-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_utils.py
169 lines (160 loc) · 6.13 KB
/
model_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Utility functions for modeling go here
from keras.models import load_model
from keras.optimizers import Adam
from keras import preprocessing
import matplotlib.pyplot as plt
import numpy as np
import pickle
from preprocess_utils import tokenize_text
import torch
from torch.utils.data import Dataset, DataLoader
import torch.nn as nn
from sklearn import metrics
from skorch.net import NeuralNet
# Load FastText embedding
def load_FT(path, word_index, embedding_dim, vocab_size, init_random_missing = False):
"""Load and process glove embeddings"""
# Load word embeddings file
embeddings_index = {}
# Avg. embedding mean/var
emb_mean = 0
emb_var = 0
with open(path, "r", encoding='utf-8', newline='\n', errors='ignore') as inFile:
for idx, line in enumerate(inFile):
values = line.rstrip().split(' ')
word = values[0]
coefs = np.asarray(values[1:], dtype='float32')
embeddings_index[word] = coefs
emb_mean += (np.mean(coefs) - emb_mean) / (idx + 1)
emb_var += (np.var(coefs) - emb_var) / (idx + 1)
# Turn into a matrix
not_found = 0
# Numpy matrix
embedding_matrix = np.zeros((vocab_size, embedding_dim))
for word, i in word_index.items():
if i < vocab_size:
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
else:
not_found += 1
if init_random_missing:
# Random initialization of embedding
embedding_matrix[i] = np.random.normal(loc = emb_mean, scale = emb_var, size = embedding_dim)
print("Could not find {} tokens in FastText ...".format(not_found))
# Return
return(embedding_matrix)
# Plot loss function
def plot_loss(history_dict, file_name = None):
"""Plot loss and save to directory"""
loss_values = history_dict['train_loss']
val_loss_values = history_dict['val_loss']
epochs = range(1, len(loss_values) + 1)
plt.plot(epochs, loss_values, 'bo', label='Training loss')
plt.plot(epochs, val_loss_values, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
if file_name is not None:
plt.savefig(file_name)
plt.show()
# Plot accuracy
def plot_accuracy(history_dict, file_name = None):
"""Plot accuracy and save to directory"""
acc_values = history_dict['train_acc']
val_acc_values = history_dict['val_acc']
epochs = range(1, len(acc_values) + 1)
plt.plot(epochs, acc_values, 'bo', label='Training Accuracy')
plt.plot(epochs, val_acc_values, 'b', label='Validation Accuracy')
plt.title('Training and validation Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
if file_name is not None:
plt.savefig(file_name)
plt.show()
# Given a model & tokenizer, classify a bunch of texts
class ClassificationPipeline(object):
def __init__(self, tokenizer, model, max_seq_len):
"""Pipeline used for classification of new texts"""
self._tokenizer = tokenizer
self._model = model
self._max_seq_len = max_seq_len
def predict(self, texts):
"""Input texts. Output labels."""
# Keep track of records that failed to preprocess properly
failed_preprocess = [True if text is None else False for text in texts]
# Text to sequences
seqs = self._tokenizer.texts_to_sequences([text for text in texts if text is not None])
# Pad
self._seqs_cap = preprocessing.sequence.pad_sequences(seqs, maxlen=self._max_seq_len)
# Predict
if type(self._model) == NeuralNet:
yhat_test = self._model.predict(torch.tensor(self._seqs_cap).type(torch.long))
else:
with torch.no_grad():
self._model.eval()
yhat_test = self._model(torch.tensor(self._seqs_cap).type(torch.long))
# Predict
yhat_class = yhat_test.argmax(axis=1)
# Return
return(yhat_test.squeeze()[yhat_class], yhat_class)
# Load tokenizer
def load_tokenizer(path):
"""Load Keras tokenizer"""
with open(path, "rb") as inFile:
tok = pickle.load(inFile)
# Return
return(tok)
# Create FastText embedding for PyTorch
def Embedding_FastText(weights, freeze_layer = True):
"""Set up a pytorch embedding matrix"""
examples, embedding_dim = weights.shape
# Set up layer
embedding = nn.Embedding(examples, embedding_dim)
# Add weights
embedding.load_state_dict({"weight": torch.tensor(weights)})
# If not trainable, set option
if freeze_layer:
embedding.weight.requires_grad = False
# Return
return(embedding)
# Dataset class
# This is used for the training loop (e.g. to create mini batches)
class WikiData(Dataset):
def __init__(self, X, y):
# Assert tensors
assert type(X) == np.ndarray, "'X' must be numpy array"
assert type(y) == np.ndarray, "'y' must be numpy array"
# Must be same length
assert X.shape[0] == y.shape[0], "'X' and 'y' different lengths"
self.X = X
self.y = y
self.len = X.shape[0]
def __getitem__(self, index):
return(torch.tensor(self.X[index,:]).type(torch.long), torch.tensor(self.y[index]).type(torch.long))
def __len__(self):
return(self.len)
# Function that makes a sample for training and testing
def split(dataset, val_prop = .1, seed = None):
"""Split data into train / test"""
X, y = dataset.X, dataset.y
# Permute
if seed is None:
rp = np.random.permutation(y.shape[0])
else:
np.random.seed(seed)
rp = np.random.permutation(y.shape[0])
# Shuffle
X = X[rp,:]
y = y[rp]
# Props to int
n = y.shape[0]
n_val = int(np.floor(val_prop * n))
n_train = n - n_val
# Subset into train, test
X_train, y_train = X[0:n_train,:], y[0:n_train]
X_val, y_val = X[n_train:(n_train + n_val),:], y[n_train:(n_train + n_val)]
# Create new dataset instantiation for train and val
return(WikiData(X_train, y_train), WikiData(X_val, y_val))