-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtrain_parsenet_e2e.py
468 lines (417 loc) · 14.9 KB
/
train_parsenet_e2e.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
import gc
import json
import logging
import os
import sys
import time
import traceback
from shutil import copyfile
import numpy as np
import torch.optim as optim
import torch.utils.data
from tensorboard_logger import configure, log_value
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import DataLoader
from read_config import Config
from src.PointNet import PrimitivesEmbeddingDGCNGn
from src.dataset import generator_iter
from src.dataset_segments import Dataset
from src.residual_utils import Evaluation
from src.segment_loss import (
EmbeddingLoss,
primitive_loss,
)
from src.utils import grad_norm
np.set_printoptions(precision=3)
config = Config(sys.argv[1])
model_name = config.model_path.format(
config.batch_size,
config.lr,
config.num_train,
config.num_test,
config.loss_weight,
config.mode,
)
print(model_name)
configure("logs/tensorboard/{}".format(model_name), flush_secs=15)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter("%(asctime)s:%(name)s:%(message)s")
file_handler = logging.FileHandler(
"../logs_curve_fitting/logs/{}.log".format(model_name), mode="w"
)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.addHandler(handler)
with open(
"logs/configs/{}_config.json".format(model_name), "w"
) as file:
json.dump(vars(config), file)
source_file = __file__
destination_file = "logs/scripts/{}_{}".format(
model_name, __file__.split("/")[-1]
)
copyfile(source_file, destination_file)
if_normals = True
if_normal_noise = True
Loss = EmbeddingLoss(margin=1.0, if_mean_shift=False)
model = PrimitivesEmbeddingDGCNGn(
embedding=True,
emb_size=128,
primitives=True,
num_primitives=10,
loss_function=Loss.triplet_loss,
mode=config.mode,
num_channels=6,
)
# device = torch.device("cuda:0")
model_bkp = model
model_bkp.l_permute = np.arange(7000)
model = torch.nn.DataParallel(model)
model.load_state_dict(
torch.load("logs/pretrained_models/" + config.pretrain_model_path)
)
model.cuda()
# Do not train the encoder weights to save gpu memory.
for key, values in model.named_parameters():
if key.startswith("module.encoder"):
values.requires_grad = True
else:
values.requires_grad = True
evaluation = Evaluation()
split_dict = {"train": config.num_train, "val": config.num_val, "test": config.num_test}
dataset = Dataset(
config.batch_size,
config.num_train,
config.num_val,
config.num_test,
primitives=True,
normals=True,
if_train_data=True
)
get_train_data = dataset.get_train(
randomize=True,
augment=False,
align_canonical=True,
anisotropic=False,
if_normal_noise=if_normal_noise,
)
get_val_data = dataset.get_val(
align_canonical=True, anisotropic=False, if_normal_noise=if_normal_noise
)
optimizer = optim.Adam(model.parameters(), lr=config.lr)
optimizer.load_state_dict(torch.load("logs/pretrained_models/" +
config.pretrain_model_path.split(".")[0] + "_optimizer.pth"))
os.makedirs("logs/trained_models/{}/".format(model_name), exist_ok=True)
loader = generator_iter(get_train_data, int(1e10))
get_train_data = iter(
DataLoader(
loader,
batch_size=1,
shuffle=False,
collate_fn=lambda x: x,
num_workers=0,
pin_memory=False,
)
)
loader = generator_iter(get_val_data, int(1e10))
get_val_data = iter(
DataLoader(
loader,
batch_size=1,
shuffle=False,
collate_fn=lambda x: x,
num_workers=0,
pin_memory=False,
)
)
scheduler = ReduceLROnPlateau(
optimizer, mode="min", factor=0.5, patience=10, verbose=True, min_lr=1e-4
)
model_bkp.triplet_loss = Loss.triplet_loss
prev_test_loss = 1e4
print("started training!")
if torch.cuda.device_count() > 1:
alt_gpu = 1
else:
alt_gpu = 0
lamb = 0.1
# no updates to the bn
model.eval()
for e in range(config.epochs):
train_emb_losses = []
train_prim_losses = []
train_res_losses = []
train_res_geom_losses = []
train_res_spline_losses = []
train_iou = []
train_losses = []
train_seg_iou = []
n_loss = None
num_iter = 5
# for train_b_id in range(config.num_train // config.batch_size // num_iter):
for train_b_id in range(100000):
optimizer.zero_grad()
losses = 0
ious = 0
seg_ious = 0
p_losses = 0
embed_losses = 0
res_g_losses = []
res_s_losses = []
res_losses = 0
torch.cuda.empty_cache()
t1 = time.time()
mistake = False
for count_iteration in range(num_iter):
gc.collect()
while True:
points, labels, normals, primitives_ = next(get_train_data)[0]
# Take only training dataset with no. segments more than 2
break
if np.unique(labels).shape[0] < 3:
continue
else:
break
l = np.arange(10000)
np.random.shuffle(l)
rand_num_points = 8000
l = l[0:rand_num_points]
points = points[:, l]
labels = labels[:, l]
normals = normals[:, l]
primitives_ = primitives_[:, l]
points = torch.from_numpy(points).cuda()
normals = torch.from_numpy(normals).cuda()
# TO make sure that the network doesn't compute the gradient w.r.t
# these points.
points.requires_grad = False
normals.requires_grad = False
primitives = torch.from_numpy(primitives_.astype(np.int64)).cuda()
if if_normals:
input = torch.cat([points, normals], 2)
embedding, primitives_log_prob, embed_loss = model(
input.permute(0, 2, 1), torch.from_numpy(labels).cuda(), True
)
else:
embedding, primitives_log_prob, embed_loss = model(
points.permute(0, 2, 1), torch.from_numpy(labels).cuda(), True
)
embed_loss = torch.mean(embed_loss)
p_loss = primitive_loss(primitives_log_prob, primitives)
torch.cuda.empty_cache()
try:
res_loss, _ = evaluation.fitting_loss(
embedding.permute(0, 2, 1).to(torch.device("cuda:{}".format(alt_gpu))),
points.to(torch.device("cuda:{}".format(alt_gpu))),
normals.to(torch.device("cuda:{}".format(alt_gpu))),
labels,
primitives_,
primitives_log_prob.to(torch.device("cuda:{}".format(alt_gpu))),
quantile=0.025,
debug=False,
iterations=10,
lamb=lamb
)
res_loss[0] = res_loss[0].to(torch.device("cuda:0"))
except Exception as weird_except:
import ipdb;
ipdb.set_trace()
traceback.print_exc()
loss = embed_loss
loss.backward()
if grad_norm(model):
optimizer.zero_grad()
print("grad norm is nan or inf!")
torch.cuda.empty_cache()
print(weird_except)
print("exception in training")
mistake = True
break
s_iou, iou = res_loss[3:]
loss = embed_loss + p_loss + 1 * res_loss[0]
res_losses += res_loss[0].item() / num_iter
if not (res_loss[1] is None):
res_g_losses.append(res_loss[1])
if not (res_loss[2] is None):
res_s_losses.append(res_loss[2])
seg_ious += s_iou / num_iter
losses += loss.data.cpu().numpy() / num_iter
p_losses += p_loss.data.cpu().numpy() / num_iter
ious += iou / num_iter
embed_losses += embed_loss.data.cpu().numpy() / num_iter
torch.cuda.empty_cache()
try:
loss.backward()
except:
import ipdb;
ipdb.set_trace()
if mistake:
continue
# Avoid zero entries
if len(res_g_losses) > 0:
res_g_losses = np.mean(res_g_losses)
else:
res_g_losses = 1e-3
if len(res_s_losses) > 0:
res_s_losses = np.mean(res_s_losses)
else:
res_s_losses = 9e-3
optimizer.step()
# print ("train: ", train_b_id, time.time() - t1, res_loss.item(), loss.item(), embed_loss.item(), p_loss.item())
del res_loss, loss, embed_loss, p_loss
if train_b_id > 0 and (train_b_id % 2000 == 0):
torch.save(
model.state_dict(),
"logs/trained_models/{}_{}.pth".format((train_b_id // 2000) * (1 + e), model_name),
)
torch.save(
optimizer.state_dict(),
"logs/trained_models/{}_{}_optimizer.pth".format((train_b_id // 2000) * (1 + e), model_name),
)
torch.cuda.empty_cache()
train_iou.append(ious)
train_seg_iou.append(seg_ious)
train_losses.append(losses)
train_prim_losses.append(p_losses)
train_emb_losses.append(embed_losses)
train_res_losses.append(res_losses)
train_res_geom_losses.append(res_g_losses)
train_res_spline_losses.append(res_s_losses)
log_value("iou", iou, train_b_id + e * (config.num_train // config.batch_size // num_iter))
log_value(
"embed_loss",
embed_losses,
train_b_id + e * (config.num_train // config.batch_size // num_iter),
)
log_value(
"res_loss",
res_losses,
train_b_id + e * (config.num_train // config.batch_size // num_iter),
)
log_value(
"res_g_loss",
res_g_losses,
train_b_id + e * (config.num_train // config.batch_size // num_iter),
)
log_value(
"res_s_loss",
res_s_losses,
train_b_id + e * (config.num_train // config.batch_size // num_iter),
)
log_value("seg_iou",
seg_ious,
train_b_id + e * (config.num_train // config.batch_size // num_iter), )
test_emb_losses = []
test_prim_losses = []
test_losses = []
test_res_losses = []
test_res_geom_losses = []
test_res_spline_losses = []
test_iou = []
test_seg_iou = []
model.eval()
score = []
torch.cuda.empty_cache()
for val_b_id in range(config.num_test // config.batch_size - 1):
t1 = time.time()
points, labels, normals, primitives_ = next(get_val_data)[0]
l = np.arange(10000)
np.random.shuffle(l)
l = l[0:8000]
points = points[:, l]
labels = labels[:, l]
normals = normals[:, l]
primitives_ = primitives_[:, l]
points = torch.from_numpy(points).cuda()
primitives = torch.from_numpy(primitives_.astype(np.int64)).cuda()
normals = torch.from_numpy(normals).cuda()
mistake = False
with torch.no_grad():
if if_normals:
input = torch.cat([points, normals], 2)
embedding, primitives_log_prob, embed_loss = model(
input.permute(0, 2, 1), torch.from_numpy(labels).cuda(), True
)
else:
embedding, primitives_log_prob, embed_loss = model(
points.permute(0, 2, 1), torch.from_numpy(labels).cuda(), True
)
try:
res_loss, _ = evaluation.fitting_loss(
embedding.permute(0, 2, 1).to(torch.device("cuda:{}".format(alt_gpu))),
points.to(torch.device("cuda:{}".format(alt_gpu))),
normals.to(torch.device("cuda:{}".format(alt_gpu))),
labels,
primitives_,
primitives_log_prob.to(torch.device("cuda:{}".format(alt_gpu))),
quantile=0.025,
iterations=10,
lamb=1.0,
debug=False,
eval=True,
)
except Exception:
traceback.print_exc()
loss = embed_loss
loss.backward()
print("some exception in while testing")
continue
s_iou, iou = res_loss[3:]
res_loss = res_loss[0:3]
res_loss[0] = res_loss[0].to(torch.device("cuda:0"))
test_res_losses.append(res_loss[0].item())
if not (res_loss[1] is None):
test_res_geom_losses.append(res_loss[1])
if not (res_loss[2] is None):
test_res_spline_losses.append(res_loss[2])
embed_loss = torch.mean(embed_loss)
p_loss = primitive_loss(primitives_log_prob, primitives)
loss = embed_loss + p_loss
print("test: ", val_b_id, time.time() - t1)
test_iou.append(iou)
test_seg_iou.append(s_iou)
test_prim_losses.append(p_loss.data.cpu().numpy())
test_emb_losses.append(embed_loss.data.cpu().numpy())
test_losses.append(loss.data.cpu().numpy())
torch.cuda.empty_cache()
print("\n")
logger.info(
"Epoch: {}/{} => TrL:{}, TsL:{}, TrP:{}, TsP:{}, TrE:{}, TsE:{}, TrI:{}, TsI:{}".format(
e,
config.epochs,
np.mean(train_losses),
np.mean(test_losses),
np.mean(train_prim_losses),
np.mean(test_prim_losses),
np.mean(train_emb_losses),
np.mean(test_emb_losses),
np.mean(train_iou),
np.mean(test_iou),
)
)
log_value("train iou", np.mean(train_iou), e)
log_value("test iou", np.mean(test_iou), e)
log_value("train emb loss", np.mean(train_emb_losses), e)
log_value("test emb loss", np.mean(test_emb_losses), e)
log_value("train res loss", np.mean(train_res_losses), e)
log_value("test res loss", np.mean(train_res_losses), e)
log_value("train geom res loss", np.mean(train_res_geom_losses), e)
log_value("test geom res loss", np.mean(test_res_geom_losses), e)
log_value("train spline res loss", np.mean(train_res_spline_losses), e)
log_value("test spline res loss", np.mean(test_res_spline_losses), e)
log_value("train seg iou", np.mean(train_seg_iou), e)
log_value("test seg iou", np.mean(test_seg_iou), e)
scheduler.step(np.mean(test_res_losses))
if prev_test_loss > np.mean(test_res_losses):
logger.info("improvement, saving model at epoch: {}".format(e))
prev_test_loss = np.mean(test_res_losses)
torch.save(
model.state_dict(),
"logs/trained_models/{}.pth".format(model_name),
)
torch.save(
optimizer.state_dict(),
"logs/trained_models/{}_optimizer.pth".format(model_name),
)