-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_gradedarray.jl
392 lines (362 loc) · 12.7 KB
/
test_gradedarray.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
using BlockArrays:
AbstractBlockArray, Block, BlockedOneTo, blockedrange, blocklengths, blocksize
using BlockSparseArrays:
BlockSparseArray, BlockSparseMatrix, BlockSparseVector, blockstoredlength
using GradedArrays:
GradedUnitRanges,
GradedOneTo,
GradedUnitRange,
GradedUnitRangeDual,
blocklabels,
dag,
dual,
gradedrange,
isdual
using GradedArrays.LabelledNumbers: label
using GradedArrays.SymmetrySectors: U1
using SparseArraysBase: storedlength
using LinearAlgebra: adjoint
using Random: randn!
using Test: @test, @testset
function randn_blockdiagonal(elt::Type, axes::Tuple)
a = BlockSparseArray{elt}(undef, axes)
blockdiaglength = minimum(blocksize(a))
for i in 1:blockdiaglength
b = Block(ntuple(Returns(i), ndims(a)))
a[b] = randn!(a[b])
end
return a
end
const elts = (Float32, Float64, Complex{Float32}, Complex{Float64})
@testset "GradedArray (eltype=$elt)" for elt in elts
@testset "map" begin
d1 = gradedrange([U1(0) => 2, U1(1) => 2])
d2 = gradedrange([U1(0) => 2, U1(1) => 2])
a = randn_blockdiagonal(elt, (d1, d2, d1, d2))
@test axes(a, 1) isa GradedOneTo
@test axes(view(a, 1:4, 1:4, 1:4, 1:4), 1) isa GradedOneTo
d1 = gradedrange([U1(0) => 2, U1(1) => 2])
d2 = gradedrange([U1(0) => 2, U1(1) => 2])
a = randn_blockdiagonal(elt, (d1, d2, d1, d2))
for b in (a + a, 2 * a)
@test size(b) == (4, 4, 4, 4)
@test blocksize(b) == (2, 2, 2, 2)
@test blocklengths.(axes(b)) == ([2, 2], [2, 2], [2, 2], [2, 2])
@test storedlength(b) == 32
@test blockstoredlength(b) == 2
for i in 1:ndims(a)
@test axes(b, i) isa GradedOneTo
end
@test label(axes(b, 1)[Block(1)]) == U1(0)
@test label(axes(b, 1)[Block(2)]) == U1(1)
@test Array(b) isa Array{elt}
@test Array(b) == b
@test 2 * Array(a) == b
end
r = gradedrange([U1(0) => 2, U1(1) => 2])
a = zeros(r, r, r, r)
@test a isa BlockSparseArray{Float64}
@test eltype(a) === Float64
@test size(a) == (4, 4, 4, 4)
@test iszero(a)
@test iszero(blockstoredlength(a))
r = gradedrange([U1(0) => 2, U1(1) => 2])
a = zeros(elt, r, r, r, r)
@test a isa BlockSparseArray{elt}
@test eltype(a) === elt
@test size(a) == (4, 4, 4, 4)
@test iszero(a)
@test iszero(blockstoredlength(a))
r = gradedrange([U1(0) => 2, U1(1) => 2])
a = randn_blockdiagonal(elt, (r, r, r, r))
b = similar(a, ComplexF64)
@test b isa BlockSparseArray{ComplexF64}
@test eltype(b) === ComplexF64
a = BlockSparseVector{Float64}(undef, gradedrange([U1(0) => 1, U1(1) => 1]))
b = similar(a, Float32)
@test b isa BlockSparseVector{Float32}
@test eltype(b) == Float32
# Test mixing graded axes and dense axes
# in addition/broadcasting.
d1 = gradedrange([U1(0) => 2, U1(1) => 2])
d2 = gradedrange([U1(0) => 2, U1(1) => 2])
a = randn_blockdiagonal(elt, (d1, d2, d1, d2))
for b in (a + Array(a), Array(a) + a)
@test size(b) == (4, 4, 4, 4)
@test blocksize(b) == (2, 2, 2, 2)
@test blocklengths.(axes(b)) == ([2, 2], [2, 2], [2, 2], [2, 2])
@test storedlength(b) == 256
@test blockstoredlength(b) == 16
for i in 1:ndims(a)
@test axes(b, i) isa BlockedOneTo{Int}
end
@test Array(a) isa Array{elt}
@test Array(a) == a
@test 2 * Array(a) == b
end
d1 = gradedrange([U1(0) => 2, U1(1) => 2])
d2 = gradedrange([U1(0) => 2, U1(1) => 2])
a = randn_blockdiagonal(elt, (d1, d2, d1, d2))
b = a[2:3, 2:3, 2:3, 2:3]
@test size(b) == (2, 2, 2, 2)
@test blocksize(b) == (2, 2, 2, 2)
@test storedlength(b) == 2
@test blockstoredlength(b) == 2
for i in 1:ndims(a)
@test axes(b, i) isa GradedOneTo
end
@test label(axes(b, 1)[Block(1)]) == U1(0)
@test label(axes(b, 1)[Block(2)]) == U1(1)
@test Array(a) isa Array{elt}
@test Array(a) == a
end
@testset "dual axes" begin
r = gradedrange([U1(0) => 2, U1(1) => 2])
for ax in ((r, r), (dual(r), r), (r, dual(r)), (dual(r), dual(r)))
a = BlockSparseArray{elt}(undef, ax...)
@views for b in [Block(1, 1), Block(2, 2)]
a[b] = randn(elt, size(a[b]))
end
for dim in 1:ndims(a)
@test typeof(ax[dim]) === typeof(axes(a, dim))
@test isdual(ax[dim]) == isdual(axes(a, dim))
end
@test @view(a[Block(1, 1)])[1, 1] == a[1, 1]
@test @view(a[Block(1, 1)])[2, 1] == a[2, 1]
@test @view(a[Block(1, 1)])[1, 2] == a[1, 2]
@test @view(a[Block(1, 1)])[2, 2] == a[2, 2]
@test @view(a[Block(2, 2)])[1, 1] == a[3, 3]
@test @view(a[Block(2, 2)])[2, 1] == a[4, 3]
@test @view(a[Block(2, 2)])[1, 2] == a[3, 4]
@test @view(a[Block(2, 2)])[2, 2] == a[4, 4]
@test @view(a[Block(1, 1)])[1:2, 1:2] == a[1:2, 1:2]
@test @view(a[Block(2, 2)])[1:2, 1:2] == a[3:4, 3:4]
a_dense = Array(a)
@test eachindex(a) == CartesianIndices(size(a))
for I in eachindex(a)
@test a[I] == a_dense[I]
end
@test axes(a') == dual.(reverse(axes(a)))
@test isdual(axes(a', 1)) ≠ isdual(axes(a, 2))
@test isdual(axes(a', 2)) ≠ isdual(axes(a, 1))
@test isnothing(show(devnull, MIME("text/plain"), a))
# Check preserving dual in tensor algebra.
for b in (a + a, 2 * a, 3 * a - a)
@test Array(b) ≈ 2 * Array(a)
for dim in 1:ndims(a)
@test isdual(axes(b, dim)) == isdual(axes(a, dim))
end
end
@test isnothing(show(devnull, MIME("text/plain"), @view(a[Block(1, 1)])))
@test @view(a[Block(1, 1)]) == a[Block(1, 1)]
end
@testset "GradedOneTo" begin
r = gradedrange([U1(0) => 2, U1(1) => 2])
a = BlockSparseArray{elt}(undef, r, r)
@views for i in [Block(1, 1), Block(2, 2)]
a[i] = randn(elt, size(a[i]))
end
b = 2 * a
@test blockstoredlength(b) == 2
@test Array(b) == 2 * Array(a)
for i in 1:2
@test axes(b, i) isa GradedOneTo
@test axes(a[:, :], i) isa GradedOneTo
end
I = [Block(1)[1:1]]
@test a[I, :] isa AbstractBlockArray
@test a[:, I] isa AbstractBlockArray
@test size(a[I, I]) == (1, 1)
@test !isdual(axes(a[I, I], 1))
end
@testset "GradedUnitRange" begin
r = gradedrange([U1(0) => 2, U1(1) => 2])[1:3]
a = BlockSparseArray{elt}(undef, r, r)
@views for i in [Block(1, 1), Block(2, 2)]
a[i] = randn(elt, size(a[i]))
end
b = 2 * a
@test blockstoredlength(b) == 2
@test Array(b) == 2 * Array(a)
for i in 1:2
@test axes(b, i) isa GradedUnitRange
@test axes(a[:, :], i) isa GradedUnitRange
end
I = [Block(1)[1:1]]
@test a[I, :] isa AbstractBlockArray
@test axes(a[I, :], 1) isa GradedOneTo
@test axes(a[I, :], 2) isa GradedUnitRange
@test a[:, I] isa AbstractBlockArray
@test axes(a[:, I], 2) isa GradedOneTo
@test axes(a[:, I], 1) isa GradedUnitRange
@test size(a[I, I]) == (1, 1)
@test !isdual(axes(a[I, I], 1))
end
# Test case when all axes are dual.
@testset "dual GradedOneTo" begin
r = gradedrange([U1(-1) => 2, U1(1) => 2])
a = BlockSparseArray{elt}(undef, dual(r), dual(r))
@views for i in [Block(1, 1), Block(2, 2)]
a[i] = randn(elt, size(a[i]))
end
b = 2 * a
@test blockstoredlength(b) == 2
@test Array(b) == 2 * Array(a)
for i in 1:2
@test axes(b, i) isa GradedUnitRangeDual
@test axes(a[:, :], i) isa GradedUnitRangeDual
end
I = [Block(1)[1:1]]
@test a[I, :] isa AbstractBlockArray
@test a[:, I] isa AbstractBlockArray
@test size(a[I, I]) == (1, 1)
@test isdual(axes(a[I, :], 2))
@test isdual(axes(a[:, I], 1))
@test isdual(axes(a[I, :], 1))
@test isdual(axes(a[:, I], 2))
@test isdual(axes(a[I, I], 1))
@test isdual(axes(a[I, I], 2))
end
@testset "dual GradedUnitRange" begin
r = gradedrange([U1(0) => 2, U1(1) => 2])[1:3]
a = BlockSparseArray{elt}(undef, dual(r), dual(r))
@views for i in [Block(1, 1), Block(2, 2)]
a[i] = randn(elt, size(a[i]))
end
b = 2 * a
@test blockstoredlength(b) == 2
@test Array(b) == 2 * Array(a)
for i in 1:2
@test axes(b, i) isa GradedUnitRangeDual
@test axes(a[:, :], i) isa GradedUnitRangeDual
end
I = [Block(1)[1:1]]
@test a[I, :] isa AbstractBlockArray
@test a[:, I] isa AbstractBlockArray
@test size(a[I, I]) == (1, 1)
@test isdual(axes(a[I, :], 2))
@test isdual(axes(a[:, I], 1))
@test isdual(axes(a[I, :], 1))
@test isdual(axes(a[:, I], 2))
@test isdual(axes(a[I, I], 1))
@test isdual(axes(a[I, I], 2))
end
@testset "dual BlockedUnitRange" begin # self dual
r = blockedrange([2, 2])
a = BlockSparseArray{elt}(undef, dual(r), dual(r))
@views for i in [Block(1, 1), Block(2, 2)]
a[i] = randn(elt, size(a[i]))
end
b = 2 * a
@test blockstoredlength(b) == 2
@test Array(b) == 2 * Array(a)
@test a[:, :] isa BlockSparseArray
for i in 1:2
@test axes(b, i) isa BlockedOneTo
@test axes(a[:, :], i) isa BlockedOneTo
end
I = [Block(1)[1:1]]
@test a[I, :] isa BlockSparseArray
@test a[:, I] isa BlockSparseArray
@test size(a[I, I]) == (1, 1)
@test !isdual(axes(a[I, I], 1))
end
# Test case when all axes are dual from taking the adjoint.
for r in (
gradedrange([U1(0) => 2, U1(1) => 2]),
gradedrange([U1(0) => 2, U1(1) => 2])[begin:end],
)
a = BlockSparseArray{elt}(undef, r, r)
@views for i in [Block(1, 1), Block(2, 2)]
a[i] = randn(elt, size(a[i]))
end
b = 2 * a'
@test blockstoredlength(b) == 2
@test Array(b) == 2 * Array(a)'
for ax in axes(b)
@test ax isa typeof(dual(r))
end
@test !isdual(axes(a, 1))
@test !isdual(axes(a, 2))
@test isdual(axes(a', 1))
@test isdual(axes(a', 2))
@test isdual(axes(b, 1))
@test isdual(axes(b, 2))
@test isdual(axes(copy(a'), 1))
@test isdual(axes(copy(a'), 2))
I = [Block(1)[1:1]]
@test size(b[I, :]) == (1, 4)
@test size(b[:, I]) == (4, 1)
@test size(b[I, I]) == (1, 1)
end
end
@testset "Matrix multiplication" begin
r = gradedrange([U1(0) => 2, U1(1) => 3])
a1 = BlockSparseArray{elt}(undef, dual(r), r)
a1[Block(1, 2)] = randn(elt, size(@view(a1[Block(1, 2)])))
a1[Block(2, 1)] = randn(elt, size(@view(a1[Block(2, 1)])))
a2 = BlockSparseArray{elt}(undef, dual(r), r)
a2[Block(1, 2)] = randn(elt, size(@view(a2[Block(1, 2)])))
a2[Block(2, 1)] = randn(elt, size(@view(a2[Block(2, 1)])))
@test Array(a1 * a2) ≈ Array(a1) * Array(a2)
@test Array(a1' * a2') ≈ Array(a1') * Array(a2')
a2 = BlockSparseArray{elt}(undef, r, dual(r))
a2[Block(1, 2)] = randn(elt, size(@view(a2[Block(1, 2)])))
a2[Block(2, 1)] = randn(elt, size(@view(a2[Block(2, 1)])))
@test Array(a1' * a2) ≈ Array(a1') * Array(a2)
@test Array(a1 * a2') ≈ Array(a1) * Array(a2')
end
@testset "Construct from dense" begin
r = gradedrange([U1(0) => 2, U1(1) => 3])
a1 = randn(elt, 2, 2)
a2 = randn(elt, 3, 3)
a = cat(a1, a2; dims=(1, 2))
b = a[r, dual(r)]
@test eltype(b) === elt
@test b isa BlockSparseMatrix{elt}
@test blockstoredlength(b) == 2
@test b[Block(1, 1)] == a1
@test iszero(b[Block(2, 1)])
@test iszero(b[Block(1, 2)])
@test b[Block(2, 2)] == a2
@test all(GradedUnitRanges.space_isequal.(axes(b), (r, dual(r))))
# Regression test for Vector, which caused
# an ambiguity error with Base.
r = gradedrange([U1(0) => 2, U1(1) => 3])
a1 = randn(elt, 2)
a2 = zeros(elt, 3)
a = vcat(a1, a2)
b = a[r]
@test eltype(b) === elt
@test b isa BlockSparseVector{elt}
@test blockstoredlength(b) == 1
@test b[Block(1)] == a1
@test iszero(b[Block(2)])
@test all(GradedUnitRanges.space_isequal.(axes(b), (r,)))
# Regression test for BitArray
r = gradedrange([U1(0) => 2, U1(1) => 3])
a1 = trues(2, 2)
a2 = trues(3, 3)
a = cat(a1, a2; dims=(1, 2))
b = a[r, dual(r)]
@test eltype(b) === Bool
@test b isa BlockSparseMatrix{Bool}
@test blockstoredlength(b) == 2
@test b[Block(1, 1)] == a1
@test iszero(b[Block(2, 1)])
@test iszero(b[Block(1, 2)])
@test b[Block(2, 2)] == a2
@test all(GradedUnitRanges.space_isequal.(axes(b), (r, dual(r))))
end
end
@testset "dag" begin
elt = ComplexF64
r = gradedrange([U1(0) => 2, U1(1) => 3])
a = BlockSparseArray{elt}(undef, r, dual(r))
a[Block(1, 1)] = randn(elt, 2, 2)
a[Block(2, 2)] = randn(elt, 3, 3)
@test isdual.(axes(a)) == (false, true)
ad = dag(a)
@test Array(ad) == conj(Array(a))
@test isdual.(axes(ad)) == (true, false)
end