4]]]], dtype=np.float32)
expect(node, inputs=[xT, xI], outputs=[y], name='test_maxunpool_export_without_output_shape')
Element-wise mean of each of the input tensors (with Numpy-style broadcasting support). All inputs and outputs must have the same data type. This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc.
This version of the operator has been available since version 8 of the default ONNX operator set.
Other versions of this operator: Mean-1, Mean-6
- data_0 (variadic) : T
- List of tensors for mean.
- mean : T
- Output tensor.
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
mean
data_0 = np.array([3, 0, 2]).astype(np.float32)
data_1 = np.array([1, 3, 4]).astype(np.float32)
data_2 = np.array([2, 6, 6]).astype(np.float32)
result = np.array([2, 3, 4]).astype(np.float32)
node = onnx.helper.make_node(
'Mean',
inputs=['data_0', 'data_1', 'data_2'],
outputs=['result'],
)
expect(node, inputs=[data_0, data_1, data_2], outputs=[result],
name='test_mean_example')
node = onnx.helper.make_node(
'Mean',
inputs=['data_0'],
outputs=['result'],
)
expect(node, inputs=[data_0], outputs=[data_0],
name='test_mean_one_input')
result = np.divide(np.add(data_0, data_1), 2.)
node = onnx.helper.make_node(
'Mean',
inputs=['data_0', 'data_1'],
outputs=['result'],
)
expect(node, inputs=[data_0, data_1], outputs=[result],
name='test_mean_two_inputs')
Element-wise min of each of the input tensors (with Numpy-style broadcasting support). All inputs and outputs must have the same data type. This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc.
This version of the operator has been available since version 8 of the default ONNX operator set.
Other versions of this operator: Min-1, Min-6
- data_0 (variadic) : T
- List of tensors for min.
- min : T
- Output tensor.
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
min
data_0 = np.array([3, 2, 1]).astype(np.float32)
data_1 = np.array([1, 4, 4]).astype(np.float32)
data_2 = np.array([2, 5, 0]).astype(np.float32)
result = np.array([1, 2, 0]).astype(np.float32)
node = onnx.helper.make_node(
'Min',
inputs=['data_0', 'data_1', 'data_2'],
outputs=['result'],
)
expect(node, inputs=[data_0, data_1, data_2], outputs=[result],
name='test_min_example')
node = onnx.helper.make_node(
'Min',
inputs=['data_0'],
outputs=['result'],
)
expect(node, inputs=[data_0], outputs=[data_0],
name='test_min_one_input')
result = np.minimum(data_0, data_1)
node = onnx.helper.make_node(
'Min',
inputs=['data_0', 'data_1'],
outputs=['result'],
)
expect(node, inputs=[data_0, data_1], outputs=[result],
name='test_min_two_inputs')
Performs element-wise binary multiplication (with Numpy-style broadcasting support).
This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc.
This version of the operator has been available since version 7 of the default ONNX operator set.
Other versions of this operator: Mul-1, Mul-6
- A : T
- First operand.
- B : T
- Second operand.
- C : T
- Result, has same element type as two inputs
- T : tensor(uint32), tensor(uint64), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to high-precision numeric tensors.
mul
node = onnx.helper.make_node(
'Mul',
inputs=['x', 'y'],
outputs=['z'],
)
x = np.array([1, 2, 3]).astype(np.float32)
y = np.array([4, 5, 6]).astype(np.float32)
z = x * y # expected output [4., 10., 18.]
expect(node, inputs=[x, y], outputs=[z],
name='test_mul_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.random.randn(3, 4, 5).astype(np.float32)
z = x * y
expect(node, inputs=[x, y], outputs=[z],
name='test_mul')
mul_broadcast
node = onnx.helper.make_node(
'Mul',
inputs=['x', 'y'],
outputs=['z'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.random.randn(5).astype(np.float32)
z = x * y
expect(node, inputs=[x, y], outputs=[z],
name='test_mul_bcast')
Generate a tensor of samples from a multinomial distribution according to the probabilities of each of the possible outcomes.
This version of the operator has been available since version 7 of the default ONNX operator set.
- dtype : int (default is 6)
- (Optional) The data type for the elements of the output tensor, if not specified, we will use int32.
- sample_size : int (default is 1)
- Number of times to sample.
- seed : float
- (Optional) Seed to the random generator, if not specified we will auto generate one.
- input : T1
- Input tensor with shape [batch_size, class_size], where class_size is the number of all possible outcomes. Each value along the axis zero represents the unnormalized log-probability of each corresponding outcome in a batch.
- output : T2
- Output tensor with shape [batch_size, sample_size], where sample_size is the number of times to sample. Each value along the axis zero represents the outcome of the corresponding sample in a batch.
- T1 : tensor(float16), tensor(float), tensor(double)
- Constrain input types to float tensors.
- T2 : tensor(int32), tensor(int64)
- Constrain output types to integral tensors.
Neg takes one input data (Tensor) and produces one output data (Tensor) where each element flipped sign, y = -x, is applied to the tensor elementwise.
This version of the operator has been available since version 6 of the default ONNX operator set.
Other versions of this operator: Neg-1
- X : T
- Input tensor
- Y : T
- Output tensor
- T : tensor(float), tensor(int32), tensor(int8), tensor(int16), tensor(int64), tensor(float16), tensor(double)
- Constrain input and output types to signed numeric tensors.
neg
node = onnx.helper.make_node(
'Neg',
inputs=['x'],
outputs=['y'],
)
x = np.array([-4, 2]).astype(np.float32)
y = np.negative(x) # expected output [4., -2.],
expect(node, inputs=[x], outputs=[y],
name='test_neg_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.negative(x)
expect(node, inputs=[x], outputs=[y],
name='test_neg')
Returns the negation of the input tensor element-wise.
This version of the operator has been available since version 1 of the default ONNX operator set.
- X : T
- Input tensor
- Y : T
- Output tensor
- T : tensor(bool)
- Constrains input/output to boolean tensors.
not
node = onnx.helper.make_node(
'Not',
inputs=['x'],
outputs=['not'],
)
# 2d
x = (np.random.randn(3, 4) > 0).astype(np.bool)
expect(node, inputs=[x], outputs=[np.logical_not(x)],
name='test_not_2d')
# 3d
x = (np.random.randn(3, 4, 5) > 0).astype(np.bool)
expect(node, inputs=[x], outputs=[np.logical_not(x)],
name='test_not_3d')
# 4d
x = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool)
expect(node, inputs=[x], outputs=[np.logical_not(x)],
name='test_not_4d')
Produces a one-hot tensor based on inputs. The locations represented by the index values in the 'indices' input tensor will have 'on_value' and the other locations will have 'off_value' in the output tensor, where 'on_value' and 'off_value' are specified as part of required input argument 'values', which is a two-element tensor of format [off_value, on_value]. The rank of the output tensor will be one greater than the rank of the input tensor. The additional dimension is for one-hot representation. The additional dimension will be inserted at the position specified by 'axis'. If 'axis' is not specified then then additional dimension will be inserted as the innermost dimension, i.e. axis=-1. The size of the additional dimension is specified by required scalar input 'depth'. The type of the output tensor is the same as the type of the 'values' input. Any entries in the 'indices' input tensor with values outside the range [0, depth) will result in one-hot representation with all 'off_value' values in the output tensor.
This version of the operator has been available since version 9 of the default ONNX operator set.
- axis : int (default is -1)
- (Optional) Axis along which one-hot representation in added. Default: axis=-1. axis=-1 means that the additional dimension will be inserted as the innermost/last dimension in the output tensor.
- indices : T1
- Input tensor containing indices. The values must be non-negative integers. Any entries in the 'indices' input tensor with values outside the range [0, depth) will result in one-hot representation with all 'off_value' values in the output tensor.In case 'indices' is of non-integer type, the values will be casted to int64 before use.
- depth : T2
- Scalar specifying the number of classes in one-hot tensor. This is also the size of the one-hot dimension (specified by 'axis' attribute) added on in the output tensor and the values in the 'indices' input tensor are expected to be in the range [0, depth). TheIn case 'depth' is of non-integer type, it will be casted to int64 before use.
- values : T3
- Rank 1 tensor containing exactly two elements, in the format [off_value, on_value], where 'on_value' is the value used for filling locations specified in 'indices' input tensor, and 'off_value' is the value used for filling locations other than those specified in 'indices' input tensor.
- output : T3
- Tensor of rank one greater than input tensor 'indices', i.e. rank(output) = rank(indices) + 1. The data type for the elements of the output tensor is the same as the type of input 'values' is used.
- T1 : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double)
- Constrains input to only numeric types.
- T2 : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double)
- Constrains input to only numeric types.
- T3 : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- Constrain to any tensor type.
with_axis
axisValue = 1
on_value = 3
off_value = 1
output_type = np.float32
node = onnx.helper.make_node(
'OneHot',
inputs=['indices', 'depth', 'values'],
outputs=['y'],
axis=axisValue
)
indices = np.array([[1, 9],
[2, 4]], dtype=np.float32)
depth = np.array([10], dtype=np.float32)
values = np.array([off_value, on_value], dtype=output_type)
y = one_hot(indices, depth, axis=axisValue, dtype=output_type)
y = y * (on_value - off_value) + off_value
expect(node, inputs=[indices, depth, values], outputs=[y], name='test_onehot_with_axis')
without_axis
on_value = 5
off_value = 2
output_type = np.int32
node = onnx.helper.make_node(
'OneHot',
inputs=['indices', 'depth', 'values'],
outputs=['y']
)
indices = np.array([0, 7, 8], dtype=np.int64)
depth = np.array([12], dtype=np.float32)
values = np.array([off_value, on_value], dtype=output_type)
y = one_hot(indices, depth, dtype=output_type)
y = y * (on_value - off_value) + off_value
expect(node, inputs=[indices, depth, values], outputs=[y], name='test_onehot_without_axis')
Returns the tensor resulted from performing the or
logical operation
elementwise on the input tensors A
and B
(with Numpy-style broadcasting support).
This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc.
This version of the operator has been available since version 7 of the default ONNX operator set.
Other versions of this operator: Or-1
- A : T
- First input operand for the logical operator.
- B : T
- Second input operand for the logical operator.
- C : T1
- Result tensor.
- T : tensor(bool)
- Constrains input to boolean tensor.
- T1 : tensor(bool)
- Constrains output to boolean tensor.
or
node = onnx.helper.make_node(
'Or',
inputs=['x', 'y'],
outputs=['or'],
)
# 2d
x = (np.random.randn(3, 4) > 0).astype(np.bool)
y = (np.random.randn(3, 4) > 0).astype(np.bool)
z = np.logical_or(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_or2d')
# 3d
x = (np.random.randn(3, 4, 5) > 0).astype(np.bool)
y = (np.random.randn(3, 4, 5) > 0).astype(np.bool)
z = np.logical_or(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_or3d')
# 4d
x = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool)
y = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool)
z = np.logical_or(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_or4d')
or_broadcast
node = onnx.helper.make_node(
'Or',
inputs=['x', 'y'],
outputs=['or'],
)
# 3d vs 1d
x = (np.random.randn(3, 4, 5) > 0).astype(np.bool)
y = (np.random.randn(5) > 0).astype(np.bool)
z = np.logical_or(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_or_bcast3v1d')
# 3d vs 2d
x = (np.random.randn(3, 4, 5) > 0).astype(np.bool)
y = (np.random.randn(4, 5) > 0).astype(np.bool)
z = np.logical_or(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_or_bcast3v2d')
# 4d vs 2d
x = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool)
y = (np.random.randn(5, 6) > 0).astype(np.bool)
z = np.logical_or(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_or_bcast4v2d')
# 4d vs 3d
x = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool)
y = (np.random.randn(4, 5, 6) > 0).astype(np.bool)
z = np.logical_or(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_or_bcast4v3d')
# 4d vs 4d
x = (np.random.randn(1, 4, 1, 6) > 0).astype(np.bool)
y = (np.random.randn(3, 1, 5, 6) > 0).astype(np.bool)
z = np.logical_or(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_or_bcast4v4d')
PRelu takes input data (Tensor) and slope tensor as input, and produces one
output data (Tensor) where the function f(x) = slope * x for x < 0
,
f(x) = x for x >= 0
., is applied to the data tensor elementwise.
This operator supports unidirectional broadcasting (tensor slope should be unidirectional broadcastable to input tensor X); for more details please check the doc.
This version of the operator has been available since version 9 of the default ONNX operator set.
Other versions of this operator: PRelu-1, PRelu-6, PRelu-7
- X : T
- Input tensor
- slope : T
- Slope tensor. The shape of slope can be smaller then first input X; if so, its shape must be unidirectional broadcastable to X
- Y : T
- Output tensor (same size as X)
- T : tensor(float16), tensor(float), tensor(double), tensor(uint32), tensor(uint64), tensor(int32), tensor(int64)
- Constrain input and output types to float/int tensors.
prelu
node = onnx.helper.make_node(
'PRelu',
inputs=['x', 'slope'],
outputs=['y'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
slope = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, 0, np.inf) + np.clip(x, -np.inf, 0) * slope
expect(node, inputs=[x, slope], outputs=[y],
name='test_prelu_example')
prelu_broadcast
node = onnx.helper.make_node(
'PRelu',
inputs=['x', 'slope'],
outputs=['y'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
slope = np.random.randn(5).astype(np.float32)
y = np.clip(x, 0, np.inf) + np.clip(x, -np.inf, 0) * slope
expect(node, inputs=[x, slope], outputs=[y],
name='test_prelu_broadcast')
Given data
tensor, pads, mode, and value.
Example:
Insert 0 pads to the beginning of the second dimension.
data = [
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
pads = [0, 2, 0, 0]
output = [
[
[0.0, 0.0, 1.0, 1.2],
[0.0, 0.0, 2.3, 3.4],
[0.0, 0.0, 4.5, 5.7],
],
]
This version of the operator has been available since version 2 of the default ONNX operator set.
Other versions of this operator: Pad-1
- mode : string (default is constant)
- Three modes: constant(default), reflect, edge
- pads : list of ints (required)
- List of integers indicating the number of padding elements to add or remove (if negative) at the beginning and end of each axis. For 2D it is the number of pixels. `pads` rank should be double of the input's rank. `pads` format should be as follow [x1_begin, x2_begin...x1_end, x2_end,...], where xi_begin the number of pixels added at the beginning of axis `i` and xi_end, the number of pixels added at the end of axis `i`.
- value : float (default is 0.0)
- One float, indicates the value to be filled.
- data : T
- Input tensor.
- output : T
- Tensor after padding.
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
constant_pad
node = onnx.helper.make_node(
'Pad',
inputs=['x'],
outputs=['y'],
mode='constant',
value=1.2,
pads=[0, 0, 1, 3, 0, 0, 2, 4],
)
x = np.random.randn(1, 3, 4, 5).astype(np.float32)
y = np.pad(
x,
pad_width=((0, 0), (0, 0), (1, 2), (3, 4)),
mode='constant',
constant_values=1.2,
)
expect(node, inputs=[x], outputs=[y],
name='test_constant_pad')
reflection_and_edge_pad
for mode in ['edge', 'reflect']:
node = onnx.helper.make_node(
'Pad',
inputs=['x'],
outputs=['y'],
mode=mode,
pads=[0, 0, 1, 1, 0, 0, 1, 1]
)
x = np.random.randn(1, 3, 4, 5).astype(np.float32)
y = np.pad(
x,
pad_width=((0, 0), (0, 0), (1, 1), (1, 1)),
mode=mode,
)
expect(node, inputs=[x], outputs=[y],
name='test_{}_pad'.format(mode))
Pow takes input data (Tensor) and exponent Tensor, and
produces one output data (Tensor) where the function f(x) = x^exponent
,
is applied to the data tensor elementwise.
This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc.
This version of the operator has been available since version 7 of the default ONNX operator set.
Other versions of this operator: Pow-1
- X : T
- First operand, base of the exponent.
- Y : T
- Second operand, power of the exponent.
- Z : T
- Output tensor (same size as X)
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
pow
node = onnx.helper.make_node(
'Pow',
inputs=['x', 'y'],
outputs=['z'],
)
x = np.array([1, 2, 3]).astype(np.float32)
y = np.array([4, 5, 6]).astype(np.float32)
z = np.power(x, y) # expected output [1., 32., 729.]
expect(node, inputs=[x, y], outputs=[z],
name='test_pow_example')
x = np.arange(60).reshape(3, 4, 5).astype(np.float32)
y = np.random.randn(3, 4, 5).astype(np.float32)
z = np.power(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_pow')
pow_broadcast
node = onnx.helper.make_node(
'Pow',
inputs=['x', 'y'],
outputs=['z'],
)
x = np.array([1, 2, 3]).astype(np.float32)
y = np.array(2).astype(np.float32)
z = np.power(x, y) # expected output [1., 4., 9.]
expect(node, inputs=[x, y], outputs=[z],
name='test_pow_bcast_scalar')
node = onnx.helper.make_node(
'Pow',
inputs=['x', 'y'],
outputs=['z'],
)
x = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
y = np.array([1, 2, 3]).astype(np.float32)
# expected output [[1, 4, 27], [4, 25, 216]]
z = np.power(x, y).astype(np.float32)
expect(node, inputs=[x, y], outputs=[z],
name='test_pow_bcast_array')
Computes an one-layer simple RNN. This operator is usually supported via some custom implementation such as CuDNN.
Notations:
X
- input tensor
i
- input gate
t
- time step (t-1 means previous time step)
Wi
- W parameter weight matrix for input gate
Ri
- R recurrence weight matrix for input gate
Wbi
- W parameter bias vector for input gate
Rbi
- R parameter bias vector for input gate
WBi
- W parameter weight matrix for backward input gate
RBi
- R recurrence weight matrix for backward input gate
WBbi
- WR bias vectors for backward input gate
RBbi
- RR bias vectors for backward input gate
H
- Hidden state
num_directions
- 2 if direction == bidirectional else 1
Activation functions:
Relu(x) - max(0, x)
Tanh(x) - (1 - e^{-2x})/(1 + e^{-2x})
Sigmoid(x) - 1/(1 + e^{-x})
(NOTE: Below are optional)
Affine(x) - alpha*x + beta
LeakyRelu(x) - x if x >= 0 else alpha * x
ThresholdedRelu(x) - x if x >= alpha else 0
ScaledTanh(x) - alpha*Tanh(beta*x)
HardSigmoid(x) - min(max(alpha*x + beta, 0), 1)
Elu(x) - x if x >= 0 else alpha*(e^x - 1)
Softsign(x) - x/(1 + |x|)
Softplus(x) - log(1 + e^x)
Equations (Default: f=Tanh):
- Ht = f(Xt*(Wi^T) + Ht-1*(Ri^T) + Wbi + Rbi)
This operator has optional inputs/outputs. See the doc for more details about the representation of optional arguments. An empty string may be used in the place of an actual argument's name to indicate a missing argument. Trailing optional arguments (those not followed by an argument that is present) may also be simply omitted.
This version of the operator has been available since version 7 of the default ONNX operator set.
Other versions of this operator: RNN-1
- activation_alpha : list of floats
- Optional scaling values used by some activation functions. The values are consumed in the order of activation functions, for example (f, g, h) in LSTM. Default values are the same as of corresponding ONNX operators.For example with LeakyRelu, the default alpha is 0.01.
- activation_beta : list of floats
- Optional scaling values used by some activation functions. The values are consumed in the order of activation functions, for example (f, g, h) in LSTM. Default values are the same as of corresponding ONNX operators.
- activations : list of strings (default is ['Tanh', 'Tanh'])
- One (or two if bidirectional) activation function for input gate. The activation function must be one of the activation functions specified above. Optional: Default `Tanh` if not specified.
- clip : float
- Cell clip threshold. Clipping bounds the elements of a tensor in the range of [-threshold, +threshold] and is applied to the input of activations. No clip if not specified.
- direction : string (default is forward)
- Specify if the RNN is forward, reverse, or bidirectional. Must be one of forward (default), reverse, or bidirectional.
- hidden_size : int
- Number of neurons in the hidden layer
- X : T
- The input sequences packed (and potentially padded) into one 3-D tensor with the shape of `[seq_length, batch_size, input_size]`.
- W : T
- The weight tensor for input gate. Concatenation of `Wi` and `WBi` (if bidirectional). The tensor has shape `[num_directions, hidden_size, input_size]`.
- R : T
- The recurrence weight tensor. Concatenation of `Ri` and `RBi` (if bidirectional). The tensor has shape `[num_directions, hidden_size, hidden_size]`.
- B (optional) : T
- The bias tensor for input gate. Concatenation of `[Wbi, Rbi]` and `[WBbi, RBbi]` (if bidirectional). The tensor has shape `[num_directions, 2*hidden_size]`. Optional: If not specified - assumed to be 0.
- sequence_lens (optional) : T1
- Optional tensor specifying lengths of the sequences in a batch. If not specified - assumed all sequences in the batch to have length `seq_length`. It has shape `[batch_size]`.
- initial_h (optional) : T
- Optional initial value of the hidden. If not specified - assumed to be 0. It has shape `[num_directions, batch_size, hidden_size]`.
- Y (optional) : T
- A tensor that concats all the intermediate output values of the hidden. It has shape `[seq_length, num_directions, batch_size, hidden_size]`.
- Y_h (optional) : T
- The last output value of the hidden. It has shape `[num_directions, batch_size, hidden_size]`.
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
- T1 : tensor(int32)
- Constrain seq_lens to integer tensor.
defaults
input = np.array([[[1., 2.], [3., 4.], [5., 6.]]]).astype(np.float32)
input_size = 2
hidden_size = 4
weight_scale = 0.1
node = onnx.helper.make_node(
'RNN',
inputs=['X', 'W', 'R'],
outputs=['', 'Y'],
hidden_size=hidden_size
)
W = weight_scale * np.ones((1, hidden_size, input_size)).astype(np.float32)
R = weight_scale * np.ones((1, hidden_size, hidden_size)).astype(np.float32)
rnn = RNN_Helper(X=input, W=W, R=R)
_, Y_h = rnn.step()
expect(node, inputs=[input, W, R], outputs=[Y_h.astype(np.float32)], name='test_simple_rnn_defaults')
initial_bias
input = np.array([[[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]]).astype(np.float32)
input_size = 3
hidden_size = 5
custom_bias = 0.1
weight_scale = 0.1
node = onnx.helper.make_node(
'RNN',
inputs=['X', 'W', 'R', 'B'],
outputs=['', 'Y'],
hidden_size=hidden_size
)
W = weight_scale * np.ones((1, hidden_size, input_size)).astype(np.float32)
R = weight_scale * np.ones((1, hidden_size, hidden_size)).astype(np.float32)
# Adding custom bias
W_B = custom_bias * np.ones((1, hidden_size)).astype(np.float32)
R_B = np.zeros((1, hidden_size)).astype(np.float32)
B = np.concatenate((W_B, R_B), axis=1)
rnn = RNN_Helper(X=input, W=W, R=R, B=B)
_, Y_h = rnn.step()
expect(node, inputs=[input, W, R, B], outputs=[Y_h.astype(np.float32)],
name='test_simple_rnn_with_initial_bias')
seq_length
input = np.array([[[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]],
[[10., 11., 12.], [13., 14., 15.], [16., 17., 18.]]]).astype(np.float32)
input_size = 3
hidden_size = 5
node = onnx.helper.make_node(
'RNN',
inputs=['X', 'W', 'R', 'B'],
outputs=['', 'Y'],
hidden_size=hidden_size
)
W = np.random.randn(1, hidden_size, input_size).astype(np.float32)
R = np.random.randn(1, hidden_size, hidden_size).astype(np.float32)
# Adding custom bias
W_B = np.random.randn(1, hidden_size).astype(np.float32)
R_B = np.random.randn(1, hidden_size).astype(np.float32)
B = np.concatenate((W_B, R_B), axis=1)
rnn = RNN_Helper(X=input, W=W, R=R, B=B)
_, Y_h = rnn.step()
expect(node, inputs=[input, W, R, B], outputs=[Y_h.astype(np.float32)], name='test_rnn_seq_length')
Generate a tensor with random values drawn from a normal distribution. The shape
of the tensor is specified by the shape
argument and the parameter of the normal distribution
specified by mean
and scale
.
The data type is specified by the 'dtype' argument. The 'dtype' argument must be one of the data types specified in the 'DataType' enum field in the TensorProto message.
This version of the operator has been available since version 1 of the default ONNX operator set.
- dtype : int (default is 1)
- The data type for the elements of the output tensor. Default is TensorProto::FLOAT.
- mean : float (default is 0.0)
- The mean of the normal distribution.
- scale : float (default is 1.0)
- The standard deviation of the normal distribution.
- seed : float
- (Optional) Seed to the random generator, if not specified we will auto generate one.
- shape : list of ints (required)
- The shape of the output tensor.
- output : T
- Output tensor of random values drawn from normal distribution
- T : tensor(float16), tensor(float), tensor(double)
- Constrain output types to float tensors.
Generate a tensor with random values drawn from a normal distribution.
The shape of the output tensor is copied from the shape of the input tensor,
and the parameters of the normal distribution are specified by mean
and scale
.
The data type is specified by the 'dtype' argument, or copied from the input tensor if not provided. The 'dtype' argument must be one of the data types specified in the 'DataType' enum field in the TensorProto message, and be valid as an output type.
This version of the operator has been available since version 1 of the default ONNX operator set.
- dtype : int
- (Optional) The data type for the elements of the output tensor, if not specified, we will usethe data type of the input tensor.
- mean : float (default is 0.0)
- The mean of the normal distribution.
- scale : float (default is 1.0)
- The standard deviation of the normal distribution.
- seed : float
- (Optional) Seed to the random generator, if not specified we will auto generate one.
- input : T1
- Input tensor to copy shape and optionally type information from.
- output : T2
- Output tensor of random values drawn from normal distribution
- T1 : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- Constrain to any tensor type. If the dtype attribute is not provided this must be a valid output type.
- T2 : tensor(float16), tensor(float), tensor(double)
- Constrain output types to float tensors.
Generate a tensor with random values drawn from a uniform distribution. The shape
of the tensor is specified by the shape
argument and the range by low
and high
.
The data type is specified by the 'dtype' argument. The 'dtype' argument must be one of the data types specified in the 'DataType' enum field in the TensorProto message.
This version of the operator has been available since version 1 of the default ONNX operator set.
- dtype : int (default is 1)
- The data type for the elements of the output tensor. If not specified, default is TensorProto::FLOAT.
- high : float (default is 1.0)
- Upper boundary of the output values.
- low : float (default is 0.0)
- Lower boundary of the output values.
- seed : float
- (Optional) Seed to the random generator, if not specified we will auto generate one.
- shape : list of ints (required)
- The shape of the output tensor.
- output : T
- Output tensor of random values drawn from uniform distribution
- T : tensor(float16), tensor(float), tensor(double)
- Constrain output types to float tensors.
Generate a tensor with random values drawn from a uniform distribution.
The shape of the output tensor is copied from the shape of the input tensor,
and the parameters of the uniform distribution are specified by low
and high
.
The data type is specified by the 'dtype' argument, or copied from the input tensor if not provided. The 'dtype' argument must be one of the data types specified in the 'DataType' enum field in the TensorProto message and be valid as an output type.
This version of the operator has been available since version 1 of the default ONNX operator set.
- dtype : int
- (Optional) The data type for the elements of the output tensor, if not specified, we will usethe data type of the input tensor.
- high : float (default is 1.0)
- Upper boundary of the output values.
- low : float (default is 0.0)
- Lower boundary of the output values.
- seed : float
- (Optional) Seed to the random generator, if not specified we will auto generate one.
- input : T1
- Input tensor to copy shape and optionally type information from.
- output : T2
- Output tensor of random values drawn from uniform distribution
- T1 : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- Constrain to any tensor type. If the dtype attribute is not provided this must be a valid output type.
- T2 : tensor(float16), tensor(float), tensor(double)
- Constrain output types to float tensors.
Reciprocal takes one input data (Tensor) and produces one output data (Tensor) where the reciprocal is, y = 1/x, is applied to the tensor elementwise.
This version of the operator has been available since version 6 of the default ONNX operator set.
Other versions of this operator: Reciprocal-1
- X : T
- Input tensor
- Y : T
- Output tensor
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
reciprocal
node = onnx.helper.make_node(
'Reciprocal',
inputs=['x'],
outputs=['y'],
)
x = np.array([-4, 2]).astype(np.float32)
y = np.reciprocal(x) # expected output [-0.25, 0.5],
expect(node, inputs=[x], outputs=[y],
name='test_reciprocal_example')
x = np.random.rand(3, 4, 5).astype(np.float32) + 0.5
y = np.reciprocal(x)
expect(node, inputs=[x], outputs=[y],
name='test_reciprocal')
Computes the L1 norm of the input tensor's element along the provided axes. The resulted tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then the resulted tensor have the reduced dimension pruned.
The above behavior is similar to numpy, with the exception that numpy default keepdims to False instead of True.
This version of the operator has been available since version 1 of the default ONNX operator set.
- axes : list of ints
- A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor.
- keepdims : int (default is 1)
- Keep the reduced dimension or not, default 1 mean keep reduced dimension.
- data : T
- An input tensor.
- reduced : T
- Reduced output tensor.
- T : tensor(uint32), tensor(uint64), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to high-precision numeric tensors.
default_axes_keepdims
shape = [3, 2, 2]
axes = None
keepdims = 1
node = onnx.helper.make_node(
'ReduceL1',
inputs=['data'],
outputs=['reduced'],
keepdims=keepdims
)
data = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape)
#print(data)
#[[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]], [[9., 10.], [11., 12.]]]
reduced = np.sum(a=np.abs(data), axis=axes, keepdims=keepdims == 1)
#print(reduced)
#[[[78.]]]
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l1_default_axes_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.sum(a=np.abs(data), axis=axes, keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l1_default_axes_keepdims_random')
do_not_keepdims
shape = [3, 2, 2]
axes = [2]
keepdims = 0
node = onnx.helper.make_node(
'ReduceL1',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims
)
data = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape)
#print(data)
#[[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]], [[9., 10.], [11., 12.]]]
reduced = np.sum(a=np.abs(data), axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[3., 7.], [11., 15.], [19., 23.]]
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l1_do_not_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.sum(a=np.abs(data), axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l1_do_not_keepdims_random')
keepdims
shape = [3, 2, 2]
axes = [2]
keepdims = 1
node = onnx.helper.make_node(
'ReduceL1',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims
)
data = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape)
#print(data)
#[[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]], [[9., 10.], [11., 12.]]]
reduced = np.sum(a=np.abs(data), axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[[3.], [7.]], [[11.], [15.]], [[19.], [23.]]]
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l1_keep_dims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.sum(a=np.abs(data), axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l1_keep_dims_random')
Computes the L2 norm of the input tensor's element along the provided axes. The resulted tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then the resulted tensor have the reduced dimension pruned.
The above behavior is similar to numpy, with the exception that numpy default keepdims to False instead of True.
This version of the operator has been available since version 1 of the default ONNX operator set.
- axes : list of ints
- A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor.
- keepdims : int (default is 1)
- Keep the reduced dimension or not, default 1 mean keep reduced dimension.
- data : T
- An input tensor.
- reduced : T
- Reduced output tensor.
- T : tensor(uint32), tensor(uint64), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to high-precision numeric tensors.
default_axes_keepdims
shape = [3, 2, 2]
axes = None
keepdims = 1
node = onnx.helper.make_node(
'ReduceL2',
inputs=['data'],
outputs=['reduced'],
keepdims=keepdims
)
data = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape)
#print(data)
#[[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]], [[9., 10.], [11., 12.]]]
reduced = np.sqrt(np.sum(
a=np.square(data), axis=axes, keepdims=keepdims == 1))
#print(reduced)
#[[[25.49509757]]]
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l2_default_axes_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.sqrt(np.sum(
a=np.square(data), axis=axes, keepdims=keepdims == 1))
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l2_default_axes_keepdims_random')
do_not_keepdims
shape = [3, 2, 2]
axes = [2]
keepdims = 0
node = onnx.helper.make_node(
'ReduceL2',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims
)
data = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape)
#print(data)
#[[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]], [[9., 10.], [11., 12.]]]
reduced = np.sqrt(np.sum(
a=np.square(data), axis=tuple(axes), keepdims=keepdims == 1))
#print(reduced)
#[[2.23606798, 5.],
# [7.81024968, 10.63014581],
# [13.45362405, 16.2788206]]
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l2_do_not_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.sqrt(np.sum(
a=np.square(data), axis=tuple(axes), keepdims=keepdims == 1))
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l2_do_not_keepdims_random')
keepdims
shape = [3, 2, 2]
axes = [2]
keepdims = 1
node = onnx.helper.make_node(
'ReduceL2',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims
)
data = np.reshape(np.arange(1, np.prod(shape) + 1, dtype=np.float32), shape)
#print(data)
#[[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]], [[9., 10.], [11., 12.]]]
reduced = np.sqrt(np.sum(
a=np.square(data), axis=tuple(axes), keepdims=keepdims == 1))
#print(reduced)
#[[[2.23606798], [5.]]
# [[7.81024968], [10.63014581]]
# [[13.45362405], [16.2788206 ]]]
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_l2_keep_dims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.sqrt(np.sum(
a=np.square(data), axis=tuple(axes), keepdims=keepdims == 1))
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_l2_keep_dims_random')
Computes the log sum of the input tensor's element along the provided axes. The resulted tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then the resulted tensor have the reduced dimension pruned.
The above behavior is similar to numpy, with the exception that numpy default keepdims to False instead of True.
This version of the operator has been available since version 1 of the default ONNX operator set.
- axes : list of ints
- A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor.
- keepdims : int (default is 1)
- Keep the reduced dimension or not, default 1 mean keep reduced dimension.
- data : T
- An input tensor.
- reduced : T
- Reduced output tensor.
- T : tensor(uint32), tensor(uint64), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to high-precision numeric tensors.
keepdims
node = onnx.helper.make_node(
'ReduceLogSum',
inputs=['data'],
outputs=["reduced"]
)
data = np.random.ranf([3, 4, 5]).astype(np.float32)
reduced = np.log(np.sum(data, keepdims=True))
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_log_sum_default')
nokeepdims
node = onnx.helper.make_node(
'ReduceLogSum',
inputs=['data'],
outputs=["reduced"],
axes=[2, 1],
keepdims=0
)
data = np.random.ranf([3, 4, 5]).astype(np.float32)
reduced = np.log(np.sum(data, axis=(2, 1), keepdims=False))
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_log_sum_desc_axes')
node = onnx.helper.make_node(
'ReduceLogSum',
inputs=['data'],
outputs=["reduced"],
axes=[0, 1],
keepdims=0
)
data = np.random.ranf([3, 4, 5]).astype(np.float32)
reduced = np.log(np.sum(data, axis=(0, 1), keepdims=False))
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_log_sum_asc_axes')
Computes the log sum exponent of the input tensor's element along the provided axes. The resulted tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then the resulted tensor have the reduced dimension pruned.
The above behavior is similar to numpy, with the exception that numpy default keepdims to False instead of True.
This version of the operator has been available since version 1 of the default ONNX operator set.
- axes : list of ints
- A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor.
- keepdims : int (default is 1)
- Keep the reduced dimension or not, default 1 mean keep reduced dimension.
- data : T
- An input tensor.
- reduced : T
- Reduced output tensor.
- T : tensor(uint32), tensor(uint64), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to high-precision numeric tensors.
default_axes_keepdims
shape = [3, 2, 2]
axes = None
keepdims = 1
node = onnx.helper.make_node(
'ReduceLogSumExp',
inputs=['data'],
outputs=['reduced'],
keepdims=keepdims
)
data = np.array(
[[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]],
dtype=np.float32)
reduced = np.log(np.sum(np.exp(data),
axis=axes,
keepdims=keepdims == 1))
# print(reduced)
# [[[60.00671387]]]
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_log_sum_exp_default_axes_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.log(np.sum(np.exp(data),
axis=axes,
keepdims=keepdims == 1))
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_log_sum_exp_default_axes_keepdims_random')
do_not_keepdims
shape = [3, 2, 2]
axes = [1]
keepdims = 0
node = onnx.helper.make_node(
'ReduceLogSumExp',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims
)
data = np.array(
[[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]],
dtype=np.float32)
reduced = np.log(np.sum(
np.exp(data), axis=tuple(axes), keepdims=keepdims == 1))
# print(reduced)
#[[20., 2.31326175]
# [40.00004578, 2.31326175]
# [60.00671387, 2.31326175]]
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_log_sum_exp_do_not_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.log(np.sum(
np.exp(data), axis=tuple(axes), keepdims=keepdims == 1))
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_log_sum_exp_do_not_keepdims_random')
keepdims
shape = [3, 2, 2]
axes = [1]
keepdims = 1
node = onnx.helper.make_node(
'ReduceLogSumExp',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims
)
data = np.array(
[[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]],
dtype=np.float32)
reduced = np.log(np.sum(np.exp(data),
axis=tuple(axes),
keepdims=keepdims == 1))
# print(reduced)
# [[[20., 2.31326175]]
# [[40.00004578, 2.31326175]]
# [[60.00671387, 2.31326175]]]
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_log_sum_exp_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.log(np.sum(np.exp(data),
axis=tuple(axes),
keepdims=keepdims == 1))
expect(node, inputs=[data], outputs=[reduced],
name='test_reduce_log_sum_exp_keepdims_random')
Computes the max of the input tensor's element along the provided axes. The resulted tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then the resulted tensor have the reduced dimension pruned.
The above behavior is similar to numpy, with the exception that numpy default keepdims to False instead of True.
This version of the operator has been available since version 1 of the default ONNX operator set.
- axes : list of ints
- A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor.
- keepdims : int (default is 1)
- Keep the reduced dimension or not, default 1 mean keep reduced dimension.
- data : T
- An input tensor.
- reduced : T
- Reduced output tensor.
- T : tensor(uint32), tensor(uint64), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to high-precision numeric tensors.
default_axes_keepdims
shape = [3, 2, 2]
axes = None
keepdims = 1
node = onnx.helper.make_node(
'ReduceMax',
inputs=['data'],
outputs=['reduced'],
keepdims=keepdims)
data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32)
reduced = np.maximum.reduce(data, axis=axes, keepdims=keepdims == 1)
#print(reduced)
[[[60.]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_max_default_axes_keepdim_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.maximum.reduce(data, axis=axes, keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_max_default_axes_keepdims_random')
do_not_keepdims
shape = [3, 2, 2]
axes = [1]
keepdims = 0
node = onnx.helper.make_node(
'ReduceMax',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32)
reduced = np.maximum.reduce(data, axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[20., 2.]
# [40., 2.]
# [60., 2.]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_max_do_not_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.maximum.reduce(data, axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_max_do_not_keepdims_random')
keepdims
shape = [3, 2, 2]
axes = [1]
keepdims = 1
node = onnx.helper.make_node(
'ReduceMax',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32)
reduced = np.maximum.reduce(data, axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[[20., 2.]]
# [[40., 2.]]
# [[60., 2.]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_max_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.maximum.reduce(data, axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_max_keepdims_random')
Computes the mean of the input tensor's element along the provided axes. The resulted tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then the resulted tensor have the reduced dimension pruned.
The above behavior is similar to numpy, with the exception that numpy default keepdims to False instead of True.
This version of the operator has been available since version 1 of the default ONNX operator set.
- axes : list of ints
- A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor.
- keepdims : int (default is 1)
- Keep the reduced dimension or not, default 1 mean keep reduced dimension.
- data : T
- An input tensor.
- reduced : T
- Reduced output tensor.
- T : tensor(uint32), tensor(uint64), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to high-precision numeric tensors.
default_axes_keepdims
shape = [3, 2, 2]
axes = None
keepdims = 1
node = onnx.helper.make_node(
'ReduceMean',
inputs=['data'],
outputs=['reduced'],
keepdims=keepdims)
data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32)
reduced = np.mean(data, axis=axes, keepdims=keepdims == 1)
#print(reduced)
#[[[18.25]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_mean_default_axes_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.mean(data, axis=axes, keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_mean_default_axes_keepdims_random')
do_not_keepdims
shape = [3, 2, 2]
axes = [1]
keepdims = 0
node = onnx.helper.make_node(
'ReduceMean',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32)
reduced = np.mean(data, axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[12.5, 1.5]
# [35., 1.5]
# [57.5, 1.5]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_mean_do_not_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.mean(data, axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_mean_do_not_keepdims_random')
keepdims
shape = [3, 2, 2]
axes = [1]
keepdims = 1
node = onnx.helper.make_node(
'ReduceMean',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32)
reduced = np.mean(data, axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[[12.5, 1.5]]
# [[35., 1.5]]
# [[57.5, 1.5]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_mean_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.mean(data, axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_mean_keepdims_random')
Computes the min of the input tensor's element along the provided axes. The resulted tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then the resulted tensor have the reduced dimension pruned.
The above behavior is similar to numpy, with the exception that numpy default keepdims to False instead of True.
This version of the operator has been available since version 1 of the default ONNX operator set.
- axes : list of ints
- A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor.
- keepdims : int (default is 1)
- Keep the reduced dimension or not, default 1 mean keep reduced dimension.
- data : T
- An input tensor.
- reduced : T
- Reduced output tensor.
- T : tensor(uint32), tensor(uint64), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to high-precision numeric tensors.
default_axes_keepdims
shape = [3, 2, 2]
axes = None
keepdims = 1
node = onnx.helper.make_node(
'ReduceMin',
inputs=['data'],
outputs=['reduced'],
keepdims=keepdims)
data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32)
reduced = np.minimum.reduce(data, axis=axes, keepdims=keepdims == 1)
#print(reduced)
#[[[1.]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_min_default_axes_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.minimum.reduce(data, axis=axes, keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_min_default_axes_keepdims_random')
do_not_keepdims
shape = [3, 2, 2]
axes = [1]
keepdims = 0
node = onnx.helper.make_node(
'ReduceMin',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32)
reduced = np.minimum.reduce(data, axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[5., 1.]
# [30., 1.]
# [55., 1.]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_min_do_not_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.minimum.reduce(data, axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_min_do_not_keepdims_random')
keepdims
shape = [3, 2, 2]
axes = [1]
keepdims = 1
node = onnx.helper.make_node(
'ReduceMin', inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32)
reduced = np.minimum.reduce(data, axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[[5., 1.]]
# [[30., 1.]]
# [[55., 1.]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_min_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.minimum.reduce(data, axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_min_keepdims_random')
Computes the product of the input tensor's element along the provided axes. The resulted tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then the resulted tensor have the reduced dimension pruned.
The above behavior is similar to numpy, with the exception that numpy default keepdims to False instead of True.
This version of the operator has been available since version 1 of the default ONNX operator set.
- axes : list of ints
- A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor.
- keepdims : int (default is 1)
- Keep the reduced dimension or not, default 1 mean keep reduced dimension.
- data : T
- An input tensor.
- reduced : T
- Reduced output tensor.
- T : tensor(uint32), tensor(uint64), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to high-precision numeric tensors.
default_axes_keepdims
shape = [3, 2, 2]
axes = None
keepdims = 1
node = onnx.helper.make_node(
'ReduceProd',
inputs=['data'],
outputs=['reduced'],
keepdims=keepdims)
data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=np.float32)
reduced = np.prod(data, axis=axes, keepdims=keepdims == 1)
#print(reduced)
#[[[4.790016e+08]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_prod_default_axes_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.prod(data, axis=axes, keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_prod_default_axes_keepdims_random')
do_not_keepdims
shape = [3, 2, 2]
axes = [1]
keepdims = 0
node = onnx.helper.make_node(
'ReduceProd',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=np.float32)
reduced = np.prod(data, axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[3., 8.]
# [35., 48.]
# [99., 120.]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_prod_do_not_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.prod(data, axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_prod_do_not_keepdims_random')
keepdims
shape = [3, 2, 2]
axes = [1]
keepdims = 1
node = onnx.helper.make_node(
'ReduceProd',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=np.float32)
reduced = np.prod(data, axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[[3., 8.]]
# [[35., 48.]]
# [[99., 120.]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_prod_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.prod(data, axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_prod_keepdims_random')
Computes the sum of the input tensor's element along the provided axes. The resulted tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then the resulted tensor have the reduced dimension pruned.
The above behavior is similar to numpy, with the exception that numpy default keepdims to False instead of True.
This version of the operator has been available since version 1 of the default ONNX operator set.
- axes : list of ints
- A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor.
- keepdims : int (default is 1)
- Keep the reduced dimension or not, default 1 mean keep reduced dimension.
- data : T
- An input tensor.
- reduced : T
- Reduced output tensor.
- T : tensor(uint32), tensor(uint64), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to high-precision numeric tensors.
default_axes_keepdims
shape = [3, 2, 2]
axes = None
keepdims = 1
node = onnx.helper.make_node(
'ReduceSum',
inputs=['data'],
outputs=['reduced'],
keepdims=keepdims)
data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=np.float32)
reduced = np.sum(data, axis=axes, keepdims=keepdims == 1)
#print(reduced)
#[[[78.]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_default_axes_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.sum(data, axis=axes, keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_default_axes_keepdims_random')
do_not_keepdims
shape = [3, 2, 2]
axes = [1]
keepdims = 0
node = onnx.helper.make_node(
'ReduceSum',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=np.float32)
reduced = np.sum(data, axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[4., 6.]
# [12., 14.]
# [20., 22.]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_do_not_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.sum(data, axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_do_not_keepdims_random')
keepdims
shape = [3, 2, 2]
axes = [1]
keepdims = 1
node = onnx.helper.make_node(
'ReduceSum',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=np.float32)
reduced = np.sum(data, axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[[4., 6.]]
# [[12., 14.]]
# [[20., 22.]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.sum(data, axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_keepdims_random')
Computes the sum square of the input tensor's element along the provided axes. The resulted tensor has the same rank as the input if keepdims equal 1. If keepdims equal 0, then the resulted tensor have the reduced dimension pruned.
The above behavior is similar to numpy, with the exception that numpy default keepdims to False instead of True.
This version of the operator has been available since version 1 of the default ONNX operator set.
- axes : list of ints
- A list of integers, along which to reduce. The default is to reduce over all the dimensions of the input tensor.
- keepdims : int (default is 1)
- Keep the reduced dimension or not, default 1 mean keep reduced dimension.
- data : T
- An input tensor.
- reduced : T
- Reduced output tensor.
- T : tensor(uint32), tensor(uint64), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to high-precision numeric tensors.
default_axes_keepdims
shape = [3, 2, 2]
axes = None
keepdims = 1
node = onnx.helper.make_node(
'ReduceSumSquare',
inputs=['data'],
outputs=['reduced'],
keepdims=keepdims)
data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=np.float32)
reduced = np.sum(np.square(data), axis=axes, keepdims=keepdims == 1)
#print(reduced)
#[[[650.]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_square_default_axes_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.sum(np.square(data), axis=axes, keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_square_default_axes_keepdims_random')
do_not_keepdims
shape = [3, 2, 2]
axes = [1]
keepdims = 0
node = onnx.helper.make_node(
'ReduceSumSquare',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=np.float32)
reduced = np.sum(np.square(data), axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[10., 20.]
# [74., 100.]
# [202., 244.]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_square_do_not_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.sum(np.square(data), axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_square_do_not_keepdims_random')
keepdims
shape = [3, 2, 2]
axes = [1]
keepdims = 1
node = onnx.helper.make_node(
'ReduceSumSquare',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]], dtype=np.float32)
reduced = np.sum(np.square(data), axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[[10., 20.]]
# [[74., 100.]]
# [[202., 244.]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_square_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.sum(np.square(data), axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_sum_square_keepdims_random')
Relu takes one input data (Tensor) and produces one output data (Tensor) where the rectified linear function, y = max(0, x), is applied to the tensor elementwise.
This version of the operator has been available since version 6 of the default ONNX operator set.
Other versions of this operator: Relu-1
- X : T
- Input tensor
- Y : T
- Output tensor
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
relu
node = onnx.helper.make_node(
'Relu',
inputs=['x'],
outputs=['y'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, 0, np.inf)
expect(node, inputs=[x], outputs=[y],
name='test_relu')
Reshape the input tensor similar to numpy.reshape. First input is the data tensor, second input is a shape tensor which specifies the output shape. It outputs the reshaped tensor. At most one dimension of the new shape can be -1. In this case, the value is inferred from the size of the tensor and the remaining dimensions. A dimension could also be 0, in which case the actual dimension value is unchanged (i.e. taken from the input tensor).
This version of the operator has been available since version 5 of the default ONNX operator set.
Other versions of this operator: Reshape-1
- data : T
- An input tensor.
- shape : tensor(int64)
- Specified shape for output.
- reshaped : T
- Reshaped data.
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- Constrain input and output types to all tensor types.
reshape
original_shape = [2, 3, 4]
test_cases = {
'reordered_dims': np.array([4, 2, 3], dtype=np.int64),
'reduced_dims': np.array([3, 8], dtype=np.int64),
'extended_dims': np.array([3, 2, 2, 2], dtype=np.int64),
'one_dim': np.array([24], dtype=np.int64),
'negative_dim': np.array([6, -1, 2], dtype=np.int64),
}
data = np.random.random_sample(original_shape).astype(np.float32)
for test_name, shape in test_cases.items():
node = onnx.helper.make_node(
'Reshape',
inputs=['data', 'shape'],
outputs=['reshaped'],
)
reshaped = np.reshape(data, shape)
expect(node, inputs=[data, shape], outputs=[reshaped],
name='test_reshape_' + test_name)
Scan can be used to iterate over one or more scan_input tensors, constructing zero or more scan_output tensors. It combines ideas from general recurrences, functional programming constructs such as scan, fold, map, and zip and is intended to enable generalizations of RNN-like constructs for sequence-to-sequence processing. Other tensors (referred to as state_variables here) can be used to carry a state when iterating from one element to another (similar to hidden-state in RNNs, also referred to as loop-carried dependences in the context of loops). Many common usages involve a single scan_input tensor (where functionality similar to scan, fold and map can be obtained). When more than one scan_input is used, a behavior similar to zip is obtained.
The attribute body must be a graph, specifying the computation to be performed in every iteration. It takes as input the current values of the state_variables and the current iterated element of the scan_inputs. It must return the (updated) values of the state_variables and zero or more scan_output_element tensors. The values of the scan_output_element tensors are concatenated over all the iterations to produce the scan_output values of the scan construct (similar to the concatenated intermediate hidden-state values of RNN-like constructs). All the output tensors (state_variables as well as scan_output_element tensors) are required to have the same shape in each iteration of the loop (a restriction imposed to enable efficient memory allocation).
The scan operation returns the final values of the state_variables as well as the scan_outputs.
The optional attribute scan_input_directions specifies the direction (forward or backward) for each scan input. If this attribute is omitted, all sequences are scanned in the forward direction. A bidirectional scan may be performed by specifying the same tensor input twice in the scan_inputs, once with a forward direction, and once with a backward direction.
The scan_output of the operation is produced by concatenating the scan_output_element values produced by the body in each iteration. The optional attribute scan_output_directions specifies the direction in which scan_output is constructed (by appending or prepending the scan_output_element to scan_output in each iteration) for each scan_output. If this attribute is omitted, the scan_output_element is appended to the scan_output in each iteration.
The optional attribute axes specifies the axis to be scanned for each scan_input. If omitted, every scan_input will be scanned in axis 0. For example, if axis 0 is the batch axis and axis 1 is the time axis (to be scanned), specify an axis value of 1. Note that scanning a non-zero axis may be less efficient than scanning axis zero.
Note that because of the ONNX restriction that only the last parameter of an operator can be variadic, the initial-states and scan-inputs are listed together as one input parameter. Similarly, the final-states and scan-outputs are listed together as one output parameter. The attribute num_scan_inputs indicates the number M of scan-inputs.
The behavior of
Scan <
num_scan_inputs = m,
body = loop-body,
axes = [axis_1, ..., axis_m]
> (init_1, ..., init_n, scan_1, ..., scan_m)
is equivalent to the following pseudo-code:
// scan_i.shape[axis_i] denotes the (max) sequence-length of scan_i
// scan_i.shape[axis_i] is required to be equal to scan_j.shape[axis_j] for all i,j.
sequence_length = scan_1.shape[axis_1];
// initialize state-variables
st_1 = init_1; ... st_n = init_n;
// initialize scan-output variables: [] denotes an empty tensor
scan_out_1 = []; ...; scan_out_k = [];
// identify number of iterations:
// execute loop
for (int t = 0; t < sequence_length; ++t) {
// generate the scan-input elements: the notation T<axis=k>[t] indicates the sub-tensor
// of rank one less than T obtained by indexing T at position t along axis k.
si_1 = scan_1<axis=axis_1>[t];
... ;
si_m = scan_m<axis=axis_m>[t];
// execute loop-body
st_1, ..., st_n, so_1, ..., so_k = loop-body(st_1, ..., st_n, si_1, ..., si_m)
// accumulate the scan-output elements
scan_out_1 = Concat<axis=0>(scan_out_1, so_1); ... ; scan_out_k = Concat<axis=0>(scan_out_k, so_k);
}
return st_1, ..., st_n, scan_out_1, ..., scan_out_k;
Sample usage: Encoding RNN using a Scan
The following example shows how a simple RNN over an input tensor %X, with weight tensor %Wi, recurrence weight tensor %Ri, bias tensors %Wbi and %Rbi, and initial hidden-state %H_0 can be encoded as a ScanLoop. Note that the loop-body is a nested graph, and it directly computes %Wi, %Ri, %Wbi, and %Rbi (typically constants or initializers in the body graph). If these values are computed in the outer graph, they need to be passed in as extra state_variables.
graph rnn-encoding {
%H_0 = ...
%X = ...
%Y_h, %Y = Scan[body = <graph rnn-cell-1>, num_scan_inputs=1](%H_0, %X)
return %Y, %Y_h
}
graph rnn-cell-1 (
%H_tminus1[FLOAT, tensor]
%X_t[FLOAT, tensor]
) {
%Wi = ...
%Ri = ...
%Wbi = ...
%Rbi = ...
%t1 = X_t * (Wi^T)
%t2 = H_tminus1*(Ri^T)
%t3 = Add(%t1, %t2)
%t4 = Add(%t3, %Wbi)
%t5 = Add(%t4, %Rbi)
%Ht = Tanh(%t5)
%Accumulate = Identity(%Ht)
return %Ht, %Accumulate
}
This version of the operator has been available since version 9 of the default ONNX operator set.
Other versions of this operator: Scan-8
- axes : list of ints
- An optional list of M flags. The i-th element of the list specifies the axis to be scanned (the sequence axis) for the i-th scan_input. If omitted, 0 will be used as the scan axis for every scan_input.
- body : graph (required)
- The graph run each iteration. It has N+M inputs: (loop state variables..., scan_input_elts...). It has N+K outputs: (loop state variables..., scan_output_elts...). Each scan_output is created by concatenating the value of the specified scan_output_elt value at the end of each iteration of the loop. It is an error if the dimensions of these values change across loop iterations.
- num_scan_inputs : int (required)
- An attribute specifying the number of scan_inputs M.
- scan_input_directions : list of ints
- An optional list of M flags. The i-th element of the list specifies the direction to be scanned for the i-th scan_input tensor: 0 indicates forward direction and 1 indicates reverse direction. If omitted, all scan_input tensors will be scanned in the forward direction.
- scan_output_directions : list of ints
- An optional list of K flags, one for each scan_output. The i-th element of the list specifies whether the i-th scan_output should be constructed by appending or prepending a new value in each iteration: 0 indicates appending and 1 indicates prepending. If omitted, all scan_output tensors will be produced by appending a value in each iteration.
- initial_state_and_scan_inputs (variadic, heterogeneous) : V
- Initial values of the loop's N state variables followed by M scan_inputs
- final_state_and_scan_outputs (variadic, heterogeneous) : V
- Final values of the loop's N state variables followed by K scan_outputs
- I : tensor(int64)
- Int64 tensor
- V : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- All Tensor types
scan
# Given an input sequence [x1, ..., xN], sum up its elements using a scan
# returning the final state (x1+x2+...+xN) as well the scan_output
# [x1, x1+x2, ..., x1+x2+...+xN]
#
# create graph to represent scan body
sum_in = onnx.helper.make_tensor_value_info('sum_in', onnx.TensorProto.FLOAT, [2])
next = onnx.helper.make_tensor_value_info('next', onnx.TensorProto.FLOAT, [2])
sum_out = onnx.helper.make_tensor_value_info('sum_out', onnx.TensorProto.FLOAT, [2])
scan_out = onnx.helper.make_tensor_value_info('scan_out', onnx.TensorProto.FLOAT, [2])
add_node = onnx.helper.make_node(
'Add',
inputs=['sum_in', 'next'],
outputs=['sum_out']
)
id_node = onnx.helper.make_node(
'Identity',
inputs=['sum_out'],
outputs=['scan_out']
)
scan_body = onnx.helper.make_graph(
[add_node, id_node],
'scan_body',
[sum_in, next],
[sum_out, scan_out]
)
# create scan op node
no_sequence_lens = '' # optional input, not supplied
node = onnx.helper.make_node(
'Scan',
inputs=[no_sequence_lens, 'initial', 'x'],
outputs=['y', 'z'],
num_scan_inputs=1,
body=scan_body
)
# create inputs for batch-size 1, sequence-length 3, inner dimension 2
initial = np.array([0, 0]).astype(np.float32).reshape((1, 2))
x = np.array([1, 2, 3, 4, 5, 6]).astype(np.float32).reshape((1, 3, 2))
# final state computed = [1 + 3 + 5, 2 + 4 + 6]
y = np.array([9, 12]).astype(np.float32).reshape((1, 2))
# scan-output computed
z = np.array([1, 2, 4, 6, 9, 12]).astype(np.float32).reshape((1, 3, 2))
expect(node, inputs=[initial, x], outputs=[y, z],
name='test_scan_sum')
Given data
, updates
and indices
input tensors of rank r >= 1, write the values provided by updates
into the first input, data
, along axis
dimension of data
(by default outer-most one as axis=0) at corresponding indices
.
For each entry in updates
, the target index in data
is specified by corresponding entry in indices
for dimension = axis, and index in source for dimension != axis. For instance, in a 2-D tensor case,
data[indices[i][j]][j] = updates[i][j] if axis = 0, or data[i][indices[i][j]] = updates[i][j] if axis = 1,
where i and j are loop counters from 0 up to the respective size in updates
- 1.
Example 1: data = [ [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], ] indices = [ [1, 0, 2], [0, 2, 1], ] updates = [ [1.0, 1.1, 1.2], [2.0, 2.1, 2.2], ] output = [ [2.0, 1.1, 0.0] [1.0, 0.0, 2.2] [0.0, 2.1, 1.2] ]
Example 2: data = [[1.0, 2.0, 3.0, 4.0, 5.0]] indices = [[1, 3]] updates = [[1.1, 2.1]] axis = 1 output = [[1.0, 1.1, 3.0, 2.1, 5.0]]
This version of the operator has been available since version 9 of the default ONNX operator set.
- axis : int (default is 0)
- Which axis to scatter on. Negative value means counting dimensions from the back. Accepted range in [-r, r-1]
- data : T
- Tensor of rank r >= 1.
- indices : Tind
- Tensor of int32/int64 indices, of r >= 1 (same rank as input).
- updates : T
- Tensor of rank r >=1 (same rank and shape as indices)
- output : T
- Tensor of rank r >= 1 (same rank as input).
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- Input and output types can be of any tensor type.
- Tind : tensor(int32), tensor(int64)
- Constrain indices to integer types
scatter_with_axis
node = onnx.helper.make_node(
'Scatter',
inputs=['data', 'indices', 'updates'],
outputs=['y'],
axis=1,
)
data = np.array([[1.0, 2.0, 3.0, 4.0, 5.0]], dtype=np.float32)
indices = np.array([[1, 3]], dtype=np.int64)
updates = np.array([[1.1, 2.1]], dtype=np.float32)
y = np.array([[1.0, 1.1, 3.0, 2.1, 5.0]], dtype=np.float32)
expect(node, inputs=[data, indices, updates], outputs=[y],
name='test_scatter_with_axis')
scatter_without_axis
node = onnx.helper.make_node(
'Scatter',
inputs=['data', 'indices', 'updates'],
outputs=['y'],
)
data = np.zeros((3, 3), dtype=np.float32)
indices = np.array([[1, 0, 2], [0, 2, 1]], dtype=np.int64)
updates = np.array([[1.0, 1.1, 1.2], [2.0, 2.1, 2.2]], dtype=np.float32)
y = np.array([
[2.0, 1.1, 0.0],
[1.0, 0.0, 2.2],
[0.0, 2.1, 1.2]
], dtype=np.float32)
expect(node, inputs=[data, indices, updates], outputs=[y],
name='test_scatter_without_axis')
Selu takes one input data (Tensor) and produces one output data
(Tensor) where the scaled exponential linear unit function,
y = gamma * (alpha * e^x - alpha) for x <= 0
, y = gamma * x for x > 0
,
is applied to the tensor elementwise.
This version of the operator has been available since version 6 of the default ONNX operator set.
Other versions of this operator: Selu-1
- alpha : float (default is 1.67326)
- Coefficient of SELU default to 1.67326319217681884765625 (i.e., float32 approximation of 1.6732632423543772848170429916717).
- gamma : float (default is 1.0507)
- Coefficient of SELU default to 1.05070102214813232421875 (i.e., float32 approximation of 1.0507009873554804934193349852946).
- X : T
- Input tensor
- Y : T
- Output tensor
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
selu
node = onnx.helper.make_node(
'Selu',
inputs=['x'],
outputs=['y'],
alpha=2.0,
gamma=3.0
)
x = np.array([-1, 0, 1]).astype(np.float32)
# expected output [-3.79272318, 0., 3.]
y = np.clip(x, 0, np.inf) * 3.0 + (np.exp(np.clip(x, -np.inf, 0)) - 1) * 2.0 * 3.0
expect(node, inputs=[x], outputs=[y],
name='test_selu_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, 0, np.inf) * 3.0 + (np.exp(np.clip(x, -np.inf, 0)) - 1) * 2.0 * 3.0
expect(node, inputs=[x], outputs=[y],
name='test_selu')
selu_default
default_alpha = 1.67326319217681884765625
default_gamma = 1.05070102214813232421875
node = onnx.helper.make_node(
'Selu',
inputs=['x'],
outputs=['y'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, 0, np.inf) * default_gamma + \
(np.exp(np.clip(x, -np.inf, 0)) - 1) * default_alpha * default_gamma
expect(node, inputs=[x], outputs=[y],
name='test_selu_default')
Takes a tensor as input and outputs an 1D int64 tensor containing the shape of the input tensor.
This version of the operator has been available since version 1 of the default ONNX operator set.
- data : T
- An input tensor.
- shape : T1
- Shape of the input tensor
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- Input tensor can be of arbitrary type.
- T1 : tensor(int64)
- Constrain output to int64 tensor.
shape
node = onnx.helper.make_node(
'Shape',
inputs=['x'],
outputs=['y'],
)
x = np.array([
[1, 2, 3],
[4, 5, 6],
]).astype(np.float32)
y = np.array([
2, 3,
]).astype(np.int64)
expect(node, inputs=[x], outputs=[y],
name='test_shape_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.array(x.shape).astype(np.int64)
expect(node, inputs=[x], outputs=[y],
name='test_shape')
Sigmoid takes one input data (Tensor) and produces one output data (Tensor) where the sigmoid function, y = 1 / (1 + exp(-x)), is applied to the tensor elementwise.
This version of the operator has been available since version 6 of the default ONNX operator set.
Other versions of this operator: Sigmoid-1
- X : T
- Input tensor
- Y : T
- Output tensor
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
sigmoid
node = onnx.helper.make_node(
'Sigmoid',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = 1.0 / (1.0 + np.exp(np.negative(x))) # expected output [0.26894143, 0.5, 0.7310586]
expect(node, inputs=[x], outputs=[y],
name='test_sigmoid_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = 1.0 / (1.0 + np.exp(np.negative(x)))
expect(node, inputs=[x], outputs=[y],
name='test_sigmoid')
Calculate the sign of the given input tensor element-wise. If input > 0, output 1. if input < 0, output -1. if input == 0, output 0.
This version of the operator has been available since version 9 of the default ONNX operator set.
- input : T
- Input tensor
- output : T
- The sign of the input tensor computed element-wise. It has the same shape and type of the input.
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to all numeric tensors.
sign
node = onnx.helper.make_node(
'Sign',
inputs=['x'],
outputs=['y'],
)
x = np.array(range(-5, 6)).astype(np.float32)
y = np.sign(x)
expect(node, inputs=[x], outputs=[y],
name='test_sign')
Calculates the sine of the given input tensor, element-wise.
This version of the operator has been available since version 7 of the default ONNX operator set.
- input : T
- Input tensor
- output : T
- The sine of the input tensor computed element-wise
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
sin
node = onnx.helper.make_node(
'Sin',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.sin(x)
expect(node, inputs=[x], outputs=[y],
name='test_sin_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.sin(x)
expect(node, inputs=[x], outputs=[y],
name='test_sin')
Calculates the hyperbolic sine of the given input tensor element-wise.
This version of the operator has been available since version 9 of the default ONNX operator set.
- input : T
- Input tensor
- output : T
- The hyperbolic sine values of the input tensor computed element-wise
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
sinh
node = onnx.helper.make_node(
'Sinh',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.sinh(x) # expected output [-1.17520118, 0., 1.17520118]
expect(node, inputs=[x], outputs=[y],
name='test_sinh_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.sinh(x)
expect(node, inputs=[x], outputs=[y],
name='test_sinh')
Takes a tensor as input and outputs a int64 scalar that equals to the total number of elements of the input tensor.
This version of the operator has been available since version 1 of the default ONNX operator set.
- data : T
- An input tensor.
- size : T1
- Total number of elements of the input tensor
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- Input tensor can be of arbitrary type.
- T1 : tensor(int64)
- Constrain output to int64 tensor, which should be a scalar though.
size
node = onnx.helper.make_node(
'Size',
inputs=['x'],
outputs=['y'],
)
x = np.array([
[1, 2, 3],
[4, 5, 6],
]).astype(np.float32)
y = np.array(6).astype(np.int64)
expect(node, inputs=[x], outputs=[y],
name='test_size_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.array(x.size).astype(np.int64)
expect(node, inputs=[x], outputs=[y],
name='test_size')
Produces a slice of the input tensor along multiple axes. Similar to numpy:
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
Slices uses axes
, starts
and ends
attributes to specify the start and end
dimension for each axis in the list of axes, it uses this information to
slice the input data
tensor. If a negative value is passed for any of the
start or end indices, it represent number of elements before the end of that
dimension. If the value passed to start or end is larger than the n
(the
number of elements in this dimension), it represents n
. For slicing to the
end of a dimension with unknown size, it is recommended to pass in INT_MAX
.
If axes
are omitted, they are set to [0, ..., ndim-1]
.
Example 1:
data = [
[1, 2, 3, 4],
[5, 6, 7, 8],
]
axes = [0, 1]
starts = [1, 0]
ends = [2, 3]
result = [
[5, 6, 7],
]
Example 2:
data = [
[1, 2, 3, 4],
[5, 6, 7, 8],
]
starts = [0, 1]
ends = [-1, 1000]
result = [
[2, 3, 4],
]
This version of the operator has been available since version 1 of the default ONNX operator set.
- axes : list of ints
- Axes that `starts` and `ends` apply to. It's optional. If not present, will be treated as [0, 1, ..., len(`starts`) - 1].
- ends : list of ints (required)
- Ending indices (exclusive) of corresponding axis in axes`
- starts : list of ints (required)
- Starting indices of corresponding axis in `axes`
- data : T
- Tensor of data to extract slices from.
- output : T
- Sliced data tensor.
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- Constrain input and output types to all tensor types.
slice
node = onnx.helper.make_node(
'Slice',
inputs=['x'],
outputs=['y'],
axes=[0, 1],
starts=[0, 0],
ends=[3, 10],
)
x = np.random.randn(20, 10, 5).astype(np.float32)
y = x[0:3, 0:10]
expect(node, inputs=[x], outputs=[y],
name='test_slice')
slice_default_axes
node = onnx.helper.make_node(
'Slice',
inputs=['x'],
outputs=['y'],
starts=[0, 0, 3],
ends=[20, 10, 4],
)
x = np.random.randn(20, 10, 5).astype(np.float32)
y = x[:, :, 3:4]
expect(node, inputs=[x], outputs=[y],
name='test_slice_default_axes')
slice_end_out_of_bounds
node = onnx.helper.make_node(
'Slice',
inputs=['x'],
outputs=['y'],
axes=[1],
starts=[1],
ends=[1000],
)
x = np.random.randn(20, 10, 5).astype(np.float32)
y = x[:, 1:1000]
expect(node, inputs=[x], outputs=[y],
name='test_slice_end_out_of_bounds')
slice_neg
node = onnx.helper.make_node(
'Slice',
inputs=['x'],
outputs=['y'],
axes=[1],
starts=[0],
ends=[-1],
)
x = np.random.randn(20, 10, 5).astype(np.float32)
y = x[:, 0:-1]
expect(node, inputs=[x], outputs=[y],
name='test_slice_neg')
slice_start_out_of_bounds
node = onnx.helper.make_node(
'Slice',
inputs=['x'],
outputs=['y'],
axes=[1],
starts=[1000],
ends=[1000],
)
x = np.random.randn(20, 10, 5).astype(np.float32)
y = x[:, 1000:1000]
expect(node, inputs=[x], outputs=[y],
name='test_slice_start_out_of_bounds')
The operator computes the softmax (normalized exponential) values for each layer in the batch of the given input. The input is a 2-D tensor (Tensor) of size (batch_size x input_feature_dimensions). The output tensor has the same shape and contains the softmax values of the corresponding input.
Input does not need to explicitly be a 2D vector; rather, it will be coerced into one. For an arbitrary n-dimensional tensor input \in [a_0, a_1, ..., a_{k-1}, a_k, ..., a_{n-1}] and k is the axis provided, then input will be coerced into a 2-dimensional tensor with dimensions [a_0 * ... * a_{k-1}, a_k * ... * a_{n-1}]. For the default case where axis=1, this means the input tensor will be coerced into a 2D tensor of dimensions [a_0, a_1 * ... * a_{n-1}], where a_0 is often the batch size. In this situation, we must have a_0 = N and a_1 * ... * a_{n-1} = D. Each of these dimensions must be matched correctly, or else the operator will throw errors.
This version of the operator has been available since version 1 of the default ONNX operator set.
- axis : int (default is 1)
- Describes the axis of the inputs when coerced to 2D; defaults to one because the 0th axis most likely describes the batch_size
- input : T
- The input tensor that's coerced into a 2D matrix of size (NxD) as described above.
- output : T
- The output values with the same shape as input tensor (the original size without coercion).
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
softmax
node = onnx.helper.make_node(
'Softmax',
inputs=['x'],
outputs=['y'],
)
x = np.array([[-1, 0, 1]]).astype(np.float32)
# expected output [[0.09003058, 0.24472848, 0.66524094]]
y = np.exp(x) / np.sum(np.exp(x), axis=1)
expect(node, inputs=[x], outputs=[y],
name='test_softmax_example')
softmax_axis
def softmax_2d(x): # type: (np.ndarray) -> np.ndarray
max_x = np.max(x, axis=1).reshape((-1, 1))
exp_x = np.exp(x - max_x)
return exp_x / np.sum(exp_x, axis=1).reshape((-1, 1))
x = np.array([[0, 1, 2, 3], [10000, 10001, 10002, 10003]]).astype(np.float32)
# expected output [[0.0320586, 0.08714432, 0.23688284, 0.64391428],
# [0.0320586, 0.08714432, 0.23688284, 0.64391428]]
y = softmax_2d(x)
node = onnx.helper.make_node(
'Softmax',
inputs=['x'],
outputs=['y'],
)
expect(node, inputs=[x], outputs=[y],
name='test_softmax_large_number')
x = np.abs(np.random.randn(3, 4, 5).astype(np.float32))
node = onnx.helper.make_node(
'Softmax',
inputs=['x'],
outputs=['y'],
axis=0,
)
y = softmax_2d(x.reshape(1, 60)).reshape(3, 4, 5)
expect(node, inputs=[x], outputs=[y],
name='test_softmax_axis_0')
node = onnx.helper.make_node(
'Softmax',
inputs=['x'],
outputs=['y'],
axis=1,
)
y = softmax_2d(x.reshape(3, 20)).reshape(3, 4, 5)
expect(node, inputs=[x], outputs=[y],
name='test_softmax_axis_1')
# default axis is 1
node = onnx.helper.make_node(
'Softmax',
inputs=['x'],
outputs=['y'],
)
expect(node, inputs=[x], outputs=[y],
name='test_softmax_default_axis')
node = onnx.helper.make_node(
'Softmax',
inputs=['x'],
outputs=['y'],
axis=2,
)
y = softmax_2d(x.reshape(12, 5)).reshape(3, 4, 5)
expect(node, inputs=[x], outputs=[y],
name='test_softmax_axis_2')
Softplus takes one input data (Tensor) and produces one output data (Tensor) where the softplus function, y = ln(exp(x) + 1), is applied to the tensor elementwise.
This version of the operator has been available since version 1 of the default ONNX operator set.
- X : T
- 1D input tensor
- Y : T
- 1D input tensor
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
softplus
node = onnx.helper.make_node(
'Softplus',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.log(np.exp(x) + 1) # expected output [0.31326166, 0.69314718, 1.31326163]
expect(node, inputs=[x], outputs=[y],
name='test_softplus_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.log(np.exp(x) + 1)
expect(node, inputs=[x], outputs=[y],
name='test_softplus')
Calculates the softsign (x/(1+|x|)) of the given input tensor element-wise.
This version of the operator has been available since version 1 of the default ONNX operator set.
- input : T
- Input tensor
- output : T
- The softsign (x/(1+|x|)) values of the input tensor computed element-wise
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
softsign
node = onnx.helper.make_node(
'Softsign',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.array([-0.5, 0, 0.5]).astype(np.float32)
expect(node, inputs=[x], outputs=[y],
name='test_softsign_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = x / (1 + np.abs(x))
expect(node, inputs=[x], outputs=[y],
name='test_softsign')
SpaceToDepth rearranges blocks of spatial data into depth. More specifically, this op outputs a copy of the input tensor where values from the height and width dimensions are moved to the depth dimension.
This version of the operator has been available since version 1 of the default ONNX operator set.
- blocksize : int (required)
- Blocks of [blocksize, blocksize] are moved.
- input : T
- Input tensor of [N,C,H,W], where N is the batch axis, C is the channel or depth, H is the height and W is the width.
- output : T
- Output tensor of [N, C * blocksize * blocksize, H/blocksize, W/blocksize].
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- Constrain input and output types to all tensor types.
Split a tensor into a list of tensors, along the specified 'axis'. Lengths of the parts can be specified using argument 'split'. Otherwise, the tensor is split to equal sized parts.
This version of the operator has been available since version 2 of the default ONNX operator set.
Other versions of this operator: Split-1
- axis : int (default is 0)
- Which axis to split on.
- split : list of ints
- length of each output
- input : T
- The tensor to split
- outputs (variadic) : T
- One or more outputs forming list of tensors after splitting
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- Constrain input and output types to all tensor types.
1d
input = np.array([1., 2., 3., 4., 5., 6.]).astype(np.float32)
node = onnx.helper.make_node(
'Split',
inputs=['input'],
outputs=['output_1', 'output_2', 'output_3'],
axis=0
)
expected_outputs = [np.array([1., 2.]).astype(np.float32), np.array([3., 4.]).astype(np.float32), np.array([5., 6.]).astype(np.float32)]
expect(node, inputs=[input], outputs=[y for y in expected_outputs], name='test_split_equal_parts_1d')
node = onnx.helper.make_node(
'Split',
inputs=['input'],
outputs=['output_1', 'output_2'],
axis=0,
split=[2, 4]
)
expected_outputs = [np.array([1., 2.]).astype(np.float32), np.array([3., 4., 5., 6.]).astype(np.float32)]
expect(node, inputs=[input], outputs=[y for y in expected_outputs], name='test_split_variable_parts_1d')
2d
input = np.array([[1., 2., 3., 4., 5., 6.],
[7., 8., 9., 10., 11., 12.]]).astype(np.float32)
node = onnx.helper.make_node(
'Split',
inputs=['input'],
outputs=['output_1', 'output_2'],
axis=1
)
expected_outputs = [np.array([[1., 2., 3.], [7., 8., 9.]]).astype(np.float32),
np.array([[4., 5., 6.], [10., 11., 12.]]).astype(np.float32)]
expect(node, inputs=[input], outputs=[y for y in expected_outputs], name='test_split_equal_parts_2d')
node = onnx.helper.make_node(
'Split',
inputs=['input'],
outputs=['output_1', 'output_2'],
axis=1,
split=[2, 4]
)
expected_outputs = [np.array([[1., 2.], [7., 8.]]).astype(np.float32),
np.array([[3., 4., 5., 6.], [9., 10., 11., 12.]]).astype(np.float32)]
expect(node, inputs=[input], outputs=[y for y in expected_outputs], name='test_split_variable_parts_2d')
default_values
input = np.array([1., 2., 3., 4., 5., 6.]).astype(np.float32)
# If axis is not specified, split is applied on default axis 0
node = onnx.helper.make_node(
'Split',
inputs=['input'],
outputs=['output_1', 'output_2', 'output_3']
)
expected_outputs = [np.array([1., 2.]).astype(np.float32), np.array([3., 4.]).astype(np.float32), np.array([5., 6.]).astype(np.float32)]
expect(node, inputs=[input], outputs=[y for y in expected_outputs], name='test_split_equal_parts_default_axis')
node = onnx.helper.make_node(
'Split',
inputs=['input'],
outputs=['output_1', 'output_2'],
split=[2, 4]
)
expected_outputs = [np.array([1., 2.]).astype(np.float32), np.array([3., 4., 5., 6.]).astype(np.float32)]
expect(node, inputs=[input], outputs=[y for y in expected_outputs], name='test_split_variable_parts_default_axis')
Square root takes one input data (Tensor) and produces one output data (Tensor) where the square root is, y = x^0.5, is applied to the tensor elementwise. If x is negative, then it will return NaN.
This version of the operator has been available since version 6 of the default ONNX operator set.
Other versions of this operator: Sqrt-1
- X : T
- Input tensor
- Y : T
- Output tensor
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
sqrt
node = onnx.helper.make_node(
'Sqrt',
inputs=['x'],
outputs=['y'],
)
x = np.array([1, 4, 9]).astype(np.float32)
y = np.sqrt(x) # expected output [1., 2., 3.]
expect(node, inputs=[x], outputs=[y],
name='test_sqrt_example')
x = np.abs(np.random.randn(3, 4, 5).astype(np.float32))
y = np.sqrt(x)
expect(node, inputs=[x], outputs=[y],
name='test_sqrt')
Remove single-dimensional entries from the shape of a tensor.
Takes a parameter axes
with a list of axes to squeeze.
If axes
is not provided, all the single dimensions will be removed from
the shape. If an axis is selected with shape entry not equal to one, an error is raised.
This version of the operator has been available since version 1 of the default ONNX operator set.
- axes : list of ints
- List of positive integers, indicate the dimensions to squeeze.
- data : T
- Tensors with at least max(dims) dimensions.
- squeezed : T
- Reshaped tensor with same data as input.
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- Constrain input and output types to all tensor types.
squeeze
node = onnx.helper.make_node(
'Squeeze',
inputs=['x'],
outputs=['y'],
axes=[0],
)
x = np.random.randn(1, 3, 4, 5).astype(np.float32)
y = np.squeeze(x, axis=0)
expect(node, inputs=[x], outputs=[y],
name='test_squeeze')
Performs element-wise binary subtraction (with Numpy-style broadcasting support).
This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc.
This version of the operator has been available since version 7 of the default ONNX operator set.
Other versions of this operator: Sub-1, Sub-6
- A : T
- First operand.
- B : T
- Second operand.
- C : T
- Result, has same element type as two inputs
- T : tensor(uint32), tensor(uint64), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to high-precision numeric tensors.
sub
node = onnx.helper.make_node(
'Sub',
inputs=['x', 'y'],
outputs=['z'],
)
x = np.array([1, 2, 3]).astype(np.float32)
y = np.array([3, 2, 1]).astype(np.float32)
z = x - y # expected output [-2., 0., 2.]
expect(node, inputs=[x, y], outputs=[z],
name='test_sub_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.random.randn(3, 4, 5).astype(np.float32)
z = x - y
expect(node, inputs=[x, y], outputs=[z],
name='test_sub')
sub_broadcast
node = onnx.helper.make_node(
'Sub',
inputs=['x', 'y'],
outputs=['z'],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.random.randn(5).astype(np.float32)
z = x - y
expect(node, inputs=[x, y], outputs=[z],
name='test_sub_bcast')
Element-wise sum of each of the input tensors (with Numpy-style broadcasting support). All inputs and outputs must have the same data type. This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc.
This version of the operator has been available since version 8 of the default ONNX operator set.
Other versions of this operator: Sum-1, Sum-6
- data_0 (variadic) : T
- List of tensors for sum.
- sum : T
- Output tensor.
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
sum
data_0 = np.array([3, 0, 2]).astype(np.float32)
data_1 = np.array([1, 3, 4]).astype(np.float32)
data_2 = np.array([2, 6, 6]).astype(np.float32)
result = np.array([6, 9, 12]).astype(np.float32)
node = onnx.helper.make_node(
'Sum',
inputs=['data_0', 'data_1', 'data_2'],
outputs=['result'],
)
expect(node, inputs=[data_0, data_1, data_2], outputs=[result],
name='test_sum_example')
node = onnx.helper.make_node(
'Sum',
inputs=['data_0'],
outputs=['result'],
)
expect(node, inputs=[data_0], outputs=[data_0],
name='test_sum_one_input')
result = np.add(data_0, data_1)
node = onnx.helper.make_node(
'Sum',
inputs=['data_0', 'data_1'],
outputs=['result'],
)
expect(node, inputs=[data_0, data_1], outputs=[result],
name='test_sum_two_inputs')
Calculates the tangent of the given input tensor, element-wise.
This version of the operator has been available since version 7 of the default ONNX operator set.
- input : T
- Input tensor
- output : T
- The tangent of the input tensor computed element-wise
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
tan
node = onnx.helper.make_node(
'Tan',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.tan(x)
expect(node, inputs=[x], outputs=[y],
name='test_tan_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.tan(x)
expect(node, inputs=[x], outputs=[y],
name='test_tan')
Calculates the hyperbolic tangent of the given input tensor element-wise.
This version of the operator has been available since version 6 of the default ONNX operator set.
Other versions of this operator: Tanh-1
- input : T
- Input tensor
- output : T
- The hyperbolic tangent values of the input tensor computed element-wise
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
tanh
node = onnx.helper.make_node(
'Tanh',
inputs=['x'],
outputs=['y'],
)
x = np.array([-1, 0, 1]).astype(np.float32)
y = np.tanh(x) # expected output [-0.76159418, 0., 0.76159418]
expect(node, inputs=[x], outputs=[y],
name='test_tanh_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.tanh(x)
expect(node, inputs=[x], outputs=[y],
name='test_tanh')
Constructs a tensor by tiling a given tensor.
This is the same as function tile
in Numpy, but no broadcast.
For example A = [[1, 2], [3, 4]], B = [1, 2], tile(A, B) = [[1, 2, 1, 2], [3, 4, 3, 4]]
This version of the operator has been available since version 6 of the default ONNX operator set.
Other versions of this operator: Tile-1
- input : T
- Input tensor of any shape.
- repeats : T1
- 1D int64 tensor of the same length as input's dimension number, includes numbers of repeated copies along input's dimensions.
- output : T
- Output tensor of the same dimension and type as tensor input. output_dim[i] = input_dim[i] * repeats[i]
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- Constrain input and output types to all tensor types.
- T1 : tensor(int64)
- Constrain repeat's type to int64 tensors.
tile
node = onnx.helper.make_node(
'Tile',
inputs=['x', 'y'],
outputs=['z']
)
x = np.random.rand(2, 3, 4, 5).astype(np.float32)
repeats = np.random.randint(low=1, high=10, size=(np.ndim(x),)).astype(np.int64)
z = np.tile(x, repeats)
expect(node,
inputs=[x, repeats],
outputs=[z],
name='test_tile')
tile_precomputed
node = onnx.helper.make_node(
'Tile',
inputs=['x', 'y'],
outputs=['z']
)
x = np.array([
[0, 1],
[2, 3]
], dtype=np.float32)
repeats = np.array([2, 2], dtype=np.int64)
z = np.array([
[0, 1, 0, 1],
[2, 3, 2, 3],
[0, 1, 0, 1],
[2, 3, 2, 3]
], dtype=np.float32)
expect(node,
inputs=[x, repeats],
outputs=[z],
name='test_tile_precomputed')
Retrieve the top-K elements along a specified axis. Given an input tensor of shape [a_1, a_2, ..., a_n, r] and integer argument k, return two outputs: -Value tensor of shape [a_1, a_2, ..., a_{axis-1}, k, a_{axis+1}, ... a_n] which contains the values of the top k elements along the specified axis -Index tensor of shape [a_1, a_2, ..., a_{axis-1}, k, a_{axis+1}, ... a_n] which contains the indices of the top k elements (original indices from the input tensor).
Given two equivalent values, this operator uses the indices along the axis as a tiebreaker. That is, the element with the lower index will appear first.
This version of the operator has been available since version 1 of the default ONNX operator set.
- axis : int (default is -1)
- Dimension on which to do the sort.
- k : int (required)
- Number of top elements to retrieve
- X : T
- Tensor of shape [a_1, a_2, ..., a_n, r]
- Values : T
- Tensor of shape [a_1, a_2, ..., a_{axis-1}, k, a_{axis+1}, ... a_n] containing top K values from the input tensor
- Indices : I
- Tensor of shape [a_1, a_2, ..., a_{axis-1}, k, a_{axis+1}, ... a_n] containing the corresponding input tensor indices for the top K values.
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
- I : tensor(int64)
- Constrain index tensor to int64
top_k
node = onnx.helper.make_node(
'TopK',
inputs=['x'],
outputs=['values', 'indices'],
k=3
)
X = np.array([
[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11],
], dtype=np.float32)
values_ref = np.array([
[3, 2, 1],
[7, 6, 5],
[11, 10, 9],
], dtype=np.float32)
indices_ref = np.array([
[3, 2, 1],
[3, 2, 1],
[3, 2, 1],
], dtype=np.int64)
expect(node, inputs=[X], outputs=[values_ref, indices_ref],
name='test_top_k')
Transpose the input tensor similar to numpy.transpose. For example, when perm=(1, 0, 2), given an input tensor of shape (1, 2, 3), the output shape will be (2, 1, 3).
This version of the operator has been available since version 1 of the default ONNX operator set.
- perm : list of ints
- A list of integers. By default, reverse the dimensions, otherwise permute the axes according to the values given.
- data : T
- An input tensor.
- transposed : T
- Transposed output.
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- Constrain input and output types to all tensor types.
all_permutations
shape = (2, 3, 4)
data = np.random.random_sample(shape).astype(np.float32)
permutations = list(itertools.permutations(np.arange(len(shape))))
for i in range(len(permutations)):
node = onnx.helper.make_node(
'Transpose',
inputs=['data'],
outputs=['transposed'],
perm=permutations[i]
)
transposed = np.transpose(data, permutations[i])
expect(node, inputs=[data], outputs=[transposed],
name='test_transpose_all_permutations_' + str(i))
default
shape = (2, 3, 4)
data = np.random.random_sample(shape).astype(np.float32)
node = onnx.helper.make_node(
'Transpose',
inputs=['data'],
outputs=['transposed']
)
transposed = np.transpose(data)
expect(node, inputs=[data], outputs=[transposed],
name='test_transpose_default')
Insert single-dimensional entries to the shape of a tensor.
Takes one required argument axes
, a list of dimensions that will be inserted.
Dimension indices in axes
are as seen in the output tensor. For example:
Given a tensor such that tensor with shape [3, 4, 5], then
Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1]
This version of the operator has been available since version 1 of the default ONNX operator set.
- axes : list of ints (required)
- List of positive integers, indicate the dimensions to be inserted
- data : T
- Original tensor
- expanded : T
- Reshaped tensor with same data as input.
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- Constrain input and output types to all tensor types.
unsqueeze
node = onnx.helper.make_node(
'Unsqueeze',
inputs=['x'],
outputs=['y'],
axes=[0],
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.expand_dims(x, axis=0)
expect(node, inputs=[x], outputs=[y],
name='test_unsqueeze')
Upsample the input tensor. Each dimension value of the output tensor is: output_dimension = floor(input_dimension * scale).
This version of the operator has been available since version 9 of the default ONNX operator set.
Other versions of this operator: Upsample-7
- mode : string (default is nearest)
- Two interpolation modes: nearest (default), and linear (including bilinear, trilinear, etc)
- X : T
- N-D tensor
- scales : tensor(float)
- The scale array along each dimension. It takes value greater than or equal to 1. The number of elements of 'scales' should be the same as the rank of input 'X'.
- Y : T
- N-D tensor after resizing
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- Constrain input 'X' and output 'Y' to all tensor types.
nearest
node = onnx.helper.make_node(
'Upsample',
inputs=['X', 'scales'],
outputs=['Y'],
mode='nearest',
)
data = np.array([[[
[1, 2],
[3, 4],
]]], dtype=np.float32)
scales = np.array([1.0, 1.0, 2.0, 3.0], dtype=np.float32)
output = np.array([[[
[1, 1, 1, 2, 2, 2],
[1, 1, 1, 2, 2, 2],
[3, 3, 3, 4, 4, 4],
[3, 3, 3, 4, 4, 4],
]]], dtype=np.float32)
expect(node, inputs=[data, scales], outputs=[output],
name='test_upsample_nearest')
Returns the tensor resulted from performing the xor
logical operation
elementwise on the input tensors A
and B
(with Numpy-style broadcasting support).
This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check the doc.
This version of the operator has been available since version 7 of the default ONNX operator set.
Other versions of this operator: Xor-1
- A : T
- First input operand for the logical operator.
- B : T
- Second input operand for the logical operator.
- C : T1
- Result tensor.
- T : tensor(bool)
- Constrains input to boolean tensor.
- T1 : tensor(bool)
- Constrains output to boolean tensor.
xor
node = onnx.helper.make_node(
'Xor',
inputs=['x', 'y'],
outputs=['xor'],
)
# 2d
x = (np.random.randn(3, 4) > 0).astype(np.bool)
y = (np.random.randn(3, 4) > 0).astype(np.bool)
z = np.logical_xor(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_xor2d')
# 3d
x = (np.random.randn(3, 4, 5) > 0).astype(np.bool)
y = (np.random.randn(3, 4, 5) > 0).astype(np.bool)
z = np.logical_xor(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_xor3d')
# 4d
x = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool)
y = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool)
z = np.logical_xor(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_xor4d')
xor_broadcast
node = onnx.helper.make_node(
'Xor',
inputs=['x', 'y'],
outputs=['xor'],
)
# 3d vs 1d
x = (np.random.randn(3, 4, 5) > 0).astype(np.bool)
y = (np.random.randn(5) > 0).astype(np.bool)
z = np.logical_xor(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_xor_bcast3v1d')
# 3d vs 2d
x = (np.random.randn(3, 4, 5) > 0).astype(np.bool)
y = (np.random.randn(4, 5) > 0).astype(np.bool)
z = np.logical_xor(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_xor_bcast3v2d')
# 4d vs 2d
x = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool)
y = (np.random.randn(5, 6) > 0).astype(np.bool)
z = np.logical_xor(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_xor_bcast4v2d')
# 4d vs 3d
x = (np.random.randn(3, 4, 5, 6) > 0).astype(np.bool)
y = (np.random.randn(4, 5, 6) > 0).astype(np.bool)
z = np.logical_xor(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_xor_bcast4v3d')
# 4d vs 4d
x = (np.random.randn(1, 4, 1, 6) > 0).astype(np.bool)
y = (np.random.randn(3, 1, 5, 6) > 0).astype(np.bool)
z = np.logical_xor(x, y)
expect(node, inputs=[x, y], outputs=[z],
name='test_xor_bcast4v4d')
experimental ATen
Experimental allowing ATen operations to be accessed directly from Caffe2 to allow for quick prototyping when ONNX is missing standard versions of and op
This version of the operator has been available since version 1 of the default ONNX operator set.
- input (variadic) : T
- Arbitrary input
- output (variadic) : T
- Arbitrary output
- T : tensor(bool), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double)
- Constrain output types to bool, int32, int64, float16, float, double tensors.
experimental Affine
Affine takes one input data (Tensor) and produces one output data (Tensor) where the affine function, y = alpha * x + beta, is applied to the tensor elementwise.
This version of the operator has been available since version 1 of the default ONNX operator set.
- alpha : float (default is 1.0)
- Value of alpha
- beta : float (default is 0.0)
- Value of beta
- X : T
- 1D input tensor
- Y : T
- 1D output tensor
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
experimental ConstantFill
The operator fills the elements of the output tensor with a constant value specified by the 'value' attribute.
The data type is specified by the 'dtype' attribute. The 'dtype' attribute must be one of the data types specified in the 'DataType' enum field in the TensorProto message. If the 'dtype' attribute is not provided, the data type of 'value' is used.
The output tensor shape is specified by the 'shape' attribute. If the number of input is 1, the shape will be identical to that of the input at run time with optional additional dimensions appended at the end as specified by 'extra_shape' attribute. In that case the 'shape' attribute should not be set.
If input_as_shape is set to true, then the input should be a 1D tensor containing the desired output shape (the dimensions specified in extra_shape will also be appended)
NOTE: Currently, it supports data type of float, int32, int64, and bool.
This version of the operator has been available since version 1 of the default ONNX operator set.
- dtype : int (default is 1)
- The data type for the elements of the output tensor.Strictly must be one of the types from DataType enum in TensorProto.
- extra_shape : list of ints
- The additional dimensions appended at the end of the shape indicatedby the input blob.Cannot set the extra_shape argument when there is no input blob.
- input_as_shape : int
- 1D tensor containing the desired output shape. First input must be in CPU context.
- shape : list of ints
- The shape of the output tensor. Cannot set the shape argument and pass in an input at the same time.
- value : float (default is 0.0)
- The value for the elements of the output tensor.
- input (optional) : T1
- Input tensor (optional) to provide shape information.
- output : T2
- Output tensor of constant values specified by 'value'argument and its type is specified by the 'dtype' argument
- T1 : tensor(float), tensor(int32), tensor(int64), tensor(bool)
- Constrain input types to float, int32, int64, bool tensors.
- T2 : tensor(float), tensor(int32), tensor(int64), tensor(bool)
- Constrain output types to float, int32, int64, bool tensors.
experimental Crop
Crop and image to the specified spatial dimensions. If scale is given, then optionally start the crop offset by the left/top border amounts. If scale is not provided, crop the borders as provided.
This version of the operator has been available since version 1 of the default ONNX operator set.
- border : list of ints
- A 1-D values of (leftBorder, topBorder, rightBorder, bottomBorder).
- scale : list of ints
- A 1-D values of (height, width).
- input : T
- Input tensor of shape [N,C,H,W]
- output : T
- Result, has same type as input, with H and W dimensions reduced.
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
experimental DynamicSlice
Produces a slice of the input tensor along multiple axes. Similar to numpy:
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
Slices uses axes
, starts
and ends
inputs to specify the start and end
dimension for each axis in the list of axes, it uses this information to
slice the input data
tensor. If a negative value is passed for any of the
start or end indices, it represent number of elements before the end of that
dimension. If the value passed to start or end is larger than the n
(the
number of elements in this dimension), it represents n
. For slicing to the
end of a dimension with unknown size, it is recommended to pass in INT_MAX
.
If axes
are omitted, they are set to [0, ..., ndim-1]
.
Example 1:
data = [
[1, 2, 3, 4],
[5, 6, 7, 8],
]
axes = [0, 1]
starts = [1, 0]
ends = [2, 3]
result = [
[5, 6, 7],
]
Example 2:
data = [
[1, 2, 3, 4],
[5, 6, 7, 8],
]
starts = [0, 1]
ends = [-1, 1000]
result = [
[2, 3, 4],
]
This version of the operator has been available since version 9 of the default ONNX operator set.
- data : T
- Tensor of data to extract slices from.
- starts : Tind
- 1-D tensor of starting indices of corresponding axis in `axes`
- ends : Tind
- 1-D tensor of ending indices (exclusive) of corresponding axis in axes
- axes (optional) : Tind
- 1-D tensor of axes that `starts` and `ends` apply to.
- output : T
- Sliced data tensor.
- T : tensor(uint8), tensor(uint16), tensor(uint32), tensor(uint64), tensor(int8), tensor(int16), tensor(int32), tensor(int64), tensor(float16), tensor(float), tensor(double), tensor(string), tensor(bool), tensor(complex64), tensor(complex128)
- Constrain input and output types to all tensor types.
- Tind : tensor(int32), tensor(int64)
- Constrain indices to integer types
dynamic_slice
node = onnx.helper.make_node(
'DynamicSlice',
inputs=['x', 'starts', 'ends', 'axes'],
outputs=['y'],
)
x = np.random.randn(20, 10, 5).astype(np.float32)
y = x[0:3, 0:10]
starts = np.array([0, 0], dtype=np.int64)
ends = np.array([3, 10], dtype=np.int64)
axes = np.array([0, 1], dtype=np.int64)
expect(node, inputs=[x, starts, ends, axes], outputs=[y],
name='test_dynamic_slice')
dynamic_slice_default_axes
node = onnx.helper.make_node(
'DynamicSlice',
inputs=['x', 'starts', 'ends'],
outputs=['y'],
)
x = np.random.randn(20, 10, 5).astype(np.float32)
starts = np.array([0, 0, 3], dtype=np.int64)
ends = np.array([20, 10, 4], dtype=np.int64)
y = x[:, :, 3:4]
expect(node, inputs=[x, starts, ends], outputs=[y],
name='test_dynamic_slice_default_axes')
dynamic_slice_end_out_of_bounds
node = onnx.helper.make_node(
'DynamicSlice',
inputs=['x', 'starts', 'ends', 'axes'],
outputs=['y'],
)
x = np.random.randn(20, 10, 5).astype(np.float32)
starts = np.array([1], dtype=np.int64)
ends = np.array([1000], dtype=np.int64)
axes = np.array([1], dtype=np.int64)
y = x[:, 1:1000]
expect(node, inputs=[x, starts, ends, axes], outputs=[y],
name='test_dynamic_slice_end_out_of_bounds')
dynamic_slice_neg
node = onnx.helper.make_node(
'DynamicSlice',
inputs=['x', 'starts', 'ends', 'axes'],
outputs=['y'],
)
x = np.random.randn(20, 10, 5).astype(np.float32)
starts = np.array([0], dtype=np.int64)
ends = np.array([-1], dtype=np.int64)
axes = np.array([1], dtype=np.int64)
y = x[:, 0:-1]
expect(node, inputs=[x, starts, ends, axes], outputs=[y],
name='test_dynamic_slice_neg')
dynamic_slice_start_out_of_bounds
node = onnx.helper.make_node(
'DynamicSlice',
inputs=['x', 'starts', 'ends', 'axes'],
outputs=['y'],
)
x = np.random.randn(20, 10, 5).astype(np.float32)
starts = np.array([1000], dtype=np.int64)
ends = np.array([1000], dtype=np.int64)
axes = np.array([1], dtype=np.int64)
y = x[:, 1000:1000]
expect(node, inputs=[x, starts, ends, axes], outputs=[y],
name='test_dynamic_slice_start_out_of_bounds')
experimental GRUUnit
GRUUnit computes the activations of a standard GRU, in a sequence-length aware fashion. Concretely, given the (fused) inputs X (TxNxD), the previous hidden state (NxD), and the sequence lengths (N), computes the GRU activations, avoiding computation if the input is invalid (as in, the value at X[t][n] >= seqLengths[n].
This version of the operator has been available since version 1 of the default ONNX operator set.
- drop_states : int
- Bool to determine if hidden state is zeroes or passed along for timesteps past the given sequence_length.
- hidden_prev : T
- The previous GRU hidden state.
- gates : T
- Unactivated gate outputs from forget, update, and output gates, pre-activation.
- seq_lengths : T
- Array of sequence lengths. len(seq_lengths) should equal batch size N.
- t : T
- The timestep for this operation.
- hidden : T
- The new GRU hidden state calculated by this op.
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
experimental GivenTensorFill
This version of the operator has been available since version 1 of the default ONNX operator set.
- extra_shape : list of ints
- input_as_shape : int
- shape : list of ints
- values : list of floats
- shape (optional) : T
- The shape of filled tensor
- X : T
- The filled tensor
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
experimental ImageScaler
Scale and bias the input image. Bias values are stored in the same ordering as the image pixel format.
This version of the operator has been available since version 1 of the default ONNX operator set.
- bias : list of floats
- Bias applied to each channel, same size as C.
- scale : float (default is 1.0)
- The scale to apply.
- input : T
- Input tensor of shape [N,C,H,W]
- output : T
- Result, has same shape and type as input
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
experimental ParametricSoftplus
ParametricSoftplus takes one input data (Tensor) and produces one output data (Tensor) where the softplus function, y = alpha * ln(exp(beta * x) + 1), is applied to the tensor elementwise.
This version of the operator has been available since version 1 of the default ONNX operator set.
- alpha : float
- Value of alpha
- beta : float
- Value of beta
- X : T
- 1D input tensor
- Y : T
- 1D input tensor
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
experimental Scale
Scale takes one input data (Tensor) and produces one output data (Tensor) whose value is the input data tensor scaled element-wise.
This version of the operator has been available since version 1 of the default ONNX operator set.
- scale : float (default is 1.0)
- The scale to apply.
- input : T
- Input data to be scaled
- output : T
- Output data after scaling
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
experimental ScaledTanh
Calculates the scaled hyperbolic tangent of the given input tensor element-wise, alpha * tanh(beta * x).
This version of the operator has been available since version 1 of the default ONNX operator set.
- alpha : float
- Scaling value
- beta : float
- Scaling value
- input : T
- Input tensor
- output : T
- The scaled hyperbolic tangent values of the input tensor computed element-wise
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
experimental ThresholdedRelu
ThresholdedRelu takes one input data (Tensor) and produces one output data (Tensor) where the rectified linear function, y = x for x > alpha, y = 0 otherwise, is applied to the tensor elementwise.
This version of the operator has been available since version 1 of the default ONNX operator set.
- alpha : float (default is 1.0)
- Threshold value
- X : T
- Input tensor
- Y : T
- Output tensor
- T : tensor(float16), tensor(float), tensor(double)
- Constrain input and output types to float tensors.
default
default_alpha = 1.0
node = onnx.helper.make_node(
'ThresholdedRelu',
inputs=['x'],
outputs=['y']
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, default_alpha, np.inf)
y[y == default_alpha] = 0
expect(node, inputs=[x], outputs=[y],
name='test_thresholdedrelu_default')
thresholdedrelu
alpha = 2.0
node = onnx.helper.make_node(
'ThresholdedRelu',
inputs=['x'],
outputs=['y'],
alpha=alpha
)
x = np.array([-1.5, 0., 1.2, 2.0, 2.2]).astype(np.float32)
y = np.clip(x, alpha, np.inf) # expected output [0., 0., 0., 0., 2.2]
y[y == alpha] = 0
expect(node, inputs=[x], outputs=[y],
name='test_thresholdedrelu_example')
x = np.random.randn(3, 4, 5).astype(np.float32)
y = np.clip(x, alpha, np.inf)
y[y == alpha] = 0
expect(node, inputs=[x], outputs=[y],
name='test_thresholdedrelu')