forked from kubernetes-sigs/gateway-api-inference-extension
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.go
218 lines (190 loc) · 7.9 KB
/
metrics.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/*
Copyright 2025 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package metrics
import (
"context"
"sync"
"time"
compbasemetrics "k8s.io/component-base/metrics"
"k8s.io/component-base/metrics/legacyregistry"
"sigs.k8s.io/controller-runtime/pkg/log"
logutil "sigs.k8s.io/gateway-api-inference-extension/pkg/ext-proc/util/logging"
)
const (
InferenceModelComponent = "inference_model"
InferencePoolComponent = "inference_pool"
)
var (
// Inference Model Metrics
requestCounter = compbasemetrics.NewCounterVec(
&compbasemetrics.CounterOpts{
Subsystem: InferenceModelComponent,
Name: "request_total",
Help: "Counter of inference model requests broken out for each model and target model.",
StabilityLevel: compbasemetrics.ALPHA,
},
[]string{"model_name", "target_model_name"},
)
requestErrCounter = compbasemetrics.NewCounterVec(
&compbasemetrics.CounterOpts{
Subsystem: InferenceModelComponent,
Name: "request_error_total",
Help: "Counter of inference model requests errors broken out for each model and target model.",
StabilityLevel: compbasemetrics.ALPHA,
},
[]string{"model_name", "target_model_name", "error_code"},
)
requestLatencies = compbasemetrics.NewHistogramVec(
&compbasemetrics.HistogramOpts{
Subsystem: InferenceModelComponent,
Name: "request_duration_seconds",
Help: "Inference model response latency distribution in seconds for each model and target model.",
Buckets: []float64{
0.005, 0.025, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.5, 2, 3,
4, 5, 6, 8, 10, 15, 20, 30, 45, 60, 120, 180, 240, 300, 360, 480, 600, 900, 1200, 1800, 2700, 3600,
},
StabilityLevel: compbasemetrics.ALPHA,
},
[]string{"model_name", "target_model_name"},
)
requestSizes = compbasemetrics.NewHistogramVec(
&compbasemetrics.HistogramOpts{
Subsystem: InferenceModelComponent,
Name: "request_sizes",
Help: "Inference model requests size distribution in bytes for each model and target model.",
// Use buckets ranging from 1000 bytes (1KB) to 10^9 bytes (1GB).
Buckets: []float64{
64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, // More fine-grained up to 64KB
131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, // Exponential up to 8MB
16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, // Exponential up to 1GB
},
StabilityLevel: compbasemetrics.ALPHA,
},
[]string{"model_name", "target_model_name"},
)
responseSizes = compbasemetrics.NewHistogramVec(
&compbasemetrics.HistogramOpts{
Subsystem: InferenceModelComponent,
Name: "response_sizes",
Help: "Inference model responses size distribution in bytes for each model and target model.",
// Most models have a response token < 8192 tokens. Each token, in average, has 4 characters.
// 8192 * 4 = 32768.
Buckets: []float64{1, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32778, 65536},
StabilityLevel: compbasemetrics.ALPHA,
},
[]string{"model_name", "target_model_name"},
)
inputTokens = compbasemetrics.NewHistogramVec(
&compbasemetrics.HistogramOpts{
Subsystem: InferenceModelComponent,
Name: "input_tokens",
Help: "Inference model input token count distribution for requests in each model.",
// Most models have a input context window less than 1 million tokens.
Buckets: []float64{1, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32778, 65536, 131072, 262144, 524288, 1048576},
StabilityLevel: compbasemetrics.ALPHA,
},
[]string{"model_name", "target_model_name"},
)
outputTokens = compbasemetrics.NewHistogramVec(
&compbasemetrics.HistogramOpts{
Subsystem: InferenceModelComponent,
Name: "output_tokens",
Help: "Inference model output token count distribution for requests in each model.",
// Most models generates output less than 8192 tokens.
Buckets: []float64{1, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192},
StabilityLevel: compbasemetrics.ALPHA,
},
[]string{"model_name", "target_model_name"},
)
// Inference Pool Metrics
inferencePoolAvgKVCache = compbasemetrics.NewGaugeVec(
&compbasemetrics.GaugeOpts{
Subsystem: InferencePoolComponent,
Name: "average_kv_cache_utilization",
Help: "The average kv cache utilization for an inference server pool.",
StabilityLevel: compbasemetrics.ALPHA,
},
[]string{"name"},
)
inferencePoolAvgQueueSize = compbasemetrics.NewGaugeVec(
&compbasemetrics.GaugeOpts{
Subsystem: InferencePoolComponent,
Name: "average_queue_size",
Help: "The average number of requests pending in the model server queue.",
StabilityLevel: compbasemetrics.ALPHA,
},
[]string{"name"},
)
)
var registerMetrics sync.Once
// Register all metrics.
func Register() {
registerMetrics.Do(func() {
legacyregistry.MustRegister(requestCounter)
legacyregistry.MustRegister(requestErrCounter)
legacyregistry.MustRegister(requestLatencies)
legacyregistry.MustRegister(requestSizes)
legacyregistry.MustRegister(responseSizes)
legacyregistry.MustRegister(inputTokens)
legacyregistry.MustRegister(outputTokens)
legacyregistry.MustRegister(inferencePoolAvgKVCache)
legacyregistry.MustRegister(inferencePoolAvgQueueSize)
})
}
// RecordRequstCounter records the number of requests.
func RecordRequestCounter(modelName, targetModelName string) {
requestCounter.WithLabelValues(modelName, targetModelName).Inc()
}
// RecordRequestErrCounter records the number of error requests.
func RecordRequestErrCounter(modelName, targetModelName string, code string) {
if code != "" {
requestErrCounter.WithLabelValues(modelName, targetModelName, code).Inc()
}
}
// RecordRequestSizes records the request sizes.
func RecordRequestSizes(modelName, targetModelName string, reqSize int) {
requestSizes.WithLabelValues(modelName, targetModelName).Observe(float64(reqSize))
}
// RecordRequestLatencies records duration of request.
func RecordRequestLatencies(ctx context.Context, modelName, targetModelName string, received time.Time, complete time.Time) bool {
if !complete.After(received) {
log.FromContext(ctx).V(logutil.DEFAULT).Error(nil, "Request latency values are invalid",
"modelName", modelName, "targetModelName", targetModelName, "completeTime", complete, "receivedTime", received)
return false
}
elapsedSeconds := complete.Sub(received).Seconds()
requestLatencies.WithLabelValues(modelName, targetModelName).Observe(elapsedSeconds)
return true
}
// RecordResponseSizes records the response sizes.
func RecordResponseSizes(modelName, targetModelName string, size int) {
responseSizes.WithLabelValues(modelName, targetModelName).Observe(float64(size))
}
// RecordInputTokens records input tokens count.
func RecordInputTokens(modelName, targetModelName string, size int) {
if size > 0 {
inputTokens.WithLabelValues(modelName, targetModelName).Observe(float64(size))
}
}
// RecordOutputTokens records output tokens count.
func RecordOutputTokens(modelName, targetModelName string, size int) {
if size > 0 {
outputTokens.WithLabelValues(modelName, targetModelName).Observe(float64(size))
}
}
func RecordInferencePoolAvgKVCache(name string, utilization float64) {
inferencePoolAvgKVCache.WithLabelValues(name).Set(utilization)
}
func RecordInferencePoolAvgQueueSize(name string, queueSize float64) {
inferencePoolAvgQueueSize.WithLabelValues(name).Set(queueSize)
}