diff --git a/ndarray/src/main/java/org/tensorflow/ndarray/NdArray.java b/ndarray/src/main/java/org/tensorflow/ndarray/NdArray.java index 5fe51121b13..6686abd9148 100644 --- a/ndarray/src/main/java/org/tensorflow/ndarray/NdArray.java +++ b/ndarray/src/main/java/org/tensorflow/ndarray/NdArray.java @@ -55,29 +55,7 @@ * * @param the type of values to be mapped */ -public interface NdArray { - - /** - * @return the shape of this N-dimensional array - */ - Shape shape(); - - /** - * @return the rank of this N-dimensional array - */ - default int rank() { - return shape().numDimensions(); - } - - /** - * Computes and returns the total size of this N-dimensional array, in number of values. - * - *

For example, given a 3x3x2 matrix, the return value will be 18. - * @return total size of this nd array - */ - default long size() { - return shape().size(); - } +public interface NdArray extends Shaped { /** * Returns a sequence of all elements at a given dimension. diff --git a/ndarray/src/main/java/org/tensorflow/ndarray/NdArrays.java b/ndarray/src/main/java/org/tensorflow/ndarray/NdArrays.java index 21b33402e98..8ad55cae7ed 100644 --- a/ndarray/src/main/java/org/tensorflow/ndarray/NdArrays.java +++ b/ndarray/src/main/java/org/tensorflow/ndarray/NdArrays.java @@ -65,7 +65,7 @@ public static ByteNdArray vectorOf(byte... values) { if (values == null) { throw new IllegalArgumentException("Values cannot be null"); } - return wrap(DataBuffers.of(values, false, false), Shape.of(values.length)); + return wrap(Shape.of(values.length), DataBuffers.of(values, false, false)); } /** @@ -81,19 +81,19 @@ public static ByteNdArray ofBytes(Shape shape) { if (shape == null) { throw new IllegalArgumentException("Shape cannot be null"); } - return wrap(DataBuffers.ofBytes(shape.size()), shape); + return wrap(shape, DataBuffers.ofBytes(shape.size())); } /** * Wraps a buffer in a byte N-dimensional array of a given shape. * - * @param buffer buffer to wrap * @param shape shape of the array + * @param buffer buffer to wrap * @return new byte N-dimensional array * @throws IllegalArgumentException if shape is null, has unknown dimensions or has size bigger * in the buffer size */ - public static ByteNdArray wrap(ByteDataBuffer buffer, Shape shape) { + public static ByteNdArray wrap(Shape shape, ByteDataBuffer buffer) { return ByteDenseNdArray.create(buffer, shape); } diff --git a/ndarray/src/main/java/org/tensorflow/ndarray/Shaped.java b/ndarray/src/main/java/org/tensorflow/ndarray/Shaped.java new file mode 100644 index 00000000000..fbe19d75623 --- /dev/null +++ b/ndarray/src/main/java/org/tensorflow/ndarray/Shaped.java @@ -0,0 +1,51 @@ +/* + Copyright 2020 The TensorFlow Authors. All Rights Reserved. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. + ======================================================================= + */ +package org.tensorflow.ndarray; + +import java.util.function.BiConsumer; +import java.util.function.Consumer; +import org.tensorflow.ndarray.buffer.DataBuffer; +import org.tensorflow.ndarray.index.Index; + +/** + * Any data container with a given {@link Shape}. + */ +public interface Shaped { + + /** + * @return the shape of this container + */ + Shape shape(); + + /** + * @return the rank of this container + */ + default int rank() { + return shape().numDimensions(); + } + + /** + * Computes and returns the total size of this container, in number of values. + * + *

For example, given a 3x3x2 matrix, the return value will be 18. + * + * @return number of values in this element + */ + default long size() { + return shape().size(); + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_BarrierIncompleteSize.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_BarrierIncompleteSize.pbtxt index fb11b18e951..a2fed2a43de 100644 --- a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_BarrierIncompleteSize.pbtxt +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_BarrierIncompleteSize.pbtxt @@ -1,3 +1,7 @@ op { graph_op_name: "BarrierIncompleteSize" + out_arg { + name: "size" + rename_to: "output" + } } diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_BarrierReadySize.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_BarrierReadySize.pbtxt index 0ed50b25799..0f768476610 100644 --- a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_BarrierReadySize.pbtxt +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_BarrierReadySize.pbtxt @@ -1,3 +1,7 @@ op { graph_op_name: "BarrierReadySize" + out_arg { + name: "size" + rename_to: "output" + } } diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_LookupTableSizeV2.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_LookupTableSizeV2.pbtxt index ad646e25a6b..b5526230d76 100644 --- a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_LookupTableSizeV2.pbtxt +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_LookupTableSizeV2.pbtxt @@ -3,4 +3,8 @@ op { endpoint { name: "LookupTableSize" } + out_arg { + name: "size" + rename_to: "output" + } } diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_MapIncompleteSize.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_MapIncompleteSize.pbtxt index 659993e42b0..2472209d20a 100644 --- a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_MapIncompleteSize.pbtxt +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_MapIncompleteSize.pbtxt @@ -1,3 +1,7 @@ op { graph_op_name: "MapIncompleteSize" + out_arg { + name: "size" + rename_to: "output" + } } diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_MapSize.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_MapSize.pbtxt index 4da151152c9..fe1d5701b4e 100644 --- a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_MapSize.pbtxt +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_MapSize.pbtxt @@ -1,3 +1,7 @@ op { graph_op_name: "MapSize" + out_arg { + name: "size" + rename_to: "output" + } } diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_OrderedMapIncompleteSize.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_OrderedMapIncompleteSize.pbtxt index c609e9e50a2..27d68e2d99d 100644 --- a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_OrderedMapIncompleteSize.pbtxt +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_OrderedMapIncompleteSize.pbtxt @@ -1,3 +1,7 @@ op { graph_op_name: "OrderedMapIncompleteSize" + out_arg { + name: "size" + rename_to: "output" + } } diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_OrderedMapSize.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_OrderedMapSize.pbtxt index 7beef3f376b..30e6215a0ee 100644 --- a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_OrderedMapSize.pbtxt +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_OrderedMapSize.pbtxt @@ -1,3 +1,7 @@ op { graph_op_name: "OrderedMapSize" + out_arg { + name: "size" + rename_to: "output" + } } diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_QueueSizeV2.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_QueueSizeV2.pbtxt index e93e07a2b32..bc17c8daf96 100644 --- a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_QueueSizeV2.pbtxt +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_QueueSizeV2.pbtxt @@ -3,4 +3,8 @@ op { endpoint { name: "io.QueueSize" } + out_arg { + name: "size" + rename_to: "output" + } } diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_SetSize.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_SetSize.pbtxt index 1c000e9c8aa..78c43275762 100644 --- a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_SetSize.pbtxt +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_SetSize.pbtxt @@ -1,3 +1,7 @@ op { graph_op_name: "SetSize" + out_arg { + name: "size" + rename_to: "output" + } } diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_StageSize.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_StageSize.pbtxt index d8188c3e0b3..a697b775571 100644 --- a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_StageSize.pbtxt +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_StageSize.pbtxt @@ -1,3 +1,7 @@ op { graph_op_name: "StageSize" + out_arg { + name: "size" + rename_to: "output" + } } diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_TensorArraySizeV3.pbtxt b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_TensorArraySizeV3.pbtxt index 2df9a2d3f13..55fe2ae46e9 100644 --- a/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_TensorArraySizeV3.pbtxt +++ b/tensorflow-core/tensorflow-core-api/src/bazel/api_def/api_def_TensorArraySizeV3.pbtxt @@ -3,4 +3,8 @@ op { endpoint { name: "TensorArraySize" } + out_arg { + name: "size" + rename_to: "output" + } } diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/op_generator/java_defs.h b/tensorflow-core/tensorflow-core-api/src/bazel/op_generator/java_defs.h index e41dc2dd9df..6028c4ea71d 100644 --- a/tensorflow-core/tensorflow-core-api/src/bazel/op_generator/java_defs.h +++ b/tensorflow-core/tensorflow-core-api/src/bazel/op_generator/java_defs.h @@ -97,9 +97,6 @@ class Type { static Type IterableOf(const Type& type) { return Interface("Iterable").add_parameter(type); } - static Type DataTypeOf(const Type& type) { - return Class("DataType", "org.tensorflow").add_parameter(type); - } static Type ForDataType(DataType data_type) { switch (data_type) { case DataType::DT_BOOL: diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/op_generator/op_generator.cc b/tensorflow-core/tensorflow-core-api/src/bazel/op_generator/op_generator.cc index 843f3bdb247..16744db3799 100644 --- a/tensorflow-core/tensorflow-core-api/src/bazel/op_generator/op_generator.cc +++ b/tensorflow-core/tensorflow-core-api/src/bazel/op_generator/op_generator.cc @@ -103,13 +103,22 @@ void CollectOpDependencies(const OpSpec& op, RenderMode mode, } for (const AttributeSpec& attribute : op.attributes()) { out->push_back(attribute.var().type()); - out->push_back(attribute.jni_type()); + if (attribute.jni_type().name() == "DataType") { + out->push_back(Type::Class("Operands", "org.tensorflow.op")); + } else { + out->push_back(attribute.jni_type()); + } if (attribute.has_default_value() && attribute.type().kind() == Type::GENERIC) { out->push_back(Type::ForDataType(attribute.default_value()->type())); } } for (const AttributeSpec& optional_attribute : op.optional_attributes()) { + if (optional_attribute.jni_type().name() == "DataType") { + out->push_back(Type::Class("Operands", "org.tensorflow.op")); + } else { + out->push_back(optional_attribute.jni_type()); + } out->push_back(optional_attribute.var().type()); } } @@ -117,25 +126,32 @@ void CollectOpDependencies(const OpSpec& op, RenderMode mode, void WriteSetAttrDirective(const AttributeSpec& attr, bool optional, SourceWriter* writer) { string var_name = optional ? "opts." + attr.var().name() : attr.var().name(); - if (attr.iterable()) { - string array_name = attr.var().name() + "Array"; - writer->AppendType(attr.jni_type()) - .Append("[] " + array_name + " = new ") - .AppendType(attr.jni_type()) - .Append("[" + var_name + ".size()];") - .EndLine() - .BeginBlock("for (int i = 0; i < " + array_name + ".length; ++i)") - .Append(array_name + "[i] = "); - writer->Append(var_name + ".get(i);"); - writer->EndLine() - .EndBlock() - .Append("opBuilder.setAttr(\"" + attr.op_def_name() + "\", ") - .Append(array_name + ");") - .EndLine(); - } else { + if (attr.jni_type().name() == "DataType") { writer->Append("opBuilder.setAttr(\"" + attr.op_def_name() + "\", ") - .Append(var_name + ");") - .EndLine(); + .Append(attr.iterable() ? "Operands.toDataTypes(" : "Operands.toDataType(") + .Append(attr.var().name() + "));") + .EndLine(); + } else { + if (attr.iterable()) { + string array_name = attr.var().name() + "Array"; + writer->AppendType(attr.jni_type()) + .Append("[] " + array_name + " = new ") + .AppendType(attr.jni_type()) + .Append("[" + var_name + ".size()];") + .EndLine() + .BeginBlock("for (int i = 0; i < " + array_name + ".length; ++i)") + .Append(array_name + "[i] = "); + writer->Append(var_name + ".get(i);"); + writer->EndLine() + .EndBlock() + .Append("opBuilder.setAttr(\"" + attr.op_def_name() + "\", ") + .Append(array_name + ");") + .EndLine(); + } else { + writer->Append("opBuilder.setAttr(\"" + attr.op_def_name() + "\", ") + .Append(var_name + ");") + .EndLine(); + } } } @@ -177,7 +193,7 @@ void RenderSecondaryFactoryMethod(const OpSpec& op, const Type& op_class, if (attr.type().kind() == Type::GENERIC && default_types.find(attr.type().name()) != default_types.end()) { factory_statement << default_types.at(attr.type().name()).name() - << ".DTYPE"; + << ".class"; } else { AddArgument(attr.var(), attr.description(), &factory, &factory_doc); factory_statement << attr.var().name(); @@ -246,8 +262,9 @@ void RenderFactoryMethods(const OpSpec& op, const Type& op_class, writer->EndLine(); } } + // Add control dependencies, if any. - writer->Append("opBuilder = scope.applyControlDependencies(opBuilder);"); + writer->Append("opBuilder = scope.apply(opBuilder);"); writer->EndLine(); for (const AttributeSpec& attribute : op.attributes()) { diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/op_generator/op_specs.cc b/tensorflow-core/tensorflow-core-api/src/bazel/op_generator/op_specs.cc index c9e0525edb7..56de15d9ab7 100644 --- a/tensorflow-core/tensorflow-core-api/src/bazel/op_generator/op_specs.cc +++ b/tensorflow-core/tensorflow-core-api/src/bazel/op_generator/op_specs.cc @@ -81,13 +81,19 @@ class TypeResolver { std::pair MakeTypePair(const Type& type) { return std::make_pair(type, type); } - Type NextGeneric() { + Type NextGeneric(const OpDef_AttrDef& attr_def) { char generic_letter = next_generic_letter_++; if (next_generic_letter_ > 'Z') { next_generic_letter_ = 'A'; } - return Type::Generic(string(1, generic_letter)) - .add_supertype(Type::Class("TType", "org.tensorflow.types.family")); + return Type::Generic(string(1, generic_letter)); + } + Type TypeFamilyOf(const OpDef_AttrDef& attr_def) { + // TODO(karllessard) support more type families + if (IsRealNumbers(attr_def.allowed_values())) { + return Type::Interface("TNumber", "org.tensorflow.types.family"); + } + return Type::Interface("TType", "org.tensorflow.types.family"); } }; @@ -152,15 +158,12 @@ std::pair TypeResolver::TypesOf(const OpDef_AttrDef& attr_def, types = MakeTypePair(Type::Class("Shape", "org.tensorflow.ndarray")); } else if (attr_type == "tensor") { - types = MakeTypePair(Type::Class("Tensor", "org.tensorflow") - .add_parameter(Type::Wildcard())); + types = MakeTypePair(Type::Class("Tensor", "org.tensorflow")); } else if (attr_type == "type") { - Type type = *iterable_out ? Type::Wildcard() : NextGeneric(); - if (IsRealNumbers(attr_def.allowed_values())) { - type.add_supertype(Type::Class("TNumber", "org.tensorflow.types.family")); - } - types = MakeTypePair(type, Type::Enum("DataType", "org.tensorflow")); + Type type = *iterable_out ? Type::Wildcard() : NextGeneric(attr_def); + type.add_supertype(TypeFamilyOf(attr_def)); + types = MakeTypePair(type, Type::Enum("DataType", "org.tensorflow.proto.framework")); } else { LOG(FATAL) << "Cannot resolve data type for attribute \"" << attr_type @@ -306,7 +309,7 @@ AttributeSpec CreateAttribute(const OpDef_AttrDef& attr_def, bool iterable = false; std::pair types = type_resolver->TypesOf(attr_def, &iterable); Type var_type = types.first.kind() == Type::GENERIC - ? Type::DataTypeOf(types.first) + ? Type::ClassOf(types.first) : types.first; if (iterable) { var_type = Type::ListOf(var_type); diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/op_generator/source_writer.cc b/tensorflow-core/tensorflow-core-api/src/bazel/op_generator/source_writer.cc index 8598b1d945d..37315f0dff3 100644 --- a/tensorflow-core/tensorflow-core-api/src/bazel/op_generator/source_writer.cc +++ b/tensorflow-core/tensorflow-core-api/src/bazel/op_generator/source_writer.cc @@ -85,6 +85,7 @@ SourceWriter& SourceWriter::Append(const StringPiece& str) { SourceWriter& SourceWriter::AppendType(const Type& type) { if (type.wildcard()) { Append("?"); + WriteTypeBounds(type.supertypes()); } else { Append(type.name()); if (!type.parameters().empty()) { @@ -321,14 +322,27 @@ SourceWriter& SourceWriter::WriteGenerics( Append(", "); } Append(pt->name()); - if (!pt->supertypes().empty()) { - Append(" extends ").AppendType(pt->supertypes().front()); - } + WriteTypeBounds(pt->supertypes()); first = false; } return Append(">"); } +SourceWriter& SourceWriter::WriteTypeBounds( + const std::list& bounds) { + bool first = true; + for (const Type& bound : bounds) { + if (first) { + Append(" extends "); + first = false; + } else { + Append(" & "); + } + AppendType(bound); + } + return *this; +} + SourceWriter::GenericNamespace* SourceWriter::PushGenericNamespace( int modifiers) { GenericNamespace* generic_namespace; diff --git a/tensorflow-core/tensorflow-core-api/src/bazel/op_generator/source_writer.h b/tensorflow-core/tensorflow-core-api/src/bazel/op_generator/source_writer.h index 097887083e7..26b97f7a9c4 100644 --- a/tensorflow-core/tensorflow-core-api/src/bazel/op_generator/source_writer.h +++ b/tensorflow-core/tensorflow-core-api/src/bazel/op_generator/source_writer.h @@ -213,6 +213,7 @@ class SourceWriter { SourceWriter& WriteJavadoc(const Javadoc& javadoc); SourceWriter& WriteAnnotations(const std::list& annotations); SourceWriter& WriteGenerics(const std::list& generics); + SourceWriter& WriteTypeBounds(const std::list& bounds); GenericNamespace* PushGenericNamespace(int modifiers); void PopGenericNamespace(); }; diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/AudioOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/AudioOps.java index 16770394378..ca9f4fe8443 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/AudioOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/AudioOps.java @@ -34,8 +34,11 @@ public final class AudioOps { private final Scope scope; - AudioOps(Scope scope) { - this.scope = scope; + private final Ops ops; + + AudioOps(Ops ops) { + this.scope = ops.scope(); + this.ops = ops; } /** @@ -144,4 +147,11 @@ public Mfcc mfcc(Operand spectrogram, Operand sampleRate, Mfcc.Options... options) { return Mfcc.create(scope, spectrogram, sampleRate, options); } + + /** + * Get the parent {@link Ops} object. + */ + public final Ops ops() { + return ops; + } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/BitwiseOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/BitwiseOps.java index 8ac6d565e51..c023586f94e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/BitwiseOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/BitwiseOps.java @@ -34,8 +34,11 @@ public final class BitwiseOps { private final Scope scope; - BitwiseOps(Scope scope) { - this.scope = scope; + private final Ops ops; + + BitwiseOps(Ops ops) { + this.scope = ops.scope(); + this.ops = ops; } /** @@ -268,4 +271,11 @@ public LeftShift leftShift(Operand x, Operand y) { public RightShift rightShift(Operand x, Operand y) { return RightShift.create(scope, x, y); } + + /** + * Get the parent {@link Ops} object. + */ + public final Ops ops() { + return ops; + } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DataExperimentalOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DataExperimentalOps.java index cccc4ac8dcb..ab4089a045d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DataExperimentalOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DataExperimentalOps.java @@ -18,12 +18,12 @@ package org.tensorflow.op; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.ndarray.Shape; import org.tensorflow.op.data.experimental.DataServiceDataset; import org.tensorflow.types.TInt64; import org.tensorflow.types.TString; +import org.tensorflow.types.family.TType; /** * An API for building {@code data.experimental} operations as {@link Op Op}s @@ -33,8 +33,11 @@ public final class DataExperimentalOps { private final Scope scope; - DataExperimentalOps(Scope scope) { - this.scope = scope; + private final Ops ops; + + DataExperimentalOps(Ops ops) { + this.scope = ops.scope(); + this.ops = ops; } /** @@ -54,8 +57,15 @@ public final class DataExperimentalOps { public DataServiceDataset dataServiceDataset(Operand datasetId, Operand processingMode, Operand address, Operand protocol, Operand jobName, Operand maxOutstandingRequests, Operand iterationCounter, - List> outputTypes, List outputShapes, + List> outputTypes, List outputShapes, DataServiceDataset.Options... options) { return DataServiceDataset.create(scope, datasetId, processingMode, address, protocol, jobName, maxOutstandingRequests, iterationCounter, outputTypes, outputShapes, options); } + + /** + * Get the parent {@link Ops} object. + */ + public final Ops ops() { + return ops; + } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DataOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DataOps.java index 273025ef6bd..f5f3e7ebf86 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DataOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DataOps.java @@ -18,7 +18,6 @@ package org.tensorflow.op; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.ndarray.Shape; import org.tensorflow.op.data.AnonymousIterator; @@ -49,6 +48,7 @@ import org.tensorflow.types.TBool; import org.tensorflow.types.TInt64; import org.tensorflow.types.TString; +import org.tensorflow.types.family.TType; /** * An API for building {@code data} operations as {@link Op Op}s @@ -60,9 +60,12 @@ public final class DataOps { private final Scope scope; - DataOps(Scope scope) { - this.scope = scope; - experimental = new DataExperimentalOps(scope); + private final Ops ops; + + DataOps(Ops ops) { + this.scope = ops.scope(); + this.ops = ops; + experimental = new DataExperimentalOps(ops); } /** @@ -72,7 +75,7 @@ public final class DataOps { * @param outputShapes * @return a new instance of AnonymousIterator */ - public AnonymousIterator anonymousIterator(List> outputTypes, + public AnonymousIterator anonymousIterator(List> outputTypes, List outputShapes) { return AnonymousIterator.create(scope, outputTypes, outputShapes); } @@ -90,8 +93,8 @@ public AnonymousIterator anonymousIterator(List> outputTypes, * @return a new instance of BatchDataset */ public BatchDataset batchDataset(Operand inputDataset, Operand batchSize, - Operand dropRemainder, List> outputTypes, List outputShapes, - BatchDataset.Options... options) { + Operand dropRemainder, List> outputTypes, + List outputShapes, BatchDataset.Options... options) { return BatchDataset.create(scope, inputDataset, batchSize, dropRemainder, outputTypes, outputShapes, options); } @@ -126,7 +129,7 @@ public CSVDataset cSVDataset(Operand filenames, Operand compre * @return a new instance of ConcatenateDataset */ public ConcatenateDataset concatenateDataset(Operand inputDataset, Operand anotherDataset, - List> outputTypes, List outputShapes) { + List> outputTypes, List outputShapes) { return ConcatenateDataset.create(scope, inputDataset, anotherDataset, outputTypes, outputShapes); } @@ -161,8 +164,8 @@ public DeserializeIterator deserializeIterator(Operand resourceHandle, Operan * @param outputShapes * @return a new instance of Iterator */ - public Iterator iterator(String sharedName, String container, List> outputTypes, - List outputShapes) { + public Iterator iterator(String sharedName, String container, + List> outputTypes, List outputShapes) { return Iterator.create(scope, sharedName, container, outputTypes, outputShapes); } @@ -174,8 +177,8 @@ public Iterator iterator(String sharedName, String container, List> * @param outputShapes * @return a new instance of IteratorGetNext */ - public IteratorGetNext iteratorGetNext(Operand iterator, List> outputTypes, - List outputShapes) { + public IteratorGetNext iteratorGetNext(Operand iterator, + List> outputTypes, List outputShapes) { return IteratorGetNext.create(scope, iterator, outputTypes, outputShapes); } @@ -188,7 +191,7 @@ public IteratorGetNext iteratorGetNext(Operand iterator, List> ou * @return a new instance of IteratorGetNextAsOptional */ public IteratorGetNextAsOptional iteratorGetNextAsOptional(Operand iterator, - List> outputTypes, List outputShapes) { + List> outputTypes, List outputShapes) { return IteratorGetNextAsOptional.create(scope, iterator, outputTypes, outputShapes); } @@ -205,8 +208,8 @@ public IteratorGetNextAsOptional iteratorGetNextAsOptional(Operand iterator, * @param outputShapes * @return a new instance of IteratorGetNextSync */ - public IteratorGetNextSync iteratorGetNextSync(Operand iterator, List> outputTypes, - List outputShapes) { + public IteratorGetNextSync iteratorGetNextSync(Operand iterator, + List> outputTypes, List outputShapes) { return IteratorGetNextSync.create(scope, iterator, outputTypes, outputShapes); } @@ -252,8 +255,8 @@ public OptionalFromValue optionalFromValue(Iterable> components) { * @param outputShapes * @return a new instance of OptionalGetValue */ - public OptionalGetValue optionalGetValue(Operand optional, List> outputTypes, - List outputShapes) { + public OptionalGetValue optionalGetValue(Operand optional, + List> outputTypes, List outputShapes) { return OptionalGetValue.create(scope, optional, outputTypes, outputShapes); } @@ -287,7 +290,7 @@ public OptionalNone optionalNone() { * @return a new instance of RangeDataset */ public RangeDataset rangeDataset(Operand start, Operand stop, - Operand step, List> outputTypes, List outputShapes) { + Operand step, List> outputTypes, List outputShapes) { return RangeDataset.create(scope, start, stop, step, outputTypes, outputShapes); } @@ -302,7 +305,7 @@ public RangeDataset rangeDataset(Operand start, Operand stop, * @return a new instance of RepeatDataset */ public RepeatDataset repeatDataset(Operand inputDataset, Operand count, - List> outputTypes, List outputShapes) { + List> outputTypes, List outputShapes) { return RepeatDataset.create(scope, inputDataset, count, outputTypes, outputShapes); } @@ -329,7 +332,7 @@ public SerializeIterator serializeIterator(Operand resourceHandle, * @return a new instance of SkipDataset */ public SkipDataset skipDataset(Operand inputDataset, Operand count, - List> outputTypes, List outputShapes) { + List> outputTypes, List outputShapes) { return SkipDataset.create(scope, inputDataset, count, outputTypes, outputShapes); } @@ -345,7 +348,7 @@ public SkipDataset skipDataset(Operand inputDataset, Operand count, * @return a new instance of TakeDataset */ public TakeDataset takeDataset(Operand inputDataset, Operand count, - List> outputTypes, List outputShapes) { + List> outputTypes, List outputShapes) { return TakeDataset.create(scope, inputDataset, count, outputTypes, outputShapes); } @@ -406,8 +409,15 @@ public TfRecordDataset tfRecordDataset(Operand filenames, * @param outputShapes * @return a new instance of ZipDataset */ - public ZipDataset zipDataset(Iterable> inputDatasets, List> outputTypes, - List outputShapes) { + public ZipDataset zipDataset(Iterable> inputDatasets, + List> outputTypes, List outputShapes) { return ZipDataset.create(scope, inputDatasets, outputTypes, outputShapes); } + + /** + * Get the parent {@link Ops} object. + */ + public final Ops ops() { + return ops; + } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DebuggingOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DebuggingOps.java deleted file mode 100644 index f12d18f925b..00000000000 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DebuggingOps.java +++ /dev/null @@ -1,50 +0,0 @@ -// Copyright 2020 The TensorFlow Authors. All Rights Reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. -// ============================================================================== -// -// This class has been generated, DO NOT EDIT! -// -package org.tensorflow.op; - -import org.tensorflow.Operand; -import org.tensorflow.op.debugging.CheckNumerics; -import org.tensorflow.types.family.TNumber; - -/** - * An API for building {@code debugging} operations as {@link Op Op}s - * - * @see {@link Ops} - */ -public final class DebuggingOps { - private final Scope scope; - - DebuggingOps(Scope scope) { - this.scope = scope; - } - - /** - * Checks a tensor for NaN and Inf values. - *

- * When run, reports an `InvalidArgument` error if `tensor` has any values - * that are not a number (NaN) or infinity (Inf). Otherwise, passes `tensor` as-is. - * - * @param data type for {@code output()} output - * @param tensor - * @param message Prefix of the error message. - * @return a new instance of CheckNumerics - */ - public CheckNumerics checkNumerics(Operand tensor, String message) { - return CheckNumerics.create(scope, tensor, message); - } -} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DtypesOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DtypesOps.java index 16d571a6428..acf6a748b70 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DtypesOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DtypesOps.java @@ -17,7 +17,6 @@ // package org.tensorflow.op; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.op.dtypes.AsString; import org.tensorflow.op.dtypes.Cast; @@ -33,8 +32,11 @@ public final class DtypesOps { private final Scope scope; - DtypesOps(Scope scope) { - this.scope = scope; + private final Ops ops; + + DtypesOps(Ops ops) { + this.scope = ops.scope(); + this.ops = ops; } /** @@ -70,7 +72,7 @@ public AsString asString(Operand input, AsString.Options... * @param options carries optional attributes values * @return a new instance of Cast */ - public Cast cast(Operand x, DataType DstT, + public Cast cast(Operand x, Class DstT, Cast.Options... options) { return Cast.create(scope, x, DstT, options); } @@ -99,7 +101,14 @@ public Cast cast(Operand x, DataType * @return a new instance of Complex */ public Complex complex(Operand real, Operand imag, - DataType Tout) { + Class Tout) { return Complex.create(scope, real, imag, Tout); } + + /** + * Get the parent {@link Ops} object. + */ + public final Ops ops() { + return ops; + } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/ImageOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/ImageOps.java index eea2fc4b8f1..13db1243c8a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/ImageOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/ImageOps.java @@ -18,7 +18,6 @@ package org.tensorflow.op; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.op.image.AdjustContrast; import org.tensorflow.op.image.AdjustHue; @@ -66,8 +65,11 @@ public final class ImageOps { private final Scope scope; - ImageOps(Scope scope) { - this.scope = scope; + private final Ops ops; + + ImageOps(Ops ops) { + this.scope = ops.scope(); + this.ops = ops; } /** @@ -269,7 +271,7 @@ public CropAndResizeGradBoxes cropAndResizeGradBoxes(Operand */ public CropAndResizeGradImage cropAndResizeGradImage( Operand grads, Operand boxes, Operand boxInd, - Operand imageSize, DataType T, CropAndResizeGradImage.Options... options) { + Operand imageSize, Class T, CropAndResizeGradImage.Options... options) { return CropAndResizeGradImage.create(scope, grads, boxes, boxInd, imageSize, T, options); } @@ -460,7 +462,7 @@ public DecodePng decodePng(Operand contents, DecodePng.Options. * @param options carries optional attributes values * @return a new instance of DecodePng */ - public DecodePng decodePng(Operand contents, DataType dtype, + public DecodePng decodePng(Operand contents, Class dtype, DecodePng.Options... options) { return DecodePng.create(scope, contents, dtype, options); } @@ -622,7 +624,7 @@ public ExtractJpegShape extractJpegShape(Operand contents) { * @return a new instance of ExtractJpegShape */ public ExtractJpegShape extractJpegShape(Operand contents, - DataType outputType) { + Class outputType) { return ExtractJpegShape.create(scope, contents, outputType); } @@ -942,4 +944,11 @@ public ScaleAndTranslate scaleAndTranslate(Operand images ScaleAndTranslate.Options... options) { return ScaleAndTranslate.create(scope, images, size, scale, translation, options); } + + /** + * Get the parent {@link Ops} object. + */ + public final Ops ops() { + return ops; + } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/IoOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/IoOps.java index adc656dc5af..f8d48de3690 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/IoOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/IoOps.java @@ -18,7 +18,6 @@ package org.tensorflow.op; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.ndarray.Shape; import org.tensorflow.op.io.DecodeBase64; @@ -82,8 +81,11 @@ public final class IoOps { private final Scope scope; - IoOps(Scope scope) { - this.scope = scope; + private final Ops ops; + + IoOps(Ops ops) { + this.scope = ops.scope(); + this.ops = ops; } /** @@ -168,7 +170,7 @@ public DecodeJsonExample decodeJsonExample(Operand jsonExamples) { * @return a new instance of DecodePaddedRaw */ public DecodePaddedRaw decodePaddedRaw(Operand inputBytes, - Operand fixedLength, DataType outType, DecodePaddedRaw.Options... options) { + Operand fixedLength, Class outType, DecodePaddedRaw.Options... options) { return DecodePaddedRaw.create(scope, inputBytes, fixedLength, outType, options); } @@ -181,7 +183,7 @@ public DecodePaddedRaw decodePaddedRaw(Operand i * @param options carries optional attributes values * @return a new instance of DecodeRaw */ - public DecodeRaw decodeRaw(Operand bytes, DataType outType, + public DecodeRaw decodeRaw(Operand bytes, Class outType, DecodeRaw.Options... options) { return DecodeRaw.create(scope, bytes, outType, options); } @@ -238,7 +240,7 @@ public DecodeRaw decodeRaw(Operand bytes, DataType * @return a new instance of DeserializeManySparse */ public DeserializeManySparse deserializeManySparse( - Operand serializedSparse, DataType dtype) { + Operand serializedSparse, Class dtype) { return DeserializeManySparse.create(scope, serializedSparse, dtype); } @@ -267,7 +269,8 @@ public EncodeBase64 encodeBase64(Operand input, EncodeBase64.Options... * @param options carries optional attributes values * @return a new instance of FifoQueue */ - public FifoQueue fifoQueue(List> componentTypes, FifoQueue.Options... options) { + public FifoQueue fifoQueue(List> componentTypes, + FifoQueue.Options... options) { return FifoQueue.create(scope, componentTypes, options); } @@ -331,7 +334,7 @@ public MatchingFiles matchingFiles(Operand pattern) { * @param options carries optional attributes values * @return a new instance of PaddingFifoQueue */ - public PaddingFifoQueue paddingFifoQueue(List> componentTypes, + public PaddingFifoQueue paddingFifoQueue(List> componentTypes, PaddingFifoQueue.Options... options) { return PaddingFifoQueue.create(scope, componentTypes, options); } @@ -393,9 +396,9 @@ public PaddingFifoQueue paddingFifoQueue(List> componentTypes, */ public ParseExample parseExample(Operand serialized, Operand names, Operand sparseKeys, Operand denseKeys, Operand raggedKeys, - Iterable> denseDefaults, Long numSparse, List> sparseTypes, - List> raggedValueTypes, List> raggedSplitTypes, - List denseShapes) { + Iterable> denseDefaults, Long numSparse, List> sparseTypes, + List> raggedValueTypes, + List> raggedSplitTypes, List denseShapes) { return ParseExample.create(scope, serialized, names, sparseKeys, denseKeys, raggedKeys, denseDefaults, numSparse, sparseTypes, raggedValueTypes, raggedSplitTypes, denseShapes); } @@ -451,10 +454,13 @@ public ParseSequenceExample parseSequenceExample(Operand serialized, Operand contextDenseKeys, Operand contextRaggedKeys, Operand featureListSparseKeys, Operand featureListDenseKeys, Operand featureListRaggedKeys, Operand featureListDenseMissingAssumedEmpty, - Iterable> contextDenseDefaults, List> contextSparseTypes, - List> contextRaggedValueTypes, List> contextRaggedSplitTypes, - List> featureListDenseTypes, List> featureListSparseTypes, - List> featureListRaggedValueTypes, List> featureListRaggedSplitTypes, + Iterable> contextDenseDefaults, List> contextSparseTypes, + List> contextRaggedValueTypes, + List> contextRaggedSplitTypes, + List> featureListDenseTypes, + List> featureListSparseTypes, + List> featureListRaggedValueTypes, + List> featureListRaggedSplitTypes, ParseSequenceExample.Options... options) { return ParseSequenceExample.create(scope, serialized, debugName, contextSparseKeys, contextDenseKeys, contextRaggedKeys, featureListSparseKeys, featureListDenseKeys, featureListRaggedKeys, featureListDenseMissingAssumedEmpty, contextDenseDefaults, contextSparseTypes, contextRaggedValueTypes, contextRaggedSplitTypes, featureListDenseTypes, featureListSparseTypes, featureListRaggedValueTypes, featureListRaggedSplitTypes, options); } @@ -496,7 +502,7 @@ public ParseSequenceExample parseSequenceExample(Operand serialized, */ public ParseSingleExample parseSingleExample(Operand serialized, Iterable> denseDefaults, Long numSparse, List sparseKeys, - List denseKeys, List> sparseTypes, List denseShapes) { + List denseKeys, List> sparseTypes, List denseShapes) { return ParseSingleExample.create(scope, serialized, denseDefaults, numSparse, sparseKeys, denseKeys, sparseTypes, denseShapes); } @@ -550,8 +556,9 @@ public ParseSingleSequenceExample parseSingleSequenceExample(Operand se Iterable> contextSparseKeys, Iterable> contextDenseKeys, Iterable> featureListSparseKeys, Iterable> featureListDenseKeys, Iterable> contextDenseDefaults, - Operand debugName, List> contextSparseTypes, - List> featureListDenseTypes, List> featureListSparseTypes, + Operand debugName, List> contextSparseTypes, + List> featureListDenseTypes, + List> featureListSparseTypes, ParseSingleSequenceExample.Options... options) { return ParseSingleSequenceExample.create(scope, serialized, featureListDenseMissingAssumedEmpty, contextSparseKeys, contextDenseKeys, featureListSparseKeys, featureListDenseKeys, contextDenseDefaults, debugName, contextSparseTypes, featureListDenseTypes, featureListSparseTypes, options); } @@ -566,7 +573,7 @@ public ParseSingleSequenceExample parseSingleSequenceExample(Operand se * @return a new instance of ParseTensor */ public ParseTensor parseTensor(Operand serialized, - DataType outType) { + Class outType) { return ParseTensor.create(scope, serialized, outType); } @@ -587,8 +594,8 @@ public ParseTensor parseTensor(Operand serialized, * @param options carries optional attributes values * @return a new instance of PriorityQueue */ - public PriorityQueue priorityQueue(List> componentTypes, List shapes, - PriorityQueue.Options... options) { + public PriorityQueue priorityQueue(List> componentTypes, + List shapes, PriorityQueue.Options... options) { return PriorityQueue.create(scope, componentTypes, shapes, options); } @@ -624,7 +631,7 @@ public QueueClose queueClose(Operand handle, QueueClose.Options... options) { * @param options carries optional attributes values * @return a new instance of QueueDequeue */ - public QueueDequeue queueDequeue(Operand handle, List> componentTypes, + public QueueDequeue queueDequeue(Operand handle, List> componentTypes, QueueDequeue.Options... options) { return QueueDequeue.create(scope, handle, componentTypes, options); } @@ -653,7 +660,7 @@ public QueueDequeue queueDequeue(Operand handle, List> componentT * @return a new instance of QueueDequeueMany */ public QueueDequeueMany queueDequeueMany(Operand handle, Operand n, - List> componentTypes, QueueDequeueMany.Options... options) { + List> componentTypes, QueueDequeueMany.Options... options) { return QueueDequeueMany.create(scope, handle, n, componentTypes, options); } @@ -685,7 +692,7 @@ public QueueDequeueMany queueDequeueMany(Operand handle, Operand n, * @return a new instance of QueueDequeueUpTo */ public QueueDequeueUpTo queueDequeueUpTo(Operand handle, Operand n, - List> componentTypes, QueueDequeueUpTo.Options... options) { + List> componentTypes, QueueDequeueUpTo.Options... options) { return QueueDequeueUpTo.create(scope, handle, n, componentTypes, options); } @@ -762,7 +769,7 @@ public QueueSize queueSize(Operand handle) { * @param options carries optional attributes values * @return a new instance of RandomShuffleQueue */ - public RandomShuffleQueue randomShuffleQueue(List> componentTypes, + public RandomShuffleQueue randomShuffleQueue(List> componentTypes, RandomShuffleQueue.Options... options) { return RandomShuffleQueue.create(scope, componentTypes, options); } @@ -914,7 +921,7 @@ public SerializeManySparse serializeManySparse( */ public SerializeManySparse serializeManySparse( Operand sparseIndices, Operand sparseValues, Operand sparseShape, - DataType outType) { + Class outType) { return SerializeManySparse.create(scope, sparseIndices, sparseValues, sparseShape, outType); } @@ -945,7 +952,7 @@ public SerializeSparse serializeSparse(Operand SerializeSparse serializeSparse( Operand sparseIndices, Operand sparseValues, Operand sparseShape, - DataType outType) { + Class outType) { return SerializeSparse.create(scope, sparseIndices, sparseValues, sparseShape, outType); } @@ -1030,4 +1037,11 @@ public WholeFileReader wholeFileReader(WholeFileReader.Options... options) { public WriteFile writeFile(Operand filename, Operand contents) { return WriteFile.create(scope, filename, contents); } + + /** + * Get the parent {@link Ops} object. + */ + public final Ops ops() { + return ops; + } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/LinalgOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/LinalgOps.java index b2242f1068e..f15c50fe691 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/LinalgOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/LinalgOps.java @@ -17,7 +17,6 @@ // package org.tensorflow.op; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.op.linalg.BandPart; import org.tensorflow.op.linalg.BatchCholesky; @@ -78,8 +77,11 @@ public final class LinalgOps { private final Scope scope; - LinalgOps(Scope scope) { - this.scope = scope; + private final Ops ops; + + LinalgOps(Ops ops) { + this.scope = ops.scope(); + this.ops = ops; } /** @@ -396,7 +398,7 @@ public Det det(Operand input) { * @param options carries optional attributes values * @return a new instance of Eig */ - public Eig eig(Operand input, DataType Tout, + public Eig eig(Operand input, Class Tout, Eig.Options... options) { return Eig.create(scope, input, Tout, options); } @@ -682,7 +684,7 @@ public Lu lu(Operand input) { * @return a new instance of Lu */ public Lu lu(Operand input, - DataType outputIdxType) { + Class outputIdxType) { return Lu.create(scope, input, outputIdxType); } @@ -1373,7 +1375,7 @@ public Qr qr(Operand input, Qr.Options... options) { */ public QuantizedMatMul quantizedMatMul( Operand a, Operand b, Operand minA, Operand maxA, - Operand minB, Operand maxB, DataType Toutput, DataType Tactivation, + Operand minB, Operand maxB, Class Toutput, Class Tactivation, QuantizedMatMul.Options... options) { return QuantizedMatMul.create(scope, a, b, minA, maxA, minB, maxB, Toutput, Tactivation, options); } @@ -1606,4 +1608,11 @@ public TriangularSolve triangularSolve(Operand matrix, O TriangularSolve.Options... options) { return TriangularSolve.create(scope, matrix, rhs, options); } + + /** + * Get the parent {@link Ops} object. + */ + public final Ops ops() { + return ops; + } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/LinalgSparseOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/LinalgSparseOps.java deleted file mode 100644 index 7f8777c883a..00000000000 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/LinalgSparseOps.java +++ /dev/null @@ -1,463 +0,0 @@ -// Copyright 2020 The TensorFlow Authors. All Rights Reserved. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// http://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. -// ============================================================================== -// -// This class has been generated, DO NOT EDIT! -// -package org.tensorflow.op; - -import org.tensorflow.DataType; -import org.tensorflow.Operand; -import org.tensorflow.op.linalg.sparse.CSRSparseMatrixToSparseTensor; -import org.tensorflow.op.linalg.sparse.DenseToCSRSparseMatrix; -import org.tensorflow.op.linalg.sparse.SparseMatrixAdd; -import org.tensorflow.op.linalg.sparse.SparseMatrixMatMul; -import org.tensorflow.op.linalg.sparse.SparseMatrixMul; -import org.tensorflow.op.linalg.sparse.SparseMatrixNNZ; -import org.tensorflow.op.linalg.sparse.SparseMatrixOrderingAMD; -import org.tensorflow.op.linalg.sparse.SparseMatrixSoftmax; -import org.tensorflow.op.linalg.sparse.SparseMatrixSoftmaxGrad; -import org.tensorflow.op.linalg.sparse.SparseMatrixSparseCholesky; -import org.tensorflow.op.linalg.sparse.SparseMatrixSparseMatMul; -import org.tensorflow.op.linalg.sparse.SparseMatrixTranspose; -import org.tensorflow.op.linalg.sparse.SparseMatrixZeros; -import org.tensorflow.op.linalg.sparse.SparseTensorToCSRSparseMatrix; -import org.tensorflow.types.TInt32; -import org.tensorflow.types.TInt64; -import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; - -/** - * An API for building {@code linalg.sparse} operations as {@link Op Op}s - * - * @see {@link Ops} - */ -public final class LinalgSparseOps { - private final Scope scope; - - LinalgSparseOps(Scope scope) { - this.scope = scope; - } - - /** - * Converts a (possibly batched) CSRSparesMatrix to a SparseTensor. - * - * @param data type for {@code values()} output - * @param sparseMatrix A (possibly batched) CSRSparseMatrix. - * @param type - * @return a new instance of CSRSparseMatrixToSparseTensor - */ - public CSRSparseMatrixToSparseTensor cSRSparseMatrixToSparseTensor( - Operand sparseMatrix, DataType type) { - return CSRSparseMatrixToSparseTensor.create(scope, sparseMatrix, type); - } - - /** - * Converts a dense tensor to a (possibly batched) CSRSparseMatrix. - * - * @param denseInput A Dense tensor. - * @param indices Indices of nonzero elements. - * @return a new instance of DenseToCSRSparseMatrix - */ - public DenseToCSRSparseMatrix denseToCSRSparseMatrix(Operand denseInput, - Operand indices) { - return DenseToCSRSparseMatrix.create(scope, denseInput, indices); - } - - /** - * Sparse addition of two CSR matrices, C = alpha * A + beta * B. - *

- * The gradients of SparseMatrixAdd outputs with respect to alpha and beta are not - * currently defined (TensorFlow will return zeros for these entries). - * - * @param a A CSRSparseMatrix. - * @param b A CSRSparseMatrix. - * @param alpha A constant scalar. - * @param beta A constant scalar. - * @return a new instance of SparseMatrixAdd - */ - public SparseMatrixAdd sparseMatrixAdd(Operand a, Operand b, - Operand alpha, Operand beta) { - return SparseMatrixAdd.create(scope, a, b, alpha, beta); - } - - /** - * Matrix-multiplies a sparse matrix with a dense matrix. - *

- * Returns a dense matrix. - * For inputs A and B, where A is CSR and B is dense; this op returns a dense C; - *

- * If transpose_output is false, returns: - *

{@code
-   *    C = A . B
-   *  }
- * If transpose_output is `true`, returns: - *
{@code
-   *    C = transpose(A . B) = transpose(B) . transpose(A)
-   *  }
- * where the transposition is performed along the two innermost (matrix) - * dimensions. - *

- * If conjugate_output is `true`, returns: - *

{@code
-   *    C = conjugate(A . B) = conjugate(A) . conjugate(B)
-   *  }
- * If both conjugate_output and transpose_output are `true`, returns: - *
{@code
-   *    C = conjugate(transpose(A . B)) = conjugate(transpose(B)) .
-   *                                      conjugate(transpose(A))
-   *  }
- * - * @param data type for {@code output()} output - * @param a A CSRSparseMatrix. - * @param b A dense tensor. - * @param options carries optional attributes values - * @return a new instance of SparseMatrixMatMul - */ - public SparseMatrixMatMul sparseMatrixMatMul(Operand a, Operand b, - SparseMatrixMatMul.Options... options) { - return SparseMatrixMatMul.create(scope, a, b, options); - } - - /** - * Element-wise multiplication of a sparse matrix with a dense tensor. - *

- * Returns a sparse matrix. - *

- * The dense tensor `b` may be either a scalar; otherwise `a` must be a rank-3 - * `SparseMatrix`; in this case `b` must be shaped `[batch_size, 1, 1]` and the - * multiply operation broadcasts. - *

- * NOTE even if `b` is zero, the sparsity structure of the output does not - * change. - * - * @param a A CSRSparseMatrix. - * @param b A dense tensor. - * @return a new instance of SparseMatrixMul - */ - public SparseMatrixMul sparseMatrixMul(Operand a, Operand b) { - return SparseMatrixMul.create(scope, a, b); - } - - /** - * Returns the number of nonzeroes of `sparse_matrix`. - * - * @param sparseMatrix A CSRSparseMatrix. - * @return a new instance of SparseMatrixNNZ - */ - public SparseMatrixNNZ sparseMatrixNNZ(Operand sparseMatrix) { - return SparseMatrixNNZ.create(scope, sparseMatrix); - } - - /** - * Computes the Approximate Minimum Degree (AMD) ordering of `input`. - *

- * Computes the Approximate Minimum Degree (AMD) ordering for a sparse matrix. - *

- * The returned permutation may be used to permute the rows and columns of the - * given sparse matrix. This typically results in permuted sparse matrix's sparse - * Cholesky (or other decompositions) in having fewer zero fill-in compared to - * decomposition of the original matrix. - *

- * The input sparse matrix may have rank 2 or rank 3. The output Tensor, - * representing would then have rank 1 or 2 respectively, with the same batch - * shape as the input. - *

- * Each component of the input sparse matrix must represent a square symmetric - * matrix; only the lower triangular part of the matrix is read. The values of the - * sparse matrix does not affect the returned permutation, only the sparsity - * pattern of the sparse matrix is used. Hence, a single AMD ordering may be - * reused for the Cholesky decompositions of sparse matrices with the same sparsity - * pattern but with possibly different values. - *

- * Each batch component of the output permutation represents a permutation of `N` - * elements, where the input sparse matrix components each have `N` rows. That is, - * the component contains each of the integers `{0, .. N-1}` exactly once. The - * `i`th element represents the row index that the `i`th row maps to. - *

- * Usage example: - *

{@code
-   *      from tensorflow.python.ops.linalg.sparse import sparse_csr_matrix_ops
-   *
-   *      a_indices = np.array([[0, 0], [1, 1], [2, 1], [2, 2], [3, 3]])
-   *      a_values = np.array([1.0, 2.0, 1.0, 3.0, 4.0], np.float32)
-   *      a_dense_shape = [4, 4]
-   *
-   *      with tf.Session() as sess:
-   *        # Define (COO format) SparseTensor over Numpy array.
-   *        a_st = tf.SparseTensor(a_indices, a_values, a_dense_shape)
-   *
-   *        # Convert SparseTensors to CSR SparseMatrix.
-   *        a_sm = sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix(
-   *            a_st.indices, a_st.values, a_st.dense_shape)
-   *
-   *        # Obtain the AMD Ordering for the CSR SparseMatrix.
-   *        ordering_amd = sparse_csr_matrix_ops.sparse_matrix_ordering_amd(sparse_matrix)
-   *
-   *        ordering_amd_value = sess.run(ordering_amd)
-   *  }
- * `ordering_amd_value` stores the AMD ordering: `[1 2 3 0]`. - *

- * input: A `CSRSparseMatrix`. - * - * @param input A `CSRSparseMatrix`. - * @return a new instance of SparseMatrixOrderingAMD - */ - public SparseMatrixOrderingAMD sparseMatrixOrderingAMD(Operand input) { - return SparseMatrixOrderingAMD.create(scope, input); - } - - /** - * Calculates the softmax of a CSRSparseMatrix. - *

- * Calculate the softmax of the innermost dimensions of a SparseMatrix. - *

- * Missing values are treated as `-inf` (i.e., logits of zero probability); and - * the output has the same sparsity structure as the input (though missing values - * in the output may now be treated as having probability zero). - * - * @param logits A CSRSparseMatrix. - * @param type - * @return a new instance of SparseMatrixSoftmax - */ - public SparseMatrixSoftmax sparseMatrixSoftmax(Operand logits, - DataType type) { - return SparseMatrixSoftmax.create(scope, logits, type); - } - - /** - * Calculates the gradient of the SparseMatrixSoftmax op. - * - * @param softmax A CSRSparseMatrix. - * @param gradSoftmax The gradient of `softmax`. - * @param type - * @return a new instance of SparseMatrixSoftmaxGrad - */ - public SparseMatrixSoftmaxGrad sparseMatrixSoftmaxGrad(Operand softmax, - Operand gradSoftmax, DataType type) { - return SparseMatrixSoftmaxGrad.create(scope, softmax, gradSoftmax, type); - } - - /** - * Computes the sparse Cholesky decomposition of `input`. - *

- * Computes the Sparse Cholesky decomposition of a sparse matrix, with the given - * fill-in reducing permutation. - *

- * The input sparse matrix and the fill-in reducing permutation `permutation` must - * have compatible shapes. If the sparse matrix has rank 3; with the batch - * dimension `B`, then the `permutation` must be of rank 2; with the same batch - * dimension `B`. There is no support for broadcasting. - *

- * Furthermore, each component vector of `permutation` must be of length `N`, - * containing each of the integers {0, 1, ..., N - 1} exactly once, where `N` is - * the number of rows of each component of the sparse matrix. - *

- * Each component of the input sparse matrix must represent a symmetric positive - * definite (SPD) matrix; although only the lower triangular part of the matrix is - * read. If any individual component is not SPD, then an InvalidArgument error is - * thrown. - *

- * The returned sparse matrix has the same dense shape as the input sparse matrix. - * For each component `A` of the input sparse matrix, the corresponding output - * sparse matrix represents `L`, the lower triangular Cholesky factor satisfying - * the following identity: - *

{@code
-   *    A = L * Lt
-   *  }
- * where Lt denotes the transpose of L (or its conjugate transpose, if `type` is - * `complex64` or `complex128`). - *

- * The `type` parameter denotes the type of the matrix elements. The supported - * types are: `float32`, `float64`, `complex64` and `complex128`. - *

- * Usage example: - *

{@code
-   *      from tensorflow.python.ops.linalg.sparse import sparse_csr_matrix_ops
-   *
-   *      a_indices = np.array([[0, 0], [1, 1], [2, 1], [2, 2], [3, 3]])
-   *      a_values = np.array([1.0, 2.0, 1.0, 3.0, 4.0], np.float32)
-   *      a_dense_shape = [4, 4]
-   *
-   *      with tf.Session() as sess:
-   *        # Define (COO format) SparseTensor over Numpy array.
-   *        a_st = tf.SparseTensor(a_indices, a_values, a_dense_shape)
-   *
-   *        # Convert SparseTensors to CSR SparseMatrix.
-   *        a_sm = sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix(
-   *            a_st.indices, a_st.values, a_st.dense_shape)
-   *
-   *        # Obtain the Sparse Cholesky factor using AMD Ordering for reducing zero
-   *        # fill-in (number of structural non-zeros in the sparse Cholesky factor).
-   *        ordering_amd = sparse_csr_matrix_ops.sparse_matrix_ordering_amd(sparse_matrix)
-   *        cholesky_sparse_matrices = (
-   *            sparse_csr_matrix_ops.sparse_matrix_sparse_cholesky(
-   *                sparse_matrix, ordering_amd, type=tf.float32))
-   *
-   *        # Convert the CSRSparseMatrix Cholesky factor to a dense Tensor
-   *        dense_cholesky = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense(
-   *            cholesky_sparse_matrices, tf.float32)
-   *
-   *        # Evaluate the dense Tensor value.
-   *        dense_cholesky_value = sess.run(dense_cholesky)
-   *  }
- * `dense_cholesky_value` stores the dense Cholesky factor: - *
{@code
-   *      [[  1.  0.    0.    0.]
-   *       [  0.  1.41  0.    0.]
-   *       [  0.  0.70  1.58  0.]
-   *       [  0.  0.    0.    2.]]
-   *  }
- * input: A `CSRSparseMatrix`. - * permutation: A `Tensor`. - * type: The type of `input`. - * - * @param input A `CSRSparseMatrix`. - * @param permutation A fill-in reducing permutation matrix. - * @param type - * @return a new instance of SparseMatrixSparseCholesky - */ - public SparseMatrixSparseCholesky sparseMatrixSparseCholesky(Operand input, - Operand permutation, DataType type) { - return SparseMatrixSparseCholesky.create(scope, input, permutation, type); - } - - /** - * Sparse-matrix-multiplies two CSR matrices `a` and `b`. - *

- * Performs a matrix multiplication of a sparse matrix `a` with a sparse matrix - * `b`; returns a sparse matrix `a * b`, unless either `a` or `b` is transposed or - * adjointed. - *

- * Each matrix may be transposed or adjointed (conjugated and transposed) - * according to the Boolean parameters `transpose_a`, `adjoint_a`, `transpose_b` - * and `adjoint_b`. At most one of `transpose_a` or `adjoint_a` may be True. - * Similarly, at most one of `transpose_b` or `adjoint_b` may be True. - *

- * The inputs must have compatible shapes. That is, the inner dimension of `a` - * must be equal to the outer dimension of `b`. This requirement is adjusted - * according to whether either `a` or `b` is transposed or adjointed. - *

- * The `type` parameter denotes the type of the matrix elements. Both `a` and `b` - * must have the same type. The supported types are: `float32`, `float64`, - * `complex64` and `complex128`. - *

- * Both `a` and `b` must have the same rank. Broadcasting is not supported. If they - * have rank 3, each batch of 2D CSRSparseMatrices within `a` and `b` must have the - * same dense shape. - *

- * The sparse matrix product may have numeric (non-structural) zeros. - * TODO(anudhyan): Consider adding a boolean attribute to control whether to prune - * zeros. - *

- * Usage example: - *

{@code
-   *      from tensorflow.python.ops.linalg.sparse import sparse_csr_matrix_ops
-   *
-   *      a_indices = np.array([[0, 0], [2, 3], [2, 4], [3, 0]])
-   *      a_values = np.array([1.0, 5.0, -1.0, -2.0], np.float32)
-   *      a_dense_shape = [4, 5]
-   *
-   *      b_indices = np.array([[0, 0], [3, 0], [3, 1]])
-   *      b_values = np.array([2.0, 7.0, 8.0], np.float32)
-   *      b_dense_shape = [5, 3]
-   *
-   *      with tf.Session() as sess:
-   *        # Define (COO format) Sparse Tensors over Numpy arrays
-   *        a_st = tf.SparseTensor(a_indices, a_values, a_dense_shape)
-   *        b_st = tf.SparseTensor(b_indices, b_values, b_dense_shape)
-   *
-   *        # Convert SparseTensors to CSR SparseMatrix
-   *        a_sm = sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix(
-   *            a_st.indices, a_st.values, a_st.dense_shape)
-   *        b_sm = sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix(
-   *            b_st.indices, b_st.values, b_st.dense_shape)
-   *
-   *        # Compute the CSR SparseMatrix matrix multiplication
-   *        c_sm = sparse_csr_matrix_ops.sparse_matrix_sparse_mat_mul(
-   *            a=a_sm, b=b_sm, type=tf.float32)
-   *
-   *        # Convert the CSR SparseMatrix product to a dense Tensor
-   *        c_sm_dense = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense(
-   *            c_sm, tf.float32)
-   *        # Evaluate the dense Tensor value
-   *        c_sm_dense_value = sess.run(c_sm_dense)
-   *  }
- * `c_sm_dense_value` stores the dense matrix product: - *
{@code
-   *      [[  2.   0.   0.]
-   *       [  0.   0.   0.]
-   *       [ 35.  40.   0.]
-   *       [ -4.   0.   0.]]
-   *  }
- * a: A `CSRSparseMatrix`. - * b: A `CSRSparseMatrix` with the same type and rank as `a`. - * type: The type of both `a` and `b`. - * transpose_a: If True, `a` transposed before multiplication. - * transpose_b: If True, `b` transposed before multiplication. - * adjoint_a: If True, `a` adjointed before multiplication. - * adjoint_b: If True, `b` adjointed before multiplication. - * - * @param a A CSRSparseMatrix. - * @param b A CSRSparseMatrix. - * @param type - * @param options carries optional attributes values - * @return a new instance of SparseMatrixSparseMatMul - */ - public SparseMatrixSparseMatMul sparseMatrixSparseMatMul(Operand a, - Operand b, DataType type, SparseMatrixSparseMatMul.Options... options) { - return SparseMatrixSparseMatMul.create(scope, a, b, type, options); - } - - /** - * Transposes the inner (matrix) dimensions of a CSRSparseMatrix. - *

- * Transposes the inner (matrix) dimensions of a SparseMatrix and optionally - * conjugates its values. - * - * @param input A CSRSparseMatrix. - * @param type - * @param options carries optional attributes values - * @return a new instance of SparseMatrixTranspose - */ - public SparseMatrixTranspose sparseMatrixTranspose(Operand input, - DataType type, SparseMatrixTranspose.Options... options) { - return SparseMatrixTranspose.create(scope, input, type, options); - } - - /** - * Creates an all-zeros CSRSparseMatrix with shape `dense_shape`. - * - * @param denseShape The desired matrix shape. - * @param type - * @return a new instance of SparseMatrixZeros - */ - public SparseMatrixZeros sparseMatrixZeros(Operand denseShape, - DataType type) { - return SparseMatrixZeros.create(scope, denseShape, type); - } - - /** - * Converts a SparseTensor to a (possibly batched) CSRSparseMatrix. - * - * @param indices SparseTensor indices. - * @param values SparseTensor values. - * @param denseShape SparseTensor dense shape. - * @return a new instance of SparseTensorToCSRSparseMatrix - */ - public SparseTensorToCSRSparseMatrix sparseTensorToCSRSparseMatrix( - Operand indices, Operand values, Operand denseShape) { - return SparseTensorToCSRSparseMatrix.create(scope, indices, values, denseShape); - } -} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/MathOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/MathOps.java index 1f08502ca44..252a84fd745 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/MathOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/MathOps.java @@ -17,7 +17,6 @@ // package org.tensorflow.op; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.ndarray.Shape; import org.tensorflow.op.math.Abs; @@ -138,8 +137,11 @@ public final class MathOps { private final Scope scope; - MathOps(Scope scope) { - this.scope = scope; + private final Ops ops; + + MathOps(Ops ops) { + this.scope = ops.scope(); + this.ops = ops; } /** @@ -289,7 +291,7 @@ public Angle angle(Operand input) { * @param Tout * @return a new instance of Angle */ - public Angle angle(Operand input, DataType Tout) { + public Angle angle(Operand input, Class Tout) { return Angle.create(scope, input, Tout); } @@ -357,7 +359,7 @@ public ArgMax argMax(Operand inp * @return a new instance of ArgMax */ public ArgMax argMax(Operand input, - Operand dimension, DataType outputType) { + Operand dimension, Class outputType) { return ArgMax.create(scope, input, dimension, outputType); } @@ -412,7 +414,7 @@ public ArgMin argMin(Operand inp * @return a new instance of ArgMin */ public ArgMin argMin(Operand input, - Operand dimension, DataType outputType) { + Operand dimension, Class outputType) { return ArgMin.create(scope, input, dimension, outputType); } @@ -651,7 +653,7 @@ public ComplexAbs complexAbs(Operand x) { * @return a new instance of ComplexAbs */ public ComplexAbs complexAbs(Operand x, - DataType Tout) { + Class Tout) { return ComplexAbs.create(scope, x, Tout); } @@ -1178,7 +1180,7 @@ public Imag imag(Operand input) { * @param Tout * @return a new instance of Imag */ - public Imag imag(Operand input, DataType Tout) { + public Imag imag(Operand input, Class Tout) { return Imag.create(scope, input, Tout); } @@ -1635,7 +1637,7 @@ public Pow pow(Operand x, Operand y) { */ public QuantizedAdd quantizedAdd( Operand x, Operand y, Operand minX, Operand maxX, - Operand minY, Operand maxY, DataType Toutput) { + Operand minY, Operand maxY, Class Toutput) { return QuantizedAdd.create(scope, x, y, minX, maxX, minY, maxY, Toutput); } @@ -1654,7 +1656,7 @@ public QuantizedAdd quant */ public QuantizedMul quantizedMul( Operand x, Operand y, Operand minX, Operand maxX, - Operand minY, Operand maxY, DataType Toutput) { + Operand minY, Operand maxY, Class Toutput) { return QuantizedMul.create(scope, x, y, minX, maxX, minY, maxY, Toutput); } @@ -1699,7 +1701,7 @@ public Real real(Operand input) { * @param Tout * @return a new instance of Real */ - public Real real(Operand input, DataType Tout) { + public Real real(Operand input, Class Tout) { return Real.create(scope, input, Tout); } @@ -2391,4 +2393,11 @@ public Xlogy xlogy(Operand x, Operand y) { public Zeta zeta(Operand x, Operand q) { return Zeta.create(scope, x, q); } + + /** + * Get the parent {@link Ops} object. + */ + public final Ops ops() { + return ops; + } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/NnOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/NnOps.java index 81a24514a08..8b5b01fac32 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/NnOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/NnOps.java @@ -18,7 +18,6 @@ package org.tensorflow.op; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.op.nn.AvgPool; import org.tensorflow.op.nn.AvgPool3d; @@ -108,9 +107,12 @@ public final class NnOps { private final Scope scope; - NnOps(Scope scope) { - this.scope = scope; - raw = new NnRawOps(scope); + private final Ops ops; + + NnOps(Ops ops) { + this.scope = ops.scope(); + this.ops = ops; + raw = new NnRawOps(ops); } /** @@ -642,8 +644,8 @@ public CudnnRNNParamsToCanonical cudnnRNNParamsToCanonica * @return a new instance of CudnnRnnParamsSize */ public CudnnRnnParamsSize cudnnRnnParamsSize( - Operand numLayers, Operand numUnits, Operand inputSize, DataType T, - DataType S, CudnnRnnParamsSize.Options... options) { + Operand numLayers, Operand numUnits, Operand inputSize, Class T, + Class S, CudnnRnnParamsSize.Options... options) { return CudnnRnnParamsSize.create(scope, numLayers, numUnits, inputSize, T, S, options); } @@ -1501,7 +1503,7 @@ public MaxPoolWithArgmax maxPoolWithArgmax(Operan * @return a new instance of MaxPoolWithArgmax */ public MaxPoolWithArgmax maxPoolWithArgmax( - Operand input, List ksize, List strides, DataType Targmax, String padding, + Operand input, List ksize, List strides, Class Targmax, String padding, MaxPoolWithArgmax.Options... options) { return MaxPoolWithArgmax.create(scope, input, ksize, strides, Targmax, padding, options); } @@ -1588,7 +1590,7 @@ public QuantizedBatchNormWithGlobalNormalizat Operand t, Operand tMin, Operand tMax, Operand m, Operand mMin, Operand mMax, Operand v, Operand vMin, Operand vMax, Operand beta, Operand betaMin, Operand betaMax, - Operand gamma, Operand gammaMin, Operand gammaMax, DataType outType, + Operand gamma, Operand gammaMin, Operand gammaMax, Class outType, Float varianceEpsilon, Boolean scaleAfterNormalization) { return QuantizedBatchNormWithGlobalNormalization.create(scope, t, tMin, tMax, m, mMin, mMax, v, vMin, vMax, beta, betaMin, betaMax, gamma, gammaMin, gammaMax, outType, varianceEpsilon, scaleAfterNormalization); } @@ -1610,7 +1612,7 @@ public QuantizedBatchNormWithGlobalNormalizat */ public QuantizedBiasAdd quantizedBiasAdd( Operand input, Operand bias, Operand minInput, Operand maxInput, - Operand minBias, Operand maxBias, DataType outType) { + Operand minBias, Operand maxBias, Class outType) { return QuantizedBiasAdd.create(scope, input, bias, minInput, maxInput, minBias, maxBias, outType); } @@ -1638,7 +1640,7 @@ public QuantizedBiasAdd q */ public QuantizedConv2d quantizedConv2d( Operand input, Operand filter, Operand minInput, Operand maxInput, - Operand minFilter, Operand maxFilter, DataType outType, + Operand minFilter, Operand maxFilter, Class outType, List strides, String padding, QuantizedConv2d.Options... options) { return QuantizedConv2d.create(scope, input, filter, minInput, maxInput, minFilter, maxFilter, outType, strides, padding, options); } @@ -1689,7 +1691,7 @@ public QuantizedMaxPool quantizedMaxPool(Operand input, * @return a new instance of QuantizedRelu */ public QuantizedRelu quantizedRelu(Operand features, - Operand minFeatures, Operand maxFeatures, DataType outType) { + Operand minFeatures, Operand maxFeatures, Class outType) { return QuantizedRelu.create(scope, features, minFeatures, maxFeatures, outType); } @@ -1704,7 +1706,7 @@ public QuantizedRelu quantizedRelu(Operand * @return a new instance of QuantizedRelu6 */ public QuantizedRelu6 quantizedRelu6(Operand features, - Operand minFeatures, Operand maxFeatures, DataType outType) { + Operand minFeatures, Operand maxFeatures, Class outType) { return QuantizedRelu6.create(scope, features, minFeatures, maxFeatures, outType); } @@ -1721,7 +1723,7 @@ public QuantizedRelu6 quantizedRelu6(Opera */ public QuantizedReluX quantizedReluX(Operand features, Operand maxValue, Operand minFeatures, Operand maxFeatures, - DataType outType) { + Class outType) { return QuantizedReluX.create(scope, features, maxValue, minFeatures, maxFeatures, outType); } @@ -2148,4 +2150,11 @@ public TopK topK(Operand input, Operand k, TopK.Options... options) { return TopK.create(scope, input, k, options); } + + /** + * Get the parent {@link Ops} object. + */ + public final Ops ops() { + return ops; + } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/NnRawOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/NnRawOps.java index d9147af3934..64cecadbe6d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/NnRawOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/NnRawOps.java @@ -30,8 +30,11 @@ public final class NnRawOps { private final Scope scope; - NnRawOps(Scope scope) { - this.scope = scope; + private final Ops ops; + + NnRawOps(Ops ops) { + this.scope = ops.scope(); + this.ops = ops; } /** @@ -71,4 +74,11 @@ public SparseSoftmaxCrossEntropyWithLogit Operand features, Operand labels) { return SparseSoftmaxCrossEntropyWithLogits.create(scope, features, labels); } + + /** + * Get the parent {@link Ops} object. + */ + public final Ops ops() { + return ops; + } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/Ops.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/Ops.java index 8c7aa1c0408..d6e69085324 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/Ops.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/Ops.java @@ -19,11 +19,10 @@ import java.nio.charset.Charset; import java.util.List; -import org.tensorflow.DataType; +import org.tensorflow.DeviceSpec; import org.tensorflow.EagerSession; import org.tensorflow.ExecutionEnvironment; import org.tensorflow.Operand; -import org.tensorflow.Tensor; import org.tensorflow.ndarray.BooleanNdArray; import org.tensorflow.ndarray.ByteNdArray; import org.tensorflow.ndarray.DoubleNdArray; @@ -127,6 +126,7 @@ import org.tensorflow.op.core.NextIteration; import org.tensorflow.op.core.NoOp; import org.tensorflow.op.core.OneHot; +import org.tensorflow.op.core.Ones; import org.tensorflow.op.core.OnesLike; import org.tensorflow.op.core.OrderedMapClear; import org.tensorflow.op.core.OrderedMapIncompleteSize; @@ -355,25 +355,25 @@ public final class Ops { private Ops(Scope scope) { this.scope = scope; - nn = new NnOps(scope); - summary = new SummaryOps(scope); - image = new ImageOps(scope); - ragged = new RaggedOps(scope); - data = new DataOps(scope); - shape = new ShapeOps(scope); - io = new IoOps(scope); - dtypes = new DtypesOps(scope); - xla = new XlaOps(scope); - linalg = new LinalgOps(scope); - random = new RandomOps(scope); - strings = new StringsOps(scope); - sparse = new SparseOps(scope); - bitwise = new BitwiseOps(scope); - math = new MathOps(scope); - audio = new AudioOps(scope); - signal = new SignalOps(scope); - quantization = new QuantizationOps(scope); - train = new TrainOps(scope); + nn = new NnOps(this); + summary = new SummaryOps(this); + image = new ImageOps(this); + ragged = new RaggedOps(this); + data = new DataOps(this); + shape = new ShapeOps(this); + io = new IoOps(this); + dtypes = new DtypesOps(this); + xla = new XlaOps(this); + linalg = new LinalgOps(this); + random = new RandomOps(this); + strings = new StringsOps(this); + sparse = new SparseOps(this); + bitwise = new BitwiseOps(this); + math = new MathOps(this); + audio = new AudioOps(this); + signal = new SignalOps(this); + quantization = new QuantizationOps(this); + train = new TrainOps(this); } /** @@ -647,7 +647,7 @@ public AssignVariableOp assignVariableOp(Operand resource, * @param options carries optional attributes values * @return a new instance of Barrier */ - public Barrier barrier(List> componentTypes, Barrier.Options... options) { + public Barrier barrier(List> componentTypes, Barrier.Options... options) { return Barrier.create(scope, componentTypes, options); } @@ -728,7 +728,7 @@ public BarrierReadySize barrierReadySize(Operand handle) { * @return a new instance of BarrierTakeMany */ public BarrierTakeMany barrierTakeMany(Operand handle, Operand numElements, - List> componentTypes, BarrierTakeMany.Options... options) { + List> componentTypes, BarrierTakeMany.Options... options) { return BarrierTakeMany.create(scope, handle, numElements, componentTypes, options); } @@ -988,7 +988,7 @@ public BatchToSpaceNd * @param type * @return a new instance of Bitcast */ - public Bitcast bitcast(Operand input, DataType type) { + public Bitcast bitcast(Operand input, Class type) { return Bitcast.create(scope, input, type); } @@ -1706,17 +1706,6 @@ public Constant constant(Shape shape) { return Constant.tensorOf(scope, shape); } - /** - * Create a constant from a Tensor. - * - * @param scope is a scope used to add the underlying operation. - * @param tensor a Tensor holding the constant value - * @return a constant of the same data type as `tensor` - */ - public Constant constant(Tensor tensor) { - return Constant.create(scope, tensor); - } - /** * Creates a constant of {@code String} elements, using the given charset. * @@ -1864,19 +1853,33 @@ public Constant constant(Charset charset, Shape shape, DataBuffer the tensor type * @param scope is a scope used to add the underlying operation. - * @param type the tensor datatype. + * @param type the tensor type class * @param shape the tensor shape. * @param data a buffer containing the tensor data. * @return a constant of type `type` * @throws IllegalArgumentException If the tensor datatype or shape is not compatible with the * buffer */ - public Constant constant(DataType type, Shape shape, - ByteDataBuffer data) { + public Constant constant(Class type, Shape shape, ByteDataBuffer data) { return Constant.tensorOf(scope, type, shape, data); } + /** + * Create a constant by making an immutable copy of {@code tensor}. + * + *

Note: this endpoint cannot be simply called {@code constant} since it will conflict with + * other endpoints accepting an NdArray in parameter {e.g. {@link #tensorOf(Scope, FloatNdArray)}}. + * + * @param scope is a scope used to add the underlying operation. + * @param tensor a Tensor holding the constant value + * @return a constant of the same data type as `tensor` + */ + public Constant constantOf(T tensor) { + return Constant.create(scope, tensor); + } + /** * This op consumes a lock created by `MutexLock`. *

@@ -2134,7 +2137,7 @@ public EditDistance editDistance(Operand hypothesisInd * @param options carries optional attributes values * @return a new instance of Empty */ - public Empty empty(Operand shape, DataType dtype, + public Empty empty(Operand shape, Class dtype, Empty.Options... options) { return Empty.create(scope, shape, dtype, options); } @@ -2155,7 +2158,7 @@ public Empty empty(Operand shape, DataType dtype * @return a new instance of EmptyTensorList */ public EmptyTensorList emptyTensorList( - Operand elementShape, Operand maxNumElements, DataType elementDtype) { + Operand elementShape, Operand maxNumElements, Class elementDtype) { return EmptyTensorList.create(scope, elementShape, maxNumElements, elementDtype); } @@ -2487,7 +2490,7 @@ public GetSessionHandle getSessionHandle(Operand value) { * @return a new instance of GetSessionTensor */ public GetSessionTensor getSessionTensor(Operand handle, - DataType dtype) { + Class dtype) { return GetSessionTensor.create(scope, handle, dtype); } @@ -2567,8 +2570,8 @@ public GuaranteeConst guaranteeConst(Operand input) { * @param options carries optional attributes values * @return a new instance of HashTable */ - public HashTable hashTable(DataType keyDtype, - DataType valueDtype, HashTable.Options... options) { + public HashTable hashTable(Class keyDtype, + Class valueDtype, HashTable.Options... options) { return HashTable.create(scope, keyDtype, valueDtype, options); } @@ -2631,7 +2634,7 @@ public HistogramFixedWidth histogramFixedWidth(Opera * @return a new instance of HistogramFixedWidth */ public HistogramFixedWidth histogramFixedWidth( - Operand values, Operand valueRange, Operand nbins, DataType dtype) { + Operand values, Operand valueRange, Operand nbins, Class dtype) { return HistogramFixedWidth.create(scope, values, valueRange, nbins, dtype); } @@ -2681,7 +2684,7 @@ public IdentityN identityN(Iterable> input) { * NewReadOnlyMemoryRegionFromFile in tensorflow::Env. * @return a new instance of ImmutableConst */ - public ImmutableConst immutableConst(DataType dtype, Shape shape, + public ImmutableConst immutableConst(Class dtype, Shape shape, String memoryRegionName) { return ImmutableConst.create(scope, dtype, shape, memoryRegionName); } @@ -2706,7 +2709,7 @@ public ImmutableConst immutableConst(DataType dtype, Sha * try (Session s = new Session(g)) { * s.run(tf.init()); // initialize all variables * - * try (Tensor t = s.runner().fetch(z).run().get(0).expect(TInt32.DTYPE)) { + * try (TInt32 t = (TInt32)s.runner().fetch(z).run().get(0)) { * assertEquals(30, t.data().getInt()); * } * } @@ -2733,7 +2736,7 @@ public ImmutableConst immutableConst(DataType dtype, Sha * try (SavedModelBundle model = SavedModelBundle.load("/path/to/model", "train")) { * model.session().run(Init.DEFAULT_NAME); * - * try (Tensor t = s.runner().fetch("z").run().get(0).expect(TInt32.DTYPE)) { + * try (TInt32 t = (TInt32)s.runner().fetch("z").run().get(0)) { * assertEquals(30, t.data().getInt()); * } * } @@ -2876,7 +2879,7 @@ public IsVariableInitialized isVariableInitialized(Operand * @return a new instance of LookupTableExport */ public LookupTableExport lookupTableExport( - Operand tableHandle, DataType Tkeys, DataType Tvalues) { + Operand tableHandle, Class Tkeys, Class Tvalues) { return LookupTableExport.create(scope, tableHandle, Tkeys, Tvalues); } @@ -2962,7 +2965,7 @@ public LoopCond loopCond(Operand input) { * @param options carries optional attributes values * @return a new instance of MapClear */ - public MapClear mapClear(List> dtypes, MapClear.Options... options) { + public MapClear mapClear(List> dtypes, MapClear.Options... options) { return MapClear.create(scope, dtypes, options); } @@ -2973,7 +2976,7 @@ public MapClear mapClear(List> dtypes, MapClear.Options... options) * @param options carries optional attributes values * @return a new instance of MapIncompleteSize */ - public MapIncompleteSize mapIncompleteSize(List> dtypes, + public MapIncompleteSize mapIncompleteSize(List> dtypes, MapIncompleteSize.Options... options) { return MapIncompleteSize.create(scope, dtypes, options); } @@ -2990,8 +2993,8 @@ public MapIncompleteSize mapIncompleteSize(List> dtypes, * @param options carries optional attributes values * @return a new instance of MapPeek */ - public MapPeek mapPeek(Operand key, Operand indices, List> dtypes, - MapPeek.Options... options) { + public MapPeek mapPeek(Operand key, Operand indices, + List> dtypes, MapPeek.Options... options) { return MapPeek.create(scope, key, indices, dtypes, options); } @@ -3002,7 +3005,7 @@ public MapPeek mapPeek(Operand key, Operand indices, List> dtypes, MapSize.Options... options) { + public MapSize mapSize(List> dtypes, MapSize.Options... options) { return MapSize.create(scope, dtypes, options); } @@ -3018,7 +3021,8 @@ public MapSize mapSize(List> dtypes, MapSize.Options... options) { * @return a new instance of MapStage */ public MapStage mapStage(Operand key, Operand indices, - Iterable> values, List> dtypes, MapStage.Options... options) { + Iterable> values, List> dtypes, + MapStage.Options... options) { return MapStage.create(scope, key, indices, values, dtypes, options); } @@ -3035,7 +3039,7 @@ public MapStage mapStage(Operand key, Operand indices, * @return a new instance of MapUnstage */ public MapUnstage mapUnstage(Operand key, Operand indices, - List> dtypes, MapUnstage.Options... options) { + List> dtypes, MapUnstage.Options... options) { return MapUnstage.create(scope, key, indices, dtypes, options); } @@ -3050,8 +3054,8 @@ public MapUnstage mapUnstage(Operand key, Operand indices, * @param options carries optional attributes values * @return a new instance of MapUnstageNoKey */ - public MapUnstageNoKey mapUnstageNoKey(Operand indices, List> dtypes, - MapUnstageNoKey.Options... options) { + public MapUnstageNoKey mapUnstageNoKey(Operand indices, + List> dtypes, MapUnstageNoKey.Options... options) { return MapUnstageNoKey.create(scope, indices, dtypes, options); } @@ -3192,7 +3196,7 @@ public MirrorPad mirrorPad(Operand in * @return a new instance of MlirPassthroughOp */ public MlirPassthroughOp mlirPassthroughOp(Iterable> inputs, String mlirModule, - List> Toutputs) { + List> Toutputs) { return MlirPassthroughOp.create(scope, inputs, mlirModule, Toutputs); } @@ -3214,7 +3218,7 @@ public MlirPassthroughOp mlirPassthroughOp(Iterable> inputs, String m * @return a new instance of MutableDenseHashTable */ public MutableDenseHashTable mutableDenseHashTable( - Operand emptyKey, Operand deletedKey, DataType valueDtype, + Operand emptyKey, Operand deletedKey, Class valueDtype, MutableDenseHashTable.Options... options) { return MutableDenseHashTable.create(scope, emptyKey, deletedKey, valueDtype, options); } @@ -3231,8 +3235,8 @@ public MutableDenseHashTable mutableDenseHash * @param options carries optional attributes values * @return a new instance of MutableHashTable */ - public MutableHashTable mutableHashTable(DataType keyDtype, - DataType valueDtype, MutableHashTable.Options... options) { + public MutableHashTable mutableHashTable(Class keyDtype, + Class valueDtype, MutableHashTable.Options... options) { return MutableHashTable.create(scope, keyDtype, valueDtype, options); } @@ -3249,7 +3253,7 @@ public MutableHashTable mutableHashTable(Data * @return a new instance of MutableHashTableOfTensors */ public MutableHashTableOfTensors mutableHashTableOfTensors( - DataType keyDtype, DataType valueDtype, MutableHashTableOfTensors.Options... options) { + Class keyDtype, Class valueDtype, MutableHashTableOfTensors.Options... options) { return MutableHashTableOfTensors.create(scope, keyDtype, valueDtype, options); } @@ -3425,6 +3429,19 @@ public OneHot oneHot(Operand indices, return OneHot.create(scope, indices, depth, onValue, offValue, options); } + /** + * Creates a one valued tensor given its type and shape. + * + * @param scope is a scope used to add the underlying operation + * @param dims a 1-D operand that represents the shape of the output tensor + * @param type the output tensor type class. Can not be TString. + * @return a constant tensor initialized with ones + * @throws IllegalArgumentException if the tensor type or shape cannot be initialized with ones. + */ + public Ones ones(Operand dims, Class type) { + return Ones.create(scope, dims, type); + } + /** * Returns a tensor of ones with the same shape and type as x. * @@ -3443,7 +3460,7 @@ public OnesLike onesLike(Operand x) { * @param options carries optional attributes values * @return a new instance of OrderedMapClear */ - public OrderedMapClear orderedMapClear(List> dtypes, + public OrderedMapClear orderedMapClear(List> dtypes, OrderedMapClear.Options... options) { return OrderedMapClear.create(scope, dtypes, options); } @@ -3455,7 +3472,7 @@ public OrderedMapClear orderedMapClear(List> dtypes, * @param options carries optional attributes values * @return a new instance of OrderedMapIncompleteSize */ - public OrderedMapIncompleteSize orderedMapIncompleteSize(List> dtypes, + public OrderedMapIncompleteSize orderedMapIncompleteSize(List> dtypes, OrderedMapIncompleteSize.Options... options) { return OrderedMapIncompleteSize.create(scope, dtypes, options); } @@ -3474,7 +3491,7 @@ public OrderedMapIncompleteSize orderedMapIncompleteSize(List> dtype * @return a new instance of OrderedMapPeek */ public OrderedMapPeek orderedMapPeek(Operand key, Operand indices, - List> dtypes, OrderedMapPeek.Options... options) { + List> dtypes, OrderedMapPeek.Options... options) { return OrderedMapPeek.create(scope, key, indices, dtypes, options); } @@ -3485,7 +3502,7 @@ public OrderedMapPeek orderedMapPeek(Operand key, Operand indice * @param options carries optional attributes values * @return a new instance of OrderedMapSize */ - public OrderedMapSize orderedMapSize(List> dtypes, + public OrderedMapSize orderedMapSize(List> dtypes, OrderedMapSize.Options... options) { return OrderedMapSize.create(scope, dtypes, options); } @@ -3504,7 +3521,8 @@ public OrderedMapSize orderedMapSize(List> dtypes, * @return a new instance of OrderedMapStage */ public OrderedMapStage orderedMapStage(Operand key, Operand indices, - Iterable> values, List> dtypes, OrderedMapStage.Options... options) { + Iterable> values, List> dtypes, + OrderedMapStage.Options... options) { return OrderedMapStage.create(scope, key, indices, values, dtypes, options); } @@ -3521,7 +3539,7 @@ public OrderedMapStage orderedMapStage(Operand key, Operand indi * @return a new instance of OrderedMapUnstage */ public OrderedMapUnstage orderedMapUnstage(Operand key, Operand indices, - List> dtypes, OrderedMapUnstage.Options... options) { + List> dtypes, OrderedMapUnstage.Options... options) { return OrderedMapUnstage.create(scope, key, indices, dtypes, options); } @@ -3537,7 +3555,7 @@ public OrderedMapUnstage orderedMapUnstage(Operand key, Operand * @return a new instance of OrderedMapUnstageNoKey */ public OrderedMapUnstageNoKey orderedMapUnstageNoKey(Operand indices, - List> dtypes, OrderedMapUnstageNoKey.Options... options) { + List> dtypes, OrderedMapUnstageNoKey.Options... options) { return OrderedMapUnstageNoKey.create(scope, indices, dtypes, options); } @@ -3688,7 +3706,7 @@ public ParallelDynamicStitch parallelDynamicStitch( * @param options carries optional attributes values * @return a new instance of Placeholder */ - public Placeholder placeholder(DataType dtype, + public Placeholder placeholder(Class dtype, Placeholder.Options... options) { return Placeholder.create(scope, dtype, options); } @@ -3817,8 +3835,7 @@ public Rank rank(Operand input) { * @param dtype the dtype of the value. * @return a new instance of ReadVariableOp */ - public ReadVariableOp readVariableOp(Operand resource, - DataType dtype) { + public ReadVariableOp readVariableOp(Operand resource, Class dtype) { return ReadVariableOp.create(scope, resource, dtype); } @@ -3999,7 +4016,7 @@ public RefSwitch refSwitch(Operand data, Operand * @return a new instance of RemoteFusedGraphExecute */ public RemoteFusedGraphExecute remoteFusedGraphExecute(Iterable> inputs, - List> Toutputs, String serializedRemoteFusedGraphExecuteInfo) { + List> Toutputs, String serializedRemoteFusedGraphExecuteInfo) { return RemoteFusedGraphExecute.create(scope, inputs, Toutputs, serializedRemoteFusedGraphExecuteInfo); } @@ -4086,7 +4103,7 @@ public Reshape reshape(Operand tensor * @return a new instance of ResourceCountUpTo */ public ResourceCountUpTo resourceCountUpTo(Operand resource, Long limit, - DataType T) { + Class T) { return ResourceCountUpTo.create(scope, resource, limit, T); } @@ -4114,7 +4131,7 @@ public ResourceCountUpTo resourceCountUpTo(Operand res * @return a new instance of ResourceGather */ public ResourceGather resourceGather(Operand resource, - Operand indices, DataType dtype, ResourceGather.Options... options) { + Operand indices, Class dtype, ResourceGather.Options... options) { return ResourceGather.create(scope, resource, indices, dtype, options); } @@ -4127,7 +4144,7 @@ public ResourceGather resourceGather(Ope * @return a new instance of ResourceGatherNd */ public ResourceGatherNd resourceGatherNd( - Operand resource, Operand indices, DataType dtype) { + Operand resource, Operand indices, Class dtype) { return ResourceGatherNd.create(scope, resource, indices, dtype); } @@ -5406,7 +5423,7 @@ public SetDiff1d setDiff1d(Operand x, Operand * @return a new instance of SetDiff1d */ public SetDiff1d setDiff1d(Operand x, Operand y, - DataType outIdx) { + Class outIdx) { return SetDiff1d.create(scope, x, y, outIdx); } @@ -5467,7 +5484,7 @@ public org.tensorflow.op.core.Shape shape(Operand i * @return a new instance of Shape */ public org.tensorflow.op.core.Shape shape( - Operand input, DataType outType) { + Operand input, Class outType) { return org.tensorflow.op.core.Shape.create(scope, input, outType); } @@ -5495,7 +5512,7 @@ public ShapeN shapeN(Iterable> input) { * @return a new instance of ShapeN */ public ShapeN shapeN(Iterable> input, - DataType outType) { + Class outType) { return ShapeN.create(scope, input, outType); } @@ -5536,7 +5553,7 @@ public Size size(Operand input) { * @param outType * @return a new instance of Size */ - public Size size(Operand input, DataType outType) { + public Size size(Operand input, Class outType) { return Size.create(scope, input, outType); } @@ -5816,7 +5833,7 @@ public Stage stage(Iterable> values, Stage.Options... options) { * @param options carries optional attributes values * @return a new instance of StageClear */ - public StageClear stageClear(List> dtypes, StageClear.Options... options) { + public StageClear stageClear(List> dtypes, StageClear.Options... options) { return StageClear.create(scope, dtypes, options); } @@ -5832,7 +5849,7 @@ public StageClear stageClear(List> dtypes, StageClear.Options... opt * @param options carries optional attributes values * @return a new instance of StagePeek */ - public StagePeek stagePeek(Operand index, List> dtypes, + public StagePeek stagePeek(Operand index, List> dtypes, StagePeek.Options... options) { return StagePeek.create(scope, index, dtypes, options); } @@ -5844,7 +5861,7 @@ public StagePeek stagePeek(Operand index, List> dtypes, * @param options carries optional attributes values * @return a new instance of StageSize */ - public StageSize stageSize(List> dtypes, StageSize.Options... options) { + public StageSize stageSize(List> dtypes, StageSize.Options... options) { return StageSize.create(scope, dtypes, options); } @@ -6109,7 +6126,7 @@ public SwitchCond switchCond(Operand data, Operand TemporaryVariable temporaryVariable(Shape shape, DataType dtype, + public TemporaryVariable temporaryVariable(Shape shape, Class dtype, TemporaryVariable.Options... options) { return TemporaryVariable.create(scope, shape, dtype, options); } @@ -6124,7 +6141,7 @@ public TemporaryVariable temporaryVariable(Shape shape, Dat * @param options carries optional attributes values * @return a new instance of TensorArray */ - public TensorArray tensorArray(Operand size, DataType dtype, + public TensorArray tensorArray(Operand size, Class dtype, TensorArray.Options... options) { return TensorArray.create(scope, size, dtype, options); } @@ -6164,7 +6181,7 @@ public TensorArrayClose tensorArrayClose(Operand handle) { * @return a new instance of TensorArrayConcat */ public TensorArrayConcat tensorArrayConcat(Operand handle, - Operand flowIn, DataType dtype, TensorArrayConcat.Options... options) { + Operand flowIn, Class dtype, TensorArrayConcat.Options... options) { return TensorArrayConcat.create(scope, handle, flowIn, dtype, options); } @@ -6182,7 +6199,7 @@ public TensorArrayConcat tensorArrayConcat(Operand handl * @return a new instance of TensorArrayGather */ public TensorArrayGather tensorArrayGather(Operand handle, - Operand indices, Operand flowIn, DataType dtype, + Operand indices, Operand flowIn, Class dtype, TensorArrayGather.Options... options) { return TensorArrayGather.create(scope, handle, indices, flowIn, dtype, options); } @@ -6270,7 +6287,7 @@ public TensorArrayGradWithShape tensorArrayGradWithShape(Operand handle, * @return a new instance of TensorArrayPack */ public TensorArrayPack tensorArrayPack(Operand handle, - Operand flowIn, DataType dtype, TensorArrayPack.Options... options) { + Operand flowIn, Class dtype, TensorArrayPack.Options... options) { return TensorArrayPack.create(scope, handle, flowIn, dtype, options); } @@ -6285,7 +6302,7 @@ public TensorArrayPack tensorArrayPack(Operand han * @return a new instance of TensorArrayRead */ public TensorArrayRead tensorArrayRead(Operand handle, - Operand index, Operand flowIn, DataType dtype) { + Operand index, Operand flowIn, Class dtype) { return TensorArrayRead.create(scope, handle, index, flowIn, dtype); } @@ -6402,7 +6419,7 @@ public TensorArrayWrite tensorArrayWrite(Operand handle, */ public TensorListConcat tensorListConcat( Operand inputHandle, Operand elementShape, Operand leadingDims, - DataType elementDtype) { + Class elementDtype) { return TensorListConcat.create(scope, inputHandle, elementShape, leadingDims, elementDtype); } @@ -6414,7 +6431,7 @@ public TensorListConcat tensorListConcat * @return a new instance of TensorListConcatLists */ public TensorListConcatLists tensorListConcatLists(Operand inputA, - Operand inputB, DataType elementDtype) { + Operand inputB, Class elementDtype) { return TensorListConcatLists.create(scope, inputA, inputB, elementDtype); } @@ -6430,7 +6447,7 @@ public TensorListConcatLists tensorListConcatLists(Operand * @return a new instance of TensorListElementShape */ public TensorListElementShape tensorListElementShape( - Operand inputHandle, DataType shapeType) { + Operand inputHandle, Class shapeType) { return TensorListElementShape.create(scope, inputHandle, shapeType); } @@ -6469,7 +6486,7 @@ public TensorListFromTensor tensorListFromT * @return a new instance of TensorListGather */ public TensorListGather tensorListGather(Operand inputHandle, - Operand indices, Operand elementShape, DataType elementDtype) { + Operand indices, Operand elementShape, Class elementDtype) { return TensorListGather.create(scope, inputHandle, indices, elementShape, elementDtype); } @@ -6483,7 +6500,7 @@ public TensorListGather tensorListGather(Operand inputHa * @return a new instance of TensorListGetItem */ public TensorListGetItem tensorListGetItem(Operand inputHandle, - Operand index, Operand elementShape, DataType elementDtype) { + Operand index, Operand elementShape, Class elementDtype) { return TensorListGetItem.create(scope, inputHandle, index, elementShape, elementDtype); } @@ -6517,7 +6534,7 @@ public TensorListLength tensorListLength(Operand inputHandle) { * @return a new instance of TensorListPopBack */ public TensorListPopBack tensorListPopBack(Operand inputHandle, - Operand elementShape, DataType elementDtype) { + Operand elementShape, Class elementDtype) { return TensorListPopBack.create(scope, inputHandle, elementShape, elementDtype); } @@ -6564,7 +6581,7 @@ public TensorListPushBackBatch tensorListPushBackBatch(Operand * @return a new instance of TensorListReserve */ public TensorListReserve tensorListReserve( - Operand elementShape, Operand numElements, DataType elementDtype) { + Operand elementShape, Operand numElements, Class elementDtype) { return TensorListReserve.create(scope, elementShape, numElements, elementDtype); } @@ -6680,7 +6697,7 @@ public TensorListSplit tensorListSplit(Oper * @return a new instance of TensorListStack */ public TensorListStack tensorListStack(Operand inputHandle, - Operand elementShape, DataType elementDtype, TensorListStack.Options... options) { + Operand elementShape, Class elementDtype, TensorListStack.Options... options) { return TensorListStack.create(scope, inputHandle, elementShape, elementDtype, options); } @@ -7287,7 +7304,7 @@ public Unique unique(Operand * @return a new instance of Unique */ public Unique unique(Operand x, - Operand axis, DataType outIdx) { + Operand axis, Class outIdx) { return Unique.create(scope, x, axis, outIdx); } @@ -7404,7 +7421,7 @@ public UniqueWithCounts uniqueWi * @return a new instance of UniqueWithCounts */ public UniqueWithCounts uniqueWithCounts( - Operand x, Operand axis, DataType outIdx) { + Operand x, Operand axis, Class outIdx) { return UniqueWithCounts.create(scope, x, axis, outIdx); } @@ -7477,7 +7494,7 @@ public Unstack unstack(Operand value, Long num, * @param options carries optional attributes values * @return a new instance of Unstage */ - public Unstage unstage(List> dtypes, Unstage.Options... options) { + public Unstage unstage(List> dtypes, Unstage.Options... options) { return Unstage.create(scope, dtypes, options); } @@ -7490,7 +7507,7 @@ public Unstage unstage(List> dtypes, Unstage.Options... options) { * @param options carries optional attributes values * @return a new instance of VarHandleOp */ - public VarHandleOp varHandleOp(DataType dtype, Shape shape, + public VarHandleOp varHandleOp(Class dtype, Shape shape, VarHandleOp.Options... options) { return VarHandleOp.create(scope, dtype, shape, options); } @@ -7533,7 +7550,7 @@ public Variable variable(Operand init, Variable.Options. * @param options carries optional attributes values * @return a new instance of Variable */ - public Variable variable(Shape shape, DataType dtype, + public Variable variable(Shape shape, Class dtype, Variable.Options... options) { return Variable.create(scope, shape, dtype, options); } @@ -7573,7 +7590,7 @@ public VariableShape variableShape(Operand input) { * @param outType * @return a new instance of VariableShape */ - public VariableShape variableShape(Operand input, DataType outType) { + public VariableShape variableShape(Operand input, Class outType) { return VariableShape.create(scope, input, outType); } @@ -7691,7 +7708,7 @@ public XlaSpmdShardToFullShape xlaSpmdShardToFullShape(Oper * @return a constant tensor initialized with zeros * @throws IllegalArgumentException if the tensor type or shape cannot be initialized with zeros. */ - public Zeros zeros(Operand dims, DataType type) { + public Zeros zeros(Operand dims, Class type) { return Zeros.create(scope, dims, type); } @@ -7724,6 +7741,15 @@ public Ops withName(String opName) { return new Ops(scope.withName(opName)); } + /** + * Returns an API that places the created operations on the device(s) matching the provided spec. + * + * @see {@link Scope#withDevice(DeviceSpec)} + */ + public Ops withDevice(DeviceSpec deviceSpec) { + return new Ops(scope.withDevice(deviceSpec)); + } + /** * Returns an API that adds operations to the graph with the provided control dependencies. * diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/QuantizationOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/QuantizationOps.java index aec0d667c65..bcca8f36505 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/QuantizationOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/QuantizationOps.java @@ -17,7 +17,6 @@ // package org.tensorflow.op; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.op.quantization.Dequantize; import org.tensorflow.op.quantization.FakeQuantWithMinMaxArgs; @@ -45,8 +44,11 @@ public final class QuantizationOps { private final Scope scope; - QuantizationOps(Scope scope) { - this.scope = scope; + private final Ops ops; + + QuantizationOps(Ops ops) { + this.scope = ops.scope(); + this.ops = ops; } /** @@ -173,7 +175,7 @@ public Dequantize dequantize(Operand input, * @return a new instance of Dequantize */ public Dequantize dequantize(Operand input, - Operand minRange, Operand maxRange, DataType dtype, + Operand minRange, Operand maxRange, Class dtype, Dequantize.Options... options) { return Dequantize.create(scope, input, minRange, maxRange, dtype, options); } @@ -504,7 +506,7 @@ public FakeQuantWithMinMaxVarsPerChannelGradient fakeQuantWithMinMaxVarsPerChann * @return a new instance of Quantize */ public Quantize quantize(Operand input, Operand minRange, - Operand maxRange, DataType T, Quantize.Options... options) { + Operand maxRange, Class T, Quantize.Options... options) { return Quantize.create(scope, input, minRange, maxRange, T, options); } @@ -562,8 +564,7 @@ public QuantizeAndDequantize quantizeAndDequantize(Operan * @return a new instance of QuantizeDownAndShrinkRange */ public QuantizeDownAndShrinkRange quantizeDownAndShrinkRange( - Operand input, Operand inputMin, Operand inputMax, - DataType outType) { + Operand input, Operand inputMin, Operand inputMax, Class outType) { return QuantizeDownAndShrinkRange.create(scope, input, inputMin, inputMax, outType); } @@ -625,7 +626,14 @@ public RequantizationRange requantizationRange(Operand inpu */ public Requantize requantize(Operand input, Operand inputMin, Operand inputMax, Operand requestedOutputMin, - Operand requestedOutputMax, DataType outType) { + Operand requestedOutputMax, Class outType) { return Requantize.create(scope, input, inputMin, inputMax, requestedOutputMin, requestedOutputMax, outType); } + + /** + * Get the parent {@link Ops} object. + */ + public final Ops ops() { + return ops; + } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/RaggedOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/RaggedOps.java index 7d585455bdd..59aaae4bd70 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/RaggedOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/RaggedOps.java @@ -30,8 +30,11 @@ public final class RaggedOps { private final Scope scope; - RaggedOps(Scope scope) { - this.scope = scope; + private final Ops ops; + + RaggedOps(Ops ops) { + this.scope = ops.scope(); + this.ops = ops; } /** @@ -60,4 +63,11 @@ public RaggedBincount raggedBincount( RaggedBincount.Options... options) { return RaggedBincount.create(scope, splits, values, size, weights, options); } + + /** + * Get the parent {@link Ops} object. + */ + public final Ops ops() { + return ops; + } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/RandomOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/RandomOps.java index 071e77c7a70..f0c3b8c660c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/RandomOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/RandomOps.java @@ -17,7 +17,6 @@ // package org.tensorflow.op; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.op.random.AllCandidateSampler; import org.tensorflow.op.random.LogUniformCandidateSampler; @@ -52,8 +51,11 @@ public final class RandomOps { private final Scope scope; - RandomOps(Scope scope) { - this.scope = scope; + private final Ops ops; + + RandomOps(Ops ops) { + this.scope = ops.scope(); + this.ops = ops; } /** @@ -141,7 +143,7 @@ public Multinomial multinomial(Operand logits, * @return a new instance of Multinomial */ public Multinomial multinomial(Operand logits, - Operand numSamples, DataType outputDtype, Multinomial.Options... options) { + Operand numSamples, Class outputDtype, Multinomial.Options... options) { return Multinomial.create(scope, logits, numSamples, outputDtype, options); } @@ -236,7 +238,7 @@ public RandomPoisson randomPoisso * @return a new instance of RandomPoisson */ public RandomPoisson randomPoisson( - Operand shape, Operand rate, DataType dtype, RandomPoisson.Options... options) { + Operand shape, Operand rate, Class dtype, RandomPoisson.Options... options) { return RandomPoisson.create(scope, shape, rate, dtype, options); } @@ -274,7 +276,7 @@ public RandomShuffle randomShuffle(Operand value, * @return a new instance of RandomStandardNormal */ public RandomStandardNormal randomStandardNormal( - Operand shape, DataType dtype, RandomStandardNormal.Options... options) { + Operand shape, Class dtype, RandomStandardNormal.Options... options) { return RandomStandardNormal.create(scope, shape, dtype, options); } @@ -291,7 +293,7 @@ public RandomStandardNormal randomStan * @return a new instance of RandomUniform */ public RandomUniform randomUniform(Operand shape, - DataType dtype, RandomUniform.Options... options) { + Class dtype, RandomUniform.Options... options) { return RandomUniform.create(scope, shape, dtype, options); } @@ -358,7 +360,7 @@ public StatefulRandomBinomial sta */ public StatefulRandomBinomial statefulRandomBinomial( Operand resource, Operand algorithm, Operand shape, Operand counts, - Operand probs, DataType dtype) { + Operand probs, Class dtype) { return StatefulRandomBinomial.create(scope, resource, algorithm, shape, counts, probs, dtype); } @@ -391,7 +393,7 @@ public StatefulStandardNormal statefulStandardNormal * @return a new instance of StatefulStandardNormal */ public StatefulStandardNormal statefulStandardNormal( - Operand resource, Operand algorithm, Operand shape, DataType dtype) { + Operand resource, Operand algorithm, Operand shape, Class dtype) { return StatefulStandardNormal.create(scope, resource, algorithm, shape, dtype); } @@ -422,7 +424,7 @@ public StatelessMultinomial state * @return a new instance of StatelessMultinomial */ public StatelessMultinomial statelessMultinomial( - Operand logits, Operand numSamples, Operand seed, DataType outputDtype) { + Operand logits, Operand numSamples, Operand seed, Class outputDtype) { return StatelessMultinomial.create(scope, logits, numSamples, seed, outputDtype); } @@ -457,7 +459,7 @@ public StatelessRandomNormal st * @return a new instance of StatelessRandomNormal */ public StatelessRandomNormal statelessRandomNormal( - Operand shape, Operand seed, DataType dtype) { + Operand shape, Operand seed, Class dtype) { return StatelessRandomNormal.create(scope, shape, seed, dtype); } @@ -494,7 +496,7 @@ public StatelessRandomUniform s * @return a new instance of StatelessRandomUniform */ public StatelessRandomUniform statelessRandomUniform( - Operand shape, Operand seed, DataType dtype) { + Operand shape, Operand seed, Class dtype) { return StatelessRandomUniform.create(scope, shape, seed, dtype); } @@ -533,7 +535,7 @@ public StatelessTruncatedNormal * @return a new instance of StatelessTruncatedNormal */ public StatelessTruncatedNormal statelessTruncatedNormal( - Operand shape, Operand seed, DataType dtype) { + Operand shape, Operand seed, Class dtype) { return StatelessTruncatedNormal.create(scope, shape, seed, dtype); } @@ -551,7 +553,7 @@ public StatelessTrunca * @return a new instance of TruncatedNormal */ public TruncatedNormal truncatedNormal(Operand shape, - DataType dtype, TruncatedNormal.Options... options) { + Class dtype, TruncatedNormal.Options... options) { return TruncatedNormal.create(scope, shape, dtype, options); } @@ -583,4 +585,11 @@ public UniformCandidateSampler uniformCandidateSampler(Operand trueClass Long numSampled, Boolean unique, Long rangeMax, UniformCandidateSampler.Options... options) { return UniformCandidateSampler.create(scope, trueClasses, numTrue, numSampled, unique, rangeMax, options); } + + /** + * Get the parent {@link Ops} object. + */ + public final Ops ops() { + return ops; + } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/ShapeOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/ShapeOps.java index 81c692571f1..ac5ec77a7fb 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/ShapeOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/ShapeOps.java @@ -17,7 +17,6 @@ // package org.tensorflow.op; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.op.core.Shape; import org.tensorflow.op.core.Shapes; @@ -34,8 +33,11 @@ public final class ShapeOps { private final Scope scope; - ShapeOps(Scope scope) { - this.scope = scope; + private final Ops ops; + + ShapeOps(Ops ops) { + this.scope = ops.scope(); + this.ops = ops; } /** @@ -112,12 +114,12 @@ public Operand flatten(Shape shape) { * @param the shape datatype * @param scope current scope * @param operand the operand to flatten - * @param dType the shape datatype + * @param type the shape datatype * @return the reshaped operand */ public Operand flatten(Operand operand, - DataType dType) { - return Shapes.flatten(scope, operand, dType); + Class type) { + return Shapes.flatten(scope, operand, type); } /** @@ -126,11 +128,11 @@ public Operand flatten(Operand operan * @param the shape datatype * @param scope current scope * @param shape the TensorFlow shape - * @param dType the shape datatype + * @param type the shape datatype * @return the flattened shape */ - public Operand flatten(Shape shape, DataType dType) { - return Shapes.flatten(scope, shape, dType); + public Operand flatten(Shape shape, Class type) { + return Shapes.flatten(scope, shape, type); } /** @@ -149,12 +151,12 @@ public Operand head(Shape shape) { * * @param scope current scope * @param shape the TensorFlow shape - * @param dType the shape datatype. + * @param type the shape datatype. * @param the shape datatype. * @return a 1-dimensional Operand containing the Shape's first dimension */ - public Operand head(Shape shape, DataType dType) { - return Shapes.head(scope, shape, dType); + public Operand head(Shape shape, Class type) { + return Shapes.head(scope, shape, type); } /** @@ -174,11 +176,11 @@ public Operand numDimensions(Shape shape) { * @param the shape datatype * @param scope the curren scope * @param shape the shape - * @param dType the shape datatype + * @param type the shape datatype * @return the number of dimensions */ - public Operand numDimensions(Shape shape, DataType dType) { - return Shapes.numDimensions(scope, shape, dType); + public Operand numDimensions(Shape shape, Class type) { + return Shapes.numDimensions(scope, shape, type); } /** @@ -258,12 +260,12 @@ public Operand reduceDims(Shape shape, Operand axis) { * @param scope current scope * @param operand the operand * @param axis the axis - * @param dType the shape datatype + * @param type the shape datatype * @return the reshaped operand */ public Operand reduceDims(Operand operand, - Operand axis, DataType dType) { - return Shapes.reduceDims(scope, operand, axis, dType); + Operand axis, Class type) { + return Shapes.reduceDims(scope, operand, axis, type); } /** @@ -273,12 +275,11 @@ public Operand reduceDims(Operand ope * @param scope current scope * @param shape the TensorFlow shape * @param axis the axis - * @param dType the shape datatype + * @param type the shape datatype * @return the reduced shape */ - public Operand reduceDims(Shape shape, Operand axis, - DataType dType) { - return Shapes.reduceDims(scope, shape, axis, dType); + public Operand reduceDims(Shape shape, Operand axis, Class type) { + return Shapes.reduceDims(scope, shape, axis, type); } /** @@ -305,28 +306,28 @@ public Operand size(Operand input, Operand } /** - * Get the size represented by the TensorFlow shape. + * Get the size of the specified dimension in the shape. * - * @param the type of the shape * @param scope current scope * @param shape the TensorFlow shape - * @param dType the shape datatype - * @return the size + * @param dim the dimension + * @return the size of the specified dimension */ - public Operand size(Shape shape, DataType dType) { - return Shapes.size(scope, shape, dType); + public Operand size(Shape shape, Operand dim) { + return Shapes.size(scope, shape, dim); } /** - * Get the size of the specified dimension in the shape. + * Get the size represented by the TensorFlow shape. * + * @param the type of the shape * @param scope current scope * @param shape the TensorFlow shape - * @param dim the dimension - * @return the size of the specified dimension + * @param type the shape datatype + * @return the size */ - public Operand size(Shape shape, Operand dim) { - return Shapes.size(scope, shape, dim); + public Operand size(Shape shape, Class type) { + return Shapes.size(scope, shape, type); } /** @@ -336,12 +337,12 @@ public Operand size(Shape shape, Operand dim) { * @param scope current scope * @param input the operand * @param dim the dimension - * @param dType the shape datatype + * @param type the shape datatype * @return the size of the specified dimension */ public Operand size(Operand input, Operand dim, - DataType dType) { - return Shapes.size(scope, input, dim, dType); + Class type) { + return Shapes.size(scope, input, dim, type); } /** @@ -351,11 +352,11 @@ public Operand size(Operand input, Op * @param scope current scope * @param shape the TensorFlow shape * @param dim the dimension - * @param dType the shape datatype + * @param type the shape datatype * @return the size of the specified dimension */ - public Operand size(Shape shape, Operand dim, DataType dType) { - return Shapes.size(scope, shape, dim, dType); + public Operand size(Shape shape, Operand dim, Class type) { + return Shapes.size(scope, shape, dim, type); } /** @@ -375,11 +376,11 @@ public Operand squeeze(Shape shape) { * @param the shape datatype. * @param scope current scope * @param shape the TensorFlow shape - * @param dType the shape datatype. + * @param type the shape datatype. * @return the squeezed shape */ - public Operand squeeze(Shape shape, DataType dType) { - return Shapes.squeeze(scope, shape, dType); + public Operand squeeze(Shape shape, Class type) { + return Shapes.squeeze(scope, shape, type); } /** @@ -401,13 +402,13 @@ public Operand tail(Shape shape) { * * @param scope current scope * @param shape the TensorFlow shape - * @param dType the shape datatype. + * @param type the shape datatype. * @param the shape datatype. * @return a 1-dimensional Operand that contains the dimension matching the last dimension of the * Shape */ - public Operand tail(Shape shape, DataType dType) { - return Shapes.tail(scope, shape, dType); + public Operand tail(Shape shape, Class type) { + return Shapes.tail(scope, shape, type); } /** @@ -431,13 +432,13 @@ public Operand take(Shape shape, Operand n) { * @param scope current scope * @param shape the TensorFlow shape * @param n the number of leading dimensions to get, must be <= than the shape's numDimensions() - * @param dType the shape datatype. + * @param type the shape datatype. * @param the shape datatype. * @return a 1-dimensional operand with the dimensions matching * the first n dimensions of the * shape */ - public Operand take(Shape shape, Operand n, DataType dType) { - return Shapes.take(scope, shape, n, dType); + public Operand take(Shape shape, Operand n, Class type) { + return Shapes.take(scope, shape, n, type); } /** @@ -461,12 +462,19 @@ public Operand takeLast(Shape shape, Operand * @param scope current scope * @param shape the TensorFlow shape * @param n the number of leading dimensions to get, must be <= than the shape's numDimensions() - * @param dType the shape datatype. + * @param type the shape datatype. * @param the shape datatype. * @return a 1-dimensional operand containing the dimensions matching the last n dimensions of the * shape */ - public Operand takeLast(Shape shape, Operand n, DataType dType) { - return Shapes.takeLast(scope, shape, n, dType); + public Operand takeLast(Shape shape, Operand n, Class type) { + return Shapes.takeLast(scope, shape, n, type); + } + + /** + * Get the parent {@link Ops} object. + */ + public final Ops ops() { + return ops; } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/SignalOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/SignalOps.java index f4ec7bdb48d..e8ac9a0e53b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/SignalOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/SignalOps.java @@ -17,7 +17,6 @@ // package org.tensorflow.op; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.op.signal.BatchFft; import org.tensorflow.op.signal.BatchFft2d; @@ -50,8 +49,11 @@ public final class SignalOps { private final Scope scope; - SignalOps(Scope scope) { - this.scope = scope; + private final Ops ops; + + SignalOps(Ops ops) { + this.scope = ops.scope(); + this.ops = ops; } /** @@ -242,7 +244,7 @@ public Irfft irfft(Operand input, Operand * @return a new instance of Irfft */ public Irfft irfft(Operand input, - Operand fftLength, DataType Treal) { + Operand fftLength, Class Treal) { return Irfft.create(scope, input, fftLength, Treal); } @@ -298,7 +300,7 @@ public Irfft2d irfft2d(Operand input, Operand Irfft2d irfft2d(Operand input, - Operand fftLength, DataType Treal) { + Operand fftLength, Class Treal) { return Irfft2d.create(scope, input, fftLength, Treal); } @@ -354,7 +356,7 @@ public Irfft3d irfft3d(Operand input, Operand Irfft3d irfft3d(Operand input, - Operand fftLength, DataType Treal) { + Operand fftLength, Class Treal) { return Irfft3d.create(scope, input, fftLength, Treal); } @@ -379,7 +381,7 @@ public Irfft3d irfft3d(Operand input, * @return a new instance of Rfft */ public Rfft rfft(Operand input, - Operand fftLength, DataType Tcomplex) { + Operand fftLength, Class Tcomplex) { return Rfft.create(scope, input, fftLength, Tcomplex); } @@ -405,7 +407,7 @@ public Rfft rfft(Operand input, * @return a new instance of Rfft2d */ public Rfft2d rfft2d(Operand input, - Operand fftLength, DataType Tcomplex) { + Operand fftLength, Class Tcomplex) { return Rfft2d.create(scope, input, fftLength, Tcomplex); } @@ -431,7 +433,14 @@ public Rfft2d rfft2d(Operand input, * @return a new instance of Rfft3d */ public Rfft3d rfft3d(Operand input, - Operand fftLength, DataType Tcomplex) { + Operand fftLength, Class Tcomplex) { return Rfft3d.create(scope, input, fftLength, Tcomplex); } + + /** + * Get the parent {@link Ops} object. + */ + public final Ops ops() { + return ops; + } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/SparseOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/SparseOps.java index 42cdf9569d9..3971fc6fc06 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/SparseOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/SparseOps.java @@ -17,7 +17,6 @@ // package org.tensorflow.op; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.ndarray.Shape; import org.tensorflow.op.sparse.AddManySparseToTensorsMap; @@ -80,8 +79,11 @@ public final class SparseOps { private final Scope scope; - SparseOps(Scope scope) { - this.scope = scope; + private final Ops ops; + + SparseOps(Ops ops) { + this.scope = ops.scope(); + this.ops = ops; } /** @@ -269,7 +271,7 @@ public DenseToSparseSetOperation denseToSparseSetOperation( * @return a new instance of DeserializeSparse */ public DeserializeSparse deserializeSparse( - Operand serializedSparse, DataType dtype) { + Operand serializedSparse, Class dtype) { return DeserializeSparse.create(scope, serializedSparse, dtype); } @@ -315,7 +317,7 @@ public SparseAccumulatorApplyGradient sparseAccumulatorApplyGr * @return a new instance of SparseAccumulatorTakeGradient */ public SparseAccumulatorTakeGradient sparseAccumulatorTakeGradient( - Operand handle, Operand numRequired, DataType dtype) { + Operand handle, Operand numRequired, Class dtype) { return SparseAccumulatorTakeGradient.create(scope, handle, numRequired, dtype); } @@ -476,8 +478,8 @@ public SparseConcat sparseConcat(Iterable> * @param options carries optional attributes values * @return a new instance of SparseConditionalAccumulator */ - public SparseConditionalAccumulator sparseConditionalAccumulator( - DataType dtype, Shape shape, SparseConditionalAccumulator.Options... options) { + public SparseConditionalAccumulator sparseConditionalAccumulator(Class dtype, + Shape shape, SparseConditionalAccumulator.Options... options) { return SparseConditionalAccumulator.create(scope, dtype, shape, options); } @@ -1493,8 +1495,15 @@ public SparseToSparseSetOperation sparseToSparseSetOperatio * @return a new instance of TakeManySparseFromTensorsMap */ public TakeManySparseFromTensorsMap takeManySparseFromTensorsMap( - Operand sparseHandles, DataType dtype, + Operand sparseHandles, Class dtype, TakeManySparseFromTensorsMap.Options... options) { return TakeManySparseFromTensorsMap.create(scope, sparseHandles, dtype, options); } + + /** + * Get the parent {@link Ops} object. + */ + public final Ops ops() { + return ops; + } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/StringsOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/StringsOps.java index f6491843332..6d380c31bc6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/StringsOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/StringsOps.java @@ -18,7 +18,6 @@ package org.tensorflow.op; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.op.strings.Join; import org.tensorflow.op.strings.Lower; @@ -52,8 +51,11 @@ public final class StringsOps { private final Scope scope; - StringsOps(Scope scope) { - this.scope = scope; + private final Ops ops; + + StringsOps(Ops ops) { + this.scope = ops.scope(); + this.ops = ops; } /** @@ -483,8 +485,7 @@ public ToNumber toNumber(Operand stringTensor) { * @param outType The numeric type to interpret each string in `string_tensor` as. * @return a new instance of ToNumber */ - public ToNumber toNumber(Operand stringTensor, - DataType outType) { + public ToNumber toNumber(Operand stringTensor, Class outType) { return ToNumber.create(scope, stringTensor, outType); } @@ -617,4 +618,11 @@ public UnsortedSegmentJoin unsortedSegmen public Upper upper(Operand input, Upper.Options... options) { return Upper.create(scope, input, options); } + + /** + * Get the parent {@link Ops} object. + */ + public final Ops ops() { + return ops; + } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/SummaryOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/SummaryOps.java index 6143335b8fd..83423d50121 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/SummaryOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/SummaryOps.java @@ -37,8 +37,11 @@ public final class SummaryOps { private final Scope scope; - SummaryOps(Scope scope) { - this.scope = scope; + private final Ops ops; + + SummaryOps(Ops ops) { + this.scope = ops.scope(); + this.ops = ops; } /** @@ -195,4 +198,11 @@ public TensorSummary tensorSummary(Operand tag, Opera Operand serializedSummaryMetadata) { return TensorSummary.create(scope, tag, tensor, serializedSummaryMetadata); } + + /** + * Get the parent {@link Ops} object. + */ + public final Ops ops() { + return ops; + } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/TrainOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/TrainOps.java index 2c5d8752136..d21b5e037d3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/TrainOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/TrainOps.java @@ -18,7 +18,6 @@ package org.tensorflow.op; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.ndarray.Shape; import org.tensorflow.op.train.AccumulatorApplyGradient; @@ -98,8 +97,11 @@ public final class TrainOps { private final Scope scope; - TrainOps(Scope scope) { - this.scope = scope; + private final Ops ops; + + TrainOps(Ops ops) { + this.scope = ops.scope(); + this.ops = ops; } /** @@ -159,7 +161,7 @@ public AccumulatorSetGlobalStep accumulatorSetGlobalStep(Operand handle * @return a new instance of AccumulatorTakeGradient */ public AccumulatorTakeGradient accumulatorTakeGradient( - Operand handle, Operand numRequired, DataType dtype) { + Operand handle, Operand numRequired, Class dtype) { return AccumulatorTakeGradient.create(scope, handle, numRequired, dtype); } @@ -542,7 +544,7 @@ public BatchMatMul batchMatMul(Operand x, Operand y, * @param options carries optional attributes values * @return a new instance of ConditionalAccumulator */ - public ConditionalAccumulator conditionalAccumulator(DataType dtype, + public ConditionalAccumulator conditionalAccumulator(Class dtype, Shape shape, ConditionalAccumulator.Options... options) { return ConditionalAccumulator.create(scope, dtype, shape, options); } @@ -1295,7 +1297,7 @@ public ResourceSparseApplyRmsProp resourceS * @return a new instance of Restore */ public Restore restore(Operand prefix, Operand tensorNames, - Operand shapeAndSlices, List> dtypes) { + Operand shapeAndSlices, List> dtypes) { return Restore.create(scope, prefix, tensorNames, shapeAndSlices, dtypes); } @@ -1321,7 +1323,7 @@ public Restore restore(Operand prefix, Operand tensorNames, * @return a new instance of RestoreSlice */ public RestoreSlice restoreSlice(Operand filePattern, - Operand tensorName, Operand shapeAndSlice, DataType dt, + Operand tensorName, Operand shapeAndSlice, Class dt, RestoreSlice.Options... options) { return RestoreSlice.create(scope, filePattern, tensorName, shapeAndSlice, dt, options); } @@ -1658,4 +1660,11 @@ public SparseApplyRmsProp sparseApplyRms public TileGrad tileGrad(Operand input, Operand multiples) { return TileGrad.create(scope, input, multiples); } + + /** + * Get the parent {@link Ops} object. + */ + public final Ops ops() { + return ops; + } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/XlaOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/XlaOps.java index 535972d4883..4c8df665739 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/XlaOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/XlaOps.java @@ -17,7 +17,6 @@ // package org.tensorflow.op; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.ndarray.Shape; import org.tensorflow.op.xla.BroadcastHelper; @@ -49,8 +48,11 @@ public final class XlaOps { private final Scope scope; - XlaOps(Scope scope) { - this.scope = scope; + private final Ops ops; + + XlaOps(Ops ops) { + this.scope = ops.scope(); + this.ops = ops; } /** @@ -278,7 +280,7 @@ public Pad pad(Operand input, Operand * @param shape The shape of the tensor. * @return a new instance of Recv */ - public Recv recv(DataType dtype, String tensorName, Shape shape) { + public Recv recv(Class dtype, String tensorName, Shape shape) { return Recv.create(scope, dtype, tensorName, shape); } @@ -379,4 +381,11 @@ public Svd svd(Operand a, Long maxIter, Float epsilon, String precisionConfig) { return Svd.create(scope, a, maxIter, epsilon, precisionConfig); } + + /** + * Get the parent {@link Ops} object. + */ + public final Ops ops() { + return ops; + } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/audio/AudioSpectrogram.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/audio/AudioSpectrogram.java index 28fdb7791bc..6d53cfe0347 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/audio/AudioSpectrogram.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/audio/AudioSpectrogram.java @@ -94,7 +94,7 @@ private Options() { public static AudioSpectrogram create(Scope scope, Operand input, Long windowSize, Long stride, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("AudioSpectrogram", scope.makeOpName("AudioSpectrogram")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("window_size", windowSize); opBuilder.setAttr("stride", stride); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/audio/DecodeWav.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/audio/DecodeWav.java index ec80ffdaf7c..09dfa3af31f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/audio/DecodeWav.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/audio/DecodeWav.java @@ -90,7 +90,7 @@ private Options() { public static DecodeWav create(Scope scope, Operand contents, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("DecodeWav", scope.makeOpName("DecodeWav")); opBuilder.addInput(contents.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.desiredChannels != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/audio/EncodeWav.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/audio/EncodeWav.java index b1920318564..a1128280152 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/audio/EncodeWav.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/audio/EncodeWav.java @@ -56,7 +56,7 @@ public static EncodeWav create(Scope scope, Operand audio, Operand spectrogram, Operand BitwiseAnd create(Scope scope, Operand x OperationBuilder opBuilder = scope.env().opBuilder("BitwiseAnd", scope.makeOpName("BitwiseAnd")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BitwiseAnd(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/BitwiseOr.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/BitwiseOr.java index 264c2bc340b..cea0b766cfe 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/BitwiseOr.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/BitwiseOr.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Elementwise computes the bitwise OR of `x` and `y`. @@ -69,7 +68,7 @@ public static BitwiseOr create(Scope scope, Operand x, OperationBuilder opBuilder = scope.env().opBuilder("BitwiseOr", scope.makeOpName("BitwiseOr")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BitwiseOr(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/BitwiseXor.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/BitwiseXor.java index 1d8f668c175..f209732bb5c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/BitwiseXor.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/BitwiseXor.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Elementwise computes the bitwise XOR of `x` and `y`. @@ -69,7 +68,7 @@ public static BitwiseXor create(Scope scope, Operand x OperationBuilder opBuilder = scope.env().opBuilder("BitwiseXor", scope.makeOpName("BitwiseXor")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BitwiseXor(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/Invert.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/Invert.java index 9f8bdfd56d8..4f4e063ed50 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/Invert.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/Invert.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Invert (flip) each bit of supported types; for example, type `uint8` value 01010101 becomes 10101010. @@ -88,7 +87,7 @@ public final class Invert extends RawOp implements Operand public static Invert create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Invert", scope.makeOpName("Invert")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Invert(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/LeftShift.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/LeftShift.java index f7a47534d81..98ca43ae889 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/LeftShift.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/LeftShift.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Elementwise computes the bitwise left-shift of `x` and `y`. @@ -80,7 +79,7 @@ public static LeftShift create(Scope scope, Operand x, OperationBuilder opBuilder = scope.env().opBuilder("LeftShift", scope.makeOpName("LeftShift")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new LeftShift(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/RightShift.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/RightShift.java index 99c5fe5766e..4d08a05bf1a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/RightShift.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/RightShift.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Elementwise computes the bitwise right-shift of `x` and `y`. @@ -83,7 +82,7 @@ public static RightShift create(Scope scope, Operand x OperationBuilder opBuilder = scope.env().opBuilder("RightShift", scope.makeOpName("RightShift")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new RightShift(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/cluster/KMC2ChainInitialization.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/cluster/KMC2ChainInitialization.java index 272695dad5c..82e9b43cf61 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/cluster/KMC2ChainInitialization.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/cluster/KMC2ChainInitialization.java @@ -52,7 +52,7 @@ public static KMC2ChainInitialization create(Scope scope, Operand dist OperationBuilder opBuilder = scope.env().opBuilder("KMC2ChainInitialization", scope.makeOpName("KMC2ChainInitialization")); opBuilder.addInput(distances.asOutput()); opBuilder.addInput(seed.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new KMC2ChainInitialization(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/cluster/KmeansPlusPlusInitialization.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/cluster/KmeansPlusPlusInitialization.java index 63d8ef01222..cc163969960 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/cluster/KmeansPlusPlusInitialization.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/cluster/KmeansPlusPlusInitialization.java @@ -58,7 +58,7 @@ public static KmeansPlusPlusInitialization create(Scope scope, Operand opBuilder.addInput(numToSample.asOutput()); opBuilder.addInput(seed.asOutput()); opBuilder.addInput(numRetriesPerSample.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new KmeansPlusPlusInitialization(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/AllReduce.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/AllReduce.java index d58bc1357f4..adaafc5fc90 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/AllReduce.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/AllReduce.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Mutually reduces multiple tensors of identical type and shape. @@ -91,7 +90,7 @@ private Options() { public static AllReduce create(Scope scope, Operand input, Long groupSize, Long groupKey, Long instanceKey, String mergeOp, String finalOp, List subdivOffsets, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("CollectiveReduce", scope.makeOpName("AllReduce")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("group_size", groupSize); opBuilder.setAttr("group_key", groupKey); opBuilder.setAttr("instance_key", instanceKey); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/BroadcastRecv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/BroadcastRecv.java index ab938852275..bce981a1f6f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/BroadcastRecv.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/BroadcastRecv.java @@ -17,12 +17,12 @@ package org.tensorflow.op.collective; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -77,10 +77,10 @@ private Options() { * @return a new instance of BroadcastRecv */ @Endpoint(describeByClass = true) - public static BroadcastRecv create(Scope scope, DataType T, Long groupSize, Long groupKey, Long instanceKey, Shape shape, Options... options) { + public static BroadcastRecv create(Scope scope, Class T, Long groupSize, Long groupKey, Long instanceKey, Shape shape, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("CollectiveBcastRecv", scope.makeOpName("BroadcastRecv")); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("T", T); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("T", Operands.toDataType(T)); opBuilder.setAttr("group_size", groupSize); opBuilder.setAttr("group_key", groupKey); opBuilder.setAttr("instance_key", instanceKey); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/BroadcastSend.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/BroadcastSend.java index f6b3d3ff307..84a99f4f1bb 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/BroadcastSend.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/BroadcastSend.java @@ -79,7 +79,7 @@ private Options() { public static BroadcastSend create(Scope scope, Operand input, Long groupSize, Long groupKey, Long instanceKey, Shape shape, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("CollectiveBcastSend", scope.makeOpName("BroadcastSend")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("group_size", groupSize); opBuilder.setAttr("group_key", groupKey); opBuilder.setAttr("instance_key", instanceKey); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Abort.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Abort.java index a84f2405b19..9ba58260fda 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Abort.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Abort.java @@ -73,7 +73,7 @@ private Options() { @Endpoint(describeByClass = true) public static Abort create(Scope scope, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("Abort", scope.makeOpName("Abort")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.errorMsg != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/All.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/All.java index 909427d1a57..17b3a3bf0c3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/All.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/All.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TBool; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the "logical and" of elements across dimensions of a tensor. @@ -74,7 +73,7 @@ public static All create(Scope scope, Operand input, OperationBuilder opBuilder = scope.env().opBuilder("All", scope.makeOpName("All")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(axis.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.keepDims != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Any.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Any.java index 0316e5e1a94..85a60f6b2e0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Any.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Any.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TBool; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the "logical or" of elements across dimensions of a tensor. @@ -74,7 +73,7 @@ public static Any create(Scope scope, Operand input, OperationBuilder opBuilder = scope.env().opBuilder("Any", scope.makeOpName("Any")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(axis.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.keepDims != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssertThat.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssertThat.java index dce70c04e5a..18b628ac153 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssertThat.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssertThat.java @@ -69,7 +69,7 @@ public static AssertThat create(Scope scope, Operand condition, Iterable< OperationBuilder opBuilder = scope.env().opBuilder("Assert", scope.makeOpName("AssertThat")); opBuilder.addInput(condition.asOutput()); opBuilder.addInputList(Operands.asOutputs(data)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.summarize != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Assign.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Assign.java index 27f66d3da23..e1a52db8d79 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Assign.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Assign.java @@ -83,7 +83,7 @@ public static Assign create(Scope scope, Operand ref, Op OperationBuilder opBuilder = scope.env().opBuilder("Assign", scope.makeOpName("Assign")); opBuilder.addInput(ref.asOutput()); opBuilder.addInput(value.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.validateShape != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignAdd.java index 770842d2764..9aa0c54959a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignAdd.java @@ -72,7 +72,7 @@ public static AssignAdd create(Scope scope, Operand ref, OperationBuilder opBuilder = scope.env().opBuilder("AssignAdd", scope.makeOpName("AssignAdd")); opBuilder.addInput(ref.asOutput()); opBuilder.addInput(value.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignAddVariableOp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignAddVariableOp.java index 53edc808882..58d7ed3ca45 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignAddVariableOp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignAddVariableOp.java @@ -48,7 +48,7 @@ public static AssignAddVariableOp create(Scope scope, Operand< OperationBuilder opBuilder = scope.env().opBuilder("AssignAddVariableOp", scope.makeOpName("AssignAddVariableOp")); opBuilder.addInput(resource.asOutput()); opBuilder.addInput(value.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new AssignAddVariableOp(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignSub.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignSub.java index 37841e0dadc..5b7a24d763a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignSub.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignSub.java @@ -72,7 +72,7 @@ public static AssignSub create(Scope scope, Operand ref, OperationBuilder opBuilder = scope.env().opBuilder("AssignSub", scope.makeOpName("AssignSub")); opBuilder.addInput(ref.asOutput()); opBuilder.addInput(value.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignSubVariableOp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignSubVariableOp.java index 372a71b2168..a7868911c52 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignSubVariableOp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignSubVariableOp.java @@ -48,7 +48,7 @@ public static AssignSubVariableOp create(Scope scope, Operand< OperationBuilder opBuilder = scope.env().opBuilder("AssignSubVariableOp", scope.makeOpName("AssignSubVariableOp")); opBuilder.addInput(resource.asOutput()); opBuilder.addInput(value.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new AssignSubVariableOp(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignVariableOp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignVariableOp.java index ac08d62f9a8..e2ea7b0b524 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignVariableOp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignVariableOp.java @@ -48,7 +48,7 @@ public static AssignVariableOp create(Scope scope, Operand OperationBuilder opBuilder = scope.env().opBuilder("AssignVariableOp", scope.makeOpName("AssignVariableOp")); opBuilder.addInput(resource.asOutput()); opBuilder.addInput(value.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new AssignVariableOp(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Barrier.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Barrier.java index b9c5c84083f..b429cce3084 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Barrier.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Barrier.java @@ -18,17 +18,18 @@ package org.tensorflow.op.core; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TString; +import org.tensorflow.types.family.TType; /** * Defines a barrier that persists across different graph executions. @@ -105,14 +106,10 @@ private Options() { * @return a new instance of Barrier */ @Endpoint(describeByClass = true) - public static Barrier create(Scope scope, List> componentTypes, Options... options) { + public static Barrier create(Scope scope, List> componentTypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("Barrier", scope.makeOpName("Barrier")); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] componentTypesArray = new DataType[componentTypes.size()]; - for (int i = 0; i < componentTypesArray.length; ++i) { - componentTypesArray[i] = componentTypes.get(i); - } - opBuilder.setAttr("component_types", componentTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("component_types", Operands.toDataTypes(componentTypes)); if (options != null) { for (Options opts : options) { if (opts.shapes != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BarrierClose.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BarrierClose.java index 514f4f50edf..6cb3ba70661 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BarrierClose.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BarrierClose.java @@ -72,7 +72,7 @@ private Options() { public static BarrierClose create(Scope scope, Operand handle, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("BarrierClose", scope.makeOpName("BarrierClose")); opBuilder.addInput(handle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.cancelPendingEnqueues != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BarrierIncompleteSize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BarrierIncompleteSize.java index 72dbe1533d6..e7775646c69 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BarrierIncompleteSize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BarrierIncompleteSize.java @@ -45,7 +45,7 @@ public final class BarrierIncompleteSize extends RawOp implements Operand handle) { OperationBuilder opBuilder = scope.env().opBuilder("BarrierIncompleteSize", scope.makeOpName("BarrierIncompleteSize")); opBuilder.addInput(handle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BarrierIncompleteSize(opBuilder.build()); } @@ -53,23 +53,23 @@ public static BarrierIncompleteSize create(Scope scope, Operand handle) * The number of incomplete elements (i.e. those with some of their value * components not set) in the barrier. */ - public Output size() { - return size; + public Output output() { + return output; } @Override public Output asOutput() { - return size; + return output; } /** The name of this op, as known by TensorFlow core engine */ public static final String OP_NAME = "BarrierIncompleteSize"; - private Output size; + private Output output; private BarrierIncompleteSize(Operation operation) { super(operation); int outputIdx = 0; - size = operation.output(outputIdx++); + output = operation.output(outputIdx++); } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BarrierInsertMany.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BarrierInsertMany.java index b652c11a35c..ccb8c6da826 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BarrierInsertMany.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BarrierInsertMany.java @@ -55,7 +55,7 @@ public static BarrierInsertMany create(Scope scope, Operand { public static BarrierReadySize create(Scope scope, Operand handle) { OperationBuilder opBuilder = scope.env().opBuilder("BarrierReadySize", scope.makeOpName("BarrierReadySize")); opBuilder.addInput(handle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BarrierReadySize(opBuilder.build()); } @@ -53,23 +53,23 @@ public static BarrierReadySize create(Scope scope, Operand handle) { * The number of complete elements (i.e. those with all of their value * components set) in the barrier. */ - public Output size() { - return size; + public Output output() { + return output; } @Override public Output asOutput() { - return size; + return output; } /** The name of this op, as known by TensorFlow core engine */ public static final String OP_NAME = "BarrierReadySize"; - private Output size; + private Output output; private BarrierReadySize(Operation operation) { super(operation); int outputIdx = 0; - size = operation.output(outputIdx++); + output = operation.output(outputIdx++); } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BarrierTakeMany.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BarrierTakeMany.java index 6c391fab5fa..4bf16ef62e0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BarrierTakeMany.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BarrierTakeMany.java @@ -19,11 +19,11 @@ import java.util.Arrays; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -31,6 +31,7 @@ import org.tensorflow.types.TInt32; import org.tensorflow.types.TInt64; import org.tensorflow.types.TString; +import org.tensorflow.types.family.TType; /** * Takes the given number of completed elements from a barrier. @@ -98,16 +99,12 @@ private Options() { * @return a new instance of BarrierTakeMany */ @Endpoint(describeByClass = true) - public static BarrierTakeMany create(Scope scope, Operand handle, Operand numElements, List> componentTypes, Options... options) { + public static BarrierTakeMany create(Scope scope, Operand handle, Operand numElements, List> componentTypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("BarrierTakeMany", scope.makeOpName("BarrierTakeMany")); opBuilder.addInput(handle.asOutput()); opBuilder.addInput(numElements.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] componentTypesArray = new DataType[componentTypes.size()]; - for (int i = 0; i < componentTypesArray.length; ++i) { - componentTypesArray[i] = componentTypes.get(i); - } - opBuilder.setAttr("component_types", componentTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("component_types", Operands.toDataTypes(componentTypes)); if (options != null) { for (Options opts : options) { if (opts.allowSmallBatch != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Batch.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Batch.java index 21d7cf0a6c0..d68ed353822 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Batch.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Batch.java @@ -144,7 +144,7 @@ private Options() { public static Batch create(Scope scope, Iterable> inTensors, Long numBatchThreads, Long maxBatchSize, Long batchTimeoutMicros, Long gradTimeoutMicros, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("Batch", scope.makeOpName("Batch")); opBuilder.addInputList(Operands.asOutputs(inTensors)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_batch_threads", numBatchThreads); opBuilder.setAttr("max_batch_size", maxBatchSize); opBuilder.setAttr("batch_timeout_micros", batchTimeoutMicros); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BatchToSpace.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BatchToSpace.java index b20c60ee4ac..0700ca1efd8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BatchToSpace.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BatchToSpace.java @@ -65,7 +65,7 @@ public static BatchToSpace create(Scope OperationBuilder opBuilder = scope.env().opBuilder("BatchToSpace", scope.makeOpName("BatchToSpace")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(crops.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("block_size", blockSize); return new BatchToSpace(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BatchToSpaceNd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BatchToSpaceNd.java index ef6f31d0f89..3c56135aa37 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BatchToSpaceNd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BatchToSpaceNd.java @@ -153,7 +153,7 @@ public static BatchToSpa opBuilder.addInput(input.asOutput()); opBuilder.addInput(blockShape.asOutput()); opBuilder.addInput(crops.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BatchToSpaceNd(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Bitcast.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Bitcast.java index b01c8598ae6..04ea83cf3be 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Bitcast.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Bitcast.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -96,11 +96,11 @@ public final class Bitcast extends RawOp implements Operand * @return a new instance of Bitcast */ @Endpoint(describeByClass = true) - public static Bitcast create(Scope scope, Operand input, DataType type) { + public static Bitcast create(Scope scope, Operand input, Class type) { OperationBuilder opBuilder = scope.env().opBuilder("Bitcast", scope.makeOpName("Bitcast")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("type", type); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("type", Operands.toDataType(type)); return new Bitcast(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BroadcastDynamicShape.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BroadcastDynamicShape.java index 3027e8234a4..91611ab6888 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BroadcastDynamicShape.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BroadcastDynamicShape.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Return the shape of s0 op s1 with broadcast. @@ -52,7 +51,7 @@ public static BroadcastDynamicShape create(Scope scope, O OperationBuilder opBuilder = scope.env().opBuilder("BroadcastArgs", scope.makeOpName("BroadcastDynamicShape")); opBuilder.addInput(s0.asOutput()); opBuilder.addInput(s1.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BroadcastDynamicShape(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BroadcastGradientArgs.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BroadcastGradientArgs.java index 2d95c71086e..8aa19f97259 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BroadcastGradientArgs.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BroadcastGradientArgs.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Return the reduction indices for computing gradients of s0 op s1 with broadcast. @@ -50,7 +49,7 @@ public static BroadcastGradientArgs create(Scope scope, O OperationBuilder opBuilder = scope.env().opBuilder("BroadcastGradientArgs", scope.makeOpName("BroadcastGradientArgs")); opBuilder.addInput(s0.asOutput()); opBuilder.addInput(s1.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BroadcastGradientArgs(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BroadcastTo.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BroadcastTo.java index e5ad5469501..de9b4ee7c88 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BroadcastTo.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BroadcastTo.java @@ -77,7 +77,7 @@ public static BroadcastTo create(Scope s OperationBuilder opBuilder = scope.env().opBuilder("BroadcastTo", scope.makeOpName("BroadcastTo")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(shape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BroadcastTo(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Bucketize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Bucketize.java index 84e9b454d0d..87197f19c3d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Bucketize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Bucketize.java @@ -28,7 +28,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Bucketizes 'input' based on 'boundaries'. @@ -59,7 +58,7 @@ public final class Bucketize extends RawOp implements Operand { public static Bucketize create(Scope scope, Operand input, List boundaries) { OperationBuilder opBuilder = scope.env().opBuilder("Bucketize", scope.makeOpName("Bucketize")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); float[] boundariesArray = new float[boundaries.size()]; for (int i = 0; i < boundariesArray.length; ++i) { boundariesArray[i] = boundaries.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ClipByValue.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ClipByValue.java index 8a5b99d9389..97740997852 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ClipByValue.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ClipByValue.java @@ -57,7 +57,7 @@ public static ClipByValue create(Scope scope, Operand t, opBuilder.addInput(t.asOutput()); opBuilder.addInput(clipValueMin.asOutput()); opBuilder.addInput(clipValueMax.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ClipByValue(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CollectiveGather.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CollectiveGather.java index bd9de3ebb33..2e1de3898fa 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CollectiveGather.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CollectiveGather.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Mutually accumulates multiple tensors of identical type and shape. @@ -80,7 +79,7 @@ private Options() { public static CollectiveGather create(Scope scope, Operand input, Long groupSize, Long groupKey, Long instanceKey, Shape shape, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("CollectiveGather", scope.makeOpName("CollectiveGather")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("group_size", groupSize); opBuilder.setAttr("group_key", groupKey); opBuilder.setAttr("instance_key", instanceKey); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Concat.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Concat.java index 9782b3d6ec9..33723c7c364 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Concat.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Concat.java @@ -52,7 +52,7 @@ public static Concat create(Scope scope, OperationBuilder opBuilder = scope.env().opBuilder("ConcatV2", scope.makeOpName("Concat")); opBuilder.addInputList(Operands.asOutputs(values)); opBuilder.addInput(axis.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Concat(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ConsumeMutexLock.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ConsumeMutexLock.java index 094f6d5e4b0..13f4905076b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ConsumeMutexLock.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ConsumeMutexLock.java @@ -50,7 +50,7 @@ public final class ConsumeMutexLock extends RawOp { public static ConsumeMutexLock create(Scope scope, Operand mutexLock) { OperationBuilder opBuilder = scope.env().opBuilder("ConsumeMutexLock", scope.makeOpName("ConsumeMutexLock")); opBuilder.addInput(mutexLock.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ConsumeMutexLock(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ControlTrigger.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ControlTrigger.java index e40715c9f2c..fa1281f84fa 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ControlTrigger.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ControlTrigger.java @@ -41,7 +41,7 @@ public final class ControlTrigger extends RawOp { @Endpoint(describeByClass = true) public static ControlTrigger create(Scope scope) { OperationBuilder opBuilder = scope.env().opBuilder("ControlTrigger", scope.makeOpName("ControlTrigger")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ControlTrigger(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Copy.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Copy.java index fb9cbbb122a..7a314be7993 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Copy.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Copy.java @@ -88,7 +88,7 @@ private Options() { public static Copy create(Scope scope, Operand input, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("Copy", scope.makeOpName("Copy")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.tensorName != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CopyHost.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CopyHost.java index 566258c0430..b638d662f9f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CopyHost.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CopyHost.java @@ -86,7 +86,7 @@ private Options() { public static CopyHost create(Scope scope, Operand input, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("CopyHost", scope.makeOpName("CopyHost")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.tensorName != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CountUpTo.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CountUpTo.java index 2884783695d..5d518629b78 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CountUpTo.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CountUpTo.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Increments 'ref' until it reaches 'limit'. @@ -49,7 +48,7 @@ public final class CountUpTo extends RawOp implements Operand public static CountUpTo create(Scope scope, Operand ref, Long limit) { OperationBuilder opBuilder = scope.env().opBuilder("CountUpTo", scope.makeOpName("CountUpTo")); opBuilder.addInput(ref.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("limit", limit); return new CountUpTo(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DecodeProto.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DecodeProto.java index 28af55f8465..1b8373c8e6b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DecodeProto.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DecodeProto.java @@ -19,17 +19,18 @@ import java.util.Arrays; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.TString; +import org.tensorflow.types.family.TType; /** * The op extracts fields from a serialized protocol buffers message into tensors. @@ -135,21 +136,17 @@ private Options() { * @return a new instance of DecodeProto */ @Endpoint(describeByClass = true) - public static DecodeProto create(Scope scope, Operand bytes, String messageType, List fieldNames, List> outputTypes, Options... options) { + public static DecodeProto create(Scope scope, Operand bytes, String messageType, List fieldNames, List> outputTypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("DecodeProtoV2", scope.makeOpName("DecodeProto")); opBuilder.addInput(bytes.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("message_type", messageType); String[] fieldNamesArray = new String[fieldNames.size()]; for (int i = 0; i < fieldNamesArray.length; ++i) { fieldNamesArray[i] = fieldNames.get(i); } opBuilder.setAttr("field_names", fieldNamesArray); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); if (options != null) { for (Options opts : options) { if (opts.descriptorSource != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DeepCopy.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DeepCopy.java index da22489acc9..4d8e8268d8c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DeepCopy.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DeepCopy.java @@ -46,7 +46,7 @@ public final class DeepCopy extends RawOp implements Operand public static DeepCopy create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("DeepCopy", scope.makeOpName("DeepCopy")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DeepCopy(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DeleteSessionTensor.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DeleteSessionTensor.java index 5f92cc26ca2..bbcfafde693 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DeleteSessionTensor.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DeleteSessionTensor.java @@ -43,7 +43,7 @@ public final class DeleteSessionTensor extends RawOp { public static DeleteSessionTensor create(Scope scope, Operand handle) { OperationBuilder opBuilder = scope.env().opBuilder("DeleteSessionTensor", scope.makeOpName("DeleteSessionTensor")); opBuilder.addInput(handle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DeleteSessionTensor(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DestroyResourceOp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DestroyResourceOp.java index 8a427166874..ea487a4d415 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DestroyResourceOp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DestroyResourceOp.java @@ -66,7 +66,7 @@ private Options() { public static DestroyResourceOp create(Scope scope, Operand resource, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("DestroyResourceOp", scope.makeOpName("DestroyResourceOp")); opBuilder.addInput(resource.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.ignoreLookupError != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DestroyTemporaryVariable.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DestroyTemporaryVariable.java index 7941a7a5870..25b2ef684c5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DestroyTemporaryVariable.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DestroyTemporaryVariable.java @@ -56,7 +56,7 @@ public final class DestroyTemporaryVariable extends RawOp imple public static DestroyTemporaryVariable create(Scope scope, Operand ref, String varName) { OperationBuilder opBuilder = scope.env().opBuilder("DestroyTemporaryVariable", scope.makeOpName("DestroyTemporaryVariable")); opBuilder.addInput(ref.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("var_name", varName); return new DestroyTemporaryVariable(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DeviceIndex.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DeviceIndex.java index f033d3fcc9d..cf0b0279c63 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DeviceIndex.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DeviceIndex.java @@ -48,7 +48,7 @@ public final class DeviceIndex extends RawOp implements Operand { @Endpoint(describeByClass = true) public static DeviceIndex create(Scope scope, List deviceNames) { OperationBuilder opBuilder = scope.env().opBuilder("DeviceIndex", scope.makeOpName("DeviceIndex")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); String[] deviceNamesArray = new String[deviceNames.size()]; for (int i = 0; i < deviceNamesArray.length; ++i) { deviceNamesArray[i] = deviceNames.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DummyMemoryCache.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DummyMemoryCache.java index 56f16d48a9b..615f2f8bdad 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DummyMemoryCache.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DummyMemoryCache.java @@ -40,7 +40,7 @@ public final class DummyMemoryCache extends RawOp implements Operand { @Endpoint(describeByClass = true) public static DummyMemoryCache create(Scope scope) { OperationBuilder opBuilder = scope.env().opBuilder("DummyMemoryCache", scope.makeOpName("DummyMemoryCache")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DummyMemoryCache(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DummySeedGenerator.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DummySeedGenerator.java index b9cf2c36d09..832887f1950 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DummySeedGenerator.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DummySeedGenerator.java @@ -24,7 +24,6 @@ import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; -import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TType; /** @@ -40,7 +39,7 @@ public final class DummySeedGenerator extends RawOp implements Operand { @Endpoint(describeByClass = true) public static DummySeedGenerator create(Scope scope) { OperationBuilder opBuilder = scope.env().opBuilder("DummySeedGenerator", scope.makeOpName("DummySeedGenerator")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DummySeedGenerator(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DynamicPartition.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DynamicPartition.java index d9da09b5d34..76bad0aecb7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DynamicPartition.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DynamicPartition.java @@ -87,7 +87,7 @@ public static DynamicPartition create(Scope scope, Operand< OperationBuilder opBuilder = scope.env().opBuilder("DynamicPartition", scope.makeOpName("DynamicPartition")); opBuilder.addInput(data.asOutput()); opBuilder.addInput(partitions.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_partitions", numPartitions); return new DynamicPartition(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DynamicStitch.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DynamicStitch.java index b7dd72f8a57..5ec783fde16 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DynamicStitch.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DynamicStitch.java @@ -105,7 +105,7 @@ public static DynamicStitch create(Scope scope, Iterable(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/EditDistance.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/EditDistance.java index 29423a3c548..8ae42ad6218 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/EditDistance.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/EditDistance.java @@ -90,7 +90,7 @@ public static EditDistance create(Scope scope, Operand opBuilder.addInput(truthIndices.asOutput()); opBuilder.addInput(truthValues.asOutput()); opBuilder.addInput(truthShape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.normalize != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Empty.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Empty.java index c8305349d37..7e7140b9015 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Empty.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Empty.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -68,11 +68,11 @@ private Options() { * @return a new instance of Empty */ @Endpoint(describeByClass = true) - public static Empty create(Scope scope, Operand shape, DataType dtype, Options... options) { + public static Empty create(Scope scope, Operand shape, Class dtype, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("Empty", scope.makeOpName("Empty")); opBuilder.addInput(shape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); if (options != null) { for (Options opts : options) { if (opts.init != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/EmptyTensorList.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/EmptyTensorList.java index 619fb90657f..e5ec261e5b8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/EmptyTensorList.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/EmptyTensorList.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -53,12 +53,12 @@ public final class EmptyTensorList extends RawOp implements Operand { * @return a new instance of EmptyTensorList */ @Endpoint(describeByClass = true) - public static EmptyTensorList create(Scope scope, Operand elementShape, Operand maxNumElements, DataType elementDtype) { + public static EmptyTensorList create(Scope scope, Operand elementShape, Operand maxNumElements, Class elementDtype) { OperationBuilder opBuilder = scope.env().opBuilder("EmptyTensorList", scope.makeOpName("EmptyTensorList")); opBuilder.addInput(elementShape.asOutput()); opBuilder.addInput(maxNumElements.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("element_dtype", elementDtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("element_dtype", Operands.toDataType(elementDtype)); return new EmptyTensorList(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/EncodeProto.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/EncodeProto.java index 4d0396dcb9d..2b0680d7fc6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/EncodeProto.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/EncodeProto.java @@ -111,7 +111,7 @@ public static EncodeProto create(Scope scope, Operand sizes, Iterable extends RawOp implements Operand public static EnsureShape create(Scope scope, Operand input, Shape shape) { OperationBuilder opBuilder = scope.env().opBuilder("EnsureShape", scope.makeOpName("EnsureShape")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("shape", shape); return new EnsureShape(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Enter.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Enter.java index fa19763defb..a958d23c259 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Enter.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Enter.java @@ -81,7 +81,7 @@ private Options() { public static Enter create(Scope scope, Operand data, String frameName, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("Enter", scope.makeOpName("Enter")); opBuilder.addInput(data.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("frame_name", frameName); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Exit.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Exit.java index 4e42bb0bb0e..8f0562469c6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Exit.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Exit.java @@ -47,7 +47,7 @@ public final class Exit extends RawOp implements Operand { public static Exit create(Scope scope, Operand data) { OperationBuilder opBuilder = scope.env().opBuilder("Exit", scope.makeOpName("Exit")); opBuilder.addInput(data.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Exit(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ExpandDims.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ExpandDims.java index eb0e977e163..9f94e27b7f0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ExpandDims.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ExpandDims.java @@ -80,7 +80,7 @@ public static ExpandDims create(Scope sc OperationBuilder opBuilder = scope.env().opBuilder("ExpandDims", scope.makeOpName("ExpandDims")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(axis.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ExpandDims(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ExtractVolumePatches.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ExtractVolumePatches.java index 0b9bcd78e20..b52cc4b3a77 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ExtractVolumePatches.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ExtractVolumePatches.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Extract `patches` from `input` and put them in the "depth" output dimension. 3D extension of `extract_image_patches`. @@ -59,7 +58,7 @@ public final class ExtractVolumePatches extends RawOp impleme public static ExtractVolumePatches create(Scope scope, Operand input, List ksizes, List strides, String padding) { OperationBuilder opBuilder = scope.env().opBuilder("ExtractVolumePatches", scope.makeOpName("ExtractVolumePatches")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); long[] ksizesArray = new long[ksizes.size()]; for (int i = 0; i < ksizesArray.length; ++i) { ksizesArray[i] = ksizes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Fill.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Fill.java index 79b827ea2aa..9f79df9c99b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Fill.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Fill.java @@ -76,7 +76,7 @@ public static Fill create(Scope scope, O OperationBuilder opBuilder = scope.env().opBuilder("Fill", scope.makeOpName("Fill")); opBuilder.addInput(dims.asOutput()); opBuilder.addInput(value.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Fill(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Fingerprint.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Fingerprint.java index 0ea88f2b1f1..2bd330c9293 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Fingerprint.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Fingerprint.java @@ -78,7 +78,7 @@ public static Fingerprint create(Scope scope, Operand data, OperationBuilder opBuilder = scope.env().opBuilder("Fingerprint", scope.makeOpName("Fingerprint")); opBuilder.addInput(data.asOutput()); opBuilder.addInput(method.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Fingerprint(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Gather.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Gather.java index a9bb2f72e69..358a5dbfab0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Gather.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Gather.java @@ -99,7 +99,7 @@ public static Gather opBuilder.addInput(params.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(axis.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.batchDims != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GatherNd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GatherNd.java index e932794001e..1bf4500fd75 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GatherNd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GatherNd.java @@ -142,7 +142,7 @@ public static GatherNd create(Scope scop OperationBuilder opBuilder = scope.env().opBuilder("GatherNd", scope.makeOpName("GatherNd")); opBuilder.addInput(params.asOutput()); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new GatherNd(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GetSessionHandle.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GetSessionHandle.java index 93a31f1cba1..b03925faa4e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GetSessionHandle.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GetSessionHandle.java @@ -44,7 +44,7 @@ public final class GetSessionHandle extends RawOp implements Operand { public static GetSessionHandle create(Scope scope, Operand value) { OperationBuilder opBuilder = scope.env().opBuilder("GetSessionHandleV2", scope.makeOpName("GetSessionHandle")); opBuilder.addInput(value.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new GetSessionHandle(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GetSessionTensor.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GetSessionTensor.java index 93ba5af508c..8a04f173ef8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GetSessionTensor.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GetSessionTensor.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -46,11 +46,11 @@ public final class GetSessionTensor extends RawOp implements Op * @return a new instance of GetSessionTensor */ @Endpoint(describeByClass = true) - public static GetSessionTensor create(Scope scope, Operand handle, DataType dtype) { + public static GetSessionTensor create(Scope scope, Operand handle, Class dtype) { OperationBuilder opBuilder = scope.env().opBuilder("GetSessionTensor", scope.makeOpName("GetSessionTensor")); opBuilder.addInput(handle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); return new GetSessionTensor(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GuaranteeConst.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GuaranteeConst.java index df0a48ad28f..aeab16c7c6c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GuaranteeConst.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GuaranteeConst.java @@ -53,7 +53,7 @@ public final class GuaranteeConst extends RawOp implements Oper public static GuaranteeConst create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("GuaranteeConst", scope.makeOpName("GuaranteeConst")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new GuaranteeConst(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/HashTable.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/HashTable.java index 87d9cab4c3f..75f53539f84 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/HashTable.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/HashTable.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -88,11 +88,11 @@ private Options() { * @return a new instance of HashTable */ @Endpoint(describeByClass = true) - public static HashTable create(Scope scope, DataType keyDtype, DataType valueDtype, Options... options) { + public static HashTable create(Scope scope, Class keyDtype, Class valueDtype, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("HashTableV2", scope.makeOpName("HashTable")); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("key_dtype", keyDtype); - opBuilder.setAttr("value_dtype", valueDtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("key_dtype", Operands.toDataType(keyDtype)); + opBuilder.setAttr("value_dtype", Operands.toDataType(valueDtype)); if (options != null) { for (Options opts : options) { if (opts.container != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/HistogramFixedWidth.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/HistogramFixedWidth.java index da1c1a7b713..86e6cce541a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/HistogramFixedWidth.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/HistogramFixedWidth.java @@ -17,18 +17,17 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Return histogram of values. @@ -67,13 +66,13 @@ public final class HistogramFixedWidth extends RawOp implemen * @return a new instance of HistogramFixedWidth */ @Endpoint(describeByClass = true) - public static HistogramFixedWidth create(Scope scope, Operand values, Operand valueRange, Operand nbins, DataType dtype) { + public static HistogramFixedWidth create(Scope scope, Operand values, Operand valueRange, Operand nbins, Class dtype) { OperationBuilder opBuilder = scope.env().opBuilder("HistogramFixedWidth", scope.makeOpName("HistogramFixedWidth")); opBuilder.addInput(values.asOutput()); opBuilder.addInput(valueRange.asOutput()); opBuilder.addInput(nbins.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); return new HistogramFixedWidth(opBuilder.build()); } @@ -90,7 +89,7 @@ public static HistogramFixedWidth crea */ @Endpoint(describeByClass = true) public static HistogramFixedWidth create(Scope scope, Operand values, Operand valueRange, Operand nbins) { - return create(scope, values, valueRange, nbins, TInt32.DTYPE); + return create(scope, values, valueRange, nbins, TInt32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Identity.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Identity.java index 1cafffdf5c9..51030fd8349 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Identity.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Identity.java @@ -46,7 +46,7 @@ public final class Identity extends RawOp implements Operand public static Identity create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("Identity", scope.makeOpName("Identity")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Identity(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/IdentityN.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/IdentityN.java index e000005eabf..02bf0f00422 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/IdentityN.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/IdentityN.java @@ -64,7 +64,7 @@ public final class IdentityN extends RawOp implements Iterable> { public static IdentityN create(Scope scope, Iterable> input) { OperationBuilder opBuilder = scope.env().opBuilder("IdentityN", scope.makeOpName("IdentityN")); opBuilder.addInputList(Operands.asOutputs(input)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new IdentityN(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ImmutableConst.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ImmutableConst.java index ecbc3154498..319304aff8b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ImmutableConst.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ImmutableConst.java @@ -17,12 +17,12 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -50,10 +50,10 @@ public final class ImmutableConst extends RawOp implements Oper * @return a new instance of ImmutableConst */ @Endpoint(describeByClass = true) - public static ImmutableConst create(Scope scope, DataType dtype, Shape shape, String memoryRegionName) { + public static ImmutableConst create(Scope scope, Class dtype, Shape shape, String memoryRegionName) { OperationBuilder opBuilder = scope.env().opBuilder("ImmutableConst", scope.makeOpName("ImmutableConst")); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); opBuilder.setAttr("shape", shape); opBuilder.setAttr("memory_region_name", memoryRegionName); return new ImmutableConst(opBuilder.build()); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InitializeTable.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InitializeTable.java index 48662ed420d..d08f66042a6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InitializeTable.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InitializeTable.java @@ -47,7 +47,7 @@ public static InitializeTable create(Scope sc opBuilder.addInput(tableHandle.asOutput()); opBuilder.addInput(keys.asOutput()); opBuilder.addInput(values.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new InitializeTable(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InitializeTableFromTextFile.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InitializeTableFromTextFile.java index 2050c4d8628..43c72730eb2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InitializeTableFromTextFile.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InitializeTableFromTextFile.java @@ -88,7 +88,7 @@ public static InitializeTableFromTextFile create(Scope scope, Operand tableHa OperationBuilder opBuilder = scope.env().opBuilder("InitializeTableFromTextFileV2", scope.makeOpName("InitializeTableFromTextFile")); opBuilder.addInput(tableHandle.asOutput()); opBuilder.addInput(filename.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("key_index", keyIndex); opBuilder.setAttr("value_index", valueIndex); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceAdd.java index 8de34bc569f..c5a3e7516b5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceAdd.java @@ -53,7 +53,7 @@ public static InplaceAdd create(Scope scope, Operand x, opBuilder.addInput(x.asOutput()); opBuilder.addInput(i.asOutput()); opBuilder.addInput(v.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new InplaceAdd(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceSub.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceSub.java index 999f793c869..6e5f157cbe7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceSub.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceSub.java @@ -53,7 +53,7 @@ public static InplaceSub create(Scope scope, Operand x, opBuilder.addInput(x.asOutput()); opBuilder.addInput(i.asOutput()); opBuilder.addInput(v.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new InplaceSub(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceUpdate.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceUpdate.java index f7d2f79e418..4c05b4bff27 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceUpdate.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceUpdate.java @@ -56,7 +56,7 @@ public static InplaceUpdate create(Scope scope, Operand opBuilder.addInput(x.asOutput()); opBuilder.addInput(i.asOutput()); opBuilder.addInput(v.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new InplaceUpdate(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/IsVariableInitialized.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/IsVariableInitialized.java index e9dc32ec1d7..7fdf0ee33ee 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/IsVariableInitialized.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/IsVariableInitialized.java @@ -47,7 +47,7 @@ public final class IsVariableInitialized extends RawOp implements Operand public static IsVariableInitialized create(Scope scope, Operand ref) { OperationBuilder opBuilder = scope.env().opBuilder("IsVariableInitialized", scope.makeOpName("IsVariableInitialized")); opBuilder.addInput(ref.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new IsVariableInitialized(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LinSpace.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LinSpace.java index 04f3959820a..29662e643f8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LinSpace.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LinSpace.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Generates values in an interval. @@ -60,7 +59,7 @@ public static LinSpace create(Scope sc opBuilder.addInput(start.asOutput()); opBuilder.addInput(stop.asOutput()); opBuilder.addInput(num.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new LinSpace(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableExport.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableExport.java index 6bebbb35895..7685fa5e7b4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableExport.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableExport.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -47,12 +47,12 @@ public final class LookupTableExport extends R * @return a new instance of LookupTableExport */ @Endpoint(describeByClass = true) - public static LookupTableExport create(Scope scope, Operand tableHandle, DataType Tkeys, DataType Tvalues) { + public static LookupTableExport create(Scope scope, Operand tableHandle, Class Tkeys, Class Tvalues) { OperationBuilder opBuilder = scope.env().opBuilder("LookupTableExportV2", scope.makeOpName("LookupTableExport")); opBuilder.addInput(tableHandle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("Tkeys", Tkeys); - opBuilder.setAttr("Tvalues", Tvalues); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("Tkeys", Operands.toDataType(Tkeys)); + opBuilder.setAttr("Tvalues", Operands.toDataType(Tvalues)); return new LookupTableExport(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableFind.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableFind.java index bfc8e92e16f..8500e2c3cab 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableFind.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableFind.java @@ -56,7 +56,7 @@ public static LookupTableFind create(Scope opBuilder.addInput(tableHandle.asOutput()); opBuilder.addInput(keys.asOutput()); opBuilder.addInput(defaultValue.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new LookupTableFind(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableImport.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableImport.java index 9884a40e3cb..c8553c28569 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableImport.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableImport.java @@ -50,7 +50,7 @@ public static LookupTableImport create(Scope opBuilder.addInput(tableHandle.asOutput()); opBuilder.addInput(keys.asOutput()); opBuilder.addInput(values.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new LookupTableImport(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableInsert.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableInsert.java index 0f09ae25d1b..827d0f9509e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableInsert.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableInsert.java @@ -50,7 +50,7 @@ public static LookupTableInsert create(Scope opBuilder.addInput(tableHandle.asOutput()); opBuilder.addInput(keys.asOutput()); opBuilder.addInput(values.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new LookupTableInsert(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableRemove.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableRemove.java index 41463ad7539..577c762e385 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableRemove.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableRemove.java @@ -47,7 +47,7 @@ public static LookupTableRemove create(Scope scope, Operand OperationBuilder opBuilder = scope.env().opBuilder("LookupTableRemoveV2", scope.makeOpName("LookupTableRemove")); opBuilder.addInput(tableHandle.asOutput()); opBuilder.addInput(keys.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new LookupTableRemove(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableSize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableSize.java index 10e84953496..8960fb28f2a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableSize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableSize.java @@ -44,30 +44,30 @@ public final class LookupTableSize extends RawOp implements Operand { public static LookupTableSize create(Scope scope, Operand tableHandle) { OperationBuilder opBuilder = scope.env().opBuilder("LookupTableSizeV2", scope.makeOpName("LookupTableSize")); opBuilder.addInput(tableHandle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new LookupTableSize(opBuilder.build()); } /** * Scalar that contains number of elements in the table. */ - public Output size() { - return size; + public Output output() { + return output; } @Override public Output asOutput() { - return size; + return output; } /** The name of this op, as known by TensorFlow core engine */ public static final String OP_NAME = "LookupTableSizeV2"; - private Output size; + private Output output; private LookupTableSize(Operation operation) { super(operation); int outputIdx = 0; - size = operation.output(outputIdx++); + output = operation.output(outputIdx++); } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LoopCond.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LoopCond.java index 57b82598f84..45744e7ce9f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LoopCond.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LoopCond.java @@ -47,7 +47,7 @@ public final class LoopCond extends RawOp implements Operand { public static LoopCond create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("LoopCond", scope.makeOpName("LoopCond")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new LoopCond(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LowerBound.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LowerBound.java index 6f0f5158cca..1aa8badb5a1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LowerBound.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LowerBound.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -66,12 +66,12 @@ public final class LowerBound extends RawOp implements Operan * @return a new instance of LowerBound */ @Endpoint(describeByClass = true) - public static LowerBound create(Scope scope, Operand sortedInputs, Operand values, DataType outType) { + public static LowerBound create(Scope scope, Operand sortedInputs, Operand values, Class outType) { OperationBuilder opBuilder = scope.env().opBuilder("LowerBound", scope.makeOpName("LowerBound")); opBuilder.addInput(sortedInputs.asOutput()); opBuilder.addInput(values.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); return new LowerBound(opBuilder.build()); } @@ -86,7 +86,7 @@ public static LowerBound create(Scope sc */ @Endpoint(describeByClass = true) public static LowerBound create(Scope scope, Operand sortedInputs, Operand values) { - return create(scope, sortedInputs, values, TInt32.DTYPE); + return create(scope, sortedInputs, values, TInt32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapClear.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapClear.java index bad1e90554f..e680e7db08a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapClear.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapClear.java @@ -18,13 +18,14 @@ package org.tensorflow.op.core; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; +import org.tensorflow.types.family.TType; /** * Op removes all elements in the underlying container. @@ -87,14 +88,10 @@ private Options() { * @return a new instance of MapClear */ @Endpoint(describeByClass = true) - public static MapClear create(Scope scope, List> dtypes, Options... options) { + public static MapClear create(Scope scope, List> dtypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("MapClear", scope.makeOpName("MapClear")); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] dtypesArray = new DataType[dtypes.size()]; - for (int i = 0; i < dtypesArray.length; ++i) { - dtypesArray[i] = dtypes.get(i); - } - opBuilder.setAttr("dtypes", dtypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtypes", Operands.toDataTypes(dtypes)); if (options != null) { for (Options opts : options) { if (opts.capacity != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapIncompleteSize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapIncompleteSize.java index 19e9e87a08a..6fa921bb408 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapIncompleteSize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapIncompleteSize.java @@ -18,16 +18,17 @@ package org.tensorflow.op.core; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; +import org.tensorflow.types.family.TType; /** * Op returns the number of incomplete elements in the underlying container. @@ -90,14 +91,10 @@ private Options() { * @return a new instance of MapIncompleteSize */ @Endpoint(describeByClass = true) - public static MapIncompleteSize create(Scope scope, List> dtypes, Options... options) { + public static MapIncompleteSize create(Scope scope, List> dtypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("MapIncompleteSize", scope.makeOpName("MapIncompleteSize")); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] dtypesArray = new DataType[dtypes.size()]; - for (int i = 0; i < dtypesArray.length; ++i) { - dtypesArray[i] = dtypes.get(i); - } - opBuilder.setAttr("dtypes", dtypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtypes", Operands.toDataTypes(dtypes)); if (options != null) { for (Options opts : options) { if (opts.capacity != null) { @@ -147,23 +144,23 @@ public static Options sharedName(String sharedName) { /** */ - public Output size() { - return size; + public Output output() { + return output; } @Override public Output asOutput() { - return size; + return output; } /** The name of this op, as known by TensorFlow core engine */ public static final String OP_NAME = "MapIncompleteSize"; - private Output size; + private Output output; private MapIncompleteSize(Operation operation) { super(operation); int outputIdx = 0; - size = operation.output(outputIdx++); + output = operation.output(outputIdx++); } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapPeek.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapPeek.java index 1925ca680ea..316bc08c64c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapPeek.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapPeek.java @@ -20,11 +20,11 @@ import java.util.Arrays; import java.util.Iterator; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -99,16 +99,12 @@ private Options() { * @return a new instance of MapPeek */ @Endpoint(describeByClass = true) - public static MapPeek create(Scope scope, Operand key, Operand indices, List> dtypes, Options... options) { + public static MapPeek create(Scope scope, Operand key, Operand indices, List> dtypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("MapPeek", scope.makeOpName("MapPeek")); opBuilder.addInput(key.asOutput()); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] dtypesArray = new DataType[dtypes.size()]; - for (int i = 0; i < dtypesArray.length; ++i) { - dtypesArray[i] = dtypes.get(i); - } - opBuilder.setAttr("dtypes", dtypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtypes", Operands.toDataTypes(dtypes)); if (options != null) { for (Options opts : options) { if (opts.capacity != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapSize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapSize.java index 7f4eea906f5..0cd9510a8f7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapSize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapSize.java @@ -18,16 +18,17 @@ package org.tensorflow.op.core; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; +import org.tensorflow.types.family.TType; /** * Op returns the number of elements in the underlying container. @@ -90,14 +91,10 @@ private Options() { * @return a new instance of MapSize */ @Endpoint(describeByClass = true) - public static MapSize create(Scope scope, List> dtypes, Options... options) { + public static MapSize create(Scope scope, List> dtypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("MapSize", scope.makeOpName("MapSize")); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] dtypesArray = new DataType[dtypes.size()]; - for (int i = 0; i < dtypesArray.length; ++i) { - dtypesArray[i] = dtypes.get(i); - } - opBuilder.setAttr("dtypes", dtypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtypes", Operands.toDataTypes(dtypes)); if (options != null) { for (Options opts : options) { if (opts.capacity != null) { @@ -147,23 +144,23 @@ public static Options sharedName(String sharedName) { /** */ - public Output size() { - return size; + public Output output() { + return output; } @Override public Output asOutput() { - return size; + return output; } /** The name of this op, as known by TensorFlow core engine */ public static final String OP_NAME = "MapSize"; - private Output size; + private Output output; private MapSize(Operation operation) { super(operation); int outputIdx = 0; - size = operation.output(outputIdx++); + output = operation.output(outputIdx++); } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapStage.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapStage.java index 9291b32d53b..76f9086f46e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapStage.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapStage.java @@ -18,7 +18,6 @@ package org.tensorflow.op.core; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; @@ -29,6 +28,7 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.TInt64; +import org.tensorflow.types.family.TType; /** * Stage (key, values) in the underlying container which behaves like a hashtable. @@ -97,17 +97,13 @@ private Options() { * @return a new instance of MapStage */ @Endpoint(describeByClass = true) - public static MapStage create(Scope scope, Operand key, Operand indices, Iterable> values, List> dtypes, Options... options) { + public static MapStage create(Scope scope, Operand key, Operand indices, Iterable> values, List> dtypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("MapStage", scope.makeOpName("MapStage")); opBuilder.addInput(key.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInputList(Operands.asOutputs(values)); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] dtypesArray = new DataType[dtypes.size()]; - for (int i = 0; i < dtypesArray.length; ++i) { - dtypesArray[i] = dtypes.get(i); - } - opBuilder.setAttr("dtypes", dtypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtypes", Operands.toDataTypes(dtypes)); if (options != null) { for (Options opts : options) { if (opts.capacity != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapUnstage.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapUnstage.java index 849f6f3ef6a..6d189a50d7b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapUnstage.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapUnstage.java @@ -20,11 +20,11 @@ import java.util.Arrays; import java.util.Iterator; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -99,16 +99,12 @@ private Options() { * @return a new instance of MapUnstage */ @Endpoint(describeByClass = true) - public static MapUnstage create(Scope scope, Operand key, Operand indices, List> dtypes, Options... options) { + public static MapUnstage create(Scope scope, Operand key, Operand indices, List> dtypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("MapUnstage", scope.makeOpName("MapUnstage")); opBuilder.addInput(key.asOutput()); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] dtypesArray = new DataType[dtypes.size()]; - for (int i = 0; i < dtypesArray.length; ++i) { - dtypesArray[i] = dtypes.get(i); - } - opBuilder.setAttr("dtypes", dtypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtypes", Operands.toDataTypes(dtypes)); if (options != null) { for (Options opts : options) { if (opts.capacity != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapUnstageNoKey.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapUnstageNoKey.java index 10a119ec6c4..9848ab2d845 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapUnstageNoKey.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MapUnstageNoKey.java @@ -19,17 +19,18 @@ import java.util.Arrays; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.TInt64; +import org.tensorflow.types.family.TType; /** * Op removes and returns a random (key, value) @@ -96,15 +97,11 @@ private Options() { * @return a new instance of MapUnstageNoKey */ @Endpoint(describeByClass = true) - public static MapUnstageNoKey create(Scope scope, Operand indices, List> dtypes, Options... options) { + public static MapUnstageNoKey create(Scope scope, Operand indices, List> dtypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("MapUnstageNoKey", scope.makeOpName("MapUnstageNoKey")); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] dtypesArray = new DataType[dtypes.size()]; - for (int i = 0; i < dtypesArray.length; ++i) { - dtypesArray[i] = dtypes.get(i); - } - opBuilder.setAttr("dtypes", dtypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtypes", Operands.toDataTypes(dtypes)); if (options != null) { for (Options opts : options) { if (opts.capacity != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Max.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Max.java index 94bcd0f544c..1ed2095c8c5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Max.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Max.java @@ -75,7 +75,7 @@ public static Max create(Scope scope, Op OperationBuilder opBuilder = scope.env().opBuilder("Max", scope.makeOpName("Max")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(axis.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.keepDims != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Merge.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Merge.java index 41eca5fc33f..a4229d80ec3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Merge.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Merge.java @@ -54,7 +54,7 @@ public final class Merge extends RawOp { public static Merge create(Scope scope, Iterable> inputs) { OperationBuilder opBuilder = scope.env().opBuilder("Merge", scope.makeOpName("Merge")); opBuilder.addInputList(Operands.asOutputs(inputs)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Merge(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Min.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Min.java index ed8ea366e7a..dc491611bc4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Min.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Min.java @@ -75,7 +75,7 @@ public static Min create(Scope scope, Op OperationBuilder opBuilder = scope.env().opBuilder("Min", scope.makeOpName("Min")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(axis.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.keepDims != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MirrorPad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MirrorPad.java index 6c8292a671a..fc875c50e29 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MirrorPad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MirrorPad.java @@ -81,7 +81,7 @@ public static MirrorPad create(Scope sco OperationBuilder opBuilder = scope.env().opBuilder("MirrorPad", scope.makeOpName("MirrorPad")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(paddings.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("mode", mode); return new MirrorPad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MirrorPadGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MirrorPadGrad.java index 7b1727c3fb5..5d8b1b19b71 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MirrorPadGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MirrorPadGrad.java @@ -69,7 +69,7 @@ public static MirrorPadGrad create(Scope OperationBuilder opBuilder = scope.env().opBuilder("MirrorPadGrad", scope.makeOpName("MirrorPadGrad")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(paddings.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("mode", mode); return new MirrorPadGrad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MlirPassthroughOp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MlirPassthroughOp.java index cc278fdae8f..e80af4ecee8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MlirPassthroughOp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MlirPassthroughOp.java @@ -20,7 +20,6 @@ import java.util.Arrays; import java.util.Iterator; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; @@ -78,16 +77,12 @@ public final class MlirPassthroughOp extends RawOp implements Iterable> inputs, String mlirModule, List> Toutputs) { + public static MlirPassthroughOp create(Scope scope, Iterable> inputs, String mlirModule, List> Toutputs) { OperationBuilder opBuilder = scope.env().opBuilder("MlirPassthroughOp", scope.makeOpName("MlirPassthroughOp")); opBuilder.addInputList(Operands.asOutputs(inputs)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("mlir_module", mlirModule); - DataType[] ToutputsArray = new DataType[Toutputs.size()]; - for (int i = 0; i < ToutputsArray.length; ++i) { - ToutputsArray[i] = Toutputs.get(i); - } - opBuilder.setAttr("Toutputs", ToutputsArray); + opBuilder.setAttr("Toutputs", Operands.toDataTypes(Toutputs)); return new MlirPassthroughOp(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MutableDenseHashTable.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MutableDenseHashTable.java index 4ff3c1f3ea6..28a85dc0082 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MutableDenseHashTable.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MutableDenseHashTable.java @@ -17,12 +17,12 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -122,12 +122,12 @@ private Options() { * @return a new instance of MutableDenseHashTable */ @Endpoint(describeByClass = true) - public static MutableDenseHashTable create(Scope scope, Operand emptyKey, Operand deletedKey, DataType valueDtype, Options... options) { + public static MutableDenseHashTable create(Scope scope, Operand emptyKey, Operand deletedKey, Class valueDtype, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("MutableDenseHashTableV2", scope.makeOpName("MutableDenseHashTable")); opBuilder.addInput(emptyKey.asOutput()); opBuilder.addInput(deletedKey.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("value_dtype", valueDtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("value_dtype", Operands.toDataType(valueDtype)); if (options != null) { for (Options opts : options) { if (opts.container != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MutableHashTable.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MutableHashTable.java index a11789f9f34..1a551a3d77f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MutableHashTable.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MutableHashTable.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -88,11 +88,11 @@ private Options() { * @return a new instance of MutableHashTable */ @Endpoint(describeByClass = true) - public static MutableHashTable create(Scope scope, DataType keyDtype, DataType valueDtype, Options... options) { + public static MutableHashTable create(Scope scope, Class keyDtype, Class valueDtype, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("MutableHashTableV2", scope.makeOpName("MutableHashTable")); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("key_dtype", keyDtype); - opBuilder.setAttr("value_dtype", valueDtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("key_dtype", Operands.toDataType(keyDtype)); + opBuilder.setAttr("value_dtype", Operands.toDataType(valueDtype)); if (options != null) { for (Options opts : options) { if (opts.container != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MutableHashTableOfTensors.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MutableHashTableOfTensors.java index 975f040ae3b..c054b60ad0b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MutableHashTableOfTensors.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MutableHashTableOfTensors.java @@ -17,12 +17,12 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -97,11 +97,11 @@ private Options() { * @return a new instance of MutableHashTableOfTensors */ @Endpoint(describeByClass = true) - public static MutableHashTableOfTensors create(Scope scope, DataType keyDtype, DataType valueDtype, Options... options) { + public static MutableHashTableOfTensors create(Scope scope, Class keyDtype, Class valueDtype, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("MutableHashTableOfTensorsV2", scope.makeOpName("MutableHashTableOfTensors")); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("key_dtype", keyDtype); - opBuilder.setAttr("value_dtype", valueDtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("key_dtype", Operands.toDataType(keyDtype)); + opBuilder.setAttr("value_dtype", Operands.toDataType(valueDtype)); if (options != null) { for (Options opts : options) { if (opts.container != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Mutex.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Mutex.java index 1af2b439372..ae8f8894252 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Mutex.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Mutex.java @@ -73,7 +73,7 @@ private Options() { @Endpoint(describeByClass = true) public static Mutex create(Scope scope, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("MutexV2", scope.makeOpName("Mutex")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.container != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MutexLock.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MutexLock.java index de28b8f5025..1506216c8d3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MutexLock.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MutexLock.java @@ -80,7 +80,7 @@ public final class MutexLock extends RawOp implements Operand { public static MutexLock create(Scope scope, Operand mutex) { OperationBuilder opBuilder = scope.env().opBuilder("MutexLock", scope.makeOpName("MutexLock")); opBuilder.addInput(mutex.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new MutexLock(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NcclAllReduce.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NcclAllReduce.java index a44611b5a41..8d891145adb 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NcclAllReduce.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NcclAllReduce.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Outputs a tensor containing the reduction across all input tensors. @@ -62,7 +61,7 @@ public final class NcclAllReduce extends RawOp implements Ope public static NcclAllReduce create(Scope scope, Operand input, String reduction, Long numDevices, String sharedName) { OperationBuilder opBuilder = scope.env().opBuilder("NcclAllReduce", scope.makeOpName("NcclAllReduce")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("reduction", reduction); opBuilder.setAttr("num_devices", numDevices); opBuilder.setAttr("shared_name", sharedName); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NcclBroadcast.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NcclBroadcast.java index da0832e437a..8febd22137b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NcclBroadcast.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NcclBroadcast.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Sends `input` to all devices that are connected to the output. @@ -58,7 +57,7 @@ public final class NcclBroadcast extends RawOp implements Ope public static NcclBroadcast create(Scope scope, Operand input, Shape shape) { OperationBuilder opBuilder = scope.env().opBuilder("NcclBroadcast", scope.makeOpName("NcclBroadcast")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("shape", shape); return new NcclBroadcast(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NcclReduce.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NcclReduce.java index ced1473e60a..ceb8480274c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NcclReduce.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NcclReduce.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Reduces `input` from `num_devices` using `reduction` to a single device. @@ -57,7 +56,7 @@ public final class NcclReduce extends RawOp implements Operan public static NcclReduce create(Scope scope, Iterable> input, String reduction) { OperationBuilder opBuilder = scope.env().opBuilder("NcclReduce", scope.makeOpName("NcclReduce")); opBuilder.addInputList(Operands.asOutputs(input)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("reduction", reduction); return new NcclReduce(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NextIteration.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NextIteration.java index 69b6be6a810..e5b558b23ff 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NextIteration.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NextIteration.java @@ -46,7 +46,7 @@ public final class NextIteration extends RawOp implements Opera public static NextIteration create(Scope scope, Operand data) { OperationBuilder opBuilder = scope.env().opBuilder("NextIteration", scope.makeOpName("NextIteration")); opBuilder.addInput(data.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new NextIteration(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NoOp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NoOp.java index 922b5d55ce3..b8aa6227ce7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NoOp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NoOp.java @@ -39,7 +39,7 @@ public final class NoOp extends RawOp { @Endpoint(describeByClass = true) public static NoOp create(Scope scope) { OperationBuilder opBuilder = scope.env().opBuilder("NoOp", scope.makeOpName("NoOp")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new NoOp(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OneHot.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OneHot.java index 442b9ae9108..ab4e675613e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OneHot.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OneHot.java @@ -155,7 +155,7 @@ public static OneHot create(Scope scope, opBuilder.addInput(depth.asOutput()); opBuilder.addInput(onValue.asOutput()); opBuilder.addInput(offValue.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.axis != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OnesLike.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OnesLike.java index 986d0201f26..d314879054f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OnesLike.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OnesLike.java @@ -46,7 +46,7 @@ public final class OnesLike extends RawOp implements Operand public static OnesLike create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("OnesLike", scope.makeOpName("OnesLike")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new OnesLike(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapClear.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapClear.java index 05a1b7ab984..dd789bcec82 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapClear.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapClear.java @@ -18,13 +18,14 @@ package org.tensorflow.op.core; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; +import org.tensorflow.types.family.TType; /** * Op removes all elements in the underlying container. @@ -87,14 +88,10 @@ private Options() { * @return a new instance of OrderedMapClear */ @Endpoint(describeByClass = true) - public static OrderedMapClear create(Scope scope, List> dtypes, Options... options) { + public static OrderedMapClear create(Scope scope, List> dtypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("OrderedMapClear", scope.makeOpName("OrderedMapClear")); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] dtypesArray = new DataType[dtypes.size()]; - for (int i = 0; i < dtypesArray.length; ++i) { - dtypesArray[i] = dtypes.get(i); - } - opBuilder.setAttr("dtypes", dtypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtypes", Operands.toDataTypes(dtypes)); if (options != null) { for (Options opts : options) { if (opts.capacity != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapIncompleteSize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapIncompleteSize.java index 865810568db..56d520b02ff 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapIncompleteSize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapIncompleteSize.java @@ -18,16 +18,17 @@ package org.tensorflow.op.core; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; +import org.tensorflow.types.family.TType; /** * Op returns the number of incomplete elements in the underlying container. @@ -90,14 +91,10 @@ private Options() { * @return a new instance of OrderedMapIncompleteSize */ @Endpoint(describeByClass = true) - public static OrderedMapIncompleteSize create(Scope scope, List> dtypes, Options... options) { + public static OrderedMapIncompleteSize create(Scope scope, List> dtypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("OrderedMapIncompleteSize", scope.makeOpName("OrderedMapIncompleteSize")); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] dtypesArray = new DataType[dtypes.size()]; - for (int i = 0; i < dtypesArray.length; ++i) { - dtypesArray[i] = dtypes.get(i); - } - opBuilder.setAttr("dtypes", dtypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtypes", Operands.toDataTypes(dtypes)); if (options != null) { for (Options opts : options) { if (opts.capacity != null) { @@ -147,23 +144,23 @@ public static Options sharedName(String sharedName) { /** */ - public Output size() { - return size; + public Output output() { + return output; } @Override public Output asOutput() { - return size; + return output; } /** The name of this op, as known by TensorFlow core engine */ public static final String OP_NAME = "OrderedMapIncompleteSize"; - private Output size; + private Output output; private OrderedMapIncompleteSize(Operation operation) { super(operation); int outputIdx = 0; - size = operation.output(outputIdx++); + output = operation.output(outputIdx++); } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapPeek.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapPeek.java index 21c6adcc039..893be796c79 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapPeek.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapPeek.java @@ -20,11 +20,11 @@ import java.util.Arrays; import java.util.Iterator; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -100,16 +100,12 @@ private Options() { * @return a new instance of OrderedMapPeek */ @Endpoint(describeByClass = true) - public static OrderedMapPeek create(Scope scope, Operand key, Operand indices, List> dtypes, Options... options) { + public static OrderedMapPeek create(Scope scope, Operand key, Operand indices, List> dtypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("OrderedMapPeek", scope.makeOpName("OrderedMapPeek")); opBuilder.addInput(key.asOutput()); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] dtypesArray = new DataType[dtypes.size()]; - for (int i = 0; i < dtypesArray.length; ++i) { - dtypesArray[i] = dtypes.get(i); - } - opBuilder.setAttr("dtypes", dtypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtypes", Operands.toDataTypes(dtypes)); if (options != null) { for (Options opts : options) { if (opts.capacity != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapSize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapSize.java index afdee7de1bd..3c561660900 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapSize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapSize.java @@ -18,16 +18,17 @@ package org.tensorflow.op.core; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; +import org.tensorflow.types.family.TType; /** * Op returns the number of elements in the underlying container. @@ -90,14 +91,10 @@ private Options() { * @return a new instance of OrderedMapSize */ @Endpoint(describeByClass = true) - public static OrderedMapSize create(Scope scope, List> dtypes, Options... options) { + public static OrderedMapSize create(Scope scope, List> dtypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("OrderedMapSize", scope.makeOpName("OrderedMapSize")); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] dtypesArray = new DataType[dtypes.size()]; - for (int i = 0; i < dtypesArray.length; ++i) { - dtypesArray[i] = dtypes.get(i); - } - opBuilder.setAttr("dtypes", dtypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtypes", Operands.toDataTypes(dtypes)); if (options != null) { for (Options opts : options) { if (opts.capacity != null) { @@ -147,23 +144,23 @@ public static Options sharedName(String sharedName) { /** */ - public Output size() { - return size; + public Output output() { + return output; } @Override public Output asOutput() { - return size; + return output; } /** The name of this op, as known by TensorFlow core engine */ public static final String OP_NAME = "OrderedMapSize"; - private Output size; + private Output output; private OrderedMapSize(Operation operation) { super(operation); int outputIdx = 0; - size = operation.output(outputIdx++); + output = operation.output(outputIdx++); } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapStage.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapStage.java index 7e02973e3c6..a78c20a9623 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapStage.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapStage.java @@ -18,7 +18,6 @@ package org.tensorflow.op.core; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; @@ -29,6 +28,7 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.TInt64; +import org.tensorflow.types.family.TType; /** * Stage (key, values) in the underlying container which behaves like a ordered @@ -99,17 +99,13 @@ private Options() { * @return a new instance of OrderedMapStage */ @Endpoint(describeByClass = true) - public static OrderedMapStage create(Scope scope, Operand key, Operand indices, Iterable> values, List> dtypes, Options... options) { + public static OrderedMapStage create(Scope scope, Operand key, Operand indices, Iterable> values, List> dtypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("OrderedMapStage", scope.makeOpName("OrderedMapStage")); opBuilder.addInput(key.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInputList(Operands.asOutputs(values)); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] dtypesArray = new DataType[dtypes.size()]; - for (int i = 0; i < dtypesArray.length; ++i) { - dtypesArray[i] = dtypes.get(i); - } - opBuilder.setAttr("dtypes", dtypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtypes", Operands.toDataTypes(dtypes)); if (options != null) { for (Options opts : options) { if (opts.capacity != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapUnstage.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapUnstage.java index e2460e42dd8..667f0f198fb 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapUnstage.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapUnstage.java @@ -20,11 +20,11 @@ import java.util.Arrays; import java.util.Iterator; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -99,16 +99,12 @@ private Options() { * @return a new instance of OrderedMapUnstage */ @Endpoint(describeByClass = true) - public static OrderedMapUnstage create(Scope scope, Operand key, Operand indices, List> dtypes, Options... options) { + public static OrderedMapUnstage create(Scope scope, Operand key, Operand indices, List> dtypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("OrderedMapUnstage", scope.makeOpName("OrderedMapUnstage")); opBuilder.addInput(key.asOutput()); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] dtypesArray = new DataType[dtypes.size()]; - for (int i = 0; i < dtypesArray.length; ++i) { - dtypesArray[i] = dtypes.get(i); - } - opBuilder.setAttr("dtypes", dtypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtypes", Operands.toDataTypes(dtypes)); if (options != null) { for (Options opts : options) { if (opts.capacity != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapUnstageNoKey.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapUnstageNoKey.java index f20a23b9806..fb0d239d6a2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapUnstageNoKey.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OrderedMapUnstageNoKey.java @@ -19,17 +19,18 @@ import java.util.Arrays; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.TInt64; +import org.tensorflow.types.family.TType; /** * Op removes and returns the (key, value) element with the smallest @@ -96,15 +97,11 @@ private Options() { * @return a new instance of OrderedMapUnstageNoKey */ @Endpoint(describeByClass = true) - public static OrderedMapUnstageNoKey create(Scope scope, Operand indices, List> dtypes, Options... options) { + public static OrderedMapUnstageNoKey create(Scope scope, Operand indices, List> dtypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("OrderedMapUnstageNoKey", scope.makeOpName("OrderedMapUnstageNoKey")); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] dtypesArray = new DataType[dtypes.size()]; - for (int i = 0; i < dtypesArray.length; ++i) { - dtypesArray[i] = dtypes.get(i); - } - opBuilder.setAttr("dtypes", dtypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtypes", Operands.toDataTypes(dtypes)); if (options != null) { for (Options opts : options) { if (opts.capacity != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Pad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Pad.java index 205e6ab0a62..ed4e3e5e36a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Pad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Pad.java @@ -76,7 +76,7 @@ public static Pad create(Scope scope, Op opBuilder.addInput(input.asOutput()); opBuilder.addInput(paddings.asOutput()); opBuilder.addInput(constantValues.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Pad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ParallelConcat.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ParallelConcat.java index e373612bb68..a0f8c3d7d0b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ParallelConcat.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ParallelConcat.java @@ -66,7 +66,7 @@ public final class ParallelConcat extends RawOp implements Oper public static ParallelConcat create(Scope scope, Iterable> values, Shape shape) { OperationBuilder opBuilder = scope.env().opBuilder("ParallelConcat", scope.makeOpName("ParallelConcat")); opBuilder.addInputList(Operands.asOutputs(values)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("shape", shape); return new ParallelConcat(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ParallelDynamicStitch.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ParallelDynamicStitch.java index 2770fa01591..ddadd14a859 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ParallelDynamicStitch.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ParallelDynamicStitch.java @@ -104,7 +104,7 @@ public static ParallelDynamicStitch create(Scope scope, Ite OperationBuilder opBuilder = scope.env().opBuilder("ParallelDynamicStitch", scope.makeOpName("ParallelDynamicStitch")); opBuilder.addInputList(Operands.asOutputs(indices)); opBuilder.addInputList(Operands.asOutputs(data)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ParallelDynamicStitch(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Placeholder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Placeholder.java index caef9fc0783..a510d2d5cb7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Placeholder.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Placeholder.java @@ -17,12 +17,12 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -70,10 +70,10 @@ private Options() { * @return a new instance of Placeholder */ @Endpoint(describeByClass = true) - public static Placeholder create(Scope scope, DataType dtype, Options... options) { + public static Placeholder create(Scope scope, Class dtype, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("Placeholder", scope.makeOpName("Placeholder")); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); if (options != null) { for (Options opts : options) { if (opts.shape != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/PlaceholderWithDefault.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/PlaceholderWithDefault.java index 59a9ca223ab..afcf8f3b631 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/PlaceholderWithDefault.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/PlaceholderWithDefault.java @@ -48,7 +48,7 @@ public final class PlaceholderWithDefault extends RawOp impleme public static PlaceholderWithDefault create(Scope scope, Operand input, Shape shape) { OperationBuilder opBuilder = scope.env().opBuilder("PlaceholderWithDefault", scope.makeOpName("PlaceholderWithDefault")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("shape", shape); return new PlaceholderWithDefault(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Print.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Print.java index 52b933329a0..e5c1b17d5c2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Print.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Print.java @@ -74,7 +74,7 @@ private Options() { public static Print create(Scope scope, Operand input, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("PrintV2", scope.makeOpName("Print")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.outputStream != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Prod.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Prod.java index 6bf1b7cd37d..bdd361de117 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Prod.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Prod.java @@ -75,7 +75,7 @@ public static Prod create(Scope scope, O OperationBuilder opBuilder = scope.env().opBuilder("Prod", scope.makeOpName("Prod")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(axis.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.keepDims != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/QuantizedReshape.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/QuantizedReshape.java index e644855bbc9..a0d66078672 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/QuantizedReshape.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/QuantizedReshape.java @@ -56,7 +56,7 @@ public static QuantizedReshape create(Sc opBuilder.addInput(shape.asOutput()); opBuilder.addInput(inputMin.asOutput()); opBuilder.addInput(inputMax.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new QuantizedReshape(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Range.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Range.java index 967a490382e..7f30e607c86 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Range.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Range.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Creates a sequence of numbers. @@ -63,7 +62,7 @@ public static Range create(Scope scope, Operand start, opBuilder.addInput(start.asOutput()); opBuilder.addInput(limit.asOutput()); opBuilder.addInput(delta.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Range(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Rank.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Rank.java index 071551d6492..e948bc5d909 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Rank.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Rank.java @@ -57,7 +57,7 @@ public final class Rank extends RawOp implements Operand { public static Rank create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("Rank", scope.makeOpName("Rank")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Rank(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReadVariableOp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReadVariableOp.java index aa2d1d2b9b2..1e73225cc89 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReadVariableOp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReadVariableOp.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -52,11 +52,11 @@ public final class ReadVariableOp extends RawOp implements Oper * @return a new instance of ReadVariableOp */ @Endpoint(describeByClass = true) - public static ReadVariableOp create(Scope scope, Operand resource, DataType dtype) { + public static ReadVariableOp create(Scope scope, Operand resource, Class dtype) { OperationBuilder opBuilder = scope.env().opBuilder("ReadVariableOp", scope.makeOpName("ReadVariableOp")); opBuilder.addInput(resource.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); return new ReadVariableOp(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Recv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Recv.java index db6511c1583..ccae187f1ec 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Recv.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Recv.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -70,10 +70,10 @@ private Options() { * @return a new instance of Recv */ @Endpoint(describeByClass = true) - public static Recv create(Scope scope, DataType tensorType, String tensorName, String sendDevice, Long sendDeviceIncarnation, String recvDevice, Options... options) { + public static Recv create(Scope scope, Class tensorType, String tensorName, String sendDevice, Long sendDeviceIncarnation, String recvDevice, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("Recv", scope.makeOpName("Recv")); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("tensor_type", tensorType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("tensor_type", Operands.toDataType(tensorType)); opBuilder.setAttr("tensor_name", tensorName); opBuilder.setAttr("send_device", sendDevice); opBuilder.setAttr("send_device_incarnation", sendDeviceIncarnation); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceAll.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceAll.java index 9a5ad026ac8..9c731309c44 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceAll.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceAll.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TBool; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the "logical and" of elements across dimensions of a tensor. @@ -74,7 +73,7 @@ public static ReduceAll create(Scope scope, Operand i OperationBuilder opBuilder = scope.env().opBuilder("All", scope.makeOpName("ReduceAll")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(axis.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.keepDims != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceAny.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceAny.java index de479629f97..ce57bd4911b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceAny.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceAny.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TBool; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the "logical or" of elements across dimensions of a tensor. @@ -74,7 +73,7 @@ public static ReduceAny create(Scope scope, Operand i OperationBuilder opBuilder = scope.env().opBuilder("Any", scope.makeOpName("ReduceAny")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(axis.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.keepDims != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceMax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceMax.java index 997481542b8..eadff9f51cc 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceMax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceMax.java @@ -75,7 +75,7 @@ public static ReduceMax create(Scope sco OperationBuilder opBuilder = scope.env().opBuilder("Max", scope.makeOpName("ReduceMax")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(axis.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.keepDims != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceMin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceMin.java index 60d64c3a58c..04dad318bd7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceMin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceMin.java @@ -75,7 +75,7 @@ public static ReduceMin create(Scope sco OperationBuilder opBuilder = scope.env().opBuilder("Min", scope.makeOpName("ReduceMin")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(axis.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.keepDims != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceProd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceProd.java index 7c9872758b1..d58e64e5506 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceProd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceProd.java @@ -75,7 +75,7 @@ public static ReduceProd create(Scope sc OperationBuilder opBuilder = scope.env().opBuilder("Prod", scope.makeOpName("ReduceProd")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(axis.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.keepDims != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceSum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceSum.java index f87e5b22e15..5344feb6790 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceSum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceSum.java @@ -75,7 +75,7 @@ public static ReduceSum create(Scope sco OperationBuilder opBuilder = scope.env().opBuilder("Sum", scope.makeOpName("ReduceSum")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(axis.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.keepDims != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefEnter.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefEnter.java index 8292dcbb379..a31b538e594 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefEnter.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefEnter.java @@ -80,7 +80,7 @@ private Options() { public static RefEnter create(Scope scope, Operand data, String frameName, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RefEnter", scope.makeOpName("RefEnter")); opBuilder.addInput(data.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("frame_name", frameName); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefExit.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefExit.java index d8896a59211..ce2ac9a8264 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefExit.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefExit.java @@ -47,7 +47,7 @@ public final class RefExit extends RawOp implements Operand public static RefExit create(Scope scope, Operand data) { OperationBuilder opBuilder = scope.env().opBuilder("RefExit", scope.makeOpName("RefExit")); opBuilder.addInput(data.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new RefExit(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefIdentity.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefIdentity.java index 9deff66c3a9..12e896fdfb5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefIdentity.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefIdentity.java @@ -45,7 +45,7 @@ public final class RefIdentity extends RawOp implements Operand public static RefIdentity create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("RefIdentity", scope.makeOpName("RefIdentity")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new RefIdentity(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefMerge.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefMerge.java index 990cfaaadb6..c19e662b607 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefMerge.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefMerge.java @@ -53,7 +53,7 @@ public final class RefMerge extends RawOp { public static RefMerge create(Scope scope, Iterable> inputs) { OperationBuilder opBuilder = scope.env().opBuilder("RefMerge", scope.makeOpName("RefMerge")); opBuilder.addInputList(Operands.asOutputs(inputs)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new RefMerge(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefNextIteration.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefNextIteration.java index c151662820e..f3f6e374590 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefNextIteration.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefNextIteration.java @@ -46,7 +46,7 @@ public final class RefNextIteration extends RawOp implements Op public static RefNextIteration create(Scope scope, Operand data) { OperationBuilder opBuilder = scope.env().opBuilder("RefNextIteration", scope.makeOpName("RefNextIteration")); opBuilder.addInput(data.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new RefNextIteration(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefSelect.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefSelect.java index 8be3ae40e9e..e334412a13a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefSelect.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefSelect.java @@ -50,7 +50,7 @@ public static RefSelect create(Scope scope, Operand OperationBuilder opBuilder = scope.env().opBuilder("RefSelect", scope.makeOpName("RefSelect")); opBuilder.addInput(index.asOutput()); opBuilder.addInputList(Operands.asOutputs(inputs)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new RefSelect(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefSwitch.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefSwitch.java index f0128f668fc..08a8f1ee53c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefSwitch.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefSwitch.java @@ -54,7 +54,7 @@ public static RefSwitch create(Scope scope, Operand data OperationBuilder opBuilder = scope.env().opBuilder("RefSwitch", scope.makeOpName("RefSwitch")); opBuilder.addInput(data.asOutput()); opBuilder.addInput(pred.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new RefSwitch(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RemoteFusedGraphExecute.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RemoteFusedGraphExecute.java index bd76549c976..b0dcdfc5398 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RemoteFusedGraphExecute.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RemoteFusedGraphExecute.java @@ -20,7 +20,6 @@ import java.util.Arrays; import java.util.Iterator; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; @@ -57,15 +56,11 @@ public final class RemoteFusedGraphExecute extends RawOp implements Iterable> inputs, List> Toutputs, String serializedRemoteFusedGraphExecuteInfo) { + public static RemoteFusedGraphExecute create(Scope scope, Iterable> inputs, List> Toutputs, String serializedRemoteFusedGraphExecuteInfo) { OperationBuilder opBuilder = scope.env().opBuilder("RemoteFusedGraphExecute", scope.makeOpName("RemoteFusedGraphExecute")); opBuilder.addInputList(Operands.asOutputs(inputs)); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] ToutputsArray = new DataType[Toutputs.size()]; - for (int i = 0; i < ToutputsArray.length; ++i) { - ToutputsArray[i] = Toutputs.get(i); - } - opBuilder.setAttr("Toutputs", ToutputsArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("Toutputs", Operands.toDataTypes(Toutputs)); opBuilder.setAttr("serialized_remote_fused_graph_execute_info", serializedRemoteFusedGraphExecuteInfo); return new RemoteFusedGraphExecute(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Reshape.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Reshape.java index 2829a332b0e..6bf11ac1cb6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Reshape.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Reshape.java @@ -109,7 +109,7 @@ public static Reshape create(Scope scope OperationBuilder opBuilder = scope.env().opBuilder("Reshape", scope.makeOpName("Reshape")); opBuilder.addInput(tensor.asOutput()); opBuilder.addInput(shape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Reshape(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceCountUpTo.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceCountUpTo.java index 19f630dd014..cbfb7ea15d2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceCountUpTo.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceCountUpTo.java @@ -17,17 +17,16 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Increments variable pointed to by 'resource' until it reaches 'limit'. @@ -48,12 +47,12 @@ public final class ResourceCountUpTo extends RawOp implements * @return a new instance of ResourceCountUpTo */ @Endpoint(describeByClass = true) - public static ResourceCountUpTo create(Scope scope, Operand resource, Long limit, DataType T) { + public static ResourceCountUpTo create(Scope scope, Operand resource, Long limit, Class T) { OperationBuilder opBuilder = scope.env().opBuilder("ResourceCountUpTo", scope.makeOpName("ResourceCountUpTo")); opBuilder.addInput(resource.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("limit", limit); - opBuilder.setAttr("T", T); + opBuilder.setAttr("T", Operands.toDataType(T)); return new ResourceCountUpTo(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceGather.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceGather.java index 38aa1fbd407..4830d44d3ba 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceGather.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceGather.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -90,12 +90,12 @@ private Options() { * @return a new instance of ResourceGather */ @Endpoint(describeByClass = true) - public static ResourceGather create(Scope scope, Operand resource, Operand indices, DataType dtype, Options... options) { + public static ResourceGather create(Scope scope, Operand resource, Operand indices, Class dtype, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("ResourceGather", scope.makeOpName("ResourceGather")); opBuilder.addInput(resource.asOutput()); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); if (options != null) { for (Options opts : options) { if (opts.batchDims != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceGatherNd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceGatherNd.java index 85e422179f7..d78b649a997 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceGatherNd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceGatherNd.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -45,12 +45,12 @@ public final class ResourceGatherNd extends RawOp implements Op * @return a new instance of ResourceGatherNd */ @Endpoint(describeByClass = true) - public static ResourceGatherNd create(Scope scope, Operand resource, Operand indices, DataType dtype) { + public static ResourceGatherNd create(Scope scope, Operand resource, Operand indices, Class dtype) { OperationBuilder opBuilder = scope.env().opBuilder("ResourceGatherNd", scope.makeOpName("ResourceGatherNd")); opBuilder.addInput(resource.asOutput()); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); return new ResourceGatherNd(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterAdd.java index 0966dd5fcc4..3192cacae98 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterAdd.java @@ -68,7 +68,7 @@ public static ResourceScatterAdd create(Sco opBuilder.addInput(resource.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ResourceScatterAdd(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterDiv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterDiv.java index 9560bddf284..bd09a85926c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterDiv.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterDiv.java @@ -68,7 +68,7 @@ public static ResourceScatterDiv create(Sco opBuilder.addInput(resource.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ResourceScatterDiv(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterMax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterMax.java index ce952ee19ba..45f49015271 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterMax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterMax.java @@ -68,7 +68,7 @@ public static ResourceScatterMax create(Sco opBuilder.addInput(resource.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ResourceScatterMax(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterMin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterMin.java index 51ec6b7637e..a39cbb50473 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterMin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterMin.java @@ -68,7 +68,7 @@ public static ResourceScatterMin create(Sco opBuilder.addInput(resource.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ResourceScatterMin(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterMul.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterMul.java index 2d5f71e006d..824a32a4365 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterMul.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterMul.java @@ -68,7 +68,7 @@ public static ResourceScatterMul create(Sco opBuilder.addInput(resource.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ResourceScatterMul(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdAdd.java index 11e45c33098..7cbc9c5e95e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdAdd.java @@ -102,7 +102,7 @@ public static ResourceScatterNdAdd create(S opBuilder.addInput(ref.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdMax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdMax.java index 82c1f766308..a2376fdd93e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdMax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdMax.java @@ -71,7 +71,7 @@ public static ResourceScatterNdMax create(S opBuilder.addInput(ref.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdMin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdMin.java index 88e107c65c7..b17a4bad0a8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdMin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdMin.java @@ -71,7 +71,7 @@ public static ResourceScatterNdMin create(S opBuilder.addInput(ref.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdSub.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdSub.java index 267099b7cfc..c8f6072e0ee 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdSub.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdSub.java @@ -102,7 +102,7 @@ public static ResourceScatterNdSub create(S opBuilder.addInput(ref.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdUpdate.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdUpdate.java index 4a1e875bc97..2319e1623a7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdUpdate.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdUpdate.java @@ -104,7 +104,7 @@ public static ResourceScatterNdUpdate creat opBuilder.addInput(ref.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterSub.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterSub.java index 7b772fab997..bed6347bf94 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterSub.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterSub.java @@ -68,7 +68,7 @@ public static ResourceScatterSub create(Sco opBuilder.addInput(resource.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ResourceScatterSub(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterUpdate.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterUpdate.java index 067ddf5f205..117e4657c4a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterUpdate.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterUpdate.java @@ -59,7 +59,7 @@ public static ResourceScatterUpdate create( opBuilder.addInput(resource.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ResourceScatterUpdate(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceStridedSliceAssign.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceStridedSliceAssign.java index 4deb4c55f64..e7e406142db 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceStridedSliceAssign.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceStridedSliceAssign.java @@ -115,7 +115,7 @@ public static ResourceStridedSliceAssign cr opBuilder.addInput(end.asOutput()); opBuilder.addInput(strides.asOutput()); opBuilder.addInput(value.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.beginMask != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Reverse.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Reverse.java index 340336ee9f9..9b87881ee88 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Reverse.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Reverse.java @@ -97,7 +97,7 @@ public static Reverse create(Scope scope OperationBuilder opBuilder = scope.env().opBuilder("ReverseV2", scope.makeOpName("Reverse")); opBuilder.addInput(tensor.asOutput()); opBuilder.addInput(axis.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Reverse(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReverseSequence.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReverseSequence.java index 46fd2b54aa9..7db393ecd50 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReverseSequence.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReverseSequence.java @@ -124,7 +124,7 @@ public static ReverseSequence create(Sco OperationBuilder opBuilder = scope.env().opBuilder("ReverseSequence", scope.makeOpName("ReverseSequence")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(seqLengths.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("seq_dim", seqDim); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Roll.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Roll.java index 761be92e533..f353e8f3053 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Roll.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Roll.java @@ -78,7 +78,7 @@ public static Roll cr opBuilder.addInput(input.asOutput()); opBuilder.addInput(shift.asOutput()); opBuilder.addInput(axis.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Roll(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Rpc.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Rpc.java index ad3195933bc..e11643041c7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Rpc.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Rpc.java @@ -141,7 +141,7 @@ public static Rpc create(Scope scope, Operand address, Operand opBuilder.addInput(address.asOutput()); opBuilder.addInput(method.asOutput()); opBuilder.addInput(request.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.protocol != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterAdd.java index c91e799a643..560aa2f9ef5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterAdd.java @@ -95,7 +95,7 @@ public static ScatterAdd create(Scope sc opBuilder.addInput(ref.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterDiv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterDiv.java index 12a27c67960..68053623830 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterDiv.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterDiv.java @@ -91,7 +91,7 @@ public static ScatterDiv create(Scope sc opBuilder.addInput(ref.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterMax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterMax.java index 20b84f016ea..746a6d30a35 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterMax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterMax.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Reduces sparse updates into a variable reference using the `max` operation. @@ -95,7 +94,7 @@ public static ScatterMax create(Scope opBuilder.addInput(ref.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterMin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterMin.java index 5010da14eaa..4f854496bf3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterMin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterMin.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Reduces sparse updates into a variable reference using the `min` operation. @@ -95,7 +94,7 @@ public static ScatterMin create(Scope opBuilder.addInput(ref.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterMul.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterMul.java index ba0892e1a04..fa4389e6ce9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterMul.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterMul.java @@ -91,7 +91,7 @@ public static ScatterMul create(Scope sc opBuilder.addInput(ref.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNd.java index 86acb2935db..63dd5fa5cef 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNd.java @@ -128,7 +128,7 @@ public static ScatterNd create(Scope sco opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); opBuilder.addInput(shape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ScatterNd(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdAdd.java index 09192e601e9..5de6047092a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdAdd.java @@ -105,7 +105,7 @@ public static ScatterNdAdd create(Scope opBuilder.addInput(ref.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdMax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdMax.java index da94c783cae..8d2868513c5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdMax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdMax.java @@ -74,7 +74,7 @@ public static ScatterNdMax create(Scope opBuilder.addInput(ref.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdMin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdMin.java index 5aea70bc929..003fd99f1a4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdMin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdMin.java @@ -74,7 +74,7 @@ public static ScatterNdMin create(Scope opBuilder.addInput(ref.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdNonAliasingAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdNonAliasingAdd.java index 98ce3cceba4..1e0ee82487a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdNonAliasingAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdNonAliasingAdd.java @@ -87,7 +87,7 @@ public static ScatterNdNonAliasingAdd cr opBuilder.addInput(input.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ScatterNdNonAliasingAdd(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdSub.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdSub.java index 39327cd553d..6c07f70d28a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdSub.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdSub.java @@ -107,7 +107,7 @@ public static ScatterNdSub create(Scope opBuilder.addInput(ref.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdUpdate.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdUpdate.java index 87e5949c07c..89e36796e22 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdUpdate.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdUpdate.java @@ -109,7 +109,7 @@ public static ScatterNdUpdate create(Sco opBuilder.addInput(ref.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterSub.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterSub.java index bad245da96e..2b5d2c9d488 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterSub.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterSub.java @@ -94,7 +94,7 @@ public static ScatterSub create(Scope sc opBuilder.addInput(ref.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterUpdate.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterUpdate.java index 9790e2fc934..ae49b0f626d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterUpdate.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterUpdate.java @@ -98,7 +98,7 @@ public static ScatterUpdate create(Scope opBuilder.addInput(ref.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Select.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Select.java index 0aaa338eb1a..4bea1d6de91 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Select.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Select.java @@ -49,7 +49,7 @@ public static Select create(Scope scope, Operand con opBuilder.addInput(condition.asOutput()); opBuilder.addInput(t.asOutput()); opBuilder.addInput(e.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Select(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Send.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Send.java index d679b85319a..92f4babee07 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Send.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Send.java @@ -69,7 +69,7 @@ private Options() { public static Send create(Scope scope, Operand tensor, String tensorName, String sendDevice, Long sendDeviceIncarnation, String recvDevice, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("Send", scope.makeOpName("Send")); opBuilder.addInput(tensor.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("tensor_name", tensorName); opBuilder.setAttr("send_device", sendDevice); opBuilder.setAttr("send_device_incarnation", sendDeviceIncarnation); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SetDiff1d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SetDiff1d.java index c7e458931e5..515f413fca9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SetDiff1d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SetDiff1d.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -69,12 +69,12 @@ public final class SetDiff1d extends RawOp { * @return a new instance of SetDiff1d */ @Endpoint(describeByClass = true) - public static SetDiff1d create(Scope scope, Operand x, Operand y, DataType outIdx) { + public static SetDiff1d create(Scope scope, Operand x, Operand y, Class outIdx) { OperationBuilder opBuilder = scope.env().opBuilder("ListDiff", scope.makeOpName("SetDiff1d")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_idx", outIdx); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_idx", Operands.toDataType(outIdx)); return new SetDiff1d(opBuilder.build()); } @@ -88,7 +88,7 @@ public static SetDiff1d create(Scope */ @Endpoint(describeByClass = true) public static SetDiff1d create(Scope scope, Operand x, Operand y) { - return create(scope, x, y, TInt32.DTYPE); + return create(scope, x, y, TInt32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SetSize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SetSize.java index 2fcdf728542..921306f689d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SetSize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SetSize.java @@ -77,7 +77,7 @@ public static SetSize create(Scope scope, Operand setI opBuilder.addInput(setIndices.asOutput()); opBuilder.addInput(setValues.asOutput()); opBuilder.addInput(setShape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.validateIndices != null) { @@ -100,23 +100,23 @@ public static Options validateIndices(Boolean validateIndices) { * `n-1` dimensions as `set`. Each value is the number of unique elements in * the corresponding `[0...n-1]` dimension of `set`. */ - public Output size() { - return size; + public Output output() { + return output; } @Override public Output asOutput() { - return size; + return output; } /** The name of this op, as known by TensorFlow core engine */ public static final String OP_NAME = "SetSize"; - private Output size; + private Output output; private SetSize(Operation operation) { super(operation); int outputIdx = 0; - size = operation.output(outputIdx++); + output = operation.output(outputIdx++); } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Shape.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Shape.java index 5d613401fc5..a2d8a43a496 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Shape.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Shape.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -56,11 +56,11 @@ public final class Shape extends RawOp implements Operand * @return a new instance of Shape */ @Endpoint(describeByClass = true) - public static Shape create(Scope scope, Operand input, DataType outType) { + public static Shape create(Scope scope, Operand input, Class outType) { OperationBuilder opBuilder = scope.env().opBuilder("Shape", scope.makeOpName("Shape")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); return new Shape(opBuilder.build()); } @@ -73,7 +73,7 @@ public static Shape create(Scope scope, */ @Endpoint(describeByClass = true) public static Shape create(Scope scope, Operand input) { - return create(scope, input, TInt32.DTYPE); + return create(scope, input, TInt32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ShapeN.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ShapeN.java index 42340a8a83d..b196e321962 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ShapeN.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ShapeN.java @@ -20,7 +20,6 @@ import java.util.Arrays; import java.util.Iterator; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; @@ -53,11 +52,11 @@ public final class ShapeN extends RawOp implements Iterable ShapeN create(Scope scope, Iterable> input, DataType outType) { + public static ShapeN create(Scope scope, Iterable> input, Class outType) { OperationBuilder opBuilder = scope.env().opBuilder("ShapeN", scope.makeOpName("ShapeN")); opBuilder.addInputList(Operands.asOutputs(input)); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); return new ShapeN(opBuilder.build()); } @@ -70,7 +69,7 @@ public static ShapeN create(Scope scope, */ @Endpoint(describeByClass = true) public static ShapeN create(Scope scope, Iterable> input) { - return create(scope, input, TInt32.DTYPE); + return create(scope, input, TInt32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Size.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Size.java index 4aaccae0f30..127608e1fac 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Size.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Size.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -57,11 +57,11 @@ public final class Size extends RawOp implements Operand { * @return a new instance of Size */ @Endpoint(describeByClass = true) - public static Size create(Scope scope, Operand input, DataType outType) { + public static Size create(Scope scope, Operand input, Class outType) { OperationBuilder opBuilder = scope.env().opBuilder("Size", scope.makeOpName("Size")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); return new Size(opBuilder.build()); } @@ -74,7 +74,7 @@ public static Size create(Scope scope, O */ @Endpoint(describeByClass = true) public static Size create(Scope scope, Operand input) { - return create(scope, input, TInt32.DTYPE); + return create(scope, input, TInt32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Skipgram.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Skipgram.java index 9c63d317f98..d55a47e4c48 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Skipgram.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Skipgram.java @@ -85,7 +85,7 @@ private Options() { @Endpoint(describeByClass = true) public static Skipgram create(Scope scope, String filename, Long batchSize, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("Skipgram", scope.makeOpName("Skipgram")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("filename", filename); opBuilder.setAttr("batch_size", batchSize); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Slice.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Slice.java index 31edde00b81..22447d96bcd 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Slice.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Slice.java @@ -62,7 +62,7 @@ public static Slice create(Scope scope, opBuilder.addInput(input.asOutput()); opBuilder.addInput(begin.asOutput()); opBuilder.addInput(size.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Slice(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Snapshot.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Snapshot.java index 7209bccaaee..eb782cf90d8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Snapshot.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Snapshot.java @@ -46,7 +46,7 @@ public final class Snapshot extends RawOp implements Operand public static Snapshot create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("Snapshot", scope.makeOpName("Snapshot")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Snapshot(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SpaceToBatchNd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SpaceToBatchNd.java index 150e18256e5..2f01a06e6c6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SpaceToBatchNd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SpaceToBatchNd.java @@ -152,7 +152,7 @@ public static SpaceToBat opBuilder.addInput(input.asOutput()); opBuilder.addInput(blockShape.asOutput()); opBuilder.addInput(paddings.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SpaceToBatchNd(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Split.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Split.java index fffd73f8ef5..d56a31b93e4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Split.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Split.java @@ -55,7 +55,7 @@ public static Split create(Scope scope, Operand axi OperationBuilder opBuilder = scope.env().opBuilder("Split", scope.makeOpName("Split")); opBuilder.addInput(axis.asOutput()); opBuilder.addInput(value.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_split", numSplit); return new Split(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SplitV.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SplitV.java index 02b740c4d03..9b0bfac7e6a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SplitV.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SplitV.java @@ -59,7 +59,7 @@ public static SplitV create(Scope scope, opBuilder.addInput(value.asOutput()); opBuilder.addInput(sizeSplits.asOutput()); opBuilder.addInput(axis.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_split", numSplit); return new SplitV(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Squeeze.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Squeeze.java index 3f962adc789..bce8dad363e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Squeeze.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Squeeze.java @@ -86,7 +86,7 @@ private Options() { public static Squeeze create(Scope scope, Operand input, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("Squeeze", scope.makeOpName("Squeeze")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.axis != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Stack.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Stack.java index f70f50b0d2b..3586ca71251 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Stack.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Stack.java @@ -86,7 +86,7 @@ private Options() { public static Stack create(Scope scope, Iterable> values, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("Pack", scope.makeOpName("Stack")); opBuilder.addInputList(Operands.asOutputs(values)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.axis != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Stage.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Stage.java index 526462b02f4..3925ec6313b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Stage.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Stage.java @@ -97,7 +97,7 @@ private Options() { public static Stage create(Scope scope, Iterable> values, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("Stage", scope.makeOpName("Stage")); opBuilder.addInputList(Operands.asOutputs(values)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.capacity != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StageClear.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StageClear.java index 60e51559f74..7be90432f6b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StageClear.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StageClear.java @@ -18,13 +18,14 @@ package org.tensorflow.op.core; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; +import org.tensorflow.types.family.TType; /** * Op removes all elements in the underlying container. @@ -87,14 +88,10 @@ private Options() { * @return a new instance of StageClear */ @Endpoint(describeByClass = true) - public static StageClear create(Scope scope, List> dtypes, Options... options) { + public static StageClear create(Scope scope, List> dtypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("StageClear", scope.makeOpName("StageClear")); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] dtypesArray = new DataType[dtypes.size()]; - for (int i = 0; i < dtypesArray.length; ++i) { - dtypesArray[i] = dtypes.get(i); - } - opBuilder.setAttr("dtypes", dtypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtypes", Operands.toDataTypes(dtypes)); if (options != null) { for (Options opts : options) { if (opts.capacity != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StagePeek.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StagePeek.java index 2126de722df..eb6e6dde91c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StagePeek.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StagePeek.java @@ -20,11 +20,11 @@ import java.util.Arrays; import java.util.Iterator; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -98,15 +98,11 @@ private Options() { * @return a new instance of StagePeek */ @Endpoint(describeByClass = true) - public static StagePeek create(Scope scope, Operand index, List> dtypes, Options... options) { + public static StagePeek create(Scope scope, Operand index, List> dtypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("StagePeek", scope.makeOpName("StagePeek")); opBuilder.addInput(index.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] dtypesArray = new DataType[dtypes.size()]; - for (int i = 0; i < dtypesArray.length; ++i) { - dtypesArray[i] = dtypes.get(i); - } - opBuilder.setAttr("dtypes", dtypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtypes", Operands.toDataTypes(dtypes)); if (options != null) { for (Options opts : options) { if (opts.capacity != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StageSize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StageSize.java index 94ef566e708..c70660c2071 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StageSize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StageSize.java @@ -18,16 +18,17 @@ package org.tensorflow.op.core; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; +import org.tensorflow.types.family.TType; /** * Op returns the number of elements in the underlying container. @@ -90,14 +91,10 @@ private Options() { * @return a new instance of StageSize */ @Endpoint(describeByClass = true) - public static StageSize create(Scope scope, List> dtypes, Options... options) { + public static StageSize create(Scope scope, List> dtypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("StageSize", scope.makeOpName("StageSize")); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] dtypesArray = new DataType[dtypes.size()]; - for (int i = 0; i < dtypesArray.length; ++i) { - dtypesArray[i] = dtypes.get(i); - } - opBuilder.setAttr("dtypes", dtypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtypes", Operands.toDataTypes(dtypes)); if (options != null) { for (Options opts : options) { if (opts.capacity != null) { @@ -147,23 +144,23 @@ public static Options sharedName(String sharedName) { /** */ - public Output size() { - return size; + public Output output() { + return output; } @Override public Output asOutput() { - return size; + return output; } /** The name of this op, as known by TensorFlow core engine */ public static final String OP_NAME = "StageSize"; - private Output size; + private Output output; private StageSize(Operation operation) { super(operation); int outputIdx = 0; - size = operation.output(outputIdx++); + output = operation.output(outputIdx++); } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StopGradient.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StopGradient.java index b3c7d144ca5..e4e8ac9bd46 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StopGradient.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StopGradient.java @@ -71,7 +71,7 @@ public final class StopGradient extends RawOp implements Operan public static StopGradient create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("StopGradient", scope.makeOpName("StopGradient")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new StopGradient(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StridedSlice.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StridedSlice.java index 8067f96728d..2e1cc56828b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StridedSlice.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StridedSlice.java @@ -220,7 +220,7 @@ public static StridedSlice create(Scope opBuilder.addInput(begin.asOutput()); opBuilder.addInput(end.asOutput()); opBuilder.addInput(strides.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.beginMask != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StridedSliceAssign.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StridedSliceAssign.java index b6836c65fca..f3662beb353 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StridedSliceAssign.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StridedSliceAssign.java @@ -118,7 +118,7 @@ public static StridedSliceAssign create( opBuilder.addInput(end.asOutput()); opBuilder.addInput(strides.asOutput()); opBuilder.addInput(value.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.beginMask != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StridedSliceGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StridedSliceGrad.java index 241d6d567e9..d9559f48eb1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StridedSliceGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StridedSliceGrad.java @@ -120,7 +120,7 @@ public static StridedSliceGrad create(Sc opBuilder.addInput(end.asOutput()); opBuilder.addInput(strides.asOutput()); opBuilder.addInput(dy.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.beginMask != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Sum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Sum.java index c153cdf4760..0d8e4741bdd 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Sum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Sum.java @@ -75,7 +75,7 @@ public static Sum create(Scope scope, Op OperationBuilder opBuilder = scope.env().opBuilder("Sum", scope.makeOpName("Sum")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(axis.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.keepDims != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SwitchCond.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SwitchCond.java index 191eb6292d2..5662f5b9509 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SwitchCond.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SwitchCond.java @@ -54,7 +54,7 @@ public static SwitchCond create(Scope scope, Operand dat OperationBuilder opBuilder = scope.env().opBuilder("Switch", scope.makeOpName("SwitchCond")); opBuilder.addInput(data.asOutput()); opBuilder.addInput(pred.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SwitchCond(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TemporaryVariable.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TemporaryVariable.java index 43d9247fe21..15f54863824 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TemporaryVariable.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TemporaryVariable.java @@ -17,12 +17,12 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -82,11 +82,11 @@ private Options() { * @return a new instance of TemporaryVariable */ @Endpoint(describeByClass = true) - public static TemporaryVariable create(Scope scope, Shape shape, DataType dtype, Options... options) { + public static TemporaryVariable create(Scope scope, Shape shape, Class dtype, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("TemporaryVariable", scope.makeOpName("TemporaryVariable")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("shape", shape); - opBuilder.setAttr("dtype", dtype); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); if (options != null) { for (Options opts : options) { if (opts.varName != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArray.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArray.java index f34dc414484..c162f3110f6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArray.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArray.java @@ -17,12 +17,12 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -116,11 +116,11 @@ private Options() { * @return a new instance of TensorArray */ @Endpoint(describeByClass = true) - public static TensorArray create(Scope scope, Operand size, DataType dtype, Options... options) { + public static TensorArray create(Scope scope, Operand size, Class dtype, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("TensorArrayV3", scope.makeOpName("TensorArray")); opBuilder.addInput(size.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); if (options != null) { for (Options opts : options) { if (opts.elementShape != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayClose.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayClose.java index 62180e8e5ff..7a195cd579e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayClose.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayClose.java @@ -45,7 +45,7 @@ public final class TensorArrayClose extends RawOp { public static TensorArrayClose create(Scope scope, Operand handle) { OperationBuilder opBuilder = scope.env().opBuilder("TensorArrayCloseV3", scope.makeOpName("TensorArrayClose")); opBuilder.addInput(handle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TensorArrayClose(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayConcat.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayConcat.java index e25b7a2f958..a861b19400e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayConcat.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayConcat.java @@ -17,12 +17,12 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -83,12 +83,12 @@ private Options() { * @return a new instance of TensorArrayConcat */ @Endpoint(describeByClass = true) - public static TensorArrayConcat create(Scope scope, Operand handle, Operand flowIn, DataType dtype, Options... options) { + public static TensorArrayConcat create(Scope scope, Operand handle, Operand flowIn, Class dtype, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("TensorArrayConcatV3", scope.makeOpName("TensorArrayConcat")); opBuilder.addInput(handle.asOutput()); opBuilder.addInput(flowIn.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); if (options != null) { for (Options opts : options) { if (opts.elementShapeExcept0 != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayGather.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayGather.java index 13c6dce3122..8f4bcea319e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayGather.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayGather.java @@ -17,12 +17,12 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -74,13 +74,13 @@ private Options() { * @return a new instance of TensorArrayGather */ @Endpoint(describeByClass = true) - public static TensorArrayGather create(Scope scope, Operand handle, Operand indices, Operand flowIn, DataType dtype, Options... options) { + public static TensorArrayGather create(Scope scope, Operand handle, Operand indices, Operand flowIn, Class dtype, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("TensorArrayGatherV3", scope.makeOpName("TensorArrayGather")); opBuilder.addInput(handle.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(flowIn.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); if (options != null) { for (Options opts : options) { if (opts.elementShape != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayGrad.java index dca362c6934..2c9c73e8b90 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayGrad.java @@ -85,7 +85,7 @@ public static TensorArrayGrad create(Scope scope, Operand handle, Operand handle, Op opBuilder.addInput(handle.asOutput()); opBuilder.addInput(flowIn.asOutput()); opBuilder.addInput(shapeToPrepend.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("source", source); return new TensorArrayGradWithShape(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayPack.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayPack.java index 4b4be4ac089..aa45df4b937 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayPack.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayPack.java @@ -17,12 +17,12 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -67,12 +67,12 @@ private Options() { * @return a new instance of TensorArrayPack */ @Endpoint(describeByClass = true) - public static TensorArrayPack create(Scope scope, Operand handle, Operand flowIn, DataType dtype, Options... options) { + public static TensorArrayPack create(Scope scope, Operand handle, Operand flowIn, Class dtype, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("TensorArrayPack", scope.makeOpName("TensorArrayPack")); opBuilder.addInput(handle.asOutput()); opBuilder.addInput(flowIn.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); if (options != null) { for (Options opts : options) { if (opts.elementShape != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayRead.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayRead.java index 55cf48bb020..c076510e393 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayRead.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayRead.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -49,13 +49,13 @@ public final class TensorArrayRead extends RawOp implements Ope * @return a new instance of TensorArrayRead */ @Endpoint(describeByClass = true) - public static TensorArrayRead create(Scope scope, Operand handle, Operand index, Operand flowIn, DataType dtype) { + public static TensorArrayRead create(Scope scope, Operand handle, Operand index, Operand flowIn, Class dtype) { OperationBuilder opBuilder = scope.env().opBuilder("TensorArrayReadV3", scope.makeOpName("TensorArrayRead")); opBuilder.addInput(handle.asOutput()); opBuilder.addInput(index.asOutput()); opBuilder.addInput(flowIn.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); return new TensorArrayRead(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayScatter.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayScatter.java index 7b3eb238026..3bf5d2c0912 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayScatter.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayScatter.java @@ -54,7 +54,7 @@ public static TensorArrayScatter create(Scope scope, Operand handle, Operand size() { - return size; + public Output output() { + return output; } @Override public Output asOutput() { - return size; + return output; } /** The name of this op, as known by TensorFlow core engine */ public static final String OP_NAME = "TensorArraySizeV3"; - private Output size; + private Output output; private TensorArraySize(Operation operation) { super(operation); int outputIdx = 0; - size = operation.output(outputIdx++); + output = operation.output(outputIdx++); } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArraySplit.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArraySplit.java index d6aedc34a4a..220c1bd5e09 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArraySplit.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArraySplit.java @@ -75,7 +75,7 @@ public static TensorArraySplit create(Scope scope, Operand opBuilder.addInput(value.asOutput()); opBuilder.addInput(lengths.asOutput()); opBuilder.addInput(flowIn.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TensorArraySplit(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayUnpack.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayUnpack.java index 9d2d92c4b85..b1beed2573d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayUnpack.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayUnpack.java @@ -49,7 +49,7 @@ public static TensorArrayUnpack create(Scope scope, Operand TensorArrayWrite create(Scope scope, Operand opBuilder.addInput(index.asOutput()); opBuilder.addInput(value.asOutput()); opBuilder.addInput(flowIn.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TensorArrayWrite(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestCreateTreeVariable.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestCreateTreeVariable.java index 5ca6ffa1cd0..e494af78e5b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestCreateTreeVariable.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestCreateTreeVariable.java @@ -44,7 +44,7 @@ public static TensorForestCreateTreeVariable create(Scope scope, Operand tree OperationBuilder opBuilder = scope.env().opBuilder("TensorForestCreateTreeVariable", scope.makeOpName("TensorForestCreateTreeVariable")); opBuilder.addInput(treeHandle.asOutput()); opBuilder.addInput(treeConfig.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TensorForestCreateTreeVariable(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeDeserialize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeDeserialize.java index a5e1638035e..74794de4ecb 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeDeserialize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeDeserialize.java @@ -44,7 +44,7 @@ public static TensorForestTreeDeserialize create(Scope scope, Operand treeHan OperationBuilder opBuilder = scope.env().opBuilder("TensorForestTreeDeserialize", scope.makeOpName("TensorForestTreeDeserialize")); opBuilder.addInput(treeHandle.asOutput()); opBuilder.addInput(treeConfig.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TensorForestTreeDeserialize(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeIsInitializedOp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeIsInitializedOp.java index 4dfe64cdf19..55cd0bc8cf1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeIsInitializedOp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeIsInitializedOp.java @@ -43,7 +43,7 @@ public final class TensorForestTreeIsInitializedOp extends RawOp implements Oper public static TensorForestTreeIsInitializedOp create(Scope scope, Operand treeHandle) { OperationBuilder opBuilder = scope.env().opBuilder("TensorForestTreeIsInitializedOp", scope.makeOpName("TensorForestTreeIsInitializedOp")); opBuilder.addInput(treeHandle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TensorForestTreeIsInitializedOp(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreePredict.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreePredict.java index 3962212c5b7..2f0988d0e88 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreePredict.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreePredict.java @@ -46,7 +46,7 @@ public static TensorForestTreePredict create(Scope scope, Operand treeHandle, OperationBuilder opBuilder = scope.env().opBuilder("TensorForestTreePredict", scope.makeOpName("TensorForestTreePredict")); opBuilder.addInput(treeHandle.asOutput()); opBuilder.addInput(denseFeatures.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("logits_dimension", logitsDimension); return new TensorForestTreePredict(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeResourceHandleOp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeResourceHandleOp.java index c72860e1ea7..dd6d50ccaf7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeResourceHandleOp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeResourceHandleOp.java @@ -70,7 +70,7 @@ private Options() { @Endpoint(describeByClass = true) public static TensorForestTreeResourceHandleOp create(Scope scope, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("TensorForestTreeResourceHandleOp", scope.makeOpName("TensorForestTreeResourceHandleOp")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.container != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeSerialize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeSerialize.java index d46e23a08ab..3ac7ead2a7d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeSerialize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeSerialize.java @@ -43,7 +43,7 @@ public final class TensorForestTreeSerialize extends RawOp implements Operand treeHandle) { OperationBuilder opBuilder = scope.env().opBuilder("TensorForestTreeSerialize", scope.makeOpName("TensorForestTreeSerialize")); opBuilder.addInput(treeHandle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TensorForestTreeSerialize(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeSize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeSize.java index 17cf008d470..d0de55fd4c8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeSize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorForestTreeSize.java @@ -43,7 +43,7 @@ public final class TensorForestTreeSize extends RawOp implements Operand public static TensorForestTreeSize create(Scope scope, Operand treeHandle) { OperationBuilder opBuilder = scope.env().opBuilder("TensorForestTreeSize", scope.makeOpName("TensorForestTreeSize")); opBuilder.addInput(treeHandle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TensorForestTreeSize(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListConcat.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListConcat.java index 2f1771797e0..685c9c1d900 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListConcat.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListConcat.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -62,13 +62,13 @@ public final class TensorListConcat extends RawOp { * @return a new instance of TensorListConcat */ @Endpoint(describeByClass = true) - public static TensorListConcat create(Scope scope, Operand inputHandle, Operand elementShape, Operand leadingDims, DataType elementDtype) { + public static TensorListConcat create(Scope scope, Operand inputHandle, Operand elementShape, Operand leadingDims, Class elementDtype) { OperationBuilder opBuilder = scope.env().opBuilder("TensorListConcatV2", scope.makeOpName("TensorListConcat")); opBuilder.addInput(inputHandle.asOutput()); opBuilder.addInput(elementShape.asOutput()); opBuilder.addInput(leadingDims.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("element_dtype", elementDtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("element_dtype", Operands.toDataType(elementDtype)); return new TensorListConcat(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListConcatLists.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListConcatLists.java index fdca8e2d6cd..25b2e06df84 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListConcatLists.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListConcatLists.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -43,12 +43,12 @@ public final class TensorListConcatLists extends RawOp implements Operand * @return a new instance of TensorListConcatLists */ @Endpoint(describeByClass = true) - public static TensorListConcatLists create(Scope scope, Operand inputA, Operand inputB, DataType elementDtype) { + public static TensorListConcatLists create(Scope scope, Operand inputA, Operand inputB, Class elementDtype) { OperationBuilder opBuilder = scope.env().opBuilder("TensorListConcatLists", scope.makeOpName("TensorListConcatLists")); opBuilder.addInput(inputA.asOutput()); opBuilder.addInput(inputB.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("element_dtype", elementDtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("element_dtype", Operands.toDataType(elementDtype)); return new TensorListConcatLists(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListElementShape.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListElementShape.java index 2c3e3a5b90c..a985213de4e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListElementShape.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListElementShape.java @@ -17,17 +17,16 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * The shape of the elements of the given list, as a tensor. @@ -49,11 +48,11 @@ public final class TensorListElementShape extends RawOp imple * @return a new instance of TensorListElementShape */ @Endpoint(describeByClass = true) - public static TensorListElementShape create(Scope scope, Operand inputHandle, DataType shapeType) { + public static TensorListElementShape create(Scope scope, Operand inputHandle, Class shapeType) { OperationBuilder opBuilder = scope.env().opBuilder("TensorListElementShape", scope.makeOpName("TensorListElementShape")); opBuilder.addInput(inputHandle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("shape_type", shapeType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("shape_type", Operands.toDataType(shapeType)); return new TensorListElementShape(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListFromTensor.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListFromTensor.java index 97a45046767..fe8bc83b4b0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListFromTensor.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListFromTensor.java @@ -52,7 +52,7 @@ public static TensorListFromTensor create(S OperationBuilder opBuilder = scope.env().opBuilder("TensorListFromTensor", scope.makeOpName("TensorListFromTensor")); opBuilder.addInput(tensor.asOutput()); opBuilder.addInput(elementShape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TensorListFromTensor(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListGather.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListGather.java index dbb565a29a6..90cacdd0435 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListGather.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListGather.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -55,13 +55,13 @@ public final class TensorListGather extends RawOp implements Op * @return a new instance of TensorListGather */ @Endpoint(describeByClass = true) - public static TensorListGather create(Scope scope, Operand inputHandle, Operand indices, Operand elementShape, DataType elementDtype) { + public static TensorListGather create(Scope scope, Operand inputHandle, Operand indices, Operand elementShape, Class elementDtype) { OperationBuilder opBuilder = scope.env().opBuilder("TensorListGather", scope.makeOpName("TensorListGather")); opBuilder.addInput(inputHandle.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(elementShape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("element_dtype", elementDtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("element_dtype", Operands.toDataType(elementDtype)); return new TensorListGather(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListGetItem.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListGetItem.java index 9af925e1425..7f96f897242 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListGetItem.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListGetItem.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -46,13 +46,13 @@ public final class TensorListGetItem extends RawOp implements O * @return a new instance of TensorListGetItem */ @Endpoint(describeByClass = true) - public static TensorListGetItem create(Scope scope, Operand inputHandle, Operand index, Operand elementShape, DataType elementDtype) { + public static TensorListGetItem create(Scope scope, Operand inputHandle, Operand index, Operand elementShape, Class elementDtype) { OperationBuilder opBuilder = scope.env().opBuilder("TensorListGetItem", scope.makeOpName("TensorListGetItem")); opBuilder.addInput(inputHandle.asOutput()); opBuilder.addInput(index.asOutput()); opBuilder.addInput(elementShape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("element_dtype", elementDtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("element_dtype", Operands.toDataType(elementDtype)); return new TensorListGetItem(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListLength.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListLength.java index d2dc93a6e06..b583a498ea5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListLength.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListLength.java @@ -47,7 +47,7 @@ public final class TensorListLength extends RawOp implements Operand { public static TensorListLength create(Scope scope, Operand inputHandle) { OperationBuilder opBuilder = scope.env().opBuilder("TensorListLength", scope.makeOpName("TensorListLength")); opBuilder.addInput(inputHandle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TensorListLength(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListPopBack.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListPopBack.java index 96fd3433e07..5600bf69778 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListPopBack.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListPopBack.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -54,12 +54,12 @@ public final class TensorListPopBack extends RawOp { * @return a new instance of TensorListPopBack */ @Endpoint(describeByClass = true) - public static TensorListPopBack create(Scope scope, Operand inputHandle, Operand elementShape, DataType elementDtype) { + public static TensorListPopBack create(Scope scope, Operand inputHandle, Operand elementShape, Class elementDtype) { OperationBuilder opBuilder = scope.env().opBuilder("TensorListPopBack", scope.makeOpName("TensorListPopBack")); opBuilder.addInput(inputHandle.asOutput()); opBuilder.addInput(elementShape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("element_dtype", elementDtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("element_dtype", Operands.toDataType(elementDtype)); return new TensorListPopBack(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListPushBack.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListPushBack.java index 3bde4981422..507c17654f3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListPushBack.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListPushBack.java @@ -52,7 +52,7 @@ public static TensorListPushBack create(Scope scope, Operand TensorListPushBackBatch create(Scope scope, Oper OperationBuilder opBuilder = scope.env().opBuilder("TensorListPushBackBatch", scope.makeOpName("TensorListPushBackBatch")); opBuilder.addInput(inputHandles.asOutput()); opBuilder.addInput(tensor.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TensorListPushBackBatch(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListReserve.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListReserve.java index 3f798e0f998..71e4c2b2f06 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListReserve.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListReserve.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -51,12 +51,12 @@ public final class TensorListReserve extends RawOp implements Operand { * @return a new instance of TensorListReserve */ @Endpoint(describeByClass = true) - public static TensorListReserve create(Scope scope, Operand elementShape, Operand numElements, DataType elementDtype) { + public static TensorListReserve create(Scope scope, Operand elementShape, Operand numElements, Class elementDtype) { OperationBuilder opBuilder = scope.env().opBuilder("TensorListReserve", scope.makeOpName("TensorListReserve")); opBuilder.addInput(elementShape.asOutput()); opBuilder.addInput(numElements.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("element_dtype", elementDtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("element_dtype", Operands.toDataType(elementDtype)); return new TensorListReserve(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListResize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListResize.java index 4b70c31f277..e9fc0516c16 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListResize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListResize.java @@ -52,7 +52,7 @@ public static TensorListResize create(Scope scope, Operand inputHandle, Opera OperationBuilder opBuilder = scope.env().opBuilder("TensorListResize", scope.makeOpName("TensorListResize")); opBuilder.addInput(inputHandle.asOutput()); opBuilder.addInput(size.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TensorListResize(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListScatter.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListScatter.java index 700e3e715a7..3c8bf8c84b3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListScatter.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListScatter.java @@ -64,7 +64,7 @@ public static TensorListScatter create(Scop opBuilder.addInput(indices.asOutput()); opBuilder.addInput(elementShape.asOutput()); opBuilder.addInput(numElements.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TensorListScatter(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListScatterIntoExistingList.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListScatterIntoExistingList.java index 4b91b1bc0b3..6ddd715fd0b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListScatterIntoExistingList.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListScatterIntoExistingList.java @@ -57,7 +57,7 @@ public static TensorListScatterIntoExistingList create(Scope s opBuilder.addInput(inputHandle.asOutput()); opBuilder.addInput(tensor.asOutput()); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TensorListScatterIntoExistingList(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListSetItem.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListSetItem.java index 358397a927e..777feebff93 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListSetItem.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListSetItem.java @@ -48,7 +48,7 @@ public static TensorListSetItem create(Scope scope, Operand opBuilder.addInput(inputHandle.asOutput()); opBuilder.addInput(index.asOutput()); opBuilder.addInput(item.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TensorListSetItem(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListSplit.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListSplit.java index e93635d7713..5fffd258452 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListSplit.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListSplit.java @@ -58,7 +58,7 @@ public static TensorListSplit create(Scope opBuilder.addInput(tensor.asOutput()); opBuilder.addInput(elementShape.asOutput()); opBuilder.addInput(lengths.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TensorListSplit(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListStack.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListStack.java index c0ecf388b3d..20284f1e76e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListStack.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListStack.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -74,12 +74,12 @@ private Options() { * @return a new instance of TensorListStack */ @Endpoint(describeByClass = true) - public static TensorListStack create(Scope scope, Operand inputHandle, Operand elementShape, DataType elementDtype, Options... options) { + public static TensorListStack create(Scope scope, Operand inputHandle, Operand elementShape, Class elementDtype, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("TensorListStack", scope.makeOpName("TensorListStack")); opBuilder.addInput(inputHandle.asOutput()); opBuilder.addInput(elementShape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("element_dtype", elementDtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("element_dtype", Operands.toDataType(elementDtype)); if (options != null) { for (Options opts : options) { if (opts.numElements != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterMax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterMax.java index 1a3042926f6..48c1d75a63f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterMax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterMax.java @@ -49,7 +49,7 @@ public static TensorScatterMax create(Sc opBuilder.addInput(tensor.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TensorScatterMax(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterMin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterMin.java index 5f7b0d0eb77..ddbe03e7c6e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterMin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterMin.java @@ -49,7 +49,7 @@ public static TensorScatterMin create(Sc opBuilder.addInput(tensor.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TensorScatterMin(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdAdd.java index b5d32055bd9..9a3a1a174a8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdAdd.java @@ -111,7 +111,7 @@ public static TensorScatterNdAdd create( opBuilder.addInput(tensor.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TensorScatterNdAdd(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdMax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdMax.java index a14b20195af..b8d9834f08f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdMax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdMax.java @@ -49,7 +49,7 @@ public static TensorScatterNdMax create( opBuilder.addInput(tensor.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TensorScatterNdMax(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdMin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdMin.java index b202b72eebd..e4e652e099f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdMin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdMin.java @@ -49,7 +49,7 @@ public static TensorScatterNdMin create( opBuilder.addInput(tensor.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TensorScatterNdMin(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdSub.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdSub.java index 14737a1fd95..631e3d1ba08 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdSub.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdSub.java @@ -110,7 +110,7 @@ public static TensorScatterNdSub create( opBuilder.addInput(tensor.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TensorScatterNdSub(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdUpdate.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdUpdate.java index 7dff39f733f..e7f610d4b38 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdUpdate.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdUpdate.java @@ -125,7 +125,7 @@ public static TensorScatterNdUpdate crea opBuilder.addInput(tensor.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TensorScatterNdUpdate(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorStridedSliceUpdate.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorStridedSliceUpdate.java index c8c5e36e3c6..d7ad46b5362 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorStridedSliceUpdate.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorStridedSliceUpdate.java @@ -118,7 +118,7 @@ public static TensorStridedSliceUpdate c opBuilder.addInput(end.asOutput()); opBuilder.addInput(strides.asOutput()); opBuilder.addInput(value.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.beginMask != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Tile.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Tile.java index d28588cada5..a64f0847416 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Tile.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Tile.java @@ -76,7 +76,7 @@ public static Tile create(Scope scope, O OperationBuilder opBuilder = scope.env().opBuilder("Tile", scope.makeOpName("Tile")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(multiples.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Tile(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Timestamp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Timestamp.java index cbbf650a32f..30a7d13d4a5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Timestamp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Timestamp.java @@ -47,7 +47,7 @@ public final class Timestamp extends RawOp implements Operand { @Endpoint(describeByClass = true) public static Timestamp create(Scope scope) { OperationBuilder opBuilder = scope.env().opBuilder("Timestamp", scope.makeOpName("Timestamp")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Timestamp(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TryRpc.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TryRpc.java index 3aa6c3a76ad..eaf5f97335b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TryRpc.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TryRpc.java @@ -144,7 +144,7 @@ public static TryRpc create(Scope scope, Operand address, Operand Unbatch create(Scope scope, Operand batche opBuilder.addInput(batchedTensor.asOutput()); opBuilder.addInput(batchIndex.asOutput()); opBuilder.addInput(id.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("timeout_micros", timeoutMicros); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UnbatchGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UnbatchGrad.java index 10062f204fc..91bb7c52cf4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UnbatchGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UnbatchGrad.java @@ -97,7 +97,7 @@ public static UnbatchGrad create(Scope scope, Operand or opBuilder.addInput(batchIndex.asOutput()); opBuilder.addInput(grad.asOutput()); opBuilder.addInput(id.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.container != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Unique.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Unique.java index f3b8b04aead..40b303e2a05 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Unique.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Unique.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -90,12 +90,12 @@ public final class Unique extends RawOp { * @return a new instance of Unique */ @Endpoint(describeByClass = true) - public static Unique create(Scope scope, Operand x, Operand axis, DataType outIdx) { + public static Unique create(Scope scope, Operand x, Operand axis, Class outIdx) { OperationBuilder opBuilder = scope.env().opBuilder("UniqueV2", scope.makeOpName("Unique")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(axis.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_idx", outIdx); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_idx", Operands.toDataType(outIdx)); return new Unique(opBuilder.build()); } @@ -110,7 +110,7 @@ public static Unique Unique create(Scope scope, Operand x, Operand axis) { - return create(scope, x, axis, TInt32.DTYPE); + return create(scope, x, axis, TInt32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UniqueWithCounts.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UniqueWithCounts.java index 732d4432333..cf2ae7566cc 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UniqueWithCounts.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UniqueWithCounts.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -94,12 +94,12 @@ public final class UniqueWithCounts extends * @return a new instance of UniqueWithCounts */ @Endpoint(describeByClass = true) - public static UniqueWithCounts create(Scope scope, Operand x, Operand axis, DataType outIdx) { + public static UniqueWithCounts create(Scope scope, Operand x, Operand axis, Class outIdx) { OperationBuilder opBuilder = scope.env().opBuilder("UniqueWithCountsV2", scope.makeOpName("UniqueWithCounts")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(axis.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_idx", outIdx); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_idx", Operands.toDataType(outIdx)); return new UniqueWithCounts(opBuilder.build()); } @@ -114,7 +114,7 @@ public static UniqueWith */ @Endpoint(describeByClass = true) public static UniqueWithCounts create(Scope scope, Operand x, Operand axis) { - return create(scope, x, axis, TInt32.DTYPE); + return create(scope, x, axis, TInt32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UnravelIndex.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UnravelIndex.java index ecc073e37a4..0ce98a63884 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UnravelIndex.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UnravelIndex.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Converts an array of flat indices into a tuple of coordinate arrays. @@ -70,7 +69,7 @@ public static UnravelIndex create(Scope scope, Operand OperationBuilder opBuilder = scope.env().opBuilder("UnravelIndex", scope.makeOpName("UnravelIndex")); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(dims.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new UnravelIndex(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Unstack.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Unstack.java index a48f57289ae..f1c46f3fa39 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Unstack.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Unstack.java @@ -84,7 +84,7 @@ private Options() { public static Unstack create(Scope scope, Operand value, Long num, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("Unpack", scope.makeOpName("Unstack")); opBuilder.addInput(value.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num", num); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Unstage.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Unstage.java index 1878ce6fb88..2997b5eaa57 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Unstage.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Unstage.java @@ -20,11 +20,11 @@ import java.util.Arrays; import java.util.Iterator; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -95,14 +95,10 @@ private Options() { * @return a new instance of Unstage */ @Endpoint(describeByClass = true) - public static Unstage create(Scope scope, List> dtypes, Options... options) { + public static Unstage create(Scope scope, List> dtypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("Unstage", scope.makeOpName("Unstage")); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] dtypesArray = new DataType[dtypes.size()]; - for (int i = 0; i < dtypesArray.length; ++i) { - dtypesArray[i] = dtypes.get(i); - } - opBuilder.setAttr("dtypes", dtypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtypes", Operands.toDataTypes(dtypes)); if (options != null) { for (Options opts : options) { if (opts.capacity != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UpperBound.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UpperBound.java index c46fbcba4de..6bc9d8034fd 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UpperBound.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UpperBound.java @@ -17,11 +17,11 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -66,12 +66,12 @@ public final class UpperBound extends RawOp implements Operan * @return a new instance of UpperBound */ @Endpoint(describeByClass = true) - public static UpperBound create(Scope scope, Operand sortedInputs, Operand values, DataType outType) { + public static UpperBound create(Scope scope, Operand sortedInputs, Operand values, Class outType) { OperationBuilder opBuilder = scope.env().opBuilder("UpperBound", scope.makeOpName("UpperBound")); opBuilder.addInput(sortedInputs.asOutput()); opBuilder.addInput(values.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); return new UpperBound(opBuilder.build()); } @@ -86,7 +86,7 @@ public static UpperBound create(Scope sc */ @Endpoint(describeByClass = true) public static UpperBound create(Scope scope, Operand sortedInputs, Operand values) { - return create(scope, sortedInputs, values, TInt32.DTYPE); + return create(scope, sortedInputs, values, TInt32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/VarHandleOp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/VarHandleOp.java index 92618c33d37..41d962d4381 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/VarHandleOp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/VarHandleOp.java @@ -18,12 +18,12 @@ package org.tensorflow.op.core; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -85,10 +85,10 @@ private Options() { * @return a new instance of VarHandleOp */ @Endpoint(describeByClass = true) - public static VarHandleOp create(Scope scope, DataType dtype, Shape shape, Options... options) { + public static VarHandleOp create(Scope scope, Class dtype, Shape shape, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("VarHandleOp", scope.makeOpName("VarHandleOp")); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); opBuilder.setAttr("shape", shape); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/VarIsInitializedOp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/VarIsInitializedOp.java index f2c3df0456d..16ee42372b3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/VarIsInitializedOp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/VarIsInitializedOp.java @@ -44,7 +44,7 @@ public final class VarIsInitializedOp extends RawOp implements Operand { public static VarIsInitializedOp create(Scope scope, Operand resource) { OperationBuilder opBuilder = scope.env().opBuilder("VarIsInitializedOp", scope.makeOpName("VarIsInitializedOp")); opBuilder.addInput(resource.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new VarIsInitializedOp(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Variable.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Variable.java index 7353dfee688..98e545d7b76 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Variable.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Variable.java @@ -17,12 +17,12 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -81,11 +81,11 @@ private Options() { * @return a new instance of Variable */ @Endpoint(describeByClass = true) - public static Variable create(Scope scope, Shape shape, DataType dtype, Options... options) { + public static Variable create(Scope scope, Shape shape, Class dtype, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("VariableV2", scope.makeOpName("Variable")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("shape", shape); - opBuilder.setAttr("dtype", dtype); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); if (options != null) { for (Options opts : options) { if (opts.container != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/VariableShape.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/VariableShape.java index 6573cb8de11..ab37a6c4d08 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/VariableShape.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/VariableShape.java @@ -17,18 +17,17 @@ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Returns the shape of the variable pointed to by `resource`. @@ -56,11 +55,11 @@ public final class VariableShape extends RawOp implements Ope * @return a new instance of VariableShape */ @Endpoint(describeByClass = true) - public static VariableShape create(Scope scope, Operand input, DataType outType) { + public static VariableShape create(Scope scope, Operand input, Class outType) { OperationBuilder opBuilder = scope.env().opBuilder("VariableShape", scope.makeOpName("VariableShape")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); return new VariableShape(opBuilder.build()); } @@ -73,7 +72,7 @@ public static VariableShape create(Scope scope, Operand create(Scope scope, Operand input) { - return create(scope, input, TInt32.DTYPE); + return create(scope, input, TInt32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Where.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Where.java index a1af7f9282a..5bf2ad25f9e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Where.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Where.java @@ -105,7 +105,7 @@ public final class Where extends RawOp implements Operand { public static Where create(Scope scope, Operand condition) { OperationBuilder opBuilder = scope.env().opBuilder("Where", scope.makeOpName("Where")); opBuilder.addInput(condition.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Where(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/XlaSpmdFullToShardShape.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/XlaSpmdFullToShardShape.java index 6615d2ef9f6..e1a89b8b3a3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/XlaSpmdFullToShardShape.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/XlaSpmdFullToShardShape.java @@ -52,7 +52,7 @@ public final class XlaSpmdFullToShardShape extends RawOp implem public static XlaSpmdFullToShardShape create(Scope scope, Operand input, String manualSharding) { OperationBuilder opBuilder = scope.env().opBuilder("XlaSpmdFullToShardShape", scope.makeOpName("XlaSpmdFullToShardShape")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("manual_sharding", manualSharding); return new XlaSpmdFullToShardShape(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/XlaSpmdShardToFullShape.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/XlaSpmdShardToFullShape.java index 75e31c7c317..1014c328351 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/XlaSpmdShardToFullShape.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/XlaSpmdShardToFullShape.java @@ -53,7 +53,7 @@ public final class XlaSpmdShardToFullShape extends RawOp implem public static XlaSpmdShardToFullShape create(Scope scope, Operand input, String manualSharding, Shape fullShape) { OperationBuilder opBuilder = scope.env().opBuilder("XlaSpmdShardToFullShape", scope.makeOpName("XlaSpmdShardToFullShape")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("manual_sharding", manualSharding); opBuilder.setAttr("full_shape", fullShape); return new XlaSpmdShardToFullShape(opBuilder.build()); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ZerosLike.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ZerosLike.java index 5b9352ef6bd..f3353d53023 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ZerosLike.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ZerosLike.java @@ -46,7 +46,7 @@ public final class ZerosLike extends RawOp implements Operand ZerosLike create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("ZerosLike", scope.makeOpName("ZerosLike")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ZerosLike(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/AnonymousIterator.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/AnonymousIterator.java index bd3d1a400f5..3be3e0be3eb 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/AnonymousIterator.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/AnonymousIterator.java @@ -18,15 +18,16 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; +import org.tensorflow.types.family.TType; /** * A container for an iterator resource. @@ -43,14 +44,10 @@ public final class AnonymousIterator extends RawOp { * @return a new instance of AnonymousIterator */ @Endpoint(describeByClass = true) - public static AnonymousIterator create(Scope scope, List> outputTypes, List outputShapes) { + public static AnonymousIterator create(Scope scope, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("AnonymousIteratorV2", scope.makeOpName("AnonymousIterator")); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/AnonymousMemoryCache.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/AnonymousMemoryCache.java index 4bc4523c1ea..e75f88d40d2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/AnonymousMemoryCache.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/AnonymousMemoryCache.java @@ -38,7 +38,7 @@ public final class AnonymousMemoryCache extends RawOp { @Endpoint(describeByClass = true) public static AnonymousMemoryCache create(Scope scope) { OperationBuilder opBuilder = scope.env().opBuilder("AnonymousMemoryCache", scope.makeOpName("AnonymousMemoryCache")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new AnonymousMemoryCache(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/AnonymousMultiDeviceIterator.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/AnonymousMultiDeviceIterator.java index bff57b33c8f..d02a1f37cf3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/AnonymousMultiDeviceIterator.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/AnonymousMultiDeviceIterator.java @@ -18,15 +18,16 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; +import org.tensorflow.types.family.TType; /** * A container for a multi device iterator resource. @@ -43,19 +44,15 @@ public final class AnonymousMultiDeviceIterator extends RawOp { * @return a new instance of AnonymousMultiDeviceIterator */ @Endpoint(describeByClass = true) - public static AnonymousMultiDeviceIterator create(Scope scope, List devices, List> outputTypes, List outputShapes) { + public static AnonymousMultiDeviceIterator create(Scope scope, List devices, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("AnonymousMultiDeviceIterator", scope.makeOpName("AnonymousMultiDeviceIterator")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); String[] devicesArray = new String[devices.size()]; for (int i = 0; i < devicesArray.length; ++i) { devicesArray[i] = devices.get(i); } opBuilder.setAttr("devices", devicesArray); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/AssertNextDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/AssertNextDataset.java index c2825e29b93..ee9da65be4d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/AssertNextDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/AssertNextDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -58,16 +58,12 @@ public final class AssertNextDataset extends RawOp implements Operand { * @return a new instance of AssertNextDataset */ @Endpoint(describeByClass = true) - public static AssertNextDataset create(Scope scope, Operand inputDataset, Operand transformations, List> outputTypes, List outputShapes) { + public static AssertNextDataset create(Scope scope, Operand inputDataset, Operand transformations, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("AssertNextDataset", scope.makeOpName("AssertNextDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(transformations.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/AutoShardDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/AutoShardDataset.java index aca90031261..1e18bf6be11 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/AutoShardDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/AutoShardDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -76,17 +76,13 @@ private Options() { * @return a new instance of AutoShardDataset */ @Endpoint(describeByClass = true) - public static AutoShardDataset create(Scope scope, Operand inputDataset, Operand numWorkers, Operand index, List> outputTypes, List outputShapes, Options... options) { + public static AutoShardDataset create(Scope scope, Operand inputDataset, Operand numWorkers, Operand index, List> outputTypes, List outputShapes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("AutoShardDataset", scope.makeOpName("AutoShardDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(numWorkers.asOutput()); opBuilder.addInput(index.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/BatchDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/BatchDataset.java index b0fd6ef0c0c..ee03bac2b95 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/BatchDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/BatchDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -71,17 +71,13 @@ private Options() { * @return a new instance of BatchDataset */ @Endpoint(describeByClass = true) - public static BatchDataset create(Scope scope, Operand inputDataset, Operand batchSize, Operand dropRemainder, List> outputTypes, List outputShapes, Options... options) { + public static BatchDataset create(Scope scope, Operand inputDataset, Operand batchSize, Operand dropRemainder, List> outputTypes, List outputShapes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("BatchDatasetV2", scope.makeOpName("BatchDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(batchSize.asOutput()); opBuilder.addInput(dropRemainder.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/BytesProducedStatsDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/BytesProducedStatsDataset.java index a3b95d92909..b9cea475727 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/BytesProducedStatsDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/BytesProducedStatsDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -47,16 +47,12 @@ public final class BytesProducedStatsDataset extends RawOp implements Operand inputDataset, Operand tag, List> outputTypes, List outputShapes) { + public static BytesProducedStatsDataset create(Scope scope, Operand inputDataset, Operand tag, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("BytesProducedStatsDataset", scope.makeOpName("BytesProducedStatsDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(tag.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/CSVDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/CSVDataset.java index f6c8f72232d..e2bb15aed4d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/CSVDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/CSVDataset.java @@ -66,7 +66,7 @@ public static CSVDataset create(Scope scope, Operand filenames, Operand opBuilder.addInput(naValue.asOutput()); opBuilder.addInput(selectCols.asOutput()); opBuilder.addInputList(Operands.asOutputs(recordDefaults)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/CacheDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/CacheDataset.java index 07384fb6b3e..25431c48ec6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/CacheDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/CacheDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -53,16 +53,12 @@ public final class CacheDataset extends RawOp implements Operand { * @return a new instance of CacheDataset */ @Endpoint(describeByClass = true) - public static CacheDataset create(Scope scope, Operand inputDataset, Operand filename, List> outputTypes, List outputShapes) { + public static CacheDataset create(Scope scope, Operand inputDataset, Operand filename, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("CacheDataset", scope.makeOpName("CacheDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(filename.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/CacheDatasetV2.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/CacheDatasetV2.java index ba370108e04..c5cd457be55 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/CacheDatasetV2.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/CacheDatasetV2.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -47,17 +47,13 @@ public final class CacheDatasetV2 extends RawOp implements Operand { * @return a new instance of CacheDatasetV2 */ @Endpoint(describeByClass = true) - public static CacheDatasetV2 create(Scope scope, Operand inputDataset, Operand filename, Operand cache, List> outputTypes, List outputShapes) { + public static CacheDatasetV2 create(Scope scope, Operand inputDataset, Operand filename, Operand cache, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("CacheDatasetV2", scope.makeOpName("CacheDatasetV2")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(filename.asOutput()); opBuilder.addInput(cache.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ChooseFastestDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ChooseFastestDataset.java index a8d9ce445fe..e29e27f73f4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ChooseFastestDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ChooseFastestDataset.java @@ -18,7 +18,6 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; @@ -46,16 +45,12 @@ public final class ChooseFastestDataset extends RawOp implements Operand * @return a new instance of ChooseFastestDataset */ @Endpoint(describeByClass = true) - public static ChooseFastestDataset create(Scope scope, Iterable> inputDatasets, Long numExperiments, List> outputTypes, List outputShapes) { + public static ChooseFastestDataset create(Scope scope, Iterable> inputDatasets, Long numExperiments, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("ChooseFastestDataset", scope.makeOpName("ChooseFastestDataset")); opBuilder.addInputList(Operands.asOutputs(inputDatasets)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_experiments", numExperiments); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ConcatenateDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ConcatenateDataset.java index 19cf0b4a706..bd32060b138 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ConcatenateDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ConcatenateDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -47,16 +47,12 @@ public final class ConcatenateDataset extends RawOp implements Operand { * @return a new instance of ConcatenateDataset */ @Endpoint(describeByClass = true) - public static ConcatenateDataset create(Scope scope, Operand inputDataset, Operand anotherDataset, List> outputTypes, List outputShapes) { + public static ConcatenateDataset create(Scope scope, Operand inputDataset, Operand anotherDataset, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("ConcatenateDataset", scope.makeOpName("ConcatenateDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(anotherDataset.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DatasetCardinality.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DatasetCardinality.java index d851c211420..121ae2d2120 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DatasetCardinality.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DatasetCardinality.java @@ -45,7 +45,7 @@ public final class DatasetCardinality extends RawOp implements Operand { public static DatasetCardinality create(Scope scope, Operand inputDataset) { OperationBuilder opBuilder = scope.env().opBuilder("DatasetCardinality", scope.makeOpName("DatasetCardinality")); opBuilder.addInput(inputDataset.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DatasetCardinality(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DatasetFromGraph.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DatasetFromGraph.java index 6223baa7251..71ba9356f09 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DatasetFromGraph.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DatasetFromGraph.java @@ -46,7 +46,7 @@ public final class DatasetFromGraph extends RawOp implements Operand { public static DatasetFromGraph create(Scope scope, Operand graphDef) { OperationBuilder opBuilder = scope.env().opBuilder("DatasetFromGraph", scope.makeOpName("DatasetFromGraph")); opBuilder.addInput(graphDef.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DatasetFromGraph(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DatasetToGraph.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DatasetToGraph.java index afaab68330a..e9f5757cd40 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DatasetToGraph.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DatasetToGraph.java @@ -74,7 +74,7 @@ private Options() { public static DatasetToGraph create(Scope scope, Operand inputDataset, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("DatasetToGraphV2", scope.makeOpName("DatasetToGraph")); opBuilder.addInput(inputDataset.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.externalStatePolicy != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DatasetToSingleElement.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DatasetToSingleElement.java index 91fd5032439..a74413e1935 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DatasetToSingleElement.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DatasetToSingleElement.java @@ -20,12 +20,12 @@ import java.util.Arrays; import java.util.Iterator; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -47,15 +47,11 @@ public final class DatasetToSingleElement extends RawOp implements Iterable dataset, List> outputTypes, List outputShapes) { + public static DatasetToSingleElement create(Scope scope, Operand dataset, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("DatasetToSingleElement", scope.makeOpName("DatasetToSingleElement")); opBuilder.addInput(dataset.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DatasetToTfRecord.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DatasetToTfRecord.java index 114e11074dc..12504c93af8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DatasetToTfRecord.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DatasetToTfRecord.java @@ -47,7 +47,7 @@ public static DatasetToTfRecord create(Scope scope, Operand inputDataset, Ope opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(filename.asOutput()); opBuilder.addInput(compressionType.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DatasetToTfRecord(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DeleteIterator.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DeleteIterator.java index 69f3af096bb..2995866c0f6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DeleteIterator.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DeleteIterator.java @@ -44,7 +44,7 @@ public static DeleteIterator create(Scope scope, Operand handle, Operand d OperationBuilder opBuilder = scope.env().opBuilder("DeleteIterator", scope.makeOpName("DeleteIterator")); opBuilder.addInput(handle.asOutput()); opBuilder.addInput(deleter.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DeleteIterator(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DeleteMemoryCache.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DeleteMemoryCache.java index 21c33030b66..4faca573dc8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DeleteMemoryCache.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DeleteMemoryCache.java @@ -42,7 +42,7 @@ public static DeleteMemoryCache create(Scope scope, Operand handle, Operand multiDevi opBuilder.addInput(multiDeviceIterator.asOutput()); opBuilder.addInputList(Operands.asOutputs(iterators)); opBuilder.addInput(deleter.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DeleteMultiDeviceIterator(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DenseToSparseBatchDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DenseToSparseBatchDataset.java index 32bd135c325..1b5c9ec6ceb 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DenseToSparseBatchDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DenseToSparseBatchDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -51,17 +51,13 @@ public final class DenseToSparseBatchDataset extends RawOp implements Operand inputDataset, Operand batchSize, Operand rowShape, List> outputTypes, List outputShapes) { + public static DenseToSparseBatchDataset create(Scope scope, Operand inputDataset, Operand batchSize, Operand rowShape, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("DenseToSparseBatchDataset", scope.makeOpName("DenseToSparseBatchDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(batchSize.asOutput()); opBuilder.addInput(rowShape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DeserializeIterator.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DeserializeIterator.java index 4f772fd5028..54e1df16001 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DeserializeIterator.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DeserializeIterator.java @@ -45,7 +45,7 @@ public static DeserializeIterator create(Scope scope, Operand resourceHandle, OperationBuilder opBuilder = scope.env().opBuilder("DeserializeIterator", scope.makeOpName("DeserializeIterator")); opBuilder.addInput(resourceHandle.asOutput()); opBuilder.addInput(serialized.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DeserializeIterator(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DirectedInterleaveDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DirectedInterleaveDataset.java index 6883e2218d9..0e543dc351a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DirectedInterleaveDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/DirectedInterleaveDataset.java @@ -18,7 +18,6 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; @@ -49,16 +48,12 @@ public final class DirectedInterleaveDataset extends RawOp implements Operand selectorInputDataset, Iterable> dataInputDatasets, List> outputTypes, List outputShapes) { + public static DirectedInterleaveDataset create(Scope scope, Operand selectorInputDataset, Iterable> dataInputDatasets, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("DirectedInterleaveDataset", scope.makeOpName("DirectedInterleaveDataset")); opBuilder.addInput(selectorInputDataset.asOutput()); opBuilder.addInputList(Operands.asOutputs(dataInputDatasets)); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/FilterByLastComponentDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/FilterByLastComponentDataset.java index d6c2b576d7e..d1d1c55e08f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/FilterByLastComponentDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/FilterByLastComponentDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -45,15 +45,11 @@ public final class FilterByLastComponentDataset extends RawOp implements Operand * @return a new instance of FilterByLastComponentDataset */ @Endpoint(describeByClass = true) - public static FilterByLastComponentDataset create(Scope scope, Operand inputDataset, List> outputTypes, List outputShapes) { + public static FilterByLastComponentDataset create(Scope scope, Operand inputDataset, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("FilterByLastComponentDataset", scope.makeOpName("FilterByLastComponentDataset")); opBuilder.addInput(inputDataset.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/FixedLengthRecordDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/FixedLengthRecordDataset.java index d1bfa77177b..10a7c791e17 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/FixedLengthRecordDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/FixedLengthRecordDataset.java @@ -54,7 +54,7 @@ public static FixedLengthRecordDataset create(Scope scope, Operand file opBuilder.addInput(footerBytes.asOutput()); opBuilder.addInput(bufferSize.asOutput()); opBuilder.addInput(compressionType.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new FixedLengthRecordDataset(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IgnoreErrorsDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IgnoreErrorsDataset.java index 7ffca90d150..0b4bec924b2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IgnoreErrorsDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IgnoreErrorsDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -45,15 +45,11 @@ public final class IgnoreErrorsDataset extends RawOp implements Operand { * @return a new instance of IgnoreErrorsDataset */ @Endpoint(describeByClass = true) - public static IgnoreErrorsDataset create(Scope scope, Operand inputDataset, List> outputTypes, List outputShapes) { + public static IgnoreErrorsDataset create(Scope scope, Operand inputDataset, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("IgnoreErrorsDataset", scope.makeOpName("IgnoreErrorsDataset")); opBuilder.addInput(inputDataset.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/InitializeTableFromDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/InitializeTableFromDataset.java index 05a263a4ec1..3008e032cb5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/InitializeTableFromDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/InitializeTableFromDataset.java @@ -42,7 +42,7 @@ public static InitializeTableFromDataset create(Scope scope, Operand tableHan OperationBuilder opBuilder = scope.env().opBuilder("InitializeTableFromDataset", scope.makeOpName("InitializeTableFromDataset")); opBuilder.addInput(tableHandle.asOutput()); opBuilder.addInput(dataset.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new InitializeTableFromDataset(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/Iterator.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/Iterator.java index 45030001714..d20e98d5c9b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/Iterator.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/Iterator.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -46,16 +46,12 @@ public final class Iterator extends RawOp implements Operand { * @return a new instance of Iterator */ @Endpoint(describeByClass = true) - public static Iterator create(Scope scope, String sharedName, String container, List> outputTypes, List outputShapes) { + public static Iterator create(Scope scope, String sharedName, String container, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("IteratorV2", scope.makeOpName("Iterator")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("shared_name", sharedName); opBuilder.setAttr("container", container); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorFromStringHandle.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorFromStringHandle.java index 8264419635a..4de1a9f1e9e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorFromStringHandle.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorFromStringHandle.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -64,15 +64,11 @@ private Options() { * @return a new instance of IteratorFromStringHandle */ @Endpoint(describeByClass = true) - public static IteratorFromStringHandle create(Scope scope, Operand stringHandle, List> outputTypes, Options... options) { + public static IteratorFromStringHandle create(Scope scope, Operand stringHandle, List> outputTypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("IteratorFromStringHandleV2", scope.makeOpName("IteratorFromStringHandle")); opBuilder.addInput(stringHandle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); if (options != null) { for (Options opts : options) { if (opts.outputShapes != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorGetDevice.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorGetDevice.java index d2aee159583..a07649736c9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorGetDevice.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorGetDevice.java @@ -43,7 +43,7 @@ public final class IteratorGetDevice extends RawOp implements Operand { public static IteratorGetDevice create(Scope scope, Operand resource) { OperationBuilder opBuilder = scope.env().opBuilder("IteratorGetDevice", scope.makeOpName("IteratorGetDevice")); opBuilder.addInput(resource.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new IteratorGetDevice(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorGetNext.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorGetNext.java index b7be406e7bd..a41f441f650 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorGetNext.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorGetNext.java @@ -20,12 +20,12 @@ import java.util.Arrays; import java.util.Iterator; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -48,15 +48,11 @@ public final class IteratorGetNext extends RawOp implements Iterable iterator, List> outputTypes, List outputShapes) { + public static IteratorGetNext create(Scope scope, Operand iterator, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("IteratorGetNext", scope.makeOpName("IteratorGetNext")); opBuilder.addInput(iterator.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorGetNextAsOptional.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorGetNextAsOptional.java index 682b7ba6f35..7d4f441eb83 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorGetNextAsOptional.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorGetNextAsOptional.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -46,15 +46,11 @@ public final class IteratorGetNextAsOptional extends RawOp implements Operand iterator, List> outputTypes, List outputShapes) { + public static IteratorGetNextAsOptional create(Scope scope, Operand iterator, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("IteratorGetNextAsOptional", scope.makeOpName("IteratorGetNextAsOptional")); opBuilder.addInput(iterator.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorGetNextSync.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorGetNextSync.java index 3cb4f072307..bdce447dd0a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorGetNextSync.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorGetNextSync.java @@ -20,12 +20,12 @@ import java.util.Arrays; import java.util.Iterator; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -53,15 +53,11 @@ public final class IteratorGetNextSync extends RawOp implements Iterable iterator, List> outputTypes, List outputShapes) { + public static IteratorGetNextSync create(Scope scope, Operand iterator, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("IteratorGetNextSync", scope.makeOpName("IteratorGetNextSync")); opBuilder.addInput(iterator.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorToStringHandle.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorToStringHandle.java index d715d8b8f2d..94dd5feace7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorToStringHandle.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorToStringHandle.java @@ -44,7 +44,7 @@ public final class IteratorToStringHandle extends RawOp implements Operand resourceHandle) { OperationBuilder opBuilder = scope.env().opBuilder("IteratorToStringHandle", scope.makeOpName("IteratorToStringHandle")); opBuilder.addInput(resourceHandle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new IteratorToStringHandle(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/LMDBDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/LMDBDataset.java index d0057d60323..c67912ec018 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/LMDBDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/LMDBDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -58,15 +58,11 @@ public final class LMDBDataset extends RawOp implements Operand { * @return a new instance of LMDBDataset */ @Endpoint(describeByClass = true) - public static LMDBDataset create(Scope scope, Operand filenames, List> outputTypes, List outputShapes) { + public static LMDBDataset create(Scope scope, Operand filenames, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("LMDBDataset", scope.makeOpName("LMDBDataset")); opBuilder.addInput(filenames.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/LatencyStatsDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/LatencyStatsDataset.java index 731b70867a7..047057a1c25 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/LatencyStatsDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/LatencyStatsDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -47,16 +47,12 @@ public final class LatencyStatsDataset extends RawOp implements Operand { * @return a new instance of LatencyStatsDataset */ @Endpoint(describeByClass = true) - public static LatencyStatsDataset create(Scope scope, Operand inputDataset, Operand tag, List> outputTypes, List outputShapes) { + public static LatencyStatsDataset create(Scope scope, Operand inputDataset, Operand tag, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("LatencyStatsDataset", scope.makeOpName("LatencyStatsDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(tag.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/LeakyReluGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/LeakyReluGrad.java index 3fb21bd4a6e..3b41dd2e918 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/LeakyReluGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/LeakyReluGrad.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes rectified linear gradients for a LeakyRelu operation. @@ -69,7 +68,7 @@ public static LeakyReluGrad create(Scope scope, Operand dataset, Operand it OperationBuilder opBuilder = scope.env().opBuilder("MakeIterator", scope.makeOpName("MakeIterator")); opBuilder.addInput(dataset.asOutput()); opBuilder.addInput(iterator.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new MakeIterator(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MatchingFilesDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MatchingFilesDataset.java index 2c798a8d807..c6a0d3b64d8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MatchingFilesDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MatchingFilesDataset.java @@ -43,7 +43,7 @@ public final class MatchingFilesDataset extends RawOp implements Operand public static MatchingFilesDataset create(Scope scope, Operand patterns) { OperationBuilder opBuilder = scope.env().opBuilder("MatchingFilesDataset", scope.makeOpName("MatchingFilesDataset")); opBuilder.addInput(patterns.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new MatchingFilesDataset(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MaxIntraOpParallelismDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MaxIntraOpParallelismDataset.java index d7c67924b55..14a35d14d07 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MaxIntraOpParallelismDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MaxIntraOpParallelismDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -47,16 +47,12 @@ public final class MaxIntraOpParallelismDataset extends RawOp implements Operand * @return a new instance of MaxIntraOpParallelismDataset */ @Endpoint(describeByClass = true) - public static MaxIntraOpParallelismDataset create(Scope scope, Operand inputDataset, Operand maxIntraOpParallelism, List> outputTypes, List outputShapes) { + public static MaxIntraOpParallelismDataset create(Scope scope, Operand inputDataset, Operand maxIntraOpParallelism, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("MaxIntraOpParallelismDataset", scope.makeOpName("MaxIntraOpParallelismDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(maxIntraOpParallelism.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ModelDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ModelDataset.java index 53b6f10204d..f62be66854b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ModelDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ModelDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -76,15 +76,11 @@ private Options() { * @return a new instance of ModelDataset */ @Endpoint(describeByClass = true) - public static ModelDataset create(Scope scope, Operand inputDataset, List> outputTypes, List outputShapes, Options... options) { + public static ModelDataset create(Scope scope, Operand inputDataset, List> outputTypes, List outputShapes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("ModelDataset", scope.makeOpName("ModelDataset")); opBuilder.addInput(inputDataset.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MultiDeviceIterator.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MultiDeviceIterator.java index a3dfeeb5665..e6ee9d12c02 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MultiDeviceIterator.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MultiDeviceIterator.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -49,9 +49,9 @@ public final class MultiDeviceIterator extends RawOp implements Operand { * @return a new instance of MultiDeviceIterator */ @Endpoint(describeByClass = true) - public static MultiDeviceIterator create(Scope scope, List devices, String sharedName, String container, List> outputTypes, List outputShapes) { + public static MultiDeviceIterator create(Scope scope, List devices, String sharedName, String container, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("MultiDeviceIterator", scope.makeOpName("MultiDeviceIterator")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); String[] devicesArray = new String[devices.size()]; for (int i = 0; i < devicesArray.length; ++i) { devicesArray[i] = devices.get(i); @@ -59,11 +59,7 @@ public static MultiDeviceIterator create(Scope scope, List devices, Stri opBuilder.setAttr("devices", devicesArray); opBuilder.setAttr("shared_name", sharedName); opBuilder.setAttr("container", container); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MultiDeviceIteratorFromStringHandle.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MultiDeviceIteratorFromStringHandle.java index a9b0b8ec07e..5e6fdb1c640 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MultiDeviceIteratorFromStringHandle.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MultiDeviceIteratorFromStringHandle.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -65,15 +65,11 @@ private Options() { * @return a new instance of MultiDeviceIteratorFromStringHandle */ @Endpoint(describeByClass = true) - public static MultiDeviceIteratorFromStringHandle create(Scope scope, Operand stringHandle, List> outputTypes, Options... options) { + public static MultiDeviceIteratorFromStringHandle create(Scope scope, Operand stringHandle, List> outputTypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("MultiDeviceIteratorFromStringHandle", scope.makeOpName("MultiDeviceIteratorFromStringHandle")); opBuilder.addInput(stringHandle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); if (options != null) { for (Options opts : options) { if (opts.outputShapes != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MultiDeviceIteratorGetNextFromShard.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MultiDeviceIteratorGetNextFromShard.java index 4781bc2d56e..578bf00fe78 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MultiDeviceIteratorGetNextFromShard.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MultiDeviceIteratorGetNextFromShard.java @@ -20,12 +20,12 @@ import java.util.Arrays; import java.util.Iterator; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -51,17 +51,13 @@ public final class MultiDeviceIteratorGetNextFromShard extends RawOp implements * @return a new instance of MultiDeviceIteratorGetNextFromShard */ @Endpoint(describeByClass = true) - public static MultiDeviceIteratorGetNextFromShard create(Scope scope, Operand multiDeviceIterator, Operand shardNum, Operand incarnationId, List> outputTypes, List outputShapes) { + public static MultiDeviceIteratorGetNextFromShard create(Scope scope, Operand multiDeviceIterator, Operand shardNum, Operand incarnationId, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("MultiDeviceIteratorGetNextFromShard", scope.makeOpName("MultiDeviceIteratorGetNextFromShard")); opBuilder.addInput(multiDeviceIterator.asOutput()); opBuilder.addInput(shardNum.asOutput()); opBuilder.addInput(incarnationId.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MultiDeviceIteratorInit.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MultiDeviceIteratorInit.java index a8e957c64b5..3c57db226a5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MultiDeviceIteratorInit.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MultiDeviceIteratorInit.java @@ -47,7 +47,7 @@ public static MultiDeviceIteratorInit create(Scope scope, Operand dataset, Op opBuilder.addInput(dataset.asOutput()); opBuilder.addInput(multiDeviceIterator.asOutput()); opBuilder.addInput(maxBufferSize.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new MultiDeviceIteratorInit(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MultiDeviceIteratorToStringHandle.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MultiDeviceIteratorToStringHandle.java index 5697c7e7699..028d0a9497c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MultiDeviceIteratorToStringHandle.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MultiDeviceIteratorToStringHandle.java @@ -43,7 +43,7 @@ public final class MultiDeviceIteratorToStringHandle extends RawOp implements Op public static MultiDeviceIteratorToStringHandle create(Scope scope, Operand multiDeviceIterator) { OperationBuilder opBuilder = scope.env().opBuilder("MultiDeviceIteratorToStringHandle", scope.makeOpName("MultiDeviceIteratorToStringHandle")); opBuilder.addInput(multiDeviceIterator.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new MultiDeviceIteratorToStringHandle(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/NonSerializableDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/NonSerializableDataset.java index 34043a14f9d..49fece5850f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/NonSerializableDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/NonSerializableDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -44,15 +44,11 @@ public final class NonSerializableDataset extends RawOp implements Operand inputDataset, List> outputTypes, List outputShapes) { + public static NonSerializableDataset create(Scope scope, Operand inputDataset, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("NonSerializableDataset", scope.makeOpName("NonSerializableDataset")); opBuilder.addInput(inputDataset.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/OptimizeDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/OptimizeDataset.java index 73e27b3ffc9..c9bd55a0320 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/OptimizeDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/OptimizeDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -69,16 +69,12 @@ private Options() { * @return a new instance of OptimizeDataset */ @Endpoint(describeByClass = true) - public static OptimizeDataset create(Scope scope, Operand inputDataset, Operand optimizations, List> outputTypes, List outputShapes, Options... options) { + public static OptimizeDataset create(Scope scope, Operand inputDataset, Operand optimizations, List> outputTypes, List outputShapes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("OptimizeDataset", scope.makeOpName("OptimizeDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(optimizations.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/OptionalFromValue.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/OptionalFromValue.java index a8fc1d4eaea..51a6f072b19 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/OptionalFromValue.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/OptionalFromValue.java @@ -45,7 +45,7 @@ public final class OptionalFromValue extends RawOp implements Operand { public static OptionalFromValue create(Scope scope, Iterable> components) { OperationBuilder opBuilder = scope.env().opBuilder("OptionalFromValue", scope.makeOpName("OptionalFromValue")); opBuilder.addInputList(Operands.asOutputs(components)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new OptionalFromValue(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/OptionalGetValue.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/OptionalGetValue.java index 8d3be67da03..eeaa8d61642 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/OptionalGetValue.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/OptionalGetValue.java @@ -20,12 +20,12 @@ import java.util.Arrays; import java.util.Iterator; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -48,15 +48,11 @@ public final class OptionalGetValue extends RawOp implements Iterable optional, List> outputTypes, List outputShapes) { + public static OptionalGetValue create(Scope scope, Operand optional, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("OptionalGetValue", scope.makeOpName("OptionalGetValue")); opBuilder.addInput(optional.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/OptionalHasValue.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/OptionalHasValue.java index af5900c38a9..3d8da00f28e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/OptionalHasValue.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/OptionalHasValue.java @@ -44,7 +44,7 @@ public final class OptionalHasValue extends RawOp implements Operand { public static OptionalHasValue create(Scope scope, Operand optional) { OperationBuilder opBuilder = scope.env().opBuilder("OptionalHasValue", scope.makeOpName("OptionalHasValue")); opBuilder.addInput(optional.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new OptionalHasValue(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/OptionalNone.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/OptionalNone.java index fa3deabf28f..1262726a4b1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/OptionalNone.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/OptionalNone.java @@ -42,7 +42,7 @@ public final class OptionalNone extends RawOp implements Operand { @Endpoint(describeByClass = true) public static OptionalNone create(Scope scope) { OperationBuilder opBuilder = scope.env().opBuilder("OptionalNone", scope.makeOpName("OptionalNone")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new OptionalNone(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/PaddedBatchDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/PaddedBatchDataset.java index 0685e5e9e74..24c19c1ebf6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/PaddedBatchDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/PaddedBatchDataset.java @@ -83,7 +83,7 @@ public static PaddedBatchDataset create(Scope scope, Operand inputDataset, Op opBuilder.addInputList(Operands.asOutputs(paddedShapes)); opBuilder.addInputList(Operands.asOutputs(paddingValues)); opBuilder.addInput(dropRemainder.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/PrefetchDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/PrefetchDataset.java index 78995ad6d20..7e86b47bfe1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/PrefetchDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/PrefetchDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -77,16 +77,12 @@ private Options() { * @return a new instance of PrefetchDataset */ @Endpoint(describeByClass = true) - public static PrefetchDataset create(Scope scope, Operand inputDataset, Operand bufferSize, List> outputTypes, List outputShapes, Options... options) { + public static PrefetchDataset create(Scope scope, Operand inputDataset, Operand bufferSize, List> outputTypes, List outputShapes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("PrefetchDataset", scope.makeOpName("PrefetchDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(bufferSize.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/PrivateThreadPoolDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/PrivateThreadPoolDataset.java index b06618ce07a..92d7753b54a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/PrivateThreadPoolDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/PrivateThreadPoolDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -47,16 +47,12 @@ public final class PrivateThreadPoolDataset extends RawOp implements Operand inputDataset, Operand numThreads, List> outputTypes, List outputShapes) { + public static PrivateThreadPoolDataset create(Scope scope, Operand inputDataset, Operand numThreads, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("PrivateThreadPoolDataset", scope.makeOpName("PrivateThreadPoolDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(numThreads.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/RandomDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/RandomDataset.java index 2b944e789dc..5108bec6d0d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/RandomDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/RandomDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -60,16 +60,12 @@ public final class RandomDataset extends RawOp implements Operand { * @return a new instance of RandomDataset */ @Endpoint(describeByClass = true) - public static RandomDataset create(Scope scope, Operand seed, Operand seed2, List> outputTypes, List outputShapes) { + public static RandomDataset create(Scope scope, Operand seed, Operand seed2, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("RandomDataset", scope.makeOpName("RandomDataset")); opBuilder.addInput(seed.asOutput()); opBuilder.addInput(seed2.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/RangeDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/RangeDataset.java index bc83590e03e..0acede3a72b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/RangeDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/RangeDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -49,17 +49,13 @@ public final class RangeDataset extends RawOp implements Operand { * @return a new instance of RangeDataset */ @Endpoint(describeByClass = true) - public static RangeDataset create(Scope scope, Operand start, Operand stop, Operand step, List> outputTypes, List outputShapes) { + public static RangeDataset create(Scope scope, Operand start, Operand stop, Operand step, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("RangeDataset", scope.makeOpName("RangeDataset")); opBuilder.addInput(start.asOutput()); opBuilder.addInput(stop.asOutput()); opBuilder.addInput(step.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/RebatchDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/RebatchDataset.java index b5a21c7b6b8..4d73b0dbbcf 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/RebatchDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/RebatchDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -72,16 +72,12 @@ private Options() { * @return a new instance of RebatchDataset */ @Endpoint(describeByClass = true) - public static RebatchDataset create(Scope scope, Operand inputDataset, Operand numReplicas, List> outputTypes, List outputShapes, Options... options) { + public static RebatchDataset create(Scope scope, Operand inputDataset, Operand numReplicas, List> outputTypes, List outputShapes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RebatchDataset", scope.makeOpName("RebatchDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(numReplicas.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/RegisterDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/RegisterDataset.java index 5705413165c..a211c35c009 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/RegisterDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/RegisterDataset.java @@ -49,7 +49,7 @@ public static RegisterDataset create(Scope scope, Operand dataset, Operand { * @return a new instance of RepeatDataset */ @Endpoint(describeByClass = true) - public static RepeatDataset create(Scope scope, Operand inputDataset, Operand count, List> outputTypes, List outputShapes) { + public static RepeatDataset create(Scope scope, Operand inputDataset, Operand count, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("RepeatDataset", scope.makeOpName("RepeatDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(count.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SamplingDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SamplingDataset.java index 7876fe27587..7f67f238136 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SamplingDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SamplingDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -57,18 +57,14 @@ public final class SamplingDataset extends RawOp implements Operand { * @return a new instance of SamplingDataset */ @Endpoint(describeByClass = true) - public static SamplingDataset create(Scope scope, Operand inputDataset, Operand rate, Operand seed, Operand seed2, List> outputTypes, List outputShapes) { + public static SamplingDataset create(Scope scope, Operand inputDataset, Operand rate, Operand seed, Operand seed2, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("SamplingDataset", scope.makeOpName("SamplingDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(rate.asOutput()); opBuilder.addInput(seed.asOutput()); opBuilder.addInput(seed2.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SerializeIterator.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SerializeIterator.java index f051994e6f5..4e9449781db 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SerializeIterator.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SerializeIterator.java @@ -64,7 +64,7 @@ private Options() { public static SerializeIterator create(Scope scope, Operand resourceHandle, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("SerializeIterator", scope.makeOpName("SerializeIterator")); opBuilder.addInput(resourceHandle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.externalStatePolicy != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SetStatsAggregatorDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SetStatsAggregatorDataset.java index 5181c0b1f71..7e774e3a103 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SetStatsAggregatorDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SetStatsAggregatorDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -48,18 +48,14 @@ public final class SetStatsAggregatorDataset extends RawOp implements Operand inputDataset, Operand statsAggregator, Operand tag, Operand counterPrefix, List> outputTypes, List outputShapes) { + public static SetStatsAggregatorDataset create(Scope scope, Operand inputDataset, Operand statsAggregator, Operand tag, Operand counterPrefix, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("SetStatsAggregatorDataset", scope.makeOpName("SetStatsAggregatorDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(statsAggregator.asOutput()); opBuilder.addInput(tag.asOutput()); opBuilder.addInput(counterPrefix.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ShardDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ShardDataset.java index 62e18f3fadf..53b184949e7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ShardDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ShardDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -68,17 +68,13 @@ private Options() { * @return a new instance of ShardDataset */ @Endpoint(describeByClass = true) - public static ShardDataset create(Scope scope, Operand inputDataset, Operand numShards, Operand index, List> outputTypes, List outputShapes, Options... options) { + public static ShardDataset create(Scope scope, Operand inputDataset, Operand numShards, Operand index, List> outputTypes, List outputShapes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("ShardDataset", scope.makeOpName("ShardDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(numShards.asOutput()); opBuilder.addInput(index.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ShuffleAndRepeatDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ShuffleAndRepeatDataset.java index c5703e8e85c..bc486a3777c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ShuffleAndRepeatDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ShuffleAndRepeatDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -70,7 +70,7 @@ private Options() { * @return a new instance of ShuffleAndRepeatDataset */ @Endpoint(describeByClass = true) - public static ShuffleAndRepeatDataset create(Scope scope, Operand inputDataset, Operand bufferSize, Operand seed, Operand seed2, Operand count, Operand seedGenerator, List> outputTypes, List outputShapes, Options... options) { + public static ShuffleAndRepeatDataset create(Scope scope, Operand inputDataset, Operand bufferSize, Operand seed, Operand seed2, Operand count, Operand seedGenerator, List> outputTypes, List outputShapes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("ShuffleAndRepeatDatasetV2", scope.makeOpName("ShuffleAndRepeatDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(bufferSize.asOutput()); @@ -78,12 +78,8 @@ public static ShuffleAndRepeatDataset create(Scope scope, Operand inputDatase opBuilder.addInput(seed2.asOutput()); opBuilder.addInput(count.asOutput()); opBuilder.addInput(seedGenerator.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ShuffleDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ShuffleDataset.java index 3dd522e319c..d458c12b68c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ShuffleDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ShuffleDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -69,19 +69,15 @@ private Options() { * @return a new instance of ShuffleDataset */ @Endpoint(describeByClass = true) - public static ShuffleDataset create(Scope scope, Operand inputDataset, Operand bufferSize, Operand seed, Operand seed2, Operand seedGenerator, List> outputTypes, List outputShapes, Options... options) { + public static ShuffleDataset create(Scope scope, Operand inputDataset, Operand bufferSize, Operand seed, Operand seed2, Operand seedGenerator, List> outputTypes, List outputShapes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("ShuffleDatasetV3", scope.makeOpName("ShuffleDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(bufferSize.asOutput()); opBuilder.addInput(seed.asOutput()); opBuilder.addInput(seed2.asOutput()); opBuilder.addInput(seedGenerator.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SkipDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SkipDataset.java index 4e409b5a4ea..dea92ac046b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SkipDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SkipDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -49,16 +49,12 @@ public final class SkipDataset extends RawOp implements Operand { * @return a new instance of SkipDataset */ @Endpoint(describeByClass = true) - public static SkipDataset create(Scope scope, Operand inputDataset, Operand count, List> outputTypes, List outputShapes) { + public static SkipDataset create(Scope scope, Operand inputDataset, Operand count, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("SkipDataset", scope.makeOpName("SkipDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(count.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SleepDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SleepDataset.java index 67605099106..926cc93fe89 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SleepDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SleepDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -46,16 +46,12 @@ public final class SleepDataset extends RawOp implements Operand { * @return a new instance of SleepDataset */ @Endpoint(describeByClass = true) - public static SleepDataset create(Scope scope, Operand inputDataset, Operand sleepMicroseconds, List> outputTypes, List outputShapes) { + public static SleepDataset create(Scope scope, Operand inputDataset, Operand sleepMicroseconds, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("SleepDataset", scope.makeOpName("SleepDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(sleepMicroseconds.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SlidingWindowDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SlidingWindowDataset.java index 89f440efd77..2c10ea43cd9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SlidingWindowDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SlidingWindowDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -52,18 +52,14 @@ public final class SlidingWindowDataset extends RawOp implements Operand * @return a new instance of SlidingWindowDataset */ @Endpoint(describeByClass = true) - public static SlidingWindowDataset create(Scope scope, Operand inputDataset, Operand windowSize, Operand windowShift, Operand windowStride, List> outputTypes, List outputShapes) { + public static SlidingWindowDataset create(Scope scope, Operand inputDataset, Operand windowSize, Operand windowShift, Operand windowStride, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("SlidingWindowDataset", scope.makeOpName("SlidingWindowDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(windowSize.asOutput()); opBuilder.addInput(windowShift.asOutput()); opBuilder.addInput(windowStride.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SnapshotDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SnapshotDataset.java deleted file mode 100644 index f6bc66e8297..00000000000 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SnapshotDataset.java +++ /dev/null @@ -1,376 +0,0 @@ -/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. -=======================================================================*/ - -// This class has been generated, DO NOT EDIT! - -package org.tensorflow.op.data; - -import java.util.List; -import org.tensorflow.DataType; -import org.tensorflow.Operand; -import org.tensorflow.Operation; -import org.tensorflow.OperationBuilder; -import org.tensorflow.Output; -import org.tensorflow.ndarray.Shape; -import org.tensorflow.op.RawOp; -import org.tensorflow.op.Scope; -import org.tensorflow.op.annotation.Endpoint; -import org.tensorflow.op.annotation.Operator; -import org.tensorflow.types.TString; -import org.tensorflow.types.family.TType; - -/** - * Creates a dataset that will write to / read from a snapshot. - *

- * This dataset attempts to determine whether a valid snapshot exists at the - * `snapshot_path`, and reads from the snapshot in lieu of using `input_dataset`. - * If not, it will run the preprocessing pipeline as usual, and write out a - * snapshot of the data processed for future use. - */ -public final class SnapshotDataset extends RawOp implements Operand { - - /** - * Optional attributes for {@link org.tensorflow.op.data.SnapshotDataset} - */ - public static class Options { - - /** - * @param compression - */ - public Options compression(String compression) { - this.compression = compression; - return this; - } - - /** - * @param readerPathPrefix - */ - public Options readerPathPrefix(String readerPathPrefix) { - this.readerPathPrefix = readerPathPrefix; - return this; - } - - /** - * @param writerPathPrefix - */ - public Options writerPathPrefix(String writerPathPrefix) { - this.writerPathPrefix = writerPathPrefix; - return this; - } - - /** - * @param shardSizeBytes - */ - public Options shardSizeBytes(Long shardSizeBytes) { - this.shardSizeBytes = shardSizeBytes; - return this; - } - - /** - * @param pendingSnapshotExpirySeconds - */ - public Options pendingSnapshotExpirySeconds(Long pendingSnapshotExpirySeconds) { - this.pendingSnapshotExpirySeconds = pendingSnapshotExpirySeconds; - return this; - } - - /** - * @param numReaderThreads - */ - public Options numReaderThreads(Long numReaderThreads) { - this.numReaderThreads = numReaderThreads; - return this; - } - - /** - * @param readerBufferSize - */ - public Options readerBufferSize(Long readerBufferSize) { - this.readerBufferSize = readerBufferSize; - return this; - } - - /** - * @param numWriterThreads - */ - public Options numWriterThreads(Long numWriterThreads) { - this.numWriterThreads = numWriterThreads; - return this; - } - - /** - * @param writerBufferSize - */ - public Options writerBufferSize(Long writerBufferSize) { - this.writerBufferSize = writerBufferSize; - return this; - } - - /** - * @param shuffleOnRead - */ - public Options shuffleOnRead(Boolean shuffleOnRead) { - this.shuffleOnRead = shuffleOnRead; - return this; - } - - /** - * @param seed - */ - public Options seed(Long seed) { - this.seed = seed; - return this; - } - - /** - * @param seed2 - */ - public Options seed2(Long seed2) { - this.seed2 = seed2; - return this; - } - - /** - * @param mode - */ - public Options mode(String mode) { - this.mode = mode; - return this; - } - - /** - * @param snapshotName - */ - public Options snapshotName(String snapshotName) { - this.snapshotName = snapshotName; - return this; - } - - private String compression; - private String readerPathPrefix; - private String writerPathPrefix; - private Long shardSizeBytes; - private Long pendingSnapshotExpirySeconds; - private Long numReaderThreads; - private Long readerBufferSize; - private Long numWriterThreads; - private Long writerBufferSize; - private Boolean shuffleOnRead; - private Long seed; - private Long seed2; - private String mode; - private String snapshotName; - - private Options() { - } - } - - /** - * Factory method to create a class wrapping a new SnapshotDataset operation. - * - * @param scope current scope - * @param inputDataset A variant tensor representing the input dataset. - * @param path The path we should write snapshots to / read snapshots from. - * @param outputTypes - * @param outputShapes - * @param options carries optional attributes values - * @return a new instance of SnapshotDataset - */ - @Endpoint(describeByClass = true) - public static SnapshotDataset create(Scope scope, Operand inputDataset, Operand path, List> outputTypes, List outputShapes, Options... options) { - OperationBuilder opBuilder = scope.env().opBuilder("SnapshotDataset", scope.makeOpName("SnapshotDataset")); - opBuilder.addInput(inputDataset.asOutput()); - opBuilder.addInput(path.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); - Shape[] outputShapesArray = new Shape[outputShapes.size()]; - for (int i = 0; i < outputShapesArray.length; ++i) { - outputShapesArray[i] = outputShapes.get(i); - } - opBuilder.setAttr("output_shapes", outputShapesArray); - if (options != null) { - for (Options opts : options) { - if (opts.compression != null) { - opBuilder.setAttr("compression", opts.compression); - } - if (opts.readerPathPrefix != null) { - opBuilder.setAttr("reader_path_prefix", opts.readerPathPrefix); - } - if (opts.writerPathPrefix != null) { - opBuilder.setAttr("writer_path_prefix", opts.writerPathPrefix); - } - if (opts.shardSizeBytes != null) { - opBuilder.setAttr("shard_size_bytes", opts.shardSizeBytes); - } - if (opts.pendingSnapshotExpirySeconds != null) { - opBuilder.setAttr("pending_snapshot_expiry_seconds", opts.pendingSnapshotExpirySeconds); - } - if (opts.numReaderThreads != null) { - opBuilder.setAttr("num_reader_threads", opts.numReaderThreads); - } - if (opts.readerBufferSize != null) { - opBuilder.setAttr("reader_buffer_size", opts.readerBufferSize); - } - if (opts.numWriterThreads != null) { - opBuilder.setAttr("num_writer_threads", opts.numWriterThreads); - } - if (opts.writerBufferSize != null) { - opBuilder.setAttr("writer_buffer_size", opts.writerBufferSize); - } - if (opts.shuffleOnRead != null) { - opBuilder.setAttr("shuffle_on_read", opts.shuffleOnRead); - } - if (opts.seed != null) { - opBuilder.setAttr("seed", opts.seed); - } - if (opts.seed2 != null) { - opBuilder.setAttr("seed2", opts.seed2); - } - if (opts.mode != null) { - opBuilder.setAttr("mode", opts.mode); - } - if (opts.snapshotName != null) { - opBuilder.setAttr("snapshot_name", opts.snapshotName); - } - } - } - return new SnapshotDataset(opBuilder.build()); - } - - /** - * @param compression - */ - public static Options compression(String compression) { - return new Options().compression(compression); - } - - /** - * @param readerPathPrefix - */ - public static Options readerPathPrefix(String readerPathPrefix) { - return new Options().readerPathPrefix(readerPathPrefix); - } - - /** - * @param writerPathPrefix - */ - public static Options writerPathPrefix(String writerPathPrefix) { - return new Options().writerPathPrefix(writerPathPrefix); - } - - /** - * @param shardSizeBytes - */ - public static Options shardSizeBytes(Long shardSizeBytes) { - return new Options().shardSizeBytes(shardSizeBytes); - } - - /** - * @param pendingSnapshotExpirySeconds - */ - public static Options pendingSnapshotExpirySeconds(Long pendingSnapshotExpirySeconds) { - return new Options().pendingSnapshotExpirySeconds(pendingSnapshotExpirySeconds); - } - - /** - * @param numReaderThreads - */ - public static Options numReaderThreads(Long numReaderThreads) { - return new Options().numReaderThreads(numReaderThreads); - } - - /** - * @param readerBufferSize - */ - public static Options readerBufferSize(Long readerBufferSize) { - return new Options().readerBufferSize(readerBufferSize); - } - - /** - * @param numWriterThreads - */ - public static Options numWriterThreads(Long numWriterThreads) { - return new Options().numWriterThreads(numWriterThreads); - } - - /** - * @param writerBufferSize - */ - public static Options writerBufferSize(Long writerBufferSize) { - return new Options().writerBufferSize(writerBufferSize); - } - - /** - * @param shuffleOnRead - */ - public static Options shuffleOnRead(Boolean shuffleOnRead) { - return new Options().shuffleOnRead(shuffleOnRead); - } - - /** - * @param seed - */ - public static Options seed(Long seed) { - return new Options().seed(seed); - } - - /** - * @param seed2 - */ - public static Options seed2(Long seed2) { - return new Options().seed2(seed2); - } - - /** - * @param mode - */ - public static Options mode(String mode) { - return new Options().mode(mode); - } - - /** - * @param snapshotName - */ - public static Options snapshotName(String snapshotName) { - return new Options().snapshotName(snapshotName); - } - - /** - */ - public Output handle() { - return handle; - } - - @Override - @SuppressWarnings("unchecked") - public Output asOutput() { - return (Output) handle; - } - - /** The name of this op, as known by TensorFlow core engine */ - public static final String OP_NAME = "SnapshotDataset"; - - private Output handle; - - private SnapshotDataset(Operation operation) { - super(operation); - int outputIdx = 0; - handle = operation.output(outputIdx++); - } -} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SparseTensorSliceDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SparseTensorSliceDataset.java index fa5b61137ab..b9f5c3a6c72 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SparseTensorSliceDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SparseTensorSliceDataset.java @@ -48,7 +48,7 @@ public static SparseTensorSliceDataset create(Scope scope, Ope opBuilder.addInput(indices.asOutput()); opBuilder.addInput(values.asOutput()); opBuilder.addInput(denseShape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SparseTensorSliceDataset(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SqlDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SqlDataset.java index 59a0a47cd4d..e22c4f13bb1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SqlDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/SqlDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -48,17 +48,13 @@ public final class SqlDataset extends RawOp implements Operand { * @return a new instance of SqlDataset */ @Endpoint(describeByClass = true) - public static SqlDataset create(Scope scope, Operand driverName, Operand dataSourceName, Operand query, List> outputTypes, List outputShapes) { + public static SqlDataset create(Scope scope, Operand driverName, Operand dataSourceName, Operand query, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("SqlDataset", scope.makeOpName("SqlDataset")); opBuilder.addInput(driverName.asOutput()); opBuilder.addInput(dataSourceName.asOutput()); opBuilder.addInput(query.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/StatsAggregatorHandle.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/StatsAggregatorHandle.java index f510b437c7d..5a2f602bf62 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/StatsAggregatorHandle.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/StatsAggregatorHandle.java @@ -70,7 +70,7 @@ private Options() { @Endpoint(describeByClass = true) public static StatsAggregatorHandle create(Scope scope, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("StatsAggregatorHandle", scope.makeOpName("StatsAggregatorHandle")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.container != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/TakeDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/TakeDataset.java index 3229f055924..61d3ebc7916 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/TakeDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/TakeDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -50,16 +50,12 @@ public final class TakeDataset extends RawOp implements Operand { * @return a new instance of TakeDataset */ @Endpoint(describeByClass = true) - public static TakeDataset create(Scope scope, Operand inputDataset, Operand count, List> outputTypes, List outputShapes) { + public static TakeDataset create(Scope scope, Operand inputDataset, Operand count, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("TakeDataset", scope.makeOpName("TakeDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(count.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/TensorDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/TensorDataset.java index 974f9562859..87dd3df1dbd 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/TensorDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/TensorDataset.java @@ -47,7 +47,7 @@ public final class TensorDataset extends RawOp implements Operand { public static TensorDataset create(Scope scope, Iterable> components, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("TensorDataset", scope.makeOpName("TensorDataset")); opBuilder.addInputList(Operands.asOutputs(components)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/TensorSliceDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/TensorSliceDataset.java index 0d0ca40de32..6af845b1176 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/TensorSliceDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/TensorSliceDataset.java @@ -48,7 +48,7 @@ public final class TensorSliceDataset extends RawOp implements Operand { public static TensorSliceDataset create(Scope scope, Iterable> components, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("TensorSliceDataset", scope.makeOpName("TensorSliceDataset")); opBuilder.addInputList(Operands.asOutputs(components)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/TextLineDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/TextLineDataset.java index a80851bb2ed..efa9ea5ba94 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/TextLineDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/TextLineDataset.java @@ -52,7 +52,7 @@ public static TextLineDataset create(Scope scope, Operand filenames, Op opBuilder.addInput(filenames.asOutput()); opBuilder.addInput(compressionType.asOutput()); opBuilder.addInput(bufferSize.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TextLineDataset(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/TfRecordDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/TfRecordDataset.java index 4795e623f82..de774c113b4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/TfRecordDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/TfRecordDataset.java @@ -53,7 +53,7 @@ public static TfRecordDataset create(Scope scope, Operand filenames, Op opBuilder.addInput(filenames.asOutput()); opBuilder.addInput(compressionType.asOutput()); opBuilder.addInput(bufferSize.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TfRecordDataset(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ThreadPoolDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ThreadPoolDataset.java index 0b1ab263ffa..fe1f7d9f859 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ThreadPoolDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ThreadPoolDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -46,16 +46,12 @@ public final class ThreadPoolDataset extends RawOp implements Operand { * @return a new instance of ThreadPoolDataset */ @Endpoint(describeByClass = true) - public static ThreadPoolDataset create(Scope scope, Operand inputDataset, Operand threadPool, List> outputTypes, List outputShapes) { + public static ThreadPoolDataset create(Scope scope, Operand inputDataset, Operand threadPool, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("ThreadPoolDataset", scope.makeOpName("ThreadPoolDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(threadPool.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ThreadPoolHandle.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ThreadPoolHandle.java index 6d9434cdff3..e45932145c1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ThreadPoolHandle.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ThreadPoolHandle.java @@ -84,7 +84,7 @@ private Options() { @Endpoint(describeByClass = true) public static ThreadPoolHandle create(Scope scope, Long numThreads, String displayName, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("ThreadPoolHandle", scope.makeOpName("ThreadPoolHandle")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_threads", numThreads); opBuilder.setAttr("display_name", displayName); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/UnbatchDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/UnbatchDataset.java index 1bca9b693cc..1e8cc5cd305 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/UnbatchDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/UnbatchDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -45,15 +45,11 @@ public final class UnbatchDataset extends RawOp implements Operand { * @return a new instance of UnbatchDataset */ @Endpoint(describeByClass = true) - public static UnbatchDataset create(Scope scope, Operand inputDataset, List> outputTypes, List outputShapes) { + public static UnbatchDataset create(Scope scope, Operand inputDataset, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("UnbatchDataset", scope.makeOpName("UnbatchDataset")); opBuilder.addInput(inputDataset.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/UniqueDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/UniqueDataset.java index 817519ef6f8..6bd918a3db0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/UniqueDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/UniqueDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -45,15 +45,11 @@ public final class UniqueDataset extends RawOp implements Operand { * @return a new instance of UniqueDataset */ @Endpoint(describeByClass = true) - public static UniqueDataset create(Scope scope, Operand inputDataset, List> outputTypes, List outputShapes) { + public static UniqueDataset create(Scope scope, Operand inputDataset, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("UniqueDataset", scope.makeOpName("UniqueDataset")); opBuilder.addInput(inputDataset.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/UnwrapDatasetVariant.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/UnwrapDatasetVariant.java index d5125db92c8..7798ca8c9cd 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/UnwrapDatasetVariant.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/UnwrapDatasetVariant.java @@ -42,7 +42,7 @@ public final class UnwrapDatasetVariant extends RawOp implements Operand public static UnwrapDatasetVariant create(Scope scope, Operand inputHandle) { OperationBuilder opBuilder = scope.env().opBuilder("UnwrapDatasetVariant", scope.makeOpName("UnwrapDatasetVariant")); opBuilder.addInput(inputHandle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new UnwrapDatasetVariant(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/WindowDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/WindowDataset.java index d5edcc917d8..a44807564c1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/WindowDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/WindowDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -98,19 +98,15 @@ public final class WindowDataset extends RawOp implements Operand { * @return a new instance of WindowDataset */ @Endpoint(describeByClass = true) - public static WindowDataset create(Scope scope, Operand inputDataset, Operand size, Operand shift, Operand stride, Operand dropRemainder, List> outputTypes, List outputShapes) { + public static WindowDataset create(Scope scope, Operand inputDataset, Operand size, Operand shift, Operand stride, Operand dropRemainder, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("WindowDataset", scope.makeOpName("WindowDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(size.asOutput()); opBuilder.addInput(shift.asOutput()); opBuilder.addInput(stride.asOutput()); opBuilder.addInput(dropRemainder.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/WrapDatasetVariant.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/WrapDatasetVariant.java index bcea6df7895..58823c1de2c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/WrapDatasetVariant.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/WrapDatasetVariant.java @@ -42,7 +42,7 @@ public final class WrapDatasetVariant extends RawOp implements Operand { public static WrapDatasetVariant create(Scope scope, Operand inputHandle) { OperationBuilder opBuilder = scope.env().opBuilder("WrapDatasetVariant", scope.makeOpName("WrapDatasetVariant")); opBuilder.addInput(inputHandle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new WrapDatasetVariant(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ZipDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ZipDataset.java index d4f54946f5f..47dd0be0775 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ZipDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ZipDataset.java @@ -18,7 +18,6 @@ package org.tensorflow.op.data; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; @@ -53,15 +52,11 @@ public final class ZipDataset extends RawOp implements Operand { * @return a new instance of ZipDataset */ @Endpoint(describeByClass = true) - public static ZipDataset create(Scope scope, Iterable> inputDatasets, List> outputTypes, List outputShapes) { + public static ZipDataset create(Scope scope, Iterable> inputDatasets, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("ZipDataset", scope.makeOpName("ZipDataset")); opBuilder.addInputList(Operands.asOutputs(inputDatasets)); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/AssertCardinalityDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/AssertCardinalityDataset.java index 96c02bf5fc1..8ab5989b44b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/AssertCardinalityDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/AssertCardinalityDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data.experimental; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -46,16 +46,12 @@ public final class AssertCardinalityDataset extends RawOp implements Operand inputDataset, Operand cardinality, List> outputTypes, List outputShapes) { + public static AssertCardinalityDataset create(Scope scope, Operand inputDataset, Operand cardinality, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("AssertCardinalityDataset", scope.makeOpName("AssertCardinalityDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(cardinality.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/AssertNextDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/AssertNextDataset.java index cd0c5300df6..2483e971723 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/AssertNextDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/AssertNextDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data.experimental; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -46,16 +46,12 @@ public final class AssertNextDataset extends RawOp implements Operand { * @return a new instance of AssertNextDataset */ @Endpoint(describeByClass = true) - public static AssertNextDataset create(Scope scope, Operand inputDataset, Operand transformations, List> outputTypes, List outputShapes) { + public static AssertNextDataset create(Scope scope, Operand inputDataset, Operand transformations, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalAssertNextDataset", scope.makeOpName("AssertNextDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(transformations.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/AutoShardDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/AutoShardDataset.java index 3c1eb053091..fc630d53919 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/AutoShardDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/AutoShardDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data.experimental; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -76,17 +76,13 @@ private Options() { * @return a new instance of AutoShardDataset */ @Endpoint(describeByClass = true) - public static AutoShardDataset create(Scope scope, Operand inputDataset, Operand numWorkers, Operand index, List> outputTypes, List outputShapes, Options... options) { + public static AutoShardDataset create(Scope scope, Operand inputDataset, Operand numWorkers, Operand index, List> outputTypes, List outputShapes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalAutoShardDataset", scope.makeOpName("AutoShardDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(numWorkers.asOutput()); opBuilder.addInput(index.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/BytesProducedStatsDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/BytesProducedStatsDataset.java index 7fe1290b130..76a5a96f895 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/BytesProducedStatsDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/BytesProducedStatsDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data.experimental; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -47,16 +47,12 @@ public final class BytesProducedStatsDataset extends RawOp implements Operand inputDataset, Operand tag, List> outputTypes, List outputShapes) { + public static BytesProducedStatsDataset create(Scope scope, Operand inputDataset, Operand tag, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalBytesProducedStatsDataset", scope.makeOpName("BytesProducedStatsDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(tag.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/CSVDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/CSVDataset.java index d0498612cde..b9af7f275db 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/CSVDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/CSVDataset.java @@ -65,7 +65,7 @@ public static CSVDataset create(Scope scope, Operand filenames, Operand opBuilder.addInput(naValue.asOutput()); opBuilder.addInput(selectCols.asOutput()); opBuilder.addInputList(Operands.asOutputs(recordDefaults)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/ChooseFastestDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/ChooseFastestDataset.java index f731d948490..b735a535c48 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/ChooseFastestDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/ChooseFastestDataset.java @@ -18,7 +18,6 @@ package org.tensorflow.op.data.experimental; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; @@ -46,16 +45,12 @@ public final class ChooseFastestDataset extends RawOp implements Operand * @return a new instance of ChooseFastestDataset */ @Endpoint(describeByClass = true) - public static ChooseFastestDataset create(Scope scope, Iterable> inputDatasets, Long numExperiments, List> outputTypes, List outputShapes) { + public static ChooseFastestDataset create(Scope scope, Iterable> inputDatasets, Long numExperiments, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalChooseFastestDataset", scope.makeOpName("ChooseFastestDataset")); opBuilder.addInputList(Operands.asOutputs(inputDatasets)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_experiments", numExperiments); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/CompressElement.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/CompressElement.java index 9e4bfb34a8b..d4b0efb4dd3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/CompressElement.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/CompressElement.java @@ -44,7 +44,7 @@ public final class CompressElement extends RawOp implements Operand { public static CompressElement create(Scope scope, Iterable> components) { OperationBuilder opBuilder = scope.env().opBuilder("CompressElement", scope.makeOpName("CompressElement")); opBuilder.addInputList(Operands.asOutputs(components)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new CompressElement(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DataServiceDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DataServiceDataset.java index b3e853f9de4..6307dddf9dc 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DataServiceDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DataServiceDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data.experimental; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -73,7 +73,7 @@ private Options() { * @return a new instance of DataServiceDataset */ @Endpoint(describeByClass = true) - public static DataServiceDataset create(Scope scope, Operand datasetId, Operand processingMode, Operand address, Operand protocol, Operand jobName, Operand maxOutstandingRequests, Operand iterationCounter, List> outputTypes, List outputShapes, Options... options) { + public static DataServiceDataset create(Scope scope, Operand datasetId, Operand processingMode, Operand address, Operand protocol, Operand jobName, Operand maxOutstandingRequests, Operand iterationCounter, List> outputTypes, List outputShapes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("DataServiceDataset", scope.makeOpName("DataServiceDataset")); opBuilder.addInput(datasetId.asOutput()); opBuilder.addInput(processingMode.asOutput()); @@ -82,12 +82,8 @@ public static DataServiceDataset create(Scope scope, Operand datasetId, opBuilder.addInput(jobName.asOutput()); opBuilder.addInput(maxOutstandingRequests.asOutput()); opBuilder.addInput(iterationCounter.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DatasetCardinality.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DatasetCardinality.java index 81ca505ca91..638ef3e1220 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DatasetCardinality.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DatasetCardinality.java @@ -45,7 +45,7 @@ public final class DatasetCardinality extends RawOp implements Operand { public static DatasetCardinality create(Scope scope, Operand inputDataset) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalDatasetCardinality", scope.makeOpName("DatasetCardinality")); opBuilder.addInput(inputDataset.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DatasetCardinality(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DatasetToTFRecord.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DatasetToTFRecord.java index 6e0a0b8f2dc..5c57272415f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DatasetToTFRecord.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DatasetToTFRecord.java @@ -47,7 +47,7 @@ public static DatasetToTFRecord create(Scope scope, Operand inputDataset, Ope opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(filename.asOutput()); opBuilder.addInput(compressionType.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DatasetToTFRecord(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DenseToSparseBatchDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DenseToSparseBatchDataset.java index d464f422836..fd19c2fc45c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DenseToSparseBatchDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DenseToSparseBatchDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data.experimental; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -51,17 +51,13 @@ public final class DenseToSparseBatchDataset extends RawOp implements Operand inputDataset, Operand batchSize, Operand rowShape, List> outputTypes, List outputShapes) { + public static DenseToSparseBatchDataset create(Scope scope, Operand inputDataset, Operand batchSize, Operand rowShape, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalDenseToSparseBatchDataset", scope.makeOpName("DenseToSparseBatchDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(batchSize.asOutput()); opBuilder.addInput(rowShape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DirectedInterleaveDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DirectedInterleaveDataset.java index 63a06a16201..c1bdefa37dc 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DirectedInterleaveDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DirectedInterleaveDataset.java @@ -18,7 +18,6 @@ package org.tensorflow.op.data.experimental; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; @@ -49,16 +48,12 @@ public final class DirectedInterleaveDataset extends RawOp implements Operand selectorInputDataset, Iterable> dataInputDatasets, List> outputTypes, List outputShapes) { + public static DirectedInterleaveDataset create(Scope scope, Operand selectorInputDataset, Iterable> dataInputDatasets, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalDirectedInterleaveDataset", scope.makeOpName("DirectedInterleaveDataset")); opBuilder.addInput(selectorInputDataset.asOutput()); opBuilder.addInputList(Operands.asOutputs(dataInputDatasets)); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DummyIterationCounter.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DummyIterationCounter.java index 72f83847285..1ae74bfc8c9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DummyIterationCounter.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/DummyIterationCounter.java @@ -40,7 +40,7 @@ public final class DummyIterationCounter extends RawOp implements Operand @Endpoint(describeByClass = true) public static DummyIterationCounter create(Scope scope) { OperationBuilder opBuilder = scope.env().opBuilder("DummyIterationCounter", scope.makeOpName("DummyIterationCounter")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DummyIterationCounter(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/IgnoreErrorsDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/IgnoreErrorsDataset.java index 22d734831da..419baa98adf 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/IgnoreErrorsDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/IgnoreErrorsDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data.experimental; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -45,15 +45,11 @@ public final class IgnoreErrorsDataset extends RawOp implements Operand { * @return a new instance of IgnoreErrorsDataset */ @Endpoint(describeByClass = true) - public static IgnoreErrorsDataset create(Scope scope, Operand inputDataset, List> outputTypes, List outputShapes) { + public static IgnoreErrorsDataset create(Scope scope, Operand inputDataset, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalIgnoreErrorsDataset", scope.makeOpName("IgnoreErrorsDataset")); opBuilder.addInput(inputDataset.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/IteratorGetDevice.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/IteratorGetDevice.java index 7602eca94fc..5ee5a398f04 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/IteratorGetDevice.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/IteratorGetDevice.java @@ -43,7 +43,7 @@ public final class IteratorGetDevice extends RawOp implements Operand { public static IteratorGetDevice create(Scope scope, Operand resource) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalIteratorGetDevice", scope.makeOpName("IteratorGetDevice")); opBuilder.addInput(resource.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new IteratorGetDevice(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/LatencyStatsDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/LatencyStatsDataset.java index ad901295c28..1c333d77ac5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/LatencyStatsDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/LatencyStatsDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data.experimental; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -47,16 +47,12 @@ public final class LatencyStatsDataset extends RawOp implements Operand { * @return a new instance of LatencyStatsDataset */ @Endpoint(describeByClass = true) - public static LatencyStatsDataset create(Scope scope, Operand inputDataset, Operand tag, List> outputTypes, List outputShapes) { + public static LatencyStatsDataset create(Scope scope, Operand inputDataset, Operand tag, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalLatencyStatsDataset", scope.makeOpName("LatencyStatsDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(tag.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/LmdbDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/LmdbDataset.java index e6c489833af..4cdb41cc8e3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/LmdbDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/LmdbDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data.experimental; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -45,15 +45,11 @@ public final class LmdbDataset extends RawOp implements Operand { * @return a new instance of LmdbDataset */ @Endpoint(describeByClass = true) - public static LmdbDataset create(Scope scope, Operand filenames, List> outputTypes, List outputShapes) { + public static LmdbDataset create(Scope scope, Operand filenames, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalLMDBDataset", scope.makeOpName("LmdbDataset")); opBuilder.addInput(filenames.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/MatchingFilesDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/MatchingFilesDataset.java index e2e29feeba4..bb33854bea9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/MatchingFilesDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/MatchingFilesDataset.java @@ -43,7 +43,7 @@ public final class MatchingFilesDataset extends RawOp implements Operand public static MatchingFilesDataset create(Scope scope, Operand patterns) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalMatchingFilesDataset", scope.makeOpName("MatchingFilesDataset")); opBuilder.addInput(patterns.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new MatchingFilesDataset(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/MaxIntraOpParallelismDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/MaxIntraOpParallelismDataset.java index fb69729fab0..37d6f3915cc 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/MaxIntraOpParallelismDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/MaxIntraOpParallelismDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data.experimental; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -47,16 +47,12 @@ public final class MaxIntraOpParallelismDataset extends RawOp implements Operand * @return a new instance of MaxIntraOpParallelismDataset */ @Endpoint(describeByClass = true) - public static MaxIntraOpParallelismDataset create(Scope scope, Operand inputDataset, Operand maxIntraOpParallelism, List> outputTypes, List outputShapes) { + public static MaxIntraOpParallelismDataset create(Scope scope, Operand inputDataset, Operand maxIntraOpParallelism, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalMaxIntraOpParallelismDataset", scope.makeOpName("MaxIntraOpParallelismDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(maxIntraOpParallelism.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/NonSerializableDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/NonSerializableDataset.java index 9f07f37f804..ef096a1b19f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/NonSerializableDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/NonSerializableDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data.experimental; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -44,15 +44,11 @@ public final class NonSerializableDataset extends RawOp implements Operand inputDataset, List> outputTypes, List outputShapes) { + public static NonSerializableDataset create(Scope scope, Operand inputDataset, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalNonSerializableDataset", scope.makeOpName("NonSerializableDataset")); opBuilder.addInput(inputDataset.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/ParseExampleDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/ParseExampleDataset.java index 4c24cf99558..eb9aceba455 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/ParseExampleDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/ParseExampleDataset.java @@ -18,7 +18,6 @@ package org.tensorflow.op.data.experimental; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; @@ -102,12 +101,12 @@ private Options() { * @return a new instance of ParseExampleDataset */ @Endpoint(describeByClass = true) - public static ParseExampleDataset create(Scope scope, Operand inputDataset, Operand numParallelCalls, Iterable> denseDefaults, List sparseKeys, List denseKeys, List> sparseTypes, List denseShapes, List> outputTypes, List outputShapes, List> raggedValueTypes, List> raggedSplitTypes, Options... options) { + public static ParseExampleDataset create(Scope scope, Operand inputDataset, Operand numParallelCalls, Iterable> denseDefaults, List sparseKeys, List denseKeys, List> sparseTypes, List denseShapes, List> outputTypes, List outputShapes, List> raggedValueTypes, List> raggedSplitTypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("ParseExampleDatasetV2", scope.makeOpName("ParseExampleDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(numParallelCalls.asOutput()); opBuilder.addInputList(Operands.asOutputs(denseDefaults)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); String[] sparseKeysArray = new String[sparseKeys.size()]; for (int i = 0; i < sparseKeysArray.length; ++i) { sparseKeysArray[i] = sparseKeys.get(i); @@ -118,36 +117,20 @@ public static ParseExampleDataset create(Scope scope, Operand inputDataset, O denseKeysArray[i] = denseKeys.get(i); } opBuilder.setAttr("dense_keys", denseKeysArray); - DataType[] sparseTypesArray = new DataType[sparseTypes.size()]; - for (int i = 0; i < sparseTypesArray.length; ++i) { - sparseTypesArray[i] = sparseTypes.get(i); - } - opBuilder.setAttr("sparse_types", sparseTypesArray); + opBuilder.setAttr("sparse_types", Operands.toDataTypes(sparseTypes)); Shape[] denseShapesArray = new Shape[denseShapes.size()]; for (int i = 0; i < denseShapesArray.length; ++i) { denseShapesArray[i] = denseShapes.get(i); } opBuilder.setAttr("dense_shapes", denseShapesArray); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); } opBuilder.setAttr("output_shapes", outputShapesArray); - DataType[] raggedValueTypesArray = new DataType[raggedValueTypes.size()]; - for (int i = 0; i < raggedValueTypesArray.length; ++i) { - raggedValueTypesArray[i] = raggedValueTypes.get(i); - } - opBuilder.setAttr("ragged_value_types", raggedValueTypesArray); - DataType[] raggedSplitTypesArray = new DataType[raggedSplitTypes.size()]; - for (int i = 0; i < raggedSplitTypesArray.length; ++i) { - raggedSplitTypesArray[i] = raggedSplitTypes.get(i); - } - opBuilder.setAttr("ragged_split_types", raggedSplitTypesArray); + opBuilder.setAttr("ragged_value_types", Operands.toDataTypes(raggedValueTypes)); + opBuilder.setAttr("ragged_split_types", Operands.toDataTypes(raggedSplitTypes)); if (options != null) { for (Options opts : options) { if (opts.deterministic != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/PrivateThreadPoolDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/PrivateThreadPoolDataset.java index a52fd41140e..bc0a4750675 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/PrivateThreadPoolDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/PrivateThreadPoolDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data.experimental; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -47,16 +47,12 @@ public final class PrivateThreadPoolDataset extends RawOp implements Operand inputDataset, Operand numThreads, List> outputTypes, List outputShapes) { + public static PrivateThreadPoolDataset create(Scope scope, Operand inputDataset, Operand numThreads, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalPrivateThreadPoolDataset", scope.makeOpName("PrivateThreadPoolDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(numThreads.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/RandomDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/RandomDataset.java index 8f9109ab3d5..435d331f68e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/RandomDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/RandomDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data.experimental; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -49,16 +49,12 @@ public final class RandomDataset extends RawOp implements Operand { * @return a new instance of RandomDataset */ @Endpoint(describeByClass = true) - public static RandomDataset create(Scope scope, Operand seed, Operand seed2, List> outputTypes, List outputShapes) { + public static RandomDataset create(Scope scope, Operand seed, Operand seed2, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalRandomDataset", scope.makeOpName("RandomDataset")); opBuilder.addInput(seed.asOutput()); opBuilder.addInput(seed2.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/RebatchDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/RebatchDataset.java index 6111166128e..219f9bd44b4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/RebatchDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/RebatchDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data.experimental; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -72,16 +72,12 @@ private Options() { * @return a new instance of RebatchDataset */ @Endpoint(describeByClass = true) - public static RebatchDataset create(Scope scope, Operand inputDataset, Operand numReplicas, List> outputTypes, List outputShapes, Options... options) { + public static RebatchDataset create(Scope scope, Operand inputDataset, Operand numReplicas, List> outputTypes, List outputShapes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalRebatchDataset", scope.makeOpName("RebatchDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(numReplicas.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/SetStatsAggregatorDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/SetStatsAggregatorDataset.java index e2535dcecd7..b87aa6597ea 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/SetStatsAggregatorDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/SetStatsAggregatorDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data.experimental; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -48,18 +48,14 @@ public final class SetStatsAggregatorDataset extends RawOp implements Operand inputDataset, Operand statsAggregator, Operand tag, Operand counterPrefix, List> outputTypes, List outputShapes) { + public static SetStatsAggregatorDataset create(Scope scope, Operand inputDataset, Operand statsAggregator, Operand tag, Operand counterPrefix, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalSetStatsAggregatorDataset", scope.makeOpName("SetStatsAggregatorDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(statsAggregator.asOutput()); opBuilder.addInput(tag.asOutput()); opBuilder.addInput(counterPrefix.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/SleepDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/SleepDataset.java index 97ddeb96999..4fac4cfc637 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/SleepDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/SleepDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data.experimental; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -46,16 +46,12 @@ public final class SleepDataset extends RawOp implements Operand { * @return a new instance of SleepDataset */ @Endpoint(describeByClass = true) - public static SleepDataset create(Scope scope, Operand inputDataset, Operand sleepMicroseconds, List> outputTypes, List outputShapes) { + public static SleepDataset create(Scope scope, Operand inputDataset, Operand sleepMicroseconds, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalSleepDataset", scope.makeOpName("SleepDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(sleepMicroseconds.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/SlidingWindowDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/SlidingWindowDataset.java index b8dbded85e9..85dde0defb6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/SlidingWindowDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/SlidingWindowDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data.experimental; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -52,18 +52,14 @@ public final class SlidingWindowDataset extends RawOp implements Operand * @return a new instance of SlidingWindowDataset */ @Endpoint(describeByClass = true) - public static SlidingWindowDataset create(Scope scope, Operand inputDataset, Operand windowSize, Operand windowShift, Operand windowStride, List> outputTypes, List outputShapes) { + public static SlidingWindowDataset create(Scope scope, Operand inputDataset, Operand windowSize, Operand windowShift, Operand windowStride, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalSlidingWindowDataset", scope.makeOpName("SlidingWindowDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(windowSize.asOutput()); opBuilder.addInput(windowShift.asOutput()); opBuilder.addInput(windowStride.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/SqlDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/SqlDataset.java index a68f46a5c08..6964f134918 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/SqlDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/SqlDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data.experimental; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -48,17 +48,13 @@ public final class SqlDataset extends RawOp implements Operand { * @return a new instance of SqlDataset */ @Endpoint(describeByClass = true) - public static SqlDataset create(Scope scope, Operand driverName, Operand dataSourceName, Operand query, List> outputTypes, List outputShapes) { + public static SqlDataset create(Scope scope, Operand driverName, Operand dataSourceName, Operand query, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalSqlDataset", scope.makeOpName("SqlDataset")); opBuilder.addInput(driverName.asOutput()); opBuilder.addInput(dataSourceName.asOutput()); opBuilder.addInput(query.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/StatsAggregatorHandle.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/StatsAggregatorHandle.java index ec2e57ae4e7..b0443fd6b5d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/StatsAggregatorHandle.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/StatsAggregatorHandle.java @@ -69,7 +69,7 @@ private Options() { @Endpoint(describeByClass = true) public static StatsAggregatorHandle create(Scope scope, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("StatsAggregatorHandleV2", scope.makeOpName("StatsAggregatorHandle")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.container != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/StatsAggregatorSetSummaryWriter.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/StatsAggregatorSetSummaryWriter.java index 1af246d8313..12a27ab77c7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/StatsAggregatorSetSummaryWriter.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/StatsAggregatorSetSummaryWriter.java @@ -43,7 +43,7 @@ public static StatsAggregatorSetSummaryWriter create(Scope scope, Operand sta OperationBuilder opBuilder = scope.env().opBuilder("StatsAggregatorSetSummaryWriter", scope.makeOpName("StatsAggregatorSetSummaryWriter")); opBuilder.addInput(statsAggregator.asOutput()); opBuilder.addInput(summary.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new StatsAggregatorSetSummaryWriter(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/StatsAggregatorSummary.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/StatsAggregatorSummary.java index a24bfdbaada..d259ccd5712 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/StatsAggregatorSummary.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/StatsAggregatorSummary.java @@ -43,7 +43,7 @@ public final class StatsAggregatorSummary extends RawOp implements Operand iterator) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalStatsAggregatorSummary", scope.makeOpName("StatsAggregatorSummary")); opBuilder.addInput(iterator.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new StatsAggregatorSummary(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/ThreadPoolDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/ThreadPoolDataset.java index e3fdc2b92cf..fb2af7e60a7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/ThreadPoolDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/ThreadPoolDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data.experimental; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -46,16 +46,12 @@ public final class ThreadPoolDataset extends RawOp implements Operand { * @return a new instance of ThreadPoolDataset */ @Endpoint(describeByClass = true) - public static ThreadPoolDataset create(Scope scope, Operand inputDataset, Operand threadPool, List> outputTypes, List outputShapes) { + public static ThreadPoolDataset create(Scope scope, Operand inputDataset, Operand threadPool, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalThreadPoolDataset", scope.makeOpName("ThreadPoolDataset")); opBuilder.addInput(inputDataset.asOutput()); opBuilder.addInput(threadPool.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/ThreadPoolHandle.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/ThreadPoolHandle.java index 15adc678211..c378b9fcf76 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/ThreadPoolHandle.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/ThreadPoolHandle.java @@ -84,7 +84,7 @@ private Options() { @Endpoint(describeByClass = true) public static ThreadPoolHandle create(Scope scope, Long numThreads, String displayName, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalThreadPoolHandle", scope.makeOpName("ThreadPoolHandle")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_threads", numThreads); opBuilder.setAttr("display_name", displayName); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/UnbatchDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/UnbatchDataset.java index dfa611faa0e..c00d3fe5470 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/UnbatchDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/UnbatchDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data.experimental; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -45,15 +45,11 @@ public final class UnbatchDataset extends RawOp implements Operand { * @return a new instance of UnbatchDataset */ @Endpoint(describeByClass = true) - public static UnbatchDataset create(Scope scope, Operand inputDataset, List> outputTypes, List outputShapes) { + public static UnbatchDataset create(Scope scope, Operand inputDataset, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalUnbatchDataset", scope.makeOpName("UnbatchDataset")); opBuilder.addInput(inputDataset.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/UncompressElement.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/UncompressElement.java index c5732154e94..36e07fe069c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/UncompressElement.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/UncompressElement.java @@ -20,12 +20,12 @@ import java.util.Arrays; import java.util.Iterator; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -47,15 +47,11 @@ public final class UncompressElement extends RawOp implements Iterable compressed, List> outputTypes, List outputShapes) { + public static UncompressElement create(Scope scope, Operand compressed, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("UncompressElement", scope.makeOpName("UncompressElement")); opBuilder.addInput(compressed.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/UniqueDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/UniqueDataset.java index eb213348e72..6461c5afafa 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/UniqueDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/UniqueDataset.java @@ -18,12 +18,12 @@ package org.tensorflow.op.data.experimental; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -45,15 +45,11 @@ public final class UniqueDataset extends RawOp implements Operand { * @return a new instance of UniqueDataset */ @Endpoint(describeByClass = true) - public static UniqueDataset create(Scope scope, Operand inputDataset, List> outputTypes, List outputShapes) { + public static UniqueDataset create(Scope scope, Operand inputDataset, List> outputTypes, List outputShapes) { OperationBuilder opBuilder = scope.env().opBuilder("ExperimentalUniqueDataset", scope.makeOpName("UniqueDataset")); opBuilder.addInput(inputDataset.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] outputTypesArray = new DataType[outputTypes.size()]; - for (int i = 0; i < outputTypesArray.length; ++i) { - outputTypesArray[i] = outputTypes.get(i); - } - opBuilder.setAttr("output_types", outputTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); Shape[] outputShapesArray = new Shape[outputShapes.size()]; for (int i = 0; i < outputShapesArray.length; ++i) { outputShapesArray[i] = outputShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/CheckNumerics.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/CheckNumerics.java index e26417c561d..a24bde53102 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/CheckNumerics.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/CheckNumerics.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Checks a tensor for NaN, -Inf and +Inf values. @@ -52,7 +51,7 @@ public final class CheckNumerics extends RawOp implements Ope public static CheckNumerics create(Scope scope, Operand tensor, String message) { OperationBuilder opBuilder = scope.env().opBuilder("CheckNumericsV2", scope.makeOpName("CheckNumerics")); opBuilder.addInput(tensor.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("message", message); return new CheckNumerics(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugGradientIdentity.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugGradientIdentity.java index 4214a50ab41..f5357beefd9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugGradientIdentity.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugGradientIdentity.java @@ -49,7 +49,7 @@ public final class DebugGradientIdentity extends RawOp implemen public static DebugGradientIdentity create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("DebugGradientIdentity", scope.makeOpName("DebugGradientIdentity")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DebugGradientIdentity(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugGradientRefIdentity.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugGradientRefIdentity.java index fb4a1d4cfef..6d980f76706 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugGradientRefIdentity.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugGradientRefIdentity.java @@ -49,7 +49,7 @@ public final class DebugGradientRefIdentity extends RawOp imple public static DebugGradientRefIdentity create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("DebugGradientRefIdentity", scope.makeOpName("DebugGradientRefIdentity")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DebugGradientRefIdentity(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugIdentity.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugIdentity.java index 14f719c90f8..ea516aac2e6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugIdentity.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugIdentity.java @@ -133,7 +133,7 @@ private Options() { public static DebugIdentity create(Scope scope, Operand input, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("DebugIdentityV2", scope.makeOpName("DebugIdentity")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.tfdbgContextId != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugNanCount.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugNanCount.java index 30bc6931743..72c0222dbe4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugNanCount.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugNanCount.java @@ -100,7 +100,7 @@ private Options() { public static DebugNanCount create(Scope scope, Operand input, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("DebugNanCount", scope.makeOpName("DebugNanCount")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.deviceName != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugNumericsSummary.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugNumericsSummary.java index 85c20b1eef0..281d59d21c8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugNumericsSummary.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugNumericsSummary.java @@ -17,11 +17,11 @@ package org.tensorflow.op.debugging; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -132,11 +132,11 @@ private Options() { * @return a new instance of DebugNumericsSummary */ @Endpoint(describeByClass = true) - public static DebugNumericsSummary create(Scope scope, Operand input, DataType outputDtype, Options... options) { + public static DebugNumericsSummary create(Scope scope, Operand input, Class outputDtype, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("DebugNumericSummaryV2", scope.makeOpName("DebugNumericsSummary")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("output_dtype", outputDtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_dtype", Operands.toDataType(outputDtype)); if (options != null) { for (Options opts : options) { if (opts.tensorDebugMode != null) { @@ -160,7 +160,7 @@ public static DebugNumericsSummary creat */ @Endpoint(describeByClass = true) public static DebugNumericsSummary create(Scope scope, Operand input, Options... options) { - return create(scope, input, TFloat32.DTYPE, options); + return create(scope, input, TFloat32.class, options); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/dtypes/AsString.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/dtypes/AsString.java index 9d95a0ee6a0..d81e8b6a386 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/dtypes/AsString.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/dtypes/AsString.java @@ -119,7 +119,7 @@ private Options() { public static AsString create(Scope scope, Operand input, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("AsString", scope.makeOpName("AsString")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.precision != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/dtypes/Cast.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/dtypes/Cast.java index 49699f07c8c..502d0e564e3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/dtypes/Cast.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/dtypes/Cast.java @@ -17,11 +17,11 @@ package org.tensorflow.op.dtypes; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -65,11 +65,11 @@ private Options() { * @return a new instance of Cast */ @Endpoint(describeByClass = true) - public static Cast create(Scope scope, Operand x, DataType DstT, Options... options) { + public static Cast create(Scope scope, Operand x, Class DstT, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("Cast", scope.makeOpName("Cast")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("DstT", DstT); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("DstT", Operands.toDataType(DstT)); if (options != null) { for (Options opts : options) { if (opts.Truncate != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/dtypes/Complex.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/dtypes/Complex.java index 5e8918785a0..126d26f5945 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/dtypes/Complex.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/dtypes/Complex.java @@ -17,11 +17,11 @@ package org.tensorflow.op.dtypes; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -62,12 +62,12 @@ public final class Complex extends RawOp implements Operand * @return a new instance of Complex */ @Endpoint(describeByClass = true) - public static Complex create(Scope scope, Operand real, Operand imag, DataType Tout) { + public static Complex create(Scope scope, Operand real, Operand imag, Class Tout) { OperationBuilder opBuilder = scope.env().opBuilder("Complex", scope.makeOpName("Complex")); opBuilder.addInput(real.asOutput()); opBuilder.addInput(imag.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("Tout", Tout); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("Tout", Operands.toDataType(Tout)); return new Complex(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/dtypes/ToBool.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/dtypes/ToBool.java index 72b3d46d00c..c531daca7f5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/dtypes/ToBool.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/dtypes/ToBool.java @@ -57,7 +57,7 @@ public final class ToBool extends RawOp implements Operand { public static ToBool create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("ToBool", scope.makeOpName("ToBool")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ToBool(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesAggregateStats.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesAggregateStats.java index ac772ea4ae0..5991fee593d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesAggregateStats.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesAggregateStats.java @@ -54,7 +54,7 @@ public static BoostedTreesAggregateStats create(Scope scope, Operand nod opBuilder.addInput(gradients.asOutput()); opBuilder.addInput(hessians.asOutput()); opBuilder.addInput(feature.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("max_splits", maxSplits); opBuilder.setAttr("num_buckets", numBuckets); return new BoostedTreesAggregateStats(opBuilder.build()); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesBucketize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesBucketize.java index 6d57706c19e..6bf473c044a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesBucketize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesBucketize.java @@ -54,7 +54,7 @@ public static BoostedTreesBucketize create(Scope scope, Iterable treeEnsemble opBuilder.addInput(meanHessians.asOutput()); opBuilder.addInput(l1.asOutput()); opBuilder.addInput(l2.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BoostedTreesCenterBias(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesCreateEnsemble.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesCreateEnsemble.java index 8841988b36d..530b49b4db2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesCreateEnsemble.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesCreateEnsemble.java @@ -47,7 +47,7 @@ public static BoostedTreesCreateEnsemble create(Scope scope, Operand treeEnse opBuilder.addInput(treeEnsembleHandle.asOutput()); opBuilder.addInput(stampToken.asOutput()); opBuilder.addInput(treeEnsembleSerialized.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BoostedTreesCreateEnsemble(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesCreateQuantileStreamResource.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesCreateQuantileStreamResource.java index 802a61ecb2a..f1983f2d01c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesCreateQuantileStreamResource.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesCreateQuantileStreamResource.java @@ -67,7 +67,7 @@ public static BoostedTreesCreateQuantileStreamResource create(Scope scope, Opera opBuilder.addInput(quantileStreamResourceHandle.asOutput()); opBuilder.addInput(epsilon.asOutput()); opBuilder.addInput(numStreams.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.maxElements != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesDeserializeEnsemble.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesDeserializeEnsemble.java index 15371fb4df9..269095b3297 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesDeserializeEnsemble.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesDeserializeEnsemble.java @@ -49,7 +49,7 @@ public static BoostedTreesDeserializeEnsemble create(Scope scope, Operand tre opBuilder.addInput(treeEnsembleHandle.asOutput()); opBuilder.addInput(stampToken.asOutput()); opBuilder.addInput(treeEnsembleSerialized.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BoostedTreesDeserializeEnsemble(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesEnsembleResourceHandleOp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesEnsembleResourceHandleOp.java index 13522dd2fd0..33d537e65f2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesEnsembleResourceHandleOp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesEnsembleResourceHandleOp.java @@ -70,7 +70,7 @@ private Options() { @Endpoint(describeByClass = true) public static BoostedTreesEnsembleResourceHandleOp create(Scope scope, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("BoostedTreesEnsembleResourceHandleOp", scope.makeOpName("BoostedTreesEnsembleResourceHandleOp")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.container != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesExampleDebugOutputs.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesExampleDebugOutputs.java index 8618f401ce4..efc8b1d18b3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesExampleDebugOutputs.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesExampleDebugOutputs.java @@ -54,7 +54,7 @@ public static BoostedTreesExampleDebugOutputs create(Scope scope, Operand tre OperationBuilder opBuilder = scope.env().opBuilder("BoostedTreesExampleDebugOutputs", scope.makeOpName("BoostedTreesExampleDebugOutputs")); opBuilder.addInput(treeEnsembleHandle.asOutput()); opBuilder.addInputList(Operands.asOutputs(bucketizedFeatures)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("logits_dimension", logitsDimension); return new BoostedTreesExampleDebugOutputs(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesFlushQuantileSummaries.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesFlushQuantileSummaries.java index d22acc2ca1b..4938265cc16 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesFlushQuantileSummaries.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesFlushQuantileSummaries.java @@ -51,7 +51,7 @@ public final class BoostedTreesFlushQuantileSummaries extends RawOp implements I public static BoostedTreesFlushQuantileSummaries create(Scope scope, Operand quantileStreamResourceHandle, Long numFeatures) { OperationBuilder opBuilder = scope.env().opBuilder("BoostedTreesFlushQuantileSummaries", scope.makeOpName("BoostedTreesFlushQuantileSummaries")); opBuilder.addInput(quantileStreamResourceHandle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_features", numFeatures); return new BoostedTreesFlushQuantileSummaries(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesGetEnsembleStates.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesGetEnsembleStates.java index 36e8eb3c4be..08f3aced676 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesGetEnsembleStates.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesGetEnsembleStates.java @@ -44,7 +44,7 @@ public final class BoostedTreesGetEnsembleStates extends RawOp { public static BoostedTreesGetEnsembleStates create(Scope scope, Operand treeEnsembleHandle) { OperationBuilder opBuilder = scope.env().opBuilder("BoostedTreesGetEnsembleStates", scope.makeOpName("BoostedTreesGetEnsembleStates")); opBuilder.addInput(treeEnsembleHandle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BoostedTreesGetEnsembleStates(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesMakeQuantileSummaries.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesMakeQuantileSummaries.java index cf4156bb2ce..20c5aefea81 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesMakeQuantileSummaries.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesMakeQuantileSummaries.java @@ -54,7 +54,7 @@ public static BoostedTreesMakeQuantileSummaries create(Scope scope, Iterable n opBuilder.addInput(gradients.asOutput()); opBuilder.addInput(hessians.asOutput()); opBuilder.addInputList(Operands.asOutputs(bucketizedFeaturesList)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("max_splits", maxSplits); opBuilder.setAttr("num_buckets", numBuckets); return new BoostedTreesMakeStatsSummary(opBuilder.build()); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesPredict.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesPredict.java index e9c7d4a2be1..c1363d21a6f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesPredict.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesPredict.java @@ -53,7 +53,7 @@ public static BoostedTreesPredict create(Scope scope, Operand treeEnsembleHan OperationBuilder opBuilder = scope.env().opBuilder("BoostedTreesPredict", scope.makeOpName("BoostedTreesPredict")); opBuilder.addInput(treeEnsembleHandle.asOutput()); opBuilder.addInputList(Operands.asOutputs(bucketizedFeatures)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("logits_dimension", logitsDimension); return new BoostedTreesPredict(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesQuantileStreamResourceAddSummaries.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesQuantileStreamResourceAddSummaries.java index 418ff3b2ff6..d892cd3911e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesQuantileStreamResourceAddSummaries.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesQuantileStreamResourceAddSummaries.java @@ -49,7 +49,7 @@ public static BoostedTreesQuantileStreamResourceAddSummaries create(Scope scope, OperationBuilder opBuilder = scope.env().opBuilder("BoostedTreesQuantileStreamResourceAddSummaries", scope.makeOpName("BoostedTreesQuantileStreamResourceAddSummaries")); opBuilder.addInput(quantileStreamResourceHandle.asOutput()); opBuilder.addInputList(Operands.asOutputs(summaries)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BoostedTreesQuantileStreamResourceAddSummaries(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesQuantileStreamResourceDeserialize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesQuantileStreamResourceDeserialize.java index 6efb58ed60c..600c960b82f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesQuantileStreamResourceDeserialize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesQuantileStreamResourceDeserialize.java @@ -47,7 +47,7 @@ public static BoostedTreesQuantileStreamResourceDeserialize create(Scope scope, OperationBuilder opBuilder = scope.env().opBuilder("BoostedTreesQuantileStreamResourceDeserialize", scope.makeOpName("BoostedTreesQuantileStreamResourceDeserialize")); opBuilder.addInput(quantileStreamResourceHandle.asOutput()); opBuilder.addInputList(Operands.asOutputs(bucketBoundaries)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BoostedTreesQuantileStreamResourceDeserialize(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesQuantileStreamResourceFlush.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesQuantileStreamResourceFlush.java index cc10434a582..e11545a2160 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesQuantileStreamResourceFlush.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesQuantileStreamResourceFlush.java @@ -71,7 +71,7 @@ public static BoostedTreesQuantileStreamResourceFlush create(Scope scope, Operan OperationBuilder opBuilder = scope.env().opBuilder("BoostedTreesQuantileStreamResourceFlush", scope.makeOpName("BoostedTreesQuantileStreamResourceFlush")); opBuilder.addInput(quantileStreamResourceHandle.asOutput()); opBuilder.addInput(numBuckets.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.generateQuantiles != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesQuantileStreamResourceGetBucketBoundaries.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesQuantileStreamResourceGetBucketBoundaries.java index 5d421152254..e5692091bc9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesQuantileStreamResourceGetBucketBoundaries.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesQuantileStreamResourceGetBucketBoundaries.java @@ -50,7 +50,7 @@ public final class BoostedTreesQuantileStreamResourceGetBucketBoundaries extends public static BoostedTreesQuantileStreamResourceGetBucketBoundaries create(Scope scope, Operand quantileStreamResourceHandle, Long numFeatures) { OperationBuilder opBuilder = scope.env().opBuilder("BoostedTreesQuantileStreamResourceGetBucketBoundaries", scope.makeOpName("BoostedTreesQuantileStreamResourceGetBucketBoundaries")); opBuilder.addInput(quantileStreamResourceHandle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_features", numFeatures); return new BoostedTreesQuantileStreamResourceGetBucketBoundaries(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesQuantileStreamResourceHandleOp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesQuantileStreamResourceHandleOp.java index db925d767f9..cfc56887f64 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesQuantileStreamResourceHandleOp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesQuantileStreamResourceHandleOp.java @@ -70,7 +70,7 @@ private Options() { @Endpoint(describeByClass = true) public static BoostedTreesQuantileStreamResourceHandleOp create(Scope scope, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("BoostedTreesQuantileStreamResourceHandleOp", scope.makeOpName("BoostedTreesQuantileStreamResourceHandleOp")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.container != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesSerializeEnsemble.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesSerializeEnsemble.java index 287c9e9054a..475c0eded18 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesSerializeEnsemble.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesSerializeEnsemble.java @@ -44,7 +44,7 @@ public final class BoostedTreesSerializeEnsemble extends RawOp { public static BoostedTreesSerializeEnsemble create(Scope scope, Operand treeEnsembleHandle) { OperationBuilder opBuilder = scope.env().opBuilder("BoostedTreesSerializeEnsemble", scope.makeOpName("BoostedTreesSerializeEnsemble")); opBuilder.addInput(treeEnsembleHandle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BoostedTreesSerializeEnsemble(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesSparseAggregateStats.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesSparseAggregateStats.java index 3923ac0e905..7f1cdd96d82 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesSparseAggregateStats.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesSparseAggregateStats.java @@ -64,7 +64,7 @@ public static BoostedTreesSparseAggregateStats create(Scope scope, Operand treeEns opBuilder.addInput(cachedTreeIds.asOutput()); opBuilder.addInput(cachedNodeIds.asOutput()); opBuilder.addInputList(Operands.asOutputs(bucketizedFeatures)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("logits_dimension", logitsDimension); return new BoostedTreesTrainingPredict(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesUpdateEnsemble.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesUpdateEnsemble.java index e6ddcf3d2da..99c818f679d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesUpdateEnsemble.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesUpdateEnsemble.java @@ -71,7 +71,7 @@ public static BoostedTreesUpdateEnsemble create(Scope scope, Operand treeEnse opBuilder.addInputList(Operands.asOutputs(rightNodeContribs)); opBuilder.addInput(maxDepth.asOutput()); opBuilder.addInput(learningRate.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("pruning_mode", pruningMode); return new BoostedTreesUpdateEnsemble(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesUpdateEnsembleV2.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesUpdateEnsembleV2.java index ceaff116fd1..1395258e233 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesUpdateEnsembleV2.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/BoostedTreesUpdateEnsembleV2.java @@ -97,7 +97,7 @@ public static BoostedTreesUpdateEnsembleV2 create(Scope scope, Operand treeEn opBuilder.addInput(maxDepth.asOutput()); opBuilder.addInput(learningRate.asOutput()); opBuilder.addInput(pruningMode.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.logitsDimension != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/IsBoostedTreesEnsembleInitialized.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/IsBoostedTreesEnsembleInitialized.java index 7bf185408df..d525478a12d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/IsBoostedTreesEnsembleInitialized.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/IsBoostedTreesEnsembleInitialized.java @@ -43,7 +43,7 @@ public final class IsBoostedTreesEnsembleInitialized extends RawOp implements Op public static IsBoostedTreesEnsembleInitialized create(Scope scope, Operand treeEnsembleHandle) { OperationBuilder opBuilder = scope.env().opBuilder("IsBoostedTreesEnsembleInitialized", scope.makeOpName("IsBoostedTreesEnsembleInitialized")); opBuilder.addInput(treeEnsembleHandle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new IsBoostedTreesEnsembleInitialized(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/IsBoostedTreesQuantileStreamResourceInitialized.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/IsBoostedTreesQuantileStreamResourceInitialized.java index 66ad4435dfd..63ec45e9504 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/IsBoostedTreesQuantileStreamResourceInitialized.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/estimator/IsBoostedTreesQuantileStreamResourceInitialized.java @@ -45,7 +45,7 @@ public final class IsBoostedTreesQuantileStreamResourceInitialized extends RawOp public static IsBoostedTreesQuantileStreamResourceInitialized create(Scope scope, Operand quantileStreamResourceHandle) { OperationBuilder opBuilder = scope.env().opBuilder("IsBoostedTreesQuantileStreamResourceInitialized", scope.makeOpName("IsBoostedTreesQuantileStreamResourceInitialized")); opBuilder.addInput(quantileStreamResourceHandle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new IsBoostedTreesQuantileStreamResourceInitialized(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/AdjustContrast.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/AdjustContrast.java index ab5b3f32e61..1c3eb4b86bc 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/AdjustContrast.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/AdjustContrast.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TFloat32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Adjust the contrast of one or more images. @@ -60,7 +59,7 @@ public static AdjustContrast create(Scope scope, Operand< OperationBuilder opBuilder = scope.env().opBuilder("AdjustContrastv2", scope.makeOpName("AdjustContrast")); opBuilder.addInput(images.asOutput()); opBuilder.addInput(contrastFactor.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new AdjustContrast(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/AdjustHue.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/AdjustHue.java index 2fe15aa50f1..fa9d0e9a50c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/AdjustHue.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/AdjustHue.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TFloat32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Adjust the hue of one or more images. @@ -57,7 +56,7 @@ public static AdjustHue create(Scope scope, Operand im OperationBuilder opBuilder = scope.env().opBuilder("AdjustHue", scope.makeOpName("AdjustHue")); opBuilder.addInput(images.asOutput()); opBuilder.addInput(delta.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new AdjustHue(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/AdjustSaturation.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/AdjustSaturation.java index 03270949652..5c023d89c6b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/AdjustSaturation.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/AdjustSaturation.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TFloat32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Adjust the saturation of one or more images. @@ -57,7 +56,7 @@ public static AdjustSaturation create(Scope scope, Operan OperationBuilder opBuilder = scope.env().opBuilder("AdjustSaturation", scope.makeOpName("AdjustSaturation")); opBuilder.addInput(images.asOutput()); opBuilder.addInput(scale.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new AdjustSaturation(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/CombinedNonMaxSuppression.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/CombinedNonMaxSuppression.java index 42bf54e7143..4b1b82f5585 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/CombinedNonMaxSuppression.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/CombinedNonMaxSuppression.java @@ -110,7 +110,7 @@ public static CombinedNonMaxSuppression create(Scope scope, Operand bo opBuilder.addInput(maxTotalSize.asOutput()); opBuilder.addInput(iouThreshold.asOutput()); opBuilder.addInput(scoreThreshold.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.padPerClass != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/CropAndResize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/CropAndResize.java index f0048c1014b..7724191d9ef 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/CropAndResize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/CropAndResize.java @@ -28,7 +28,6 @@ import org.tensorflow.types.TFloat32; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Extracts crops from the input image tensor and resizes them. @@ -114,7 +113,7 @@ public static CropAndResize create(Scope scope, Operand i opBuilder.addInput(boxes.asOutput()); opBuilder.addInput(boxInd.asOutput()); opBuilder.addInput(cropSize.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.method != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/CropAndResizeGradBoxes.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/CropAndResizeGradBoxes.java index 67263c1e576..82dae7df1e0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/CropAndResizeGradBoxes.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/CropAndResizeGradBoxes.java @@ -28,7 +28,6 @@ import org.tensorflow.types.TFloat32; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the gradient of the crop_and_resize op wrt the input boxes tensor. @@ -85,7 +84,7 @@ public static CropAndResizeGradBoxes create(Scope scope, Ope opBuilder.addInput(image.asOutput()); opBuilder.addInput(boxes.asOutput()); opBuilder.addInput(boxInd.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.method != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/CropAndResizeGradImage.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/CropAndResizeGradImage.java index 6a6415f879d..97cd59a6db6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/CropAndResizeGradImage.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/CropAndResizeGradImage.java @@ -17,11 +17,11 @@ package org.tensorflow.op.image; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -29,7 +29,6 @@ import org.tensorflow.types.TFloat32; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the gradient of the crop_and_resize op wrt the input image tensor. @@ -84,14 +83,14 @@ private Options() { * @return a new instance of CropAndResizeGradImage */ @Endpoint(describeByClass = true) - public static CropAndResizeGradImage create(Scope scope, Operand grads, Operand boxes, Operand boxInd, Operand imageSize, DataType T, Options... options) { + public static CropAndResizeGradImage create(Scope scope, Operand grads, Operand boxes, Operand boxInd, Operand imageSize, Class T, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("CropAndResizeGradImage", scope.makeOpName("CropAndResizeGradImage")); opBuilder.addInput(grads.asOutput()); opBuilder.addInput(boxes.asOutput()); opBuilder.addInput(boxInd.asOutput()); opBuilder.addInput(imageSize.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("T", T); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("T", Operands.toDataType(T)); if (options != null) { for (Options opts : options) { if (opts.method != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodeAndCropJpeg.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodeAndCropJpeg.java index 0c2ac4b1471..cebf06eb326 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodeAndCropJpeg.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodeAndCropJpeg.java @@ -145,7 +145,7 @@ public static DecodeAndCropJpeg create(Scope scope, Operand contents, O OperationBuilder opBuilder = scope.env().opBuilder("DecodeAndCropJpeg", scope.makeOpName("DecodeAndCropJpeg")); opBuilder.addInput(contents.asOutput()); opBuilder.addInput(cropWindow.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.channels != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodeBmp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodeBmp.java index 3801822db4e..72f6920b650 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodeBmp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodeBmp.java @@ -79,7 +79,7 @@ private Options() { public static DecodeBmp create(Scope scope, Operand contents, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("DecodeBmp", scope.makeOpName("DecodeBmp")); opBuilder.addInput(contents.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.channels != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodeGif.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodeGif.java index 7c25b8c5b0c..93f5f6116f3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodeGif.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodeGif.java @@ -54,7 +54,7 @@ public final class DecodeGif extends RawOp implements Operand { public static DecodeGif create(Scope scope, Operand contents) { OperationBuilder opBuilder = scope.env().opBuilder("DecodeGif", scope.makeOpName("DecodeGif")); opBuilder.addInput(contents.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DecodeGif(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodeJpeg.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodeJpeg.java index e2b20460b2e..0c2298f12b6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodeJpeg.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodeJpeg.java @@ -142,7 +142,7 @@ private Options() { public static DecodeJpeg create(Scope scope, Operand contents, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("DecodeJpeg", scope.makeOpName("DecodeJpeg")); opBuilder.addInput(contents.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.channels != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodePng.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodePng.java index 1d97bc54df7..c2eb543f629 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodePng.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodePng.java @@ -17,11 +17,11 @@ package org.tensorflow.op.image; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -29,7 +29,6 @@ import org.tensorflow.types.TString; import org.tensorflow.types.TUint8; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Decode a PNG-encoded image to a uint8 or uint16 tensor. @@ -92,11 +91,11 @@ private Options() { * @return a new instance of DecodePng */ @Endpoint(describeByClass = true) - public static DecodePng create(Scope scope, Operand contents, DataType dtype, Options... options) { + public static DecodePng create(Scope scope, Operand contents, Class dtype, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("DecodePng", scope.makeOpName("DecodePng")); opBuilder.addInput(contents.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); if (options != null) { for (Options opts : options) { if (opts.channels != null) { @@ -117,7 +116,7 @@ public static DecodePng create(Scope scope, Operand create(Scope scope, Operand contents, Options... options) { - return create(scope, contents, TUint8.DTYPE, options); + return create(scope, contents, TUint8.class, options); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DrawBoundingBoxes.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DrawBoundingBoxes.java index ba674376d07..5204c603b31 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DrawBoundingBoxes.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DrawBoundingBoxes.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TFloat32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Draw bounding boxes on a batch of images. @@ -65,7 +64,7 @@ public static DrawBoundingBoxes create(Scope scope, Opera opBuilder.addInput(images.asOutput()); opBuilder.addInput(boxes.asOutput()); opBuilder.addInput(colors.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DrawBoundingBoxes(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/EncodeJpeg.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/EncodeJpeg.java index 920961e1115..ae29290d8a5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/EncodeJpeg.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/EncodeJpeg.java @@ -164,7 +164,7 @@ private Options() { public static EncodeJpeg create(Scope scope, Operand image, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("EncodeJpeg", scope.makeOpName("EncodeJpeg")); opBuilder.addInput(image.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.format != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/EncodeJpegVariableQuality.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/EncodeJpegVariableQuality.java index c07fc341f00..cbd80e29413 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/EncodeJpegVariableQuality.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/EncodeJpegVariableQuality.java @@ -52,7 +52,7 @@ public static EncodeJpegVariableQuality create(Scope scope, Operand imag OperationBuilder opBuilder = scope.env().opBuilder("EncodeJpegVariableQuality", scope.makeOpName("EncodeJpegVariableQuality")); opBuilder.addInput(images.asOutput()); opBuilder.addInput(quality.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new EncodeJpegVariableQuality(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/EncodePng.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/EncodePng.java index cf5b5a0ebc5..cd0e8b89f7b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/EncodePng.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/EncodePng.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TString; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * PNG-encode an image. @@ -86,7 +85,7 @@ private Options() { public static EncodePng create(Scope scope, Operand image, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("EncodePng", scope.makeOpName("EncodePng")); opBuilder.addInput(image.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.compression != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ExtractGlimpse.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ExtractGlimpse.java index 05bc1d924b3..36a3c904689 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ExtractGlimpse.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ExtractGlimpse.java @@ -131,7 +131,7 @@ public static ExtractGlimpse create(Scope scope, Operand input, Operan opBuilder.addInput(input.asOutput()); opBuilder.addInput(size.asOutput()); opBuilder.addInput(offsets.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.centered != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ExtractImagePatches.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ExtractImagePatches.java index d02d422a005..24707b85233 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ExtractImagePatches.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ExtractImagePatches.java @@ -57,7 +57,7 @@ public final class ExtractImagePatches extends RawOp implements public static ExtractImagePatches create(Scope scope, Operand images, List ksizes, List strides, List rates, String padding) { OperationBuilder opBuilder = scope.env().opBuilder("ExtractImagePatches", scope.makeOpName("ExtractImagePatches")); opBuilder.addInput(images.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); long[] ksizesArray = new long[ksizes.size()]; for (int i = 0; i < ksizesArray.length; ++i) { ksizesArray[i] = ksizes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ExtractJpegShape.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ExtractJpegShape.java index dfa8c4ea7b3..bb12cb5cb1a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ExtractJpegShape.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ExtractJpegShape.java @@ -17,11 +17,11 @@ package org.tensorflow.op.image; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -29,7 +29,6 @@ import org.tensorflow.types.TInt32; import org.tensorflow.types.TString; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Extract the shape information of a JPEG-encoded image. @@ -51,11 +50,11 @@ public final class ExtractJpegShape extends RawOp implements * @return a new instance of ExtractJpegShape */ @Endpoint(describeByClass = true) - public static ExtractJpegShape create(Scope scope, Operand contents, DataType outputType) { + public static ExtractJpegShape create(Scope scope, Operand contents, Class outputType) { OperationBuilder opBuilder = scope.env().opBuilder("ExtractJpegShape", scope.makeOpName("ExtractJpegShape")); opBuilder.addInput(contents.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("output_type", outputType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_type", Operands.toDataType(outputType)); return new ExtractJpegShape(opBuilder.build()); } @@ -68,7 +67,7 @@ public static ExtractJpegShape create(Scope scope, Operan */ @Endpoint(describeByClass = true) public static ExtractJpegShape create(Scope scope, Operand contents) { - return create(scope, contents, TInt32.DTYPE); + return create(scope, contents, TInt32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/GenerateBoundingBoxProposals.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/GenerateBoundingBoxProposals.java index e287a419cdd..52a693a5061 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/GenerateBoundingBoxProposals.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/GenerateBoundingBoxProposals.java @@ -89,7 +89,7 @@ public static GenerateBoundingBoxProposals create(Scope scope, Operand opBuilder.addInput(nmsThreshold.asOutput()); opBuilder.addInput(preNmsTopn.asOutput()); opBuilder.addInput(minSize.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.postNmsTopn != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/HsvToRgb.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/HsvToRgb.java index fb752a83518..7934480bad9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/HsvToRgb.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/HsvToRgb.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Convert one or more images from HSV to RGB. @@ -53,7 +52,7 @@ public final class HsvToRgb extends RawOp implements Operand< public static HsvToRgb create(Scope scope, Operand images) { OperationBuilder opBuilder = scope.env().opBuilder("HSVToRGB", scope.makeOpName("HsvToRgb")); opBuilder.addInput(images.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new HsvToRgb(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ImageProjectiveTransformV2.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ImageProjectiveTransformV2.java index 3363d6a9804..5fd57e44754 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ImageProjectiveTransformV2.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ImageProjectiveTransformV2.java @@ -28,7 +28,6 @@ import org.tensorflow.types.TFloat32; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Applies the given transform to each of the images. @@ -81,7 +80,7 @@ public static ImageProjectiveTransformV2 create(Scope sco opBuilder.addInput(images.asOutput()); opBuilder.addInput(transforms.asOutput()); opBuilder.addInput(outputShape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("interpolation", interpolation); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/NearestNeighbors.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/NearestNeighbors.java index f3ad7cb890b..b33577f2e32 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/NearestNeighbors.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/NearestNeighbors.java @@ -53,7 +53,7 @@ public static NearestNeighbors create(Scope scope, Operand points, Ope opBuilder.addInput(points.asOutput()); opBuilder.addInput(centers.asOutput()); opBuilder.addInput(k.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new NearestNeighbors(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/NonMaxSuppression.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/NonMaxSuppression.java index 0745299e34f..0f2e983f786 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/NonMaxSuppression.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/NonMaxSuppression.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Greedily selects a subset of bounding boxes in descending order of score, @@ -108,7 +107,7 @@ public static NonMaxSuppression create(Scope scope, Opera opBuilder.addInput(iouThreshold.asOutput()); opBuilder.addInput(scoreThreshold.asOutput()); opBuilder.addInput(softNmsSigma.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.padToMaxOutputSize != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/NonMaxSuppressionWithOverlaps.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/NonMaxSuppressionWithOverlaps.java index 073aee26ff9..892f9d9bb8b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/NonMaxSuppressionWithOverlaps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/NonMaxSuppressionWithOverlaps.java @@ -73,7 +73,7 @@ public static NonMaxSuppressionWithOverlaps create(Scope scope, Operand QuantizedResizeBilinear create(Scope scope, O opBuilder.addInput(size.asOutput()); opBuilder.addInput(min.asOutput()); opBuilder.addInput(max.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.alignCorners != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/RandomCrop.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/RandomCrop.java index 47d03d63187..133c38eaaa3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/RandomCrop.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/RandomCrop.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Randomly crop `image`. @@ -88,7 +87,7 @@ public static RandomCrop create(Scope scope, Operand i OperationBuilder opBuilder = scope.env().opBuilder("RandomCrop", scope.makeOpName("RandomCrop")); opBuilder.addInput(image.asOutput()); opBuilder.addInput(size.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.seed != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeArea.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeArea.java index 60d1e473ef0..4d998f6cf1b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeArea.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeArea.java @@ -28,7 +28,6 @@ import org.tensorflow.types.TFloat32; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Resize `images` to `size` using area interpolation. @@ -83,7 +82,7 @@ public static ResizeArea create(Scope scope, Operand imag OperationBuilder opBuilder = scope.env().opBuilder("ResizeArea", scope.makeOpName("ResizeArea")); opBuilder.addInput(images.asOutput()); opBuilder.addInput(size.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.alignCorners != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeBicubic.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeBicubic.java index 2519eaa6ea9..ecc156ed9d8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeBicubic.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeBicubic.java @@ -28,7 +28,6 @@ import org.tensorflow.types.TFloat32; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Resize `images` to `size` using bicubic interpolation. @@ -82,7 +81,7 @@ public static ResizeBicubic create(Scope scope, Operand i OperationBuilder opBuilder = scope.env().opBuilder("ResizeBicubic", scope.makeOpName("ResizeBicubic")); opBuilder.addInput(images.asOutput()); opBuilder.addInput(size.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.alignCorners != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeBicubicGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeBicubicGrad.java index 96296cdf33f..e5526a769f3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeBicubicGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeBicubicGrad.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TFloat32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the gradient of bicubic interpolation. @@ -80,7 +79,7 @@ public static ResizeBicubicGrad create(Scope scope, Opera OperationBuilder opBuilder = scope.env().opBuilder("ResizeBicubicGrad", scope.makeOpName("ResizeBicubicGrad")); opBuilder.addInput(grads.asOutput()); opBuilder.addInput(originalImage.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.alignCorners != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeBilinear.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeBilinear.java index d0c28fed013..0c96019b54d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeBilinear.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeBilinear.java @@ -28,7 +28,6 @@ import org.tensorflow.types.TFloat32; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Resize `images` to `size` using bilinear interpolation. @@ -82,7 +81,7 @@ public static ResizeBilinear create(Scope scope, Operand OperationBuilder opBuilder = scope.env().opBuilder("ResizeBilinear", scope.makeOpName("ResizeBilinear")); opBuilder.addInput(images.asOutput()); opBuilder.addInput(size.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.alignCorners != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeBilinearGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeBilinearGrad.java index b8aef51ba30..38c20992da0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeBilinearGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeBilinearGrad.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TFloat32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the gradient of bilinear interpolation. @@ -80,7 +79,7 @@ public static ResizeBilinearGrad create(Scope scope, Oper OperationBuilder opBuilder = scope.env().opBuilder("ResizeBilinearGrad", scope.makeOpName("ResizeBilinearGrad")); opBuilder.addInput(grads.asOutput()); opBuilder.addInput(originalImage.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.alignCorners != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeNearestNeighbor.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeNearestNeighbor.java index dd7865841de..3e4763c692c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeNearestNeighbor.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeNearestNeighbor.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Resize `images` to `size` using nearest neighbor interpolation. @@ -81,7 +80,7 @@ public static ResizeNearestNeighbor create(Scope scope, O OperationBuilder opBuilder = scope.env().opBuilder("ResizeNearestNeighbor", scope.makeOpName("ResizeNearestNeighbor")); opBuilder.addInput(images.asOutput()); opBuilder.addInput(size.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.alignCorners != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeNearestNeighborGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeNearestNeighborGrad.java index 4897c0f9dc6..c3d2dd10e2a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeNearestNeighborGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeNearestNeighborGrad.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the gradient of nearest neighbor interpolation. @@ -80,7 +79,7 @@ public static ResizeNearestNeighborGrad create(Scope scop OperationBuilder opBuilder = scope.env().opBuilder("ResizeNearestNeighborGrad", scope.makeOpName("ResizeNearestNeighborGrad")); opBuilder.addInput(grads.asOutput()); opBuilder.addInput(size.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.alignCorners != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/RgbToHsv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/RgbToHsv.java index acee7a6061e..2746052a7b0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/RgbToHsv.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/RgbToHsv.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Converts one or more images from RGB to HSV. @@ -67,7 +66,7 @@ public final class RgbToHsv extends RawOp implements Operand< public static RgbToHsv create(Scope scope, Operand images) { OperationBuilder opBuilder = scope.env().opBuilder("RGBToHSV", scope.makeOpName("RgbToHsv")); opBuilder.addInput(images.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new RgbToHsv(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/SampleDistortedBoundingBox.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/SampleDistortedBoundingBox.java index 7f83b2ee84c..78a37b37dc2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/SampleDistortedBoundingBox.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/SampleDistortedBoundingBox.java @@ -28,7 +28,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TFloat32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Generate a single randomly distorted bounding box for an image. @@ -167,7 +166,7 @@ public static SampleDistortedBoundingBox create(Scope sco opBuilder.addInput(imageSize.asOutput()); opBuilder.addInput(boundingBoxes.asOutput()); opBuilder.addInput(minObjectCovered.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.seed != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ScaleAndTranslate.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ScaleAndTranslate.java index 26bf544be2e..41d49fd75f2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ScaleAndTranslate.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ScaleAndTranslate.java @@ -28,7 +28,6 @@ import org.tensorflow.types.TFloat32; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** */ @@ -81,7 +80,7 @@ public static ScaleAndTranslate create(Scope scope, Operand< opBuilder.addInput(size.asOutput()); opBuilder.addInput(scale.asOutput()); opBuilder.addInput(translation.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.kernelType != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ScaleAndTranslateGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ScaleAndTranslateGrad.java index 4b8d9b0fc4b..b6f55d1d159 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ScaleAndTranslateGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ScaleAndTranslateGrad.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TFloat32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code output()} output @@ -80,7 +79,7 @@ public static ScaleAndTranslateGrad create(Scope scope, O opBuilder.addInput(originalImage.asOutput()); opBuilder.addInput(scale.asOutput()); opBuilder.addInput(translation.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.kernelType != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodeBase64.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodeBase64.java index db026fd820c..f0034bcc93b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodeBase64.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodeBase64.java @@ -47,7 +47,7 @@ public final class DecodeBase64 extends RawOp implements Operand { public static DecodeBase64 create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("DecodeBase64", scope.makeOpName("DecodeBase64")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DecodeBase64(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodeCompressed.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodeCompressed.java index 745dba6d063..15fc51ba32c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodeCompressed.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodeCompressed.java @@ -72,7 +72,7 @@ private Options() { public static DecodeCompressed create(Scope scope, Operand bytes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("DecodeCompressed", scope.makeOpName("DecodeCompressed")); opBuilder.addInput(bytes.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.compressionType != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodeCsv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodeCsv.java index 6b417cb8717..ad79410ddba 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodeCsv.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodeCsv.java @@ -107,7 +107,7 @@ public static DecodeCsv create(Scope scope, Operand records, Iterable { public static DecodeJsonExample create(Scope scope, Operand jsonExamples) { OperationBuilder opBuilder = scope.env().opBuilder("DecodeJSONExample", scope.makeOpName("DecodeJsonExample")); opBuilder.addInput(jsonExamples.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DecodeJsonExample(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodePaddedRaw.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodePaddedRaw.java index 820b0077ba5..ca41464e1b3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodePaddedRaw.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodePaddedRaw.java @@ -17,11 +17,11 @@ package org.tensorflow.op.io; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -29,7 +29,6 @@ import org.tensorflow.types.TInt32; import org.tensorflow.types.TString; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Reinterpret the bytes of a string as a vector of numbers. @@ -71,12 +70,12 @@ private Options() { * @return a new instance of DecodePaddedRaw */ @Endpoint(describeByClass = true) - public static DecodePaddedRaw create(Scope scope, Operand inputBytes, Operand fixedLength, DataType outType, Options... options) { + public static DecodePaddedRaw create(Scope scope, Operand inputBytes, Operand fixedLength, Class outType, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("DecodePaddedRaw", scope.makeOpName("DecodePaddedRaw")); opBuilder.addInput(inputBytes.asOutput()); opBuilder.addInput(fixedLength.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); if (options != null) { for (Options opts : options) { if (opts.littleEndian != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodeRaw.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodeRaw.java index dfdabfdb466..5ef7da94d51 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodeRaw.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodeRaw.java @@ -17,11 +17,11 @@ package org.tensorflow.op.io; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -68,11 +68,11 @@ private Options() { * @return a new instance of DecodeRaw */ @Endpoint(describeByClass = true) - public static DecodeRaw create(Scope scope, Operand bytes, DataType outType, Options... options) { + public static DecodeRaw create(Scope scope, Operand bytes, Class outType, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("DecodeRaw", scope.makeOpName("DecodeRaw")); opBuilder.addInput(bytes.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); if (options != null) { for (Options opts : options) { if (opts.littleEndian != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DeserializeManySparse.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DeserializeManySparse.java index 8582681c073..9d2e496e50e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DeserializeManySparse.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DeserializeManySparse.java @@ -17,11 +17,11 @@ package org.tensorflow.op.io; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -90,11 +90,11 @@ public final class DeserializeManySparse extends RawOp { * @return a new instance of DeserializeManySparse */ @Endpoint(describeByClass = true) - public static DeserializeManySparse create(Scope scope, Operand serializedSparse, DataType dtype) { + public static DeserializeManySparse create(Scope scope, Operand serializedSparse, Class dtype) { OperationBuilder opBuilder = scope.env().opBuilder("DeserializeManySparse", scope.makeOpName("DeserializeManySparse")); opBuilder.addInput(serializedSparse.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); return new DeserializeManySparse(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/EncodeBase64.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/EncodeBase64.java index ddb331b4a48..2955fea0773 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/EncodeBase64.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/EncodeBase64.java @@ -71,7 +71,7 @@ private Options() { public static EncodeBase64 create(Scope scope, Operand input, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("EncodeBase64", scope.makeOpName("EncodeBase64")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.pad != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/FifoQueue.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/FifoQueue.java index 842985b49e9..0559fbddbf1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/FifoQueue.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/FifoQueue.java @@ -18,12 +18,12 @@ package org.tensorflow.op.io; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -97,14 +97,10 @@ private Options() { * @return a new instance of FifoQueue */ @Endpoint(describeByClass = true) - public static FifoQueue create(Scope scope, List> componentTypes, Options... options) { + public static FifoQueue create(Scope scope, List> componentTypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("FIFOQueueV2", scope.makeOpName("FifoQueue")); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] componentTypesArray = new DataType[componentTypes.size()]; - for (int i = 0; i < componentTypesArray.length; ++i) { - componentTypesArray[i] = componentTypes.get(i); - } - opBuilder.setAttr("component_types", componentTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("component_types", Operands.toDataTypes(componentTypes)); if (options != null) { for (Options opts : options) { if (opts.shapes != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/FixedLengthRecordReader.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/FixedLengthRecordReader.java index 3678b8190b9..8859fe0448d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/FixedLengthRecordReader.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/FixedLengthRecordReader.java @@ -112,7 +112,7 @@ private Options() { @Endpoint(describeByClass = true) public static FixedLengthRecordReader create(Scope scope, Long recordBytes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("FixedLengthRecordReaderV2", scope.makeOpName("FixedLengthRecordReader")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("record_bytes", recordBytes); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/IdentityReader.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/IdentityReader.java index 99ae027a82e..6426ea2bd43 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/IdentityReader.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/IdentityReader.java @@ -76,7 +76,7 @@ private Options() { @Endpoint(describeByClass = true) public static IdentityReader create(Scope scope, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("IdentityReaderV2", scope.makeOpName("IdentityReader")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.container != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/LmdbReader.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/LmdbReader.java index b3b10b2809c..e37786733e2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/LmdbReader.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/LmdbReader.java @@ -73,7 +73,7 @@ private Options() { @Endpoint(describeByClass = true) public static LmdbReader create(Scope scope, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("LMDBReader", scope.makeOpName("LmdbReader")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.container != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/MatchingFiles.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/MatchingFiles.java index ed2b33adea3..48c19fdc3b0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/MatchingFiles.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/MatchingFiles.java @@ -48,7 +48,7 @@ public final class MatchingFiles extends RawOp implements Operand { public static MatchingFiles create(Scope scope, Operand pattern) { OperationBuilder opBuilder = scope.env().opBuilder("MatchingFiles", scope.makeOpName("MatchingFiles")); opBuilder.addInput(pattern.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new MatchingFiles(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/PaddingFifoQueue.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/PaddingFifoQueue.java index b72d8188038..691e35140ca 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/PaddingFifoQueue.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/PaddingFifoQueue.java @@ -18,12 +18,12 @@ package org.tensorflow.op.io; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -105,14 +105,10 @@ private Options() { * @return a new instance of PaddingFifoQueue */ @Endpoint(describeByClass = true) - public static PaddingFifoQueue create(Scope scope, List> componentTypes, Options... options) { + public static PaddingFifoQueue create(Scope scope, List> componentTypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("PaddingFIFOQueueV2", scope.makeOpName("PaddingFifoQueue")); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] componentTypesArray = new DataType[componentTypes.size()]; - for (int i = 0; i < componentTypesArray.length; ++i) { - componentTypesArray[i] = componentTypes.get(i); - } - opBuilder.setAttr("component_types", componentTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("component_types", Operands.toDataTypes(componentTypes)); if (options != null) { for (Options opts : options) { if (opts.shapes != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ParseExample.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ParseExample.java index bd8f0f4a603..bdd66a0a62a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ParseExample.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ParseExample.java @@ -19,7 +19,6 @@ import java.util.Arrays; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; @@ -33,6 +32,7 @@ import org.tensorflow.types.TInt64; import org.tensorflow.types.TString; import org.tensorflow.types.family.TNumber; +import org.tensorflow.types.family.TType; /** * Transforms a vector of tf.Example protos (as strings) into typed tensors. @@ -97,7 +97,7 @@ public final class ParseExample extends RawOp { * @return a new instance of ParseExample */ @Endpoint(describeByClass = true) - public static ParseExample create(Scope scope, Operand serialized, Operand names, Operand sparseKeys, Operand denseKeys, Operand raggedKeys, Iterable> denseDefaults, Long numSparse, List> sparseTypes, List> raggedValueTypes, List> raggedSplitTypes, List denseShapes) { + public static ParseExample create(Scope scope, Operand serialized, Operand names, Operand sparseKeys, Operand denseKeys, Operand raggedKeys, Iterable> denseDefaults, Long numSparse, List> sparseTypes, List> raggedValueTypes, List> raggedSplitTypes, List denseShapes) { OperationBuilder opBuilder = scope.env().opBuilder("ParseExampleV2", scope.makeOpName("ParseExample")); opBuilder.addInput(serialized.asOutput()); opBuilder.addInput(names.asOutput()); @@ -105,23 +105,11 @@ public static ParseExample create(Scope scope, Operand serialized, Oper opBuilder.addInput(denseKeys.asOutput()); opBuilder.addInput(raggedKeys.asOutput()); opBuilder.addInputList(Operands.asOutputs(denseDefaults)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_sparse", numSparse); - DataType[] sparseTypesArray = new DataType[sparseTypes.size()]; - for (int i = 0; i < sparseTypesArray.length; ++i) { - sparseTypesArray[i] = sparseTypes.get(i); - } - opBuilder.setAttr("sparse_types", sparseTypesArray); - DataType[] raggedValueTypesArray = new DataType[raggedValueTypes.size()]; - for (int i = 0; i < raggedValueTypesArray.length; ++i) { - raggedValueTypesArray[i] = raggedValueTypes.get(i); - } - opBuilder.setAttr("ragged_value_types", raggedValueTypesArray); - DataType[] raggedSplitTypesArray = new DataType[raggedSplitTypes.size()]; - for (int i = 0; i < raggedSplitTypesArray.length; ++i) { - raggedSplitTypesArray[i] = raggedSplitTypes.get(i); - } - opBuilder.setAttr("ragged_split_types", raggedSplitTypesArray); + opBuilder.setAttr("sparse_types", Operands.toDataTypes(sparseTypes)); + opBuilder.setAttr("ragged_value_types", Operands.toDataTypes(raggedValueTypes)); + opBuilder.setAttr("ragged_split_types", Operands.toDataTypes(raggedSplitTypes)); Shape[] denseShapesArray = new Shape[denseShapes.size()]; for (int i = 0; i < denseShapesArray.length; ++i) { denseShapesArray[i] = denseShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ParseSequenceExample.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ParseSequenceExample.java index 1c10b138c55..b4c9479d7c7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ParseSequenceExample.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ParseSequenceExample.java @@ -19,7 +19,6 @@ import java.util.Arrays; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; @@ -34,6 +33,7 @@ import org.tensorflow.types.TInt64; import org.tensorflow.types.TString; import org.tensorflow.types.family.TNumber; +import org.tensorflow.types.family.TType; /** * Transforms a vector of tf.io.SequenceExample protos (as strings) into @@ -153,7 +153,7 @@ private Options() { * @return a new instance of ParseSequenceExample */ @Endpoint(describeByClass = true) - public static ParseSequenceExample create(Scope scope, Operand serialized, Operand debugName, Operand contextSparseKeys, Operand contextDenseKeys, Operand contextRaggedKeys, Operand featureListSparseKeys, Operand featureListDenseKeys, Operand featureListRaggedKeys, Operand featureListDenseMissingAssumedEmpty, Iterable> contextDenseDefaults, List> contextSparseTypes, List> contextRaggedValueTypes, List> contextRaggedSplitTypes, List> featureListDenseTypes, List> featureListSparseTypes, List> featureListRaggedValueTypes, List> featureListRaggedSplitTypes, Options... options) { + public static ParseSequenceExample create(Scope scope, Operand serialized, Operand debugName, Operand contextSparseKeys, Operand contextDenseKeys, Operand contextRaggedKeys, Operand featureListSparseKeys, Operand featureListDenseKeys, Operand featureListRaggedKeys, Operand featureListDenseMissingAssumedEmpty, Iterable> contextDenseDefaults, List> contextSparseTypes, List> contextRaggedValueTypes, List> contextRaggedSplitTypes, List> featureListDenseTypes, List> featureListSparseTypes, List> featureListRaggedValueTypes, List> featureListRaggedSplitTypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("ParseSequenceExampleV2", scope.makeOpName("ParseSequenceExample")); opBuilder.addInput(serialized.asOutput()); opBuilder.addInput(debugName.asOutput()); @@ -165,42 +165,14 @@ public static ParseSequenceExample create(Scope scope, Operand serializ opBuilder.addInput(featureListRaggedKeys.asOutput()); opBuilder.addInput(featureListDenseMissingAssumedEmpty.asOutput()); opBuilder.addInputList(Operands.asOutputs(contextDenseDefaults)); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] contextSparseTypesArray = new DataType[contextSparseTypes.size()]; - for (int i = 0; i < contextSparseTypesArray.length; ++i) { - contextSparseTypesArray[i] = contextSparseTypes.get(i); - } - opBuilder.setAttr("context_sparse_types", contextSparseTypesArray); - DataType[] contextRaggedValueTypesArray = new DataType[contextRaggedValueTypes.size()]; - for (int i = 0; i < contextRaggedValueTypesArray.length; ++i) { - contextRaggedValueTypesArray[i] = contextRaggedValueTypes.get(i); - } - opBuilder.setAttr("context_ragged_value_types", contextRaggedValueTypesArray); - DataType[] contextRaggedSplitTypesArray = new DataType[contextRaggedSplitTypes.size()]; - for (int i = 0; i < contextRaggedSplitTypesArray.length; ++i) { - contextRaggedSplitTypesArray[i] = contextRaggedSplitTypes.get(i); - } - opBuilder.setAttr("context_ragged_split_types", contextRaggedSplitTypesArray); - DataType[] featureListDenseTypesArray = new DataType[featureListDenseTypes.size()]; - for (int i = 0; i < featureListDenseTypesArray.length; ++i) { - featureListDenseTypesArray[i] = featureListDenseTypes.get(i); - } - opBuilder.setAttr("feature_list_dense_types", featureListDenseTypesArray); - DataType[] featureListSparseTypesArray = new DataType[featureListSparseTypes.size()]; - for (int i = 0; i < featureListSparseTypesArray.length; ++i) { - featureListSparseTypesArray[i] = featureListSparseTypes.get(i); - } - opBuilder.setAttr("feature_list_sparse_types", featureListSparseTypesArray); - DataType[] featureListRaggedValueTypesArray = new DataType[featureListRaggedValueTypes.size()]; - for (int i = 0; i < featureListRaggedValueTypesArray.length; ++i) { - featureListRaggedValueTypesArray[i] = featureListRaggedValueTypes.get(i); - } - opBuilder.setAttr("feature_list_ragged_value_types", featureListRaggedValueTypesArray); - DataType[] featureListRaggedSplitTypesArray = new DataType[featureListRaggedSplitTypes.size()]; - for (int i = 0; i < featureListRaggedSplitTypesArray.length; ++i) { - featureListRaggedSplitTypesArray[i] = featureListRaggedSplitTypes.get(i); - } - opBuilder.setAttr("feature_list_ragged_split_types", featureListRaggedSplitTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("context_sparse_types", Operands.toDataTypes(contextSparseTypes)); + opBuilder.setAttr("context_ragged_value_types", Operands.toDataTypes(contextRaggedValueTypes)); + opBuilder.setAttr("context_ragged_split_types", Operands.toDataTypes(contextRaggedSplitTypes)); + opBuilder.setAttr("feature_list_dense_types", Operands.toDataTypes(featureListDenseTypes)); + opBuilder.setAttr("feature_list_sparse_types", Operands.toDataTypes(featureListSparseTypes)); + opBuilder.setAttr("feature_list_ragged_value_types", Operands.toDataTypes(featureListRaggedValueTypes)); + opBuilder.setAttr("feature_list_ragged_split_types", Operands.toDataTypes(featureListRaggedSplitTypes)); if (options != null) { for (Options opts : options) { if (opts.NcontextSparse != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ParseSingleExample.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ParseSingleExample.java index 2c09ba8ac4c..f860fec4dc4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ParseSingleExample.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ParseSingleExample.java @@ -19,7 +19,6 @@ import java.util.Arrays; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; @@ -32,6 +31,7 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt64; import org.tensorflow.types.TString; +import org.tensorflow.types.family.TType; /** * Transforms a tf.Example proto (as a string) into typed tensors. @@ -76,11 +76,11 @@ public final class ParseSingleExample extends RawOp { * @return a new instance of ParseSingleExample */ @Endpoint(describeByClass = true) - public static ParseSingleExample create(Scope scope, Operand serialized, Iterable> denseDefaults, Long numSparse, List sparseKeys, List denseKeys, List> sparseTypes, List denseShapes) { + public static ParseSingleExample create(Scope scope, Operand serialized, Iterable> denseDefaults, Long numSparse, List sparseKeys, List denseKeys, List> sparseTypes, List denseShapes) { OperationBuilder opBuilder = scope.env().opBuilder("ParseSingleExample", scope.makeOpName("ParseSingleExample")); opBuilder.addInput(serialized.asOutput()); opBuilder.addInputList(Operands.asOutputs(denseDefaults)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_sparse", numSparse); String[] sparseKeysArray = new String[sparseKeys.size()]; for (int i = 0; i < sparseKeysArray.length; ++i) { @@ -92,11 +92,7 @@ public static ParseSingleExample create(Scope scope, Operand serialized denseKeysArray[i] = denseKeys.get(i); } opBuilder.setAttr("dense_keys", denseKeysArray); - DataType[] sparseTypesArray = new DataType[sparseTypes.size()]; - for (int i = 0; i < sparseTypesArray.length; ++i) { - sparseTypesArray[i] = sparseTypes.get(i); - } - opBuilder.setAttr("sparse_types", sparseTypesArray); + opBuilder.setAttr("sparse_types", Operands.toDataTypes(sparseTypes)); Shape[] denseShapesArray = new Shape[denseShapes.size()]; for (int i = 0; i < denseShapesArray.length; ++i) { denseShapesArray[i] = denseShapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ParseSingleSequenceExample.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ParseSingleSequenceExample.java index bb1e1eaa576..b54be0324b9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ParseSingleSequenceExample.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ParseSingleSequenceExample.java @@ -19,7 +19,6 @@ import java.util.Arrays; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; @@ -32,6 +31,7 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt64; import org.tensorflow.types.TString; +import org.tensorflow.types.family.TType; /** * Transforms a scalar brain.SequenceExample proto (as strings) into typed tensors. @@ -122,7 +122,7 @@ private Options() { * @return a new instance of ParseSingleSequenceExample */ @Endpoint(describeByClass = true) - public static ParseSingleSequenceExample create(Scope scope, Operand serialized, Operand featureListDenseMissingAssumedEmpty, Iterable> contextSparseKeys, Iterable> contextDenseKeys, Iterable> featureListSparseKeys, Iterable> featureListDenseKeys, Iterable> contextDenseDefaults, Operand debugName, List> contextSparseTypes, List> featureListDenseTypes, List> featureListSparseTypes, Options... options) { + public static ParseSingleSequenceExample create(Scope scope, Operand serialized, Operand featureListDenseMissingAssumedEmpty, Iterable> contextSparseKeys, Iterable> contextDenseKeys, Iterable> featureListSparseKeys, Iterable> featureListDenseKeys, Iterable> contextDenseDefaults, Operand debugName, List> contextSparseTypes, List> featureListDenseTypes, List> featureListSparseTypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("ParseSingleSequenceExample", scope.makeOpName("ParseSingleSequenceExample")); opBuilder.addInput(serialized.asOutput()); opBuilder.addInput(featureListDenseMissingAssumedEmpty.asOutput()); @@ -132,22 +132,10 @@ public static ParseSingleSequenceExample create(Scope scope, Operand se opBuilder.addInputList(Operands.asOutputs(featureListDenseKeys)); opBuilder.addInputList(Operands.asOutputs(contextDenseDefaults)); opBuilder.addInput(debugName.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] contextSparseTypesArray = new DataType[contextSparseTypes.size()]; - for (int i = 0; i < contextSparseTypesArray.length; ++i) { - contextSparseTypesArray[i] = contextSparseTypes.get(i); - } - opBuilder.setAttr("context_sparse_types", contextSparseTypesArray); - DataType[] featureListDenseTypesArray = new DataType[featureListDenseTypes.size()]; - for (int i = 0; i < featureListDenseTypesArray.length; ++i) { - featureListDenseTypesArray[i] = featureListDenseTypes.get(i); - } - opBuilder.setAttr("feature_list_dense_types", featureListDenseTypesArray); - DataType[] featureListSparseTypesArray = new DataType[featureListSparseTypes.size()]; - for (int i = 0; i < featureListSparseTypesArray.length; ++i) { - featureListSparseTypesArray[i] = featureListSparseTypes.get(i); - } - opBuilder.setAttr("feature_list_sparse_types", featureListSparseTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("context_sparse_types", Operands.toDataTypes(contextSparseTypes)); + opBuilder.setAttr("feature_list_dense_types", Operands.toDataTypes(featureListDenseTypes)); + opBuilder.setAttr("feature_list_sparse_types", Operands.toDataTypes(featureListSparseTypes)); if (options != null) { for (Options opts : options) { if (opts.contextDenseShapes != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ParseTensor.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ParseTensor.java index bebdc1b4419..9af89bdcd2d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ParseTensor.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ParseTensor.java @@ -17,11 +17,11 @@ package org.tensorflow.op.io; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -47,11 +47,11 @@ public final class ParseTensor extends RawOp implements Operand * @return a new instance of ParseTensor */ @Endpoint(describeByClass = true) - public static ParseTensor create(Scope scope, Operand serialized, DataType outType) { + public static ParseTensor create(Scope scope, Operand serialized, Class outType) { OperationBuilder opBuilder = scope.env().opBuilder("ParseTensor", scope.makeOpName("ParseTensor")); opBuilder.addInput(serialized.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); return new ParseTensor(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/PriorityQueue.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/PriorityQueue.java index 569d4ae7eb3..9decf07b572 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/PriorityQueue.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/PriorityQueue.java @@ -18,12 +18,12 @@ package org.tensorflow.op.io; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -95,14 +95,10 @@ private Options() { * @return a new instance of PriorityQueue */ @Endpoint(describeByClass = true) - public static PriorityQueue create(Scope scope, List> componentTypes, List shapes, Options... options) { + public static PriorityQueue create(Scope scope, List> componentTypes, List shapes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("PriorityQueueV2", scope.makeOpName("PriorityQueue")); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] componentTypesArray = new DataType[componentTypes.size()]; - for (int i = 0; i < componentTypesArray.length; ++i) { - componentTypesArray[i] = componentTypes.get(i); - } - opBuilder.setAttr("component_types", componentTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("component_types", Operands.toDataTypes(componentTypes)); Shape[] shapesArray = new Shape[shapes.size()]; for (int i = 0; i < shapesArray.length; ++i) { shapesArray[i] = shapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/QueueClose.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/QueueClose.java index ea7791f143e..a21003d455e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/QueueClose.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/QueueClose.java @@ -69,7 +69,7 @@ private Options() { public static QueueClose create(Scope scope, Operand handle, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QueueCloseV2", scope.makeOpName("QueueClose")); opBuilder.addInput(handle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.cancelPendingEnqueues != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/QueueDequeue.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/QueueDequeue.java index b74fb3ad3e8..b4d4bb71aaf 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/QueueDequeue.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/QueueDequeue.java @@ -20,11 +20,11 @@ import java.util.Arrays; import java.util.Iterator; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -75,15 +75,11 @@ private Options() { * @return a new instance of QueueDequeue */ @Endpoint(describeByClass = true) - public static QueueDequeue create(Scope scope, Operand handle, List> componentTypes, Options... options) { + public static QueueDequeue create(Scope scope, Operand handle, List> componentTypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QueueDequeueV2", scope.makeOpName("QueueDequeue")); opBuilder.addInput(handle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] componentTypesArray = new DataType[componentTypes.size()]; - for (int i = 0; i < componentTypesArray.length; ++i) { - componentTypesArray[i] = componentTypes.get(i); - } - opBuilder.setAttr("component_types", componentTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("component_types", Operands.toDataTypes(componentTypes)); if (options != null) { for (Options opts : options) { if (opts.timeoutMs != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/QueueDequeueMany.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/QueueDequeueMany.java index 2906fe6543c..1ef3426f354 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/QueueDequeueMany.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/QueueDequeueMany.java @@ -20,11 +20,11 @@ import java.util.Arrays; import java.util.Iterator; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -84,16 +84,12 @@ private Options() { * @return a new instance of QueueDequeueMany */ @Endpoint(describeByClass = true) - public static QueueDequeueMany create(Scope scope, Operand handle, Operand n, List> componentTypes, Options... options) { + public static QueueDequeueMany create(Scope scope, Operand handle, Operand n, List> componentTypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QueueDequeueManyV2", scope.makeOpName("QueueDequeueMany")); opBuilder.addInput(handle.asOutput()); opBuilder.addInput(n.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] componentTypesArray = new DataType[componentTypes.size()]; - for (int i = 0; i < componentTypesArray.length; ++i) { - componentTypesArray[i] = componentTypes.get(i); - } - opBuilder.setAttr("component_types", componentTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("component_types", Operands.toDataTypes(componentTypes)); if (options != null) { for (Options opts : options) { if (opts.timeoutMs != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/QueueDequeueUpTo.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/QueueDequeueUpTo.java index 51af788104c..53516d87ed5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/QueueDequeueUpTo.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/QueueDequeueUpTo.java @@ -20,11 +20,11 @@ import java.util.Arrays; import java.util.Iterator; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -88,16 +88,12 @@ private Options() { * @return a new instance of QueueDequeueUpTo */ @Endpoint(describeByClass = true) - public static QueueDequeueUpTo create(Scope scope, Operand handle, Operand n, List> componentTypes, Options... options) { + public static QueueDequeueUpTo create(Scope scope, Operand handle, Operand n, List> componentTypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QueueDequeueUpToV2", scope.makeOpName("QueueDequeueUpTo")); opBuilder.addInput(handle.asOutput()); opBuilder.addInput(n.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] componentTypesArray = new DataType[componentTypes.size()]; - for (int i = 0; i < componentTypesArray.length; ++i) { - componentTypesArray[i] = componentTypes.get(i); - } - opBuilder.setAttr("component_types", componentTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("component_types", Operands.toDataTypes(componentTypes)); if (options != null) { for (Options opts : options) { if (opts.timeoutMs != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/QueueEnqueue.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/QueueEnqueue.java index a159b0cd17c..8a8648d69fe 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/QueueEnqueue.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/QueueEnqueue.java @@ -73,7 +73,7 @@ public static QueueEnqueue create(Scope scope, Operand handle, Iterable handle, Iterable { public static QueueIsClosed create(Scope scope, Operand handle) { OperationBuilder opBuilder = scope.env().opBuilder("QueueIsClosedV2", scope.makeOpName("QueueIsClosed")); opBuilder.addInput(handle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new QueueIsClosed(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/QueueSize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/QueueSize.java index cefc1b3fd11..99982e6acf7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/QueueSize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/QueueSize.java @@ -44,30 +44,30 @@ public final class QueueSize extends RawOp implements Operand { public static QueueSize create(Scope scope, Operand handle) { OperationBuilder opBuilder = scope.env().opBuilder("QueueSizeV2", scope.makeOpName("QueueSize")); opBuilder.addInput(handle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new QueueSize(opBuilder.build()); } /** * The number of elements in the given queue. */ - public Output size() { - return size; + public Output output() { + return output; } @Override public Output asOutput() { - return size; + return output; } /** The name of this op, as known by TensorFlow core engine */ public static final String OP_NAME = "QueueSizeV2"; - private Output size; + private Output output; private QueueSize(Operation operation) { super(operation); int outputIdx = 0; - size = operation.output(outputIdx++); + output = operation.output(outputIdx++); } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/RandomShuffleQueue.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/RandomShuffleQueue.java index cdde1debc95..9ce330cb960 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/RandomShuffleQueue.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/RandomShuffleQueue.java @@ -18,12 +18,12 @@ package org.tensorflow.op.io; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -127,14 +127,10 @@ private Options() { * @return a new instance of RandomShuffleQueue */ @Endpoint(describeByClass = true) - public static RandomShuffleQueue create(Scope scope, List> componentTypes, Options... options) { + public static RandomShuffleQueue create(Scope scope, List> componentTypes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RandomShuffleQueueV2", scope.makeOpName("RandomShuffleQueue")); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] componentTypesArray = new DataType[componentTypes.size()]; - for (int i = 0; i < componentTypesArray.length; ++i) { - componentTypesArray[i] = componentTypes.get(i); - } - opBuilder.setAttr("component_types", componentTypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("component_types", Operands.toDataTypes(componentTypes)); if (options != null) { for (Options opts : options) { if (opts.shapes != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReadFile.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReadFile.java index 7109022751a..c908b2e2732 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReadFile.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReadFile.java @@ -44,7 +44,7 @@ public final class ReadFile extends RawOp implements Operand { public static ReadFile create(Scope scope, Operand filename) { OperationBuilder opBuilder = scope.env().opBuilder("ReadFile", scope.makeOpName("ReadFile")); opBuilder.addInput(filename.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ReadFile(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderNumRecordsProduced.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderNumRecordsProduced.java index 8e4cb9c5692..88821648f1a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderNumRecordsProduced.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderNumRecordsProduced.java @@ -47,7 +47,7 @@ public final class ReaderNumRecordsProduced extends RawOp implements Operand readerHandle) { OperationBuilder opBuilder = scope.env().opBuilder("ReaderNumRecordsProducedV2", scope.makeOpName("ReaderNumRecordsProduced")); opBuilder.addInput(readerHandle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ReaderNumRecordsProduced(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderNumWorkUnitsCompleted.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderNumWorkUnitsCompleted.java index bbd6fc8075c..6830d06fac9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderNumWorkUnitsCompleted.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderNumWorkUnitsCompleted.java @@ -44,7 +44,7 @@ public final class ReaderNumWorkUnitsCompleted extends RawOp implements Operand< public static ReaderNumWorkUnitsCompleted create(Scope scope, Operand readerHandle) { OperationBuilder opBuilder = scope.env().opBuilder("ReaderNumWorkUnitsCompletedV2", scope.makeOpName("ReaderNumWorkUnitsCompleted")); opBuilder.addInput(readerHandle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ReaderNumWorkUnitsCompleted(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderRead.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderRead.java index 9b7110b10ae..fbb416f3e19 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderRead.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderRead.java @@ -50,7 +50,7 @@ public static ReaderRead create(Scope scope, Operand readerHandle, Operand OperationBuilder opBuilder = scope.env().opBuilder("ReaderReadV2", scope.makeOpName("ReaderRead")); opBuilder.addInput(readerHandle.asOutput()); opBuilder.addInput(queueHandle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ReaderRead(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderReadUpTo.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderReadUpTo.java index e22d5b95576..af7dd21f04a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderReadUpTo.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderReadUpTo.java @@ -54,7 +54,7 @@ public static ReaderReadUpTo create(Scope scope, Operand readerHandle, Operan opBuilder.addInput(readerHandle.asOutput()); opBuilder.addInput(queueHandle.asOutput()); opBuilder.addInput(numRecords.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ReaderReadUpTo(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderReset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderReset.java index 243d4a72080..d8ef0859679 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderReset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderReset.java @@ -42,7 +42,7 @@ public final class ReaderReset extends RawOp { public static ReaderReset create(Scope scope, Operand readerHandle) { OperationBuilder opBuilder = scope.env().opBuilder("ReaderResetV2", scope.makeOpName("ReaderReset")); opBuilder.addInput(readerHandle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ReaderReset(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderRestoreState.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderRestoreState.java index 431ba079ffc..93fee46a5e8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderRestoreState.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderRestoreState.java @@ -49,7 +49,7 @@ public static ReaderRestoreState create(Scope scope, Operand readerHandle, Op OperationBuilder opBuilder = scope.env().opBuilder("ReaderRestoreStateV2", scope.makeOpName("ReaderRestoreState")); opBuilder.addInput(readerHandle.asOutput()); opBuilder.addInput(state.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ReaderRestoreState(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderSerializeState.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderSerializeState.java index 72b927ed171..c70831e6e03 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderSerializeState.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ReaderSerializeState.java @@ -47,7 +47,7 @@ public final class ReaderSerializeState extends RawOp implements Operand readerHandle) { OperationBuilder opBuilder = scope.env().opBuilder("ReaderSerializeStateV2", scope.makeOpName("ReaderSerializeState")); opBuilder.addInput(readerHandle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ReaderSerializeState(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/SerializeManySparse.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/SerializeManySparse.java index 0afbdcd6edd..8a712e7278b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/SerializeManySparse.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/SerializeManySparse.java @@ -17,11 +17,11 @@ package org.tensorflow.op.io; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -58,13 +58,13 @@ public final class SerializeManySparse extends RawOp implements * @return a new instance of SerializeManySparse */ @Endpoint(describeByClass = true) - public static SerializeManySparse create(Scope scope, Operand sparseIndices, Operand sparseValues, Operand sparseShape, DataType outType) { + public static SerializeManySparse create(Scope scope, Operand sparseIndices, Operand sparseValues, Operand sparseShape, Class outType) { OperationBuilder opBuilder = scope.env().opBuilder("SerializeManySparse", scope.makeOpName("SerializeManySparse")); opBuilder.addInput(sparseIndices.asOutput()); opBuilder.addInput(sparseValues.asOutput()); opBuilder.addInput(sparseShape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); return new SerializeManySparse(opBuilder.build()); } @@ -79,7 +79,7 @@ public static SerializeManySparse create(S */ @Endpoint(describeByClass = true) public static SerializeManySparse create(Scope scope, Operand sparseIndices, Operand sparseValues, Operand sparseShape) { - return create(scope, sparseIndices, sparseValues, sparseShape, TString.DTYPE); + return create(scope, sparseIndices, sparseValues, sparseShape, TString.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/SerializeSparse.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/SerializeSparse.java index 2d8fc7838e4..611feb50188 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/SerializeSparse.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/SerializeSparse.java @@ -17,11 +17,11 @@ package org.tensorflow.op.io; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -50,13 +50,13 @@ public final class SerializeSparse extends RawOp implements Ope * @return a new instance of SerializeSparse */ @Endpoint(describeByClass = true) - public static SerializeSparse create(Scope scope, Operand sparseIndices, Operand sparseValues, Operand sparseShape, DataType outType) { + public static SerializeSparse create(Scope scope, Operand sparseIndices, Operand sparseValues, Operand sparseShape, Class outType) { OperationBuilder opBuilder = scope.env().opBuilder("SerializeSparse", scope.makeOpName("SerializeSparse")); opBuilder.addInput(sparseIndices.asOutput()); opBuilder.addInput(sparseValues.asOutput()); opBuilder.addInput(sparseShape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); return new SerializeSparse(opBuilder.build()); } @@ -71,7 +71,7 @@ public static SerializeSparse create(Scope */ @Endpoint(describeByClass = true) public static SerializeSparse create(Scope scope, Operand sparseIndices, Operand sparseValues, Operand sparseShape) { - return create(scope, sparseIndices, sparseValues, sparseShape, TString.DTYPE); + return create(scope, sparseIndices, sparseValues, sparseShape, TString.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/SerializeTensor.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/SerializeTensor.java index d68320b85e3..03f42534ba5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/SerializeTensor.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/SerializeTensor.java @@ -45,7 +45,7 @@ public final class SerializeTensor extends RawOp implements Operand { public static SerializeTensor create(Scope scope, Operand tensor) { OperationBuilder opBuilder = scope.env().opBuilder("SerializeTensor", scope.makeOpName("SerializeTensor")); opBuilder.addInput(tensor.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SerializeTensor(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ShardedFilename.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ShardedFilename.java index 88b422a5f6d..e4035335864 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ShardedFilename.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ShardedFilename.java @@ -51,7 +51,7 @@ public static ShardedFilename create(Scope scope, Operand basename, Ope opBuilder.addInput(basename.asOutput()); opBuilder.addInput(shard.asOutput()); opBuilder.addInput(numShards.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ShardedFilename(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ShardedFilespec.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ShardedFilespec.java index f04c0cf1a58..3bb96e78030 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ShardedFilespec.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ShardedFilespec.java @@ -47,7 +47,7 @@ public static ShardedFilespec create(Scope scope, Operand basename, Ope OperationBuilder opBuilder = scope.env().opBuilder("ShardedFilespec", scope.makeOpName("ShardedFilespec")); opBuilder.addInput(basename.asOutput()); opBuilder.addInput(numShards.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ShardedFilespec(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/TextLineReader.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/TextLineReader.java index 90bf079d2cf..1031adcae92 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/TextLineReader.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/TextLineReader.java @@ -82,7 +82,7 @@ private Options() { @Endpoint(describeByClass = true) public static TextLineReader create(Scope scope, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("TextLineReaderV2", scope.makeOpName("TextLineReader")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.skipHeaderLines != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/TfRecordReader.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/TfRecordReader.java index a12145e7972..d78e7e2f599 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/TfRecordReader.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/TfRecordReader.java @@ -82,7 +82,7 @@ private Options() { @Endpoint(describeByClass = true) public static TfRecordReader create(Scope scope, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("TFRecordReaderV2", scope.makeOpName("TfRecordReader")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.container != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/WholeFileReader.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/WholeFileReader.java index 8cab4f9b09e..0b93e777478 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/WholeFileReader.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/WholeFileReader.java @@ -76,7 +76,7 @@ private Options() { @Endpoint(describeByClass = true) public static WholeFileReader create(Scope scope, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("WholeFileReaderV2", scope.makeOpName("WholeFileReader")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.container != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/WriteFile.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/WriteFile.java index d1c9dd9b9c8..4d8bbd389ff 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/WriteFile.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/WriteFile.java @@ -47,7 +47,7 @@ public static WriteFile create(Scope scope, Operand filename, Operand BandPart create(Scope scop opBuilder.addInput(input.asOutput()); opBuilder.addInput(numLower.asOutput()); opBuilder.addInput(numUpper.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BandPart(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BandedTriangularSolve.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BandedTriangularSolve.java index 8c1e184e6c9..314d184c472 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BandedTriangularSolve.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BandedTriangularSolve.java @@ -74,7 +74,7 @@ public static BandedTriangularSolve create(Scope scope, Ope OperationBuilder opBuilder = scope.env().opBuilder("BandedTriangularSolve", scope.makeOpName("BandedTriangularSolve")); opBuilder.addInput(matrix.asOutput()); opBuilder.addInput(rhs.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.lower != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchCholesky.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchCholesky.java index 733139f4359..a7ba5c36639 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchCholesky.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchCholesky.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code output()} output @@ -45,7 +44,7 @@ public final class BatchCholesky extends RawOp implements Ope public static BatchCholesky create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("BatchCholesky", scope.makeOpName("BatchCholesky")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BatchCholesky(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchCholeskyGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchCholeskyGrad.java index d56f45e8abf..515e582f254 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchCholeskyGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchCholeskyGrad.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code output()} output @@ -47,7 +46,7 @@ public static BatchCholeskyGrad create(Scope scope, Opera OperationBuilder opBuilder = scope.env().opBuilder("BatchCholeskyGrad", scope.makeOpName("BatchCholeskyGrad")); opBuilder.addInput(l.asOutput()); opBuilder.addInput(grad.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BatchCholeskyGrad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixBandPart.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixBandPart.java index 8c990a8a71c..73781a58062 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixBandPart.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixBandPart.java @@ -49,7 +49,7 @@ public static BatchMatrixBandPart create(Scope scope, Opera opBuilder.addInput(input.asOutput()); opBuilder.addInput(numLower.asOutput()); opBuilder.addInput(numUpper.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BatchMatrixBandPart(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixDeterminant.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixDeterminant.java index f513e9f0057..a05950bf04a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixDeterminant.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixDeterminant.java @@ -44,7 +44,7 @@ public final class BatchMatrixDeterminant extends RawOp impleme public static BatchMatrixDeterminant create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("BatchMatrixDeterminant", scope.makeOpName("BatchMatrixDeterminant")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BatchMatrixDeterminant(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixDiag.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixDiag.java index b3f9071f9f6..9cfc0f9d177 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixDiag.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixDiag.java @@ -44,7 +44,7 @@ public final class BatchMatrixDiag extends RawOp implements Ope public static BatchMatrixDiag create(Scope scope, Operand diagonal) { OperationBuilder opBuilder = scope.env().opBuilder("BatchMatrixDiag", scope.makeOpName("BatchMatrixDiag")); opBuilder.addInput(diagonal.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BatchMatrixDiag(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixDiagPart.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixDiagPart.java index 47f78ed623d..6e3a206226e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixDiagPart.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixDiagPart.java @@ -44,7 +44,7 @@ public final class BatchMatrixDiagPart extends RawOp implements public static BatchMatrixDiagPart create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("BatchMatrixDiagPart", scope.makeOpName("BatchMatrixDiagPart")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BatchMatrixDiagPart(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixInverse.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixInverse.java index 36bbee414e9..709a59404b9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixInverse.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixInverse.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code output()} output @@ -65,7 +64,7 @@ private Options() { public static BatchMatrixInverse create(Scope scope, Operand input, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("BatchMatrixInverse", scope.makeOpName("BatchMatrixInverse")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.adjoint != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixSetDiag.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixSetDiag.java index d83ee0194e7..07f59f50c5d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixSetDiag.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixSetDiag.java @@ -46,7 +46,7 @@ public static BatchMatrixSetDiag create(Scope scope, Operan OperationBuilder opBuilder = scope.env().opBuilder("BatchMatrixSetDiag", scope.makeOpName("BatchMatrixSetDiag")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(diagonal.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BatchMatrixSetDiag(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixSolve.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixSolve.java index 677b8aa0e7b..64559a23676 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixSolve.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixSolve.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code output()} output @@ -67,7 +66,7 @@ public static BatchMatrixSolve create(Scope scope, Operan OperationBuilder opBuilder = scope.env().opBuilder("BatchMatrixSolve", scope.makeOpName("BatchMatrixSolve")); opBuilder.addInput(matrix.asOutput()); opBuilder.addInput(rhs.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.adjoint != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixSolveLs.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixSolveLs.java index ae4a4366b3b..71490a6b153 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixSolveLs.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixSolveLs.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TFloat64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code output()} output @@ -70,7 +69,7 @@ public static BatchMatrixSolveLs create(Scope scope, Oper opBuilder.addInput(matrix.asOutput()); opBuilder.addInput(rhs.asOutput()); opBuilder.addInput(l2Regularizer.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.fast != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixTriangularSolve.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixTriangularSolve.java index cb1baa772fd..7bccee674a9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixTriangularSolve.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixTriangularSolve.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code output()} output @@ -76,7 +75,7 @@ public static BatchMatrixTriangularSolve create(Scope sco OperationBuilder opBuilder = scope.env().opBuilder("BatchMatrixTriangularSolve", scope.makeOpName("BatchMatrixTriangularSolve")); opBuilder.addInput(matrix.asOutput()); opBuilder.addInput(rhs.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.lower != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchSelfAdjointEig.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchSelfAdjointEig.java index e589f5c49fe..450a7ee419d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchSelfAdjointEig.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchSelfAdjointEig.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code e()} output @@ -65,7 +64,7 @@ private Options() { public static BatchSelfAdjointEig create(Scope scope, Operand input, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("BatchSelfAdjointEigV2", scope.makeOpName("BatchSelfAdjointEig")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.computeV != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchSvd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchSvd.java index 21db016713a..a5dc1bf050a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchSvd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchSvd.java @@ -73,7 +73,7 @@ private Options() { public static BatchSvd create(Scope scope, Operand input, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("BatchSvd", scope.makeOpName("BatchSvd")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.computeUv != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Cholesky.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Cholesky.java index 3acf951d5a7..a63337aeacf 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Cholesky.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Cholesky.java @@ -60,7 +60,7 @@ public final class Cholesky extends RawOp implements Operand public static Cholesky create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("Cholesky", scope.makeOpName("Cholesky")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Cholesky(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/CholeskyGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/CholeskyGrad.java index b4171907853..5a623ebd876 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/CholeskyGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/CholeskyGrad.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the reverse mode backpropagated gradient of the Cholesky algorithm. @@ -56,7 +55,7 @@ public static CholeskyGrad create(Scope scope, Operand OperationBuilder opBuilder = scope.env().opBuilder("CholeskyGrad", scope.makeOpName("CholeskyGrad")); opBuilder.addInput(l.asOutput()); opBuilder.addInput(grad.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new CholeskyGrad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/ConjugateTranspose.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/ConjugateTranspose.java index 2da45552f35..e4e9bc38f9c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/ConjugateTranspose.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/ConjugateTranspose.java @@ -53,7 +53,7 @@ public static ConjugateTranspose create( OperationBuilder opBuilder = scope.env().opBuilder("ConjugateTranspose", scope.makeOpName("ConjugateTranspose")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(perm.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ConjugateTranspose(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Cross.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Cross.java index 0afc8a2bf60..b62fcbf512c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Cross.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Cross.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Compute the pairwise cross product. @@ -53,7 +52,7 @@ public static Cross create(Scope scope, Operand a, Ope OperationBuilder opBuilder = scope.env().opBuilder("Cross", scope.makeOpName("Cross")); opBuilder.addInput(a.asOutput()); opBuilder.addInput(b.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Cross(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Det.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Det.java index 7134ef6ea44..c207d6093c7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Det.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Det.java @@ -50,7 +50,7 @@ public final class Det extends RawOp implements Operand { public static Det create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("MatrixDeterminant", scope.makeOpName("Det")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Det(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Eig.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Eig.java index 68c33487129..ac976cc929e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Eig.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Eig.java @@ -17,11 +17,11 @@ package org.tensorflow.op.linalg; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -78,11 +78,11 @@ private Options() { * @return a new instance of Eig */ @Endpoint(describeByClass = true) - public static Eig create(Scope scope, Operand input, DataType Tout, Options... options) { + public static Eig create(Scope scope, Operand input, Class Tout, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("Eig", scope.makeOpName("Eig")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("Tout", Tout); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("Tout", Operands.toDataType(Tout)); if (options != null) { for (Options opts : options) { if (opts.computeV != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Einsum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Einsum.java index 6817270edd1..fca8d751c75 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Einsum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Einsum.java @@ -125,7 +125,7 @@ public final class Einsum extends RawOp implements Operand { public static Einsum create(Scope scope, Iterable> inputs, String equation) { OperationBuilder opBuilder = scope.env().opBuilder("Einsum", scope.makeOpName("Einsum")); opBuilder.addInputList(Operands.asOutputs(inputs)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("equation", equation); return new Einsum(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/EuclideanNorm.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/EuclideanNorm.java index f8ce40f62bf..220a1847c7d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/EuclideanNorm.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/EuclideanNorm.java @@ -75,7 +75,7 @@ public static EuclideanNorm create(Scope OperationBuilder opBuilder = scope.env().opBuilder("EuclideanNorm", scope.makeOpName("EuclideanNorm")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(axis.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.keepDims != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Inv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Inv.java index e482957bdac..f190790437d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Inv.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Inv.java @@ -78,7 +78,7 @@ private Options() { public static Inv create(Scope scope, Operand input, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("MatrixInverse", scope.makeOpName("Inv")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.adjoint != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/LoadAndRemapMatrix.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/LoadAndRemapMatrix.java index 1010c503eba..936b81a75bb 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/LoadAndRemapMatrix.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/LoadAndRemapMatrix.java @@ -127,7 +127,7 @@ public static LoadAndRemapMatrix create(Scope scope, Operand ckptPath, opBuilder.addInput(rowRemapping.asOutput()); opBuilder.addInput(colRemapping.asOutput()); opBuilder.addInput(initializingValues.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_rows", numRows); opBuilder.setAttr("num_cols", numCols); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/LogMatrixDeterminant.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/LogMatrixDeterminant.java index 33781d561b4..baedbe76043 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/LogMatrixDeterminant.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/LogMatrixDeterminant.java @@ -56,7 +56,7 @@ public final class LogMatrixDeterminant extends RawOp { public static LogMatrixDeterminant create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("LogMatrixDeterminant", scope.makeOpName("LogMatrixDeterminant")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new LogMatrixDeterminant(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Lu.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Lu.java index ce37bbcbea2..3edb62f927a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Lu.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Lu.java @@ -17,11 +17,11 @@ package org.tensorflow.op.linalg; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -67,11 +67,11 @@ public final class Lu extends RawOp { * @return a new instance of Lu */ @Endpoint(describeByClass = true) - public static Lu create(Scope scope, Operand input, DataType outputIdxType) { + public static Lu create(Scope scope, Operand input, Class outputIdxType) { OperationBuilder opBuilder = scope.env().opBuilder("Lu", scope.makeOpName("Lu")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("output_idx_type", outputIdxType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_idx_type", Operands.toDataType(outputIdxType)); return new Lu(opBuilder.build()); } @@ -85,7 +85,7 @@ public static Lu create(Scope scope, */ @Endpoint(describeByClass = true) public static Lu create(Scope scope, Operand input) { - return create(scope, input, TInt32.DTYPE); + return create(scope, input, TInt32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatMul.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatMul.java index 8b227e3910c..5e5b010baec 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatMul.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatMul.java @@ -85,7 +85,7 @@ public static MatMul create(Scope scope, Operand a, Oper OperationBuilder opBuilder = scope.env().opBuilder("MatMul", scope.makeOpName("MatMul")); opBuilder.addInput(a.asOutput()); opBuilder.addInput(b.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.transposeA != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiag.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiag.java index b187ecc0930..1187bf3d865 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiag.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiag.java @@ -148,7 +148,7 @@ public static MatrixDiag create(Scope scope, Operand dia opBuilder.addInput(numRows.asOutput()); opBuilder.addInput(numCols.asOutput()); opBuilder.addInput(paddingValue.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new MatrixDiag(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiagPart.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiagPart.java index c4dee3f7d76..c56d2557755 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiagPart.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiagPart.java @@ -122,7 +122,7 @@ public static MatrixDiagPart create(Scope scope, Operand opBuilder.addInput(input.asOutput()); opBuilder.addInput(k.asOutput()); opBuilder.addInput(paddingValue.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new MatrixDiagPart(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiagPartV3.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiagPartV3.java index 5803f9251f5..04cb6fc3b17 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiagPartV3.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiagPartV3.java @@ -179,7 +179,7 @@ public static MatrixDiagPartV3 create(Scope scope, Operand< opBuilder.addInput(input.asOutput()); opBuilder.addInput(k.asOutput()); opBuilder.addInput(paddingValue.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.align != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiagV3.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiagV3.java index 10b57ecc19a..dab7e78c7ec 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiagV3.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiagV3.java @@ -203,7 +203,7 @@ public static MatrixDiagV3 create(Scope scope, Operand d opBuilder.addInput(numRows.asOutput()); opBuilder.addInput(numCols.asOutput()); opBuilder.addInput(paddingValue.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.align != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixLogarithm.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixLogarithm.java index 71d3a2c9575..64b55cf2662 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixLogarithm.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixLogarithm.java @@ -61,7 +61,7 @@ public final class MatrixLogarithm extends RawOp implements Ope public static MatrixLogarithm create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("MatrixLogarithm", scope.makeOpName("MatrixLogarithm")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new MatrixLogarithm(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixSetDiag.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixSetDiag.java index 80367a3670b..9b1edba5615 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixSetDiag.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixSetDiag.java @@ -183,7 +183,7 @@ public static MatrixSetDiag create(Scope scope, Operand opBuilder.addInput(input.asOutput()); opBuilder.addInput(diagonal.asOutput()); opBuilder.addInput(k.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.align != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixSolveLs.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixSolveLs.java index 633145ce24e..9d0841e6c4b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixSolveLs.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixSolveLs.java @@ -110,7 +110,7 @@ public static MatrixSolveLs create(Scope scope, Operand opBuilder.addInput(matrix.asOutput()); opBuilder.addInput(rhs.asOutput()); opBuilder.addInput(l2Regularizer.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.fast != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Qr.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Qr.java index cf58f41507f..7aa6631af3a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Qr.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Qr.java @@ -79,7 +79,7 @@ private Options() { public static Qr create(Scope scope, Operand input, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("Qr", scope.makeOpName("Qr")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.fullMatrices != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/QuantizedMatMul.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/QuantizedMatMul.java index 445d27e1591..517578fe83e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/QuantizedMatMul.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/QuantizedMatMul.java @@ -17,11 +17,11 @@ package org.tensorflow.op.linalg; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -87,7 +87,7 @@ private Options() { * @return a new instance of QuantizedMatMul */ @Endpoint(describeByClass = true) - public static QuantizedMatMul create(Scope scope, Operand a, Operand b, Operand minA, Operand maxA, Operand minB, Operand maxB, DataType Toutput, DataType Tactivation, Options... options) { + public static QuantizedMatMul create(Scope scope, Operand a, Operand b, Operand minA, Operand maxA, Operand minB, Operand maxB, Class Toutput, Class Tactivation, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedMatMul", scope.makeOpName("QuantizedMatMul")); opBuilder.addInput(a.asOutput()); opBuilder.addInput(b.asOutput()); @@ -95,9 +95,9 @@ public static QuantizedMatMulWithBias create(Scope scope, Operand a, Operand b, Operand bias, Operand minA, Operand maxA, Operand minB, Operand maxB, DataType Toutput, Options... options) { + public static QuantizedMatMulWithBias create(Scope scope, Operand a, Operand b, Operand bias, Operand minA, Operand maxA, Operand minB, Operand maxB, Class Toutput, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedMatMulWithBias", scope.makeOpName("QuantizedMatMulWithBias")); opBuilder.addInput(a.asOutput()); opBuilder.addInput(b.asOutput()); @@ -106,8 +106,8 @@ public static QuantizedMatMulWithBiasAndRelu create(Scope scope, Operand a, Operand b, Operand bias, Operand minA, Operand maxA, Operand minB, Operand maxB, DataType Toutput, Options... options) { + public static QuantizedMatMulWithBiasAndRelu create(Scope scope, Operand a, Operand b, Operand bias, Operand minA, Operand maxA, Operand minB, Operand maxB, Class Toutput, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedMatMulWithBiasAndRelu", scope.makeOpName("QuantizedMatMulWithBiasAndRelu")); opBuilder.addInput(a.asOutput()); opBuilder.addInput(b.asOutput()); @@ -107,8 +107,8 @@ public static QuantizedMatMu opBuilder.addInput(maxA.asOutput()); opBuilder.addInput(minB.asOutput()); opBuilder.addInput(maxB.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("Toutput", Toutput); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("Toutput", Operands.toDataType(Toutput)); if (options != null) { for (Options opts : options) { if (opts.transposeA != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/QuantizedMatMulWithBiasAndReluAndRequantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/QuantizedMatMulWithBiasAndReluAndRequantize.java index e5639594805..a20287446c7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/QuantizedMatMulWithBiasAndReluAndRequantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/QuantizedMatMulWithBiasAndReluAndRequantize.java @@ -17,11 +17,11 @@ package org.tensorflow.op.linalg; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -101,7 +101,7 @@ private Options() { * @return a new instance of QuantizedMatMulWithBiasAndReluAndRequantize */ @Endpoint(describeByClass = true) - public static QuantizedMatMulWithBiasAndReluAndRequantize create(Scope scope, Operand a, Operand b, Operand bias, Operand minA, Operand maxA, Operand minB, Operand maxB, Operand minFreezedOutput, Operand maxFreezedOutput, DataType Toutput, Options... options) { + public static QuantizedMatMulWithBiasAndReluAndRequantize create(Scope scope, Operand a, Operand b, Operand bias, Operand minA, Operand maxA, Operand minB, Operand maxB, Operand minFreezedOutput, Operand maxFreezedOutput, Class Toutput, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedMatMulWithBiasAndReluAndRequantize", scope.makeOpName("QuantizedMatMulWithBiasAndReluAndRequantize")); opBuilder.addInput(a.asOutput()); opBuilder.addInput(b.asOutput()); @@ -112,8 +112,8 @@ public static SelfAdjointEig create(Scope scope, Operand input, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("SelfAdjointEigV2", scope.makeOpName("SelfAdjointEig")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.computeV != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Solve.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Solve.java index 62f1beb11c8..2c44b02cbc8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Solve.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Solve.java @@ -76,7 +76,7 @@ public static Solve create(Scope scope, Operand matrix, OperationBuilder opBuilder = scope.env().opBuilder("MatrixSolve", scope.makeOpName("Solve")); opBuilder.addInput(matrix.asOutput()); opBuilder.addInput(rhs.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.adjoint != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Sqrtm.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Sqrtm.java index 35c3b88605c..742b75e147e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Sqrtm.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Sqrtm.java @@ -62,7 +62,7 @@ public final class Sqrtm extends RawOp implements Operand { public static Sqrtm create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("MatrixSquareRoot", scope.makeOpName("Sqrtm")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Sqrtm(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Svd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Svd.java index 4ff72f0e139..c24b4882bb8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Svd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Svd.java @@ -92,7 +92,7 @@ private Options() { public static Svd create(Scope scope, Operand input, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("Svd", scope.makeOpName("Svd")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.computeUv != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TensorDiag.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TensorDiag.java index 126a8c5cde7..13dfe42f962 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TensorDiag.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TensorDiag.java @@ -64,7 +64,7 @@ public final class TensorDiag extends RawOp implements Operand< public static TensorDiag create(Scope scope, Operand diagonal) { OperationBuilder opBuilder = scope.env().opBuilder("Diag", scope.makeOpName("TensorDiag")); opBuilder.addInput(diagonal.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TensorDiag(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TensorDiagPart.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TensorDiagPart.java index e999ca96a4b..ee7010dd7e6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TensorDiagPart.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TensorDiagPart.java @@ -65,7 +65,7 @@ public final class TensorDiagPart extends RawOp implements Oper public static TensorDiagPart create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("DiagPart", scope.makeOpName("TensorDiagPart")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TensorDiagPart(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Transpose.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Transpose.java index 1df98fabe64..de08e116e7b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Transpose.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Transpose.java @@ -52,7 +52,7 @@ public static Transpose create(Scope sco OperationBuilder opBuilder = scope.env().opBuilder("Transpose", scope.makeOpName("Transpose")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(perm.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Transpose(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TriangularSolve.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TriangularSolve.java index da86d99b6c6..03bb6f86426 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TriangularSolve.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TriangularSolve.java @@ -130,7 +130,7 @@ public static TriangularSolve create(Scope scope, Operand TridiagonalMatMul create(Scope scope, Operand opBuilder.addInput(maindiag.asOutput()); opBuilder.addInput(subdiag.asOutput()); opBuilder.addInput(rhs.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TridiagonalMatMul(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TridiagonalSolve.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TridiagonalSolve.java index 84a65b02b55..2b379d46d5e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TridiagonalSolve.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TridiagonalSolve.java @@ -80,7 +80,7 @@ public static TridiagonalSolve create(Scope scope, Operand< OperationBuilder opBuilder = scope.env().opBuilder("TridiagonalSolve", scope.makeOpName("TridiagonalSolve")); opBuilder.addInput(diagonals.asOutput()); opBuilder.addInput(rhs.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.partialPivoting != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/CSRSparseMatrixComponents.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/CSRSparseMatrixComponents.java index 332382cec08..5f215d1e8b1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/CSRSparseMatrixComponents.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/CSRSparseMatrixComponents.java @@ -17,11 +17,11 @@ package org.tensorflow.op.linalg.sparse; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -49,12 +49,12 @@ public final class CSRSparseMatrixComponents extends RawOp { * @return a new instance of CSRSparseMatrixComponents */ @Endpoint(describeByClass = true) - public static CSRSparseMatrixComponents create(Scope scope, Operand csrSparseMatrix, Operand index, DataType type) { + public static CSRSparseMatrixComponents create(Scope scope, Operand csrSparseMatrix, Operand index, Class type) { OperationBuilder opBuilder = scope.env().opBuilder("CSRSparseMatrixComponents", scope.makeOpName("CSRSparseMatrixComponents")); opBuilder.addInput(csrSparseMatrix.asOutput()); opBuilder.addInput(index.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("type", type); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("type", Operands.toDataType(type)); return new CSRSparseMatrixComponents(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/CSRSparseMatrixToDense.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/CSRSparseMatrixToDense.java index 0d8ceba40d3..2c42786fb53 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/CSRSparseMatrixToDense.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/CSRSparseMatrixToDense.java @@ -17,11 +17,11 @@ package org.tensorflow.op.linalg.sparse; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -44,11 +44,11 @@ public final class CSRSparseMatrixToDense extends RawOp impleme * @return a new instance of CSRSparseMatrixToDense */ @Endpoint(describeByClass = true) - public static CSRSparseMatrixToDense create(Scope scope, Operand sparseInput, DataType type) { + public static CSRSparseMatrixToDense create(Scope scope, Operand sparseInput, Class type) { OperationBuilder opBuilder = scope.env().opBuilder("CSRSparseMatrixToDense", scope.makeOpName("CSRSparseMatrixToDense")); opBuilder.addInput(sparseInput.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("type", type); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("type", Operands.toDataType(type)); return new CSRSparseMatrixToDense(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/CSRSparseMatrixToSparseTensor.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/CSRSparseMatrixToSparseTensor.java index 0b5a2d41df8..3b88662432f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/CSRSparseMatrixToSparseTensor.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/CSRSparseMatrixToSparseTensor.java @@ -17,11 +17,11 @@ package org.tensorflow.op.linalg.sparse; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -45,11 +45,11 @@ public final class CSRSparseMatrixToSparseTensor extends RawOp * @return a new instance of CSRSparseMatrixToSparseTensor */ @Endpoint(describeByClass = true) - public static CSRSparseMatrixToSparseTensor create(Scope scope, Operand sparseMatrix, DataType type) { + public static CSRSparseMatrixToSparseTensor create(Scope scope, Operand sparseMatrix, Class type) { OperationBuilder opBuilder = scope.env().opBuilder("CSRSparseMatrixToSparseTensor", scope.makeOpName("CSRSparseMatrixToSparseTensor")); opBuilder.addInput(sparseMatrix.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("type", type); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("type", Operands.toDataType(type)); return new CSRSparseMatrixToSparseTensor(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/DenseToCSRSparseMatrix.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/DenseToCSRSparseMatrix.java index 0033c9a9760..c650dfdacb2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/DenseToCSRSparseMatrix.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/DenseToCSRSparseMatrix.java @@ -46,7 +46,7 @@ public static DenseToCSRSparseMatrix create(Scope scope, Opera OperationBuilder opBuilder = scope.env().opBuilder("DenseToCSRSparseMatrix", scope.makeOpName("DenseToCSRSparseMatrix")); opBuilder.addInput(denseInput.asOutput()); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DenseToCSRSparseMatrix(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixAdd.java index d8e676743a1..dca9b41ab13 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixAdd.java @@ -52,7 +52,7 @@ public static SparseMatrixAdd create(Scope scope, Operand a opBuilder.addInput(b.asOutput()); opBuilder.addInput(alpha.asOutput()); opBuilder.addInput(beta.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SparseMatrixAdd(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixMatMul.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixMatMul.java index 2ee48d29d79..ee5bf50586c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixMatMul.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixMatMul.java @@ -137,7 +137,7 @@ public static SparseMatrixMatMul create(Scope scope, Operan OperationBuilder opBuilder = scope.env().opBuilder("SparseMatrixMatMul", scope.makeOpName("SparseMatrixMatMul")); opBuilder.addInput(a.asOutput()); opBuilder.addInput(b.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.transposeA != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixMul.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixMul.java index ad1571580f5..27068d40e1c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixMul.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixMul.java @@ -54,7 +54,7 @@ public static SparseMatrixMul create(Scope scope, Operand a OperationBuilder opBuilder = scope.env().opBuilder("SparseMatrixMul", scope.makeOpName("SparseMatrixMul")); opBuilder.addInput(a.asOutput()); opBuilder.addInput(b.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SparseMatrixMul(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixNNZ.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixNNZ.java index e730d181699..a39b5cd941c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixNNZ.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixNNZ.java @@ -43,7 +43,7 @@ public final class SparseMatrixNNZ extends RawOp implements Operand { public static SparseMatrixNNZ create(Scope scope, Operand sparseMatrix) { OperationBuilder opBuilder = scope.env().opBuilder("SparseMatrixNNZ", scope.makeOpName("SparseMatrixNNZ")); opBuilder.addInput(sparseMatrix.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SparseMatrixNNZ(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixOrderingAMD.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixOrderingAMD.java index b833601b72e..f440f3fccc7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixOrderingAMD.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixOrderingAMD.java @@ -91,7 +91,7 @@ public final class SparseMatrixOrderingAMD extends RawOp implements Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("SparseMatrixOrderingAMD", scope.makeOpName("SparseMatrixOrderingAMD")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SparseMatrixOrderingAMD(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixSoftmax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixSoftmax.java index 01cec0f84da..973a63ade9d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixSoftmax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixSoftmax.java @@ -17,11 +17,11 @@ package org.tensorflow.op.linalg.sparse; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -49,11 +49,11 @@ public final class SparseMatrixSoftmax extends RawOp implements Operand { * @return a new instance of SparseMatrixSoftmax */ @Endpoint(describeByClass = true) - public static SparseMatrixSoftmax create(Scope scope, Operand logits, DataType type) { + public static SparseMatrixSoftmax create(Scope scope, Operand logits, Class type) { OperationBuilder opBuilder = scope.env().opBuilder("SparseMatrixSoftmax", scope.makeOpName("SparseMatrixSoftmax")); opBuilder.addInput(logits.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("type", type); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("type", Operands.toDataType(type)); return new SparseMatrixSoftmax(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixSoftmaxGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixSoftmaxGrad.java index 8ac96d72177..3de1b6edc1b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixSoftmaxGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixSoftmaxGrad.java @@ -17,11 +17,11 @@ package org.tensorflow.op.linalg.sparse; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -44,12 +44,12 @@ public final class SparseMatrixSoftmaxGrad extends RawOp implements Operand SparseMatrixSoftmaxGrad create(Scope scope, Operand softmax, Operand gradSoftmax, DataType type) { + public static SparseMatrixSoftmaxGrad create(Scope scope, Operand softmax, Operand gradSoftmax, Class type) { OperationBuilder opBuilder = scope.env().opBuilder("SparseMatrixSoftmaxGrad", scope.makeOpName("SparseMatrixSoftmaxGrad")); opBuilder.addInput(softmax.asOutput()); opBuilder.addInput(gradSoftmax.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("type", type); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("type", Operands.toDataType(type)); return new SparseMatrixSoftmaxGrad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixSparseCholesky.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixSparseCholesky.java index 82f97e209d9..91ec5e652a4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixSparseCholesky.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixSparseCholesky.java @@ -17,11 +17,11 @@ package org.tensorflow.op.linalg.sparse; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -115,12 +115,12 @@ public final class SparseMatrixSparseCholesky extends RawOp implements Operand SparseMatrixSparseCholesky create(Scope scope, Operand input, Operand permutation, DataType type) { + public static SparseMatrixSparseCholesky create(Scope scope, Operand input, Operand permutation, Class type) { OperationBuilder opBuilder = scope.env().opBuilder("SparseMatrixSparseCholesky", scope.makeOpName("SparseMatrixSparseCholesky")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(permutation.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("type", type); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("type", Operands.toDataType(type)); return new SparseMatrixSparseCholesky(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixSparseMatMul.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixSparseMatMul.java index 373ab3a01e2..2e47c1ca6ab 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixSparseMatMul.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixSparseMatMul.java @@ -17,11 +17,11 @@ package org.tensorflow.op.linalg.sparse; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -163,12 +163,12 @@ private Options() { * @return a new instance of SparseMatrixSparseMatMul */ @Endpoint(describeByClass = true) - public static SparseMatrixSparseMatMul create(Scope scope, Operand a, Operand b, DataType type, Options... options) { + public static SparseMatrixSparseMatMul create(Scope scope, Operand a, Operand b, Class type, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("SparseMatrixSparseMatMul", scope.makeOpName("SparseMatrixSparseMatMul")); opBuilder.addInput(a.asOutput()); opBuilder.addInput(b.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("type", type); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("type", Operands.toDataType(type)); if (options != null) { for (Options opts : options) { if (opts.transposeA != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixTranspose.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixTranspose.java index 90e5ba4294f..f1f71b33b4f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixTranspose.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixTranspose.java @@ -17,11 +17,11 @@ package org.tensorflow.op.linalg.sparse; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -65,11 +65,11 @@ private Options() { * @return a new instance of SparseMatrixTranspose */ @Endpoint(describeByClass = true) - public static SparseMatrixTranspose create(Scope scope, Operand input, DataType type, Options... options) { + public static SparseMatrixTranspose create(Scope scope, Operand input, Class type, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("SparseMatrixTranspose", scope.makeOpName("SparseMatrixTranspose")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("type", type); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("type", Operands.toDataType(type)); if (options != null) { for (Options opts : options) { if (opts.conjugate != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixZeros.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixZeros.java index 3c5bef9daed..eea60f2298a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixZeros.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixZeros.java @@ -17,11 +17,11 @@ package org.tensorflow.op.linalg.sparse; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -43,11 +43,11 @@ public final class SparseMatrixZeros extends RawOp implements Operand { * @return a new instance of SparseMatrixZeros */ @Endpoint(describeByClass = true) - public static SparseMatrixZeros create(Scope scope, Operand denseShape, DataType type) { + public static SparseMatrixZeros create(Scope scope, Operand denseShape, Class type) { OperationBuilder opBuilder = scope.env().opBuilder("SparseMatrixZeros", scope.makeOpName("SparseMatrixZeros")); opBuilder.addInput(denseShape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("type", type); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("type", Operands.toDataType(type)); return new SparseMatrixZeros(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseTensorToCSRSparseMatrix.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseTensorToCSRSparseMatrix.java index afda1e8b5f1..c503bdf897f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseTensorToCSRSparseMatrix.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseTensorToCSRSparseMatrix.java @@ -48,7 +48,7 @@ public static SparseTensorToCSRSparseMatrix create(Scope scope opBuilder.addInput(indices.asOutput()); opBuilder.addInput(values.asOutput()); opBuilder.addInput(denseShape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SparseTensorToCSRSparseMatrix(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Abs.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Abs.java index 7aa760a535b..dd31fbdc711 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Abs.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Abs.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the absolute value of a tensor. @@ -51,7 +50,7 @@ public final class Abs extends RawOp implements Operand { public static Abs create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Abs", scope.makeOpName("Abs")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Abs(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/AccumulateN.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/AccumulateN.java index dc15d9f9d81..1bfbe61fac9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/AccumulateN.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/AccumulateN.java @@ -58,7 +58,7 @@ public final class AccumulateN extends RawOp implements Operand public static AccumulateN create(Scope scope, Iterable> inputs, Shape shape) { OperationBuilder opBuilder = scope.env().opBuilder("AccumulateNV2", scope.makeOpName("AccumulateN")); opBuilder.addInputList(Operands.asOutputs(inputs)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("shape", shape); return new AccumulateN(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Acos.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Acos.java index 43ba8e54334..daccee535af 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Acos.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Acos.java @@ -46,7 +46,7 @@ public final class Acos extends RawOp implements Operand { public static Acos create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Acos", scope.makeOpName("Acos")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Acos(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Acosh.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Acosh.java index 0d1aaf95237..64384fef1c0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Acosh.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Acosh.java @@ -54,7 +54,7 @@ public final class Acosh extends RawOp implements Operand { public static Acosh create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Acosh", scope.makeOpName("Acosh")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Acosh(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Add.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Add.java index 86d7c82ae38..b8bf6421944 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Add.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Add.java @@ -51,7 +51,7 @@ public static Add create(Scope scope, Operand x, Operand OperationBuilder opBuilder = scope.env().opBuilder("Add", scope.makeOpName("Add")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Add(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/AddN.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/AddN.java index 16a5e22ce16..a29b27e2ce7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/AddN.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/AddN.java @@ -55,7 +55,7 @@ public final class AddN extends RawOp implements Operand { public static AddN create(Scope scope, Iterable> inputs) { OperationBuilder opBuilder = scope.env().opBuilder("AddN", scope.makeOpName("AddN")); opBuilder.addInputList(Operands.asOutputs(inputs)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new AddN(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Angle.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Angle.java index ce996785568..9187006ac28 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Angle.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Angle.java @@ -17,11 +17,11 @@ package org.tensorflow.op.math; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -63,11 +63,11 @@ public final class Angle extends RawOp implements Operand * @return a new instance of Angle */ @Endpoint(describeByClass = true) - public static Angle create(Scope scope, Operand input, DataType Tout) { + public static Angle create(Scope scope, Operand input, Class Tout) { OperationBuilder opBuilder = scope.env().opBuilder("Angle", scope.makeOpName("Angle")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("Tout", Tout); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("Tout", Operands.toDataType(Tout)); return new Angle(opBuilder.build()); } @@ -80,7 +80,7 @@ public static Angle create(Scope scope, */ @Endpoint(describeByClass = true) public static Angle create(Scope scope, Operand input) { - return create(scope, input, TFloat32.DTYPE); + return create(scope, input, TFloat32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ApproximateEqual.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ApproximateEqual.java index 245c42f269d..2a7ecb6b5d7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ApproximateEqual.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ApproximateEqual.java @@ -67,7 +67,7 @@ public static ApproximateEqual create(Scope scope, Operand OperationBuilder opBuilder = scope.env().opBuilder("ApproximateEqual", scope.makeOpName("ApproximateEqual")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.tolerance != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ArgMax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ArgMax.java index b45c1268cb2..2672a53fc83 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ArgMax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ArgMax.java @@ -17,11 +17,11 @@ package org.tensorflow.op.math; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -63,12 +63,12 @@ public final class ArgMax extends RawOp implements Operand * @return a new instance of ArgMax */ @Endpoint(describeByClass = true) - public static ArgMax create(Scope scope, Operand input, Operand dimension, DataType outputType) { + public static ArgMax create(Scope scope, Operand input, Operand dimension, Class outputType) { OperationBuilder opBuilder = scope.env().opBuilder("ArgMax", scope.makeOpName("ArgMax")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(dimension.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("output_type", outputType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_type", Operands.toDataType(outputType)); return new ArgMax(opBuilder.build()); } @@ -84,7 +84,7 @@ public static ArgMax */ @Endpoint(describeByClass = true) public static ArgMax create(Scope scope, Operand input, Operand dimension) { - return create(scope, input, dimension, TInt64.DTYPE); + return create(scope, input, dimension, TInt64.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ArgMin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ArgMin.java index 5a49adecd22..be484929189 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ArgMin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ArgMin.java @@ -17,11 +17,11 @@ package org.tensorflow.op.math; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -63,12 +63,12 @@ public final class ArgMin extends RawOp implements Operand * @return a new instance of ArgMin */ @Endpoint(describeByClass = true) - public static ArgMin create(Scope scope, Operand input, Operand dimension, DataType outputType) { + public static ArgMin create(Scope scope, Operand input, Operand dimension, Class outputType) { OperationBuilder opBuilder = scope.env().opBuilder("ArgMin", scope.makeOpName("ArgMin")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(dimension.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("output_type", outputType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_type", Operands.toDataType(outputType)); return new ArgMin(opBuilder.build()); } @@ -84,7 +84,7 @@ public static ArgMin */ @Endpoint(describeByClass = true) public static ArgMin create(Scope scope, Operand input, Operand dimension) { - return create(scope, input, dimension, TInt64.DTYPE); + return create(scope, input, dimension, TInt64.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Asin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Asin.java index 941515b013e..0a4a3e7fc18 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Asin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Asin.java @@ -62,7 +62,7 @@ public final class Asin extends RawOp implements Operand { public static Asin create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Asin", scope.makeOpName("Asin")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Asin(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Asinh.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Asinh.java index c2451727573..920f43774ed 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Asinh.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Asinh.java @@ -56,7 +56,7 @@ public final class Asinh extends RawOp implements Operand { public static Asinh create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Asinh", scope.makeOpName("Asinh")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Asinh(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Atan.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Atan.java index a3574d549bc..07397b65f6b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Atan.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Atan.java @@ -62,7 +62,7 @@ public final class Atan extends RawOp implements Operand { public static Atan create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Atan", scope.makeOpName("Atan")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Atan(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Atan2.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Atan2.java index d49bc324cb3..e8ad73ca897 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Atan2.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Atan2.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes arctangent of `y/x` element-wise, respecting signs of the arguments. @@ -55,7 +54,7 @@ public static Atan2 create(Scope scope, Operand y, Ope OperationBuilder opBuilder = scope.env().opBuilder("Atan2", scope.makeOpName("Atan2")); opBuilder.addInput(y.asOutput()); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Atan2(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Atanh.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Atanh.java index 6c53c8828c0..e24a225e341 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Atanh.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Atanh.java @@ -58,7 +58,7 @@ public final class Atanh extends RawOp implements Operand { public static Atanh create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Atanh", scope.makeOpName("Atanh")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Atanh(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI0.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI0.java index 45dcd2b8e4c..ec9c56c199e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI0.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI0.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code y()} output @@ -44,7 +43,7 @@ public final class BesselI0 extends RawOp implements Operand< public static BesselI0 create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("BesselI0", scope.makeOpName("BesselI0")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BesselI0(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI0e.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI0e.java index 816933ceb12..26cfa68f377 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI0e.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI0e.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code y()} output @@ -44,7 +43,7 @@ public final class BesselI0e extends RawOp implements Operand public static BesselI0e create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("BesselI0e", scope.makeOpName("BesselI0e")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BesselI0e(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI1.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI1.java index 148758aa5a4..4eb2b0d38da 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI1.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI1.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code y()} output @@ -44,7 +43,7 @@ public final class BesselI1 extends RawOp implements Operand< public static BesselI1 create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("BesselI1", scope.makeOpName("BesselI1")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BesselI1(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI1e.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI1e.java index 3529c4a0bed..8eed4770299 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI1e.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI1e.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code y()} output @@ -44,7 +43,7 @@ public final class BesselI1e extends RawOp implements Operand public static BesselI1e create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("BesselI1e", scope.makeOpName("BesselI1e")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BesselI1e(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Betainc.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Betainc.java index 53ecd2ed396..86caad140d5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Betainc.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Betainc.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Compute the regularized incomplete beta integral \\(I_x(a, b)\\). @@ -62,7 +61,7 @@ public static Betainc create(Scope scope, Operand a, O opBuilder.addInput(a.asOutput()); opBuilder.addInput(b.asOutput()); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Betainc(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Bincount.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Bincount.java index 4217584c4fb..9e8f03af4cc 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Bincount.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Bincount.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Counts the number of occurrences of each value in an integer array. @@ -62,7 +61,7 @@ public static Bincount create(Scope scope, Operand(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Ceil.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Ceil.java index c97e5b5ae5d..ab36643898b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Ceil.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Ceil.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Returns element-wise smallest integer not less than x. @@ -47,7 +46,7 @@ public final class Ceil extends RawOp implements Operand { public static Ceil create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Ceil", scope.makeOpName("Ceil")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Ceil(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/CompareAndBitpack.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/CompareAndBitpack.java index 2538cc59248..7a3ea0e193f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/CompareAndBitpack.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/CompareAndBitpack.java @@ -69,7 +69,7 @@ public static CompareAndBitpack create(Scope scope, Operand OperationBuilder opBuilder = scope.env().opBuilder("CompareAndBitpack", scope.makeOpName("CompareAndBitpack")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(threshold.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new CompareAndBitpack(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ComplexAbs.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ComplexAbs.java index 317744e519a..ce3c3607215 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ComplexAbs.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ComplexAbs.java @@ -17,11 +17,11 @@ package org.tensorflow.op.math; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -52,11 +52,11 @@ public final class ComplexAbs extends RawOp implements Operan * @return a new instance of ComplexAbs */ @Endpoint(describeByClass = true) - public static ComplexAbs create(Scope scope, Operand x, DataType Tout) { + public static ComplexAbs create(Scope scope, Operand x, Class Tout) { OperationBuilder opBuilder = scope.env().opBuilder("ComplexAbs", scope.makeOpName("ComplexAbs")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("Tout", Tout); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("Tout", Operands.toDataType(Tout)); return new ComplexAbs(opBuilder.build()); } @@ -69,7 +69,7 @@ public static ComplexAbs create(Scope sc */ @Endpoint(describeByClass = true) public static ComplexAbs create(Scope scope, Operand x) { - return create(scope, x, TFloat32.DTYPE); + return create(scope, x, TFloat32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Conj.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Conj.java index b565fe9d322..cf429b6e96f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Conj.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Conj.java @@ -60,7 +60,7 @@ public final class Conj extends RawOp implements Operand { public static Conj create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("Conj", scope.makeOpName("Conj")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Conj(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cos.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cos.java index 29f81972b17..614057659d5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cos.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cos.java @@ -57,7 +57,7 @@ public final class Cos extends RawOp implements Operand { public static Cos create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Cos", scope.makeOpName("Cos")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Cos(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cosh.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cosh.java index f65e3e952ea..e47154811a2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cosh.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cosh.java @@ -56,7 +56,7 @@ public final class Cosh extends RawOp implements Operand { public static Cosh create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Cosh", scope.makeOpName("Cosh")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Cosh(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cumprod.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cumprod.java index 52154403d72..85897f46a8d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cumprod.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cumprod.java @@ -104,7 +104,7 @@ public static Cumprod create(Scope scope OperationBuilder opBuilder = scope.env().opBuilder("Cumprod", scope.makeOpName("Cumprod")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(axis.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.exclusive != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cumsum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cumsum.java index 6895cbed39f..540ed69bfee 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cumsum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cumsum.java @@ -104,7 +104,7 @@ public static Cumsum create(Scope scope, OperationBuilder opBuilder = scope.env().opBuilder("Cumsum", scope.makeOpName("Cumsum")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(axis.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.exclusive != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/CumulativeLogsumexp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/CumulativeLogsumexp.java index 3c8e6f89870..4e53bb981c0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/CumulativeLogsumexp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/CumulativeLogsumexp.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Compute the cumulative product of the tensor `x` along `axis`. @@ -96,7 +95,7 @@ public static CumulativeLogsumexp crea OperationBuilder opBuilder = scope.env().opBuilder("CumulativeLogsumexp", scope.makeOpName("CumulativeLogsumexp")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(axis.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.exclusive != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/DenseBincount.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/DenseBincount.java index e38d559f4ae..d6a9d95e4d8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/DenseBincount.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/DenseBincount.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Counts the number of occurrences of each value in an integer array. @@ -81,7 +80,7 @@ public static DenseBincount create(Sco opBuilder.addInput(input.asOutput()); opBuilder.addInput(size.asOutput()); opBuilder.addInput(weights.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.binaryOutput != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Digamma.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Digamma.java index 2fd494f637c..c64f3b40f6d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Digamma.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Digamma.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes Psi, the derivative of Lgamma (the log of the absolute value of @@ -49,7 +48,7 @@ public final class Digamma extends RawOp implements Operand Digamma create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Digamma", scope.makeOpName("Digamma")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Digamma(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Div.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Div.java index 0cd80db04df..60895ff2c56 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Div.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Div.java @@ -51,7 +51,7 @@ public static Div create(Scope scope, Operand x, Operand OperationBuilder opBuilder = scope.env().opBuilder("Div", scope.makeOpName("Div")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Div(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/DivNoNan.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/DivNoNan.java index 7a1ea66a50d..62651e64084 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/DivNoNan.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/DivNoNan.java @@ -52,7 +52,7 @@ public static DivNoNan create(Scope scope, Operand x, Op OperationBuilder opBuilder = scope.env().opBuilder("DivNoNan", scope.makeOpName("DivNoNan")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DivNoNan(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Equal.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Equal.java index d67b38e9ca6..962a271e93d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Equal.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Equal.java @@ -80,7 +80,7 @@ public static Equal create(Scope scope, Operand x, Operand< OperationBuilder opBuilder = scope.env().opBuilder("Equal", scope.makeOpName("Equal")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.incompatibleShapeError != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Erf.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Erf.java index 9f86126bff4..eb723c89f2a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Erf.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Erf.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the Gauss error function of `x` element-wise. @@ -47,7 +46,7 @@ public final class Erf extends RawOp implements Operand { public static Erf create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Erf", scope.makeOpName("Erf")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Erf(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Erfc.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Erfc.java index b94fecf9ede..123ce651d03 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Erfc.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Erfc.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the complementary error function of `x` element-wise. @@ -47,7 +46,7 @@ public final class Erfc extends RawOp implements Operand { public static Erfc create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Erfc", scope.makeOpName("Erfc")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Erfc(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Exp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Exp.java index cee48319f26..c5a55cba72b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Exp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Exp.java @@ -72,7 +72,7 @@ public final class Exp extends RawOp implements Operand { public static Exp create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Exp", scope.makeOpName("Exp")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Exp(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Expm1.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Expm1.java index 9d76f16b774..86d10be91e7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Expm1.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Expm1.java @@ -61,7 +61,7 @@ public final class Expm1 extends RawOp implements Operand { public static Expm1 create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Expm1", scope.makeOpName("Expm1")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Expm1(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Fact.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Fact.java index 31d78966166..2d7f39d217e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Fact.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Fact.java @@ -42,7 +42,7 @@ public final class Fact extends RawOp implements Operand { @Endpoint(describeByClass = true) public static Fact create(Scope scope) { OperationBuilder opBuilder = scope.env().opBuilder("Fact", scope.makeOpName("Fact")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Fact(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Floor.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Floor.java index ac8d7a8ffba..2fa22d7a60c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Floor.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Floor.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Returns element-wise largest integer not greater than x. @@ -47,7 +46,7 @@ public final class Floor extends RawOp implements Operand public static Floor create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Floor", scope.makeOpName("Floor")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Floor(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/FloorDiv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/FloorDiv.java index 366b88bc6d9..5cd5fe74349 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/FloorDiv.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/FloorDiv.java @@ -51,7 +51,7 @@ public static FloorDiv create(Scope scope, Operand x, Op OperationBuilder opBuilder = scope.env().opBuilder("FloorDiv", scope.makeOpName("FloorDiv")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new FloorDiv(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/FloorMod.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/FloorMod.java index 715628b57a3..18c6c4fd34d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/FloorMod.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/FloorMod.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Returns element-wise remainder of division. When `x < 0` xor `y < 0` is @@ -55,7 +54,7 @@ public static FloorMod create(Scope scope, Operand x, OperationBuilder opBuilder = scope.env().opBuilder("FloorMod", scope.makeOpName("FloorMod")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new FloorMod(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Greater.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Greater.java index e8ef3811fd1..3db7896647a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Greater.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Greater.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TBool; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Returns the truth value of (x > y) element-wise. @@ -63,7 +62,7 @@ public static Greater create(Scope scope, Operand x, Oper OperationBuilder opBuilder = scope.env().opBuilder("Greater", scope.makeOpName("Greater")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Greater(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/GreaterEqual.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/GreaterEqual.java index 11a83743031..abeb67c3e66 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/GreaterEqual.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/GreaterEqual.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TBool; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Returns the truth value of (x >= y) element-wise. @@ -63,7 +62,7 @@ public static GreaterEqual create(Scope scope, Operand x, OperationBuilder opBuilder = scope.env().opBuilder("GreaterEqual", scope.makeOpName("GreaterEqual")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new GreaterEqual(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Igamma.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Igamma.java index a4687ef3ab1..7cb4c526e14 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Igamma.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Igamma.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Compute the lower regularized incomplete Gamma function `P(a, x)`. @@ -62,7 +61,7 @@ public static Igamma create(Scope scope, Operand a, Op OperationBuilder opBuilder = scope.env().opBuilder("Igamma", scope.makeOpName("Igamma")); opBuilder.addInput(a.asOutput()); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Igamma(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/IgammaGradA.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/IgammaGradA.java index e57b8d886e1..e81622a3391 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/IgammaGradA.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/IgammaGradA.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the gradient of `igamma(a, x)` wrt `a`. @@ -48,7 +47,7 @@ public static IgammaGradA create(Scope scope, Operand OperationBuilder opBuilder = scope.env().opBuilder("IgammaGradA", scope.makeOpName("IgammaGradA")); opBuilder.addInput(a.asOutput()); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new IgammaGradA(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Igammac.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Igammac.java index 1e2cb0cf0f7..ab67c74b7b5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Igammac.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Igammac.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Compute the upper regularized incomplete Gamma function `Q(a, x)`. @@ -62,7 +61,7 @@ public static Igammac create(Scope scope, Operand a, O OperationBuilder opBuilder = scope.env().opBuilder("Igammac", scope.makeOpName("Igammac")); opBuilder.addInput(a.asOutput()); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Igammac(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Imag.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Imag.java index 48a8a7107a3..a983a950dff 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Imag.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Imag.java @@ -17,11 +17,11 @@ package org.tensorflow.op.math; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -59,11 +59,11 @@ public final class Imag extends RawOp implements Operand { * @return a new instance of Imag */ @Endpoint(describeByClass = true) - public static Imag create(Scope scope, Operand input, DataType Tout) { + public static Imag create(Scope scope, Operand input, Class Tout) { OperationBuilder opBuilder = scope.env().opBuilder("Imag", scope.makeOpName("Imag")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("Tout", Tout); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("Tout", Operands.toDataType(Tout)); return new Imag(opBuilder.build()); } @@ -76,7 +76,7 @@ public static Imag create(Scope scope, O */ @Endpoint(describeByClass = true) public static Imag create(Scope scope, Operand input) { - return create(scope, input, TFloat32.DTYPE); + return create(scope, input, TFloat32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/InvertPermutation.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/InvertPermutation.java index de9e9c46932..04373176367 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/InvertPermutation.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/InvertPermutation.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the inverse permutation of a tensor. @@ -63,7 +62,7 @@ public final class InvertPermutation extends RawOp implements public static InvertPermutation create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("InvertPermutation", scope.makeOpName("InvertPermutation")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new InvertPermutation(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/IsFinite.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/IsFinite.java index ffe9bb99f10..516f2330b39 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/IsFinite.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/IsFinite.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TBool; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Returns which elements of x are finite. @@ -57,7 +56,7 @@ public final class IsFinite extends RawOp implements Operand { public static IsFinite create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("IsFinite", scope.makeOpName("IsFinite")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new IsFinite(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/IsInf.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/IsInf.java index 3d36e9fbfe9..ac1cf7946cc 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/IsInf.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/IsInf.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TBool; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Returns which elements of x are Inf. @@ -57,7 +56,7 @@ public final class IsInf extends RawOp implements Operand { public static IsInf create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("IsInf", scope.makeOpName("IsInf")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new IsInf(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/IsNan.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/IsNan.java index b58205a005c..f58f6a4aa38 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/IsNan.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/IsNan.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TBool; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Returns which elements of x are NaN. @@ -57,7 +56,7 @@ public final class IsNan extends RawOp implements Operand { public static IsNan create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("IsNan", scope.makeOpName("IsNan")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new IsNan(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Less.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Less.java index 3d796296f01..9564f1b84ff 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Less.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Less.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TBool; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Returns the truth value of (x < y) element-wise. @@ -63,7 +62,7 @@ public static Less create(Scope scope, Operand x, Operand OperationBuilder opBuilder = scope.env().opBuilder("Less", scope.makeOpName("Less")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Less(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/LessEqual.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/LessEqual.java index 618cd7a9866..10c0b7647cb 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/LessEqual.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/LessEqual.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TBool; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Returns the truth value of (x <= y) element-wise. @@ -63,7 +62,7 @@ public static LessEqual create(Scope scope, Operand x, Op OperationBuilder opBuilder = scope.env().opBuilder("LessEqual", scope.makeOpName("LessEqual")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new LessEqual(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Lgamma.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Lgamma.java index 9bc18b1b3b8..817993ef5c5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Lgamma.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Lgamma.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the log of the absolute value of `Gamma(x)` element-wise. @@ -57,7 +56,7 @@ public final class Lgamma extends RawOp implements Operand public static Lgamma create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Lgamma", scope.makeOpName("Lgamma")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Lgamma(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Log.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Log.java index 9db418d1002..4b45bf622d1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Log.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Log.java @@ -55,7 +55,7 @@ public final class Log extends RawOp implements Operand { public static Log create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Log", scope.makeOpName("Log")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Log(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Log1p.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Log1p.java index 3cc2656ea9b..ed84f97012e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Log1p.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Log1p.java @@ -55,7 +55,7 @@ public final class Log1p extends RawOp implements Operand { public static Log1p create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Log1p", scope.makeOpName("Log1p")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Log1p(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/LogicalAnd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/LogicalAnd.java index 89bb2837f46..214e0b61ea3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/LogicalAnd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/LogicalAnd.java @@ -49,7 +49,7 @@ public static LogicalAnd create(Scope scope, Operand x, Operand y) OperationBuilder opBuilder = scope.env().opBuilder("LogicalAnd", scope.makeOpName("LogicalAnd")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new LogicalAnd(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/LogicalNot.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/LogicalNot.java index f59c85fd320..7bcb001cc6a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/LogicalNot.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/LogicalNot.java @@ -44,7 +44,7 @@ public final class LogicalNot extends RawOp implements Operand { public static LogicalNot create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("LogicalNot", scope.makeOpName("LogicalNot")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new LogicalNot(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/LogicalOr.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/LogicalOr.java index 604e3ea18f5..5465751c543 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/LogicalOr.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/LogicalOr.java @@ -49,7 +49,7 @@ public static LogicalOr create(Scope scope, Operand x, Operand y) OperationBuilder opBuilder = scope.env().opBuilder("LogicalOr", scope.makeOpName("LogicalOr")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new LogicalOr(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Maximum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Maximum.java index 9f72150c5d3..e592e34e500 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Maximum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Maximum.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Returns the max of x and y (i.e. x > y ? x : y) element-wise. @@ -52,7 +51,7 @@ public static Maximum create(Scope scope, Operand x, O OperationBuilder opBuilder = scope.env().opBuilder("Maximum", scope.makeOpName("Maximum")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Maximum(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Mean.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Mean.java index 7859b7ce10f..dd192d28446 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Mean.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Mean.java @@ -75,7 +75,7 @@ public static Mean create(Scope scope, O OperationBuilder opBuilder = scope.env().opBuilder("Mean", scope.makeOpName("Mean")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(axis.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.keepDims != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Minimum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Minimum.java index e11b6e484fc..1c3ab3bb724 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Minimum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Minimum.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Returns the min of x and y (i.e. x < y ? x : y) element-wise. @@ -52,7 +51,7 @@ public static Minimum create(Scope scope, Operand x, O OperationBuilder opBuilder = scope.env().opBuilder("Minimum", scope.makeOpName("Minimum")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Minimum(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Mod.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Mod.java index 7ba98b81b39..e8ead53a30d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Mod.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Mod.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Returns element-wise remainder of division. This emulates C semantics in that @@ -55,7 +54,7 @@ public static Mod create(Scope scope, Operand x, Opera OperationBuilder opBuilder = scope.env().opBuilder("Mod", scope.makeOpName("Mod")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Mod(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Mul.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Mul.java index 20d5f471ba8..4d91744ba23 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Mul.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Mul.java @@ -51,7 +51,7 @@ public static Mul create(Scope scope, Operand x, Operand OperationBuilder opBuilder = scope.env().opBuilder("Mul", scope.makeOpName("Mul")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Mul(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/MulNoNan.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/MulNoNan.java index 312a3025870..312b0e0018a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/MulNoNan.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/MulNoNan.java @@ -51,7 +51,7 @@ public static MulNoNan create(Scope scope, Operand x, Op OperationBuilder opBuilder = scope.env().opBuilder("MulNoNan", scope.makeOpName("MulNoNan")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new MulNoNan(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Ndtri.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Ndtri.java index 55dcf0c434d..5e5f9d8b326 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Ndtri.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Ndtri.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code y()} output @@ -45,7 +44,7 @@ public final class Ndtri extends RawOp implements Operand public static Ndtri create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Ndtri", scope.makeOpName("Ndtri")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Ndtri(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Neg.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Neg.java index 53079692e32..4ecedcfff31 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Neg.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Neg.java @@ -48,7 +48,7 @@ public final class Neg extends RawOp implements Operand { public static Neg create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Neg", scope.makeOpName("Neg")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Neg(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/NextAfter.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/NextAfter.java index 8fa53306eed..ec8a0231618 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/NextAfter.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/NextAfter.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Returns the next representable value of `x1` in the direction of `x2`, element-wise. @@ -57,7 +56,7 @@ public static NextAfter create(Scope scope, Operand x1 OperationBuilder opBuilder = scope.env().opBuilder("NextAfter", scope.makeOpName("NextAfter")); opBuilder.addInput(x1.asOutput()); opBuilder.addInput(x2.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new NextAfter(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/NotEqual.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/NotEqual.java index 977688031c5..852567ff301 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/NotEqual.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/NotEqual.java @@ -70,7 +70,7 @@ public static NotEqual create(Scope scope, Operand x, Opera OperationBuilder opBuilder = scope.env().opBuilder("NotEqual", scope.makeOpName("NotEqual")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.incompatibleShapeError != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Polygamma.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Polygamma.java index d0021efc2ac..f17bc4958b1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Polygamma.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Polygamma.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Compute the polygamma function \\(\psi^{(n)}(x)\\). @@ -56,7 +55,7 @@ public static Polygamma create(Scope scope, Operand a, OperationBuilder opBuilder = scope.env().opBuilder("Polygamma", scope.makeOpName("Polygamma")); opBuilder.addInput(a.asOutput()); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Polygamma(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/PopulationCount.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/PopulationCount.java index bc721897426..c3dfd8c23c9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/PopulationCount.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/PopulationCount.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TUint8; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes element-wise population count (a.k.a. popcount, bitsum, bitcount). @@ -53,7 +52,7 @@ public final class PopulationCount extends RawOp implements Operand { public static PopulationCount create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("PopulationCount", scope.makeOpName("PopulationCount")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new PopulationCount(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Pow.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Pow.java index 27f26e431fe..d9347818c1a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Pow.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Pow.java @@ -57,7 +57,7 @@ public static Pow create(Scope scope, Operand x, Operand OperationBuilder opBuilder = scope.env().opBuilder("Pow", scope.makeOpName("Pow")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Pow(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/QuantizedAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/QuantizedAdd.java index ccd6d2e5f98..ad4a7435e16 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/QuantizedAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/QuantizedAdd.java @@ -17,11 +17,11 @@ package org.tensorflow.op.math; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -51,7 +51,7 @@ public final class QuantizedAdd extends RawOp { * @return a new instance of QuantizedAdd */ @Endpoint(describeByClass = true) - public static QuantizedAdd create(Scope scope, Operand x, Operand y, Operand minX, Operand maxX, Operand minY, Operand maxY, DataType Toutput) { + public static QuantizedAdd create(Scope scope, Operand x, Operand y, Operand minX, Operand maxX, Operand minY, Operand maxY, Class Toutput) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedAdd", scope.makeOpName("QuantizedAdd")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); @@ -59,8 +59,8 @@ public static QuantizedAdd(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/QuantizedMul.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/QuantizedMul.java index e16dc423a63..cc0a23b4a3c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/QuantizedMul.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/QuantizedMul.java @@ -17,11 +17,11 @@ package org.tensorflow.op.math; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -51,7 +51,7 @@ public final class QuantizedMul extends RawOp { * @return a new instance of QuantizedMul */ @Endpoint(describeByClass = true) - public static QuantizedMul create(Scope scope, Operand x, Operand y, Operand minX, Operand maxX, Operand minY, Operand maxY, DataType Toutput) { + public static QuantizedMul create(Scope scope, Operand x, Operand y, Operand minX, Operand maxX, Operand minY, Operand maxY, Class Toutput) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedMul", scope.makeOpName("QuantizedMul")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); @@ -59,8 +59,8 @@ public static QuantizedMul(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Real.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Real.java index e113597afd8..eba116d98f2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Real.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Real.java @@ -17,11 +17,11 @@ package org.tensorflow.op.math; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -59,11 +59,11 @@ public final class Real extends RawOp implements Operand { * @return a new instance of Real */ @Endpoint(describeByClass = true) - public static Real create(Scope scope, Operand input, DataType Tout) { + public static Real create(Scope scope, Operand input, Class Tout) { OperationBuilder opBuilder = scope.env().opBuilder("Real", scope.makeOpName("Real")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("Tout", Tout); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("Tout", Operands.toDataType(Tout)); return new Real(opBuilder.build()); } @@ -76,7 +76,7 @@ public static Real create(Scope scope, O */ @Endpoint(describeByClass = true) public static Real create(Scope scope, Operand input) { - return create(scope, input, TFloat32.DTYPE); + return create(scope, input, TFloat32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RealDiv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RealDiv.java index ec322c696db..5c5155ed78c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RealDiv.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RealDiv.java @@ -53,7 +53,7 @@ public static RealDiv create(Scope scope, Operand x, Ope OperationBuilder opBuilder = scope.env().opBuilder("RealDiv", scope.makeOpName("RealDiv")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new RealDiv(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Reciprocal.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Reciprocal.java index a0b53da3b7c..0b8571d742c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Reciprocal.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Reciprocal.java @@ -48,7 +48,7 @@ public final class Reciprocal extends RawOp implements Operand< public static Reciprocal create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Reciprocal", scope.makeOpName("Reciprocal")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Reciprocal(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ReciprocalGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ReciprocalGrad.java index dee41220ba9..6c1c8edc3b9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ReciprocalGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ReciprocalGrad.java @@ -50,7 +50,7 @@ public static ReciprocalGrad create(Scope scope, Operand OperationBuilder opBuilder = scope.env().opBuilder("ReciprocalGrad", scope.makeOpName("ReciprocalGrad")); opBuilder.addInput(y.asOutput()); opBuilder.addInput(dy.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ReciprocalGrad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RequantizationRangePerChannel.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RequantizationRangePerChannel.java index feda79c70b2..3e771f0cdef 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RequantizationRangePerChannel.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RequantizationRangePerChannel.java @@ -50,7 +50,7 @@ public static RequantizationRangePerChannel create(Scope scope opBuilder.addInput(input.asOutput()); opBuilder.addInput(inputMin.asOutput()); opBuilder.addInput(inputMax.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("clip_value_max", clipValueMax); return new RequantizationRangePerChannel(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RequantizePerChannel.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RequantizePerChannel.java index 53a6201151e..d1263d29d2e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RequantizePerChannel.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RequantizePerChannel.java @@ -17,11 +17,11 @@ package org.tensorflow.op.math; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -49,15 +49,15 @@ public final class RequantizePerChannel extends RawOp { * @return a new instance of RequantizePerChannel */ @Endpoint(describeByClass = true) - public static RequantizePerChannel create(Scope scope, Operand input, Operand inputMin, Operand inputMax, Operand requestedOutputMin, Operand requestedOutputMax, DataType outType) { + public static RequantizePerChannel create(Scope scope, Operand input, Operand inputMin, Operand inputMax, Operand requestedOutputMin, Operand requestedOutputMax, Class outType) { OperationBuilder opBuilder = scope.env().opBuilder("RequantizePerChannel", scope.makeOpName("RequantizePerChannel")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(inputMin.asOutput()); opBuilder.addInput(inputMax.asOutput()); opBuilder.addInput(requestedOutputMin.asOutput()); opBuilder.addInput(requestedOutputMax.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); return new RequantizePerChannel(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Rint.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Rint.java index b7b152248a8..1de8f528899 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Rint.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Rint.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Returns element-wise integer closest to x. @@ -57,7 +56,7 @@ public final class Rint extends RawOp implements Operand { public static Rint create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Rint", scope.makeOpName("Rint")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Rint(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Round.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Round.java index 7f892d28ed0..4c1352fb547 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Round.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Round.java @@ -49,7 +49,7 @@ public final class Round extends RawOp implements Operand { public static Round create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Round", scope.makeOpName("Round")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Round(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Rsqrt.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Rsqrt.java index de04c3f1204..4d8d3e620e4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Rsqrt.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Rsqrt.java @@ -48,7 +48,7 @@ public final class Rsqrt extends RawOp implements Operand { public static Rsqrt create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Rsqrt", scope.makeOpName("Rsqrt")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Rsqrt(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RsqrtGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RsqrtGrad.java index ee0eec068f3..a1696644fc3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RsqrtGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RsqrtGrad.java @@ -50,7 +50,7 @@ public static RsqrtGrad create(Scope scope, Operand y, O OperationBuilder opBuilder = scope.env().opBuilder("RsqrtGrad", scope.makeOpName("RsqrtGrad")); opBuilder.addInput(y.asOutput()); opBuilder.addInput(dy.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new RsqrtGrad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentMax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentMax.java index fdd40054420..8c0d4238d3f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentMax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentMax.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the maximum along segments of a tensor. @@ -73,7 +72,7 @@ public static SegmentMax create(Scope OperationBuilder opBuilder = scope.env().opBuilder("SegmentMax", scope.makeOpName("SegmentMax")); opBuilder.addInput(data.asOutput()); opBuilder.addInput(segmentIds.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SegmentMax(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentMean.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentMean.java index 2fe16ce7e12..fd0fd5ca9dd 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentMean.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentMean.java @@ -74,7 +74,7 @@ public static SegmentMean create(Scope s OperationBuilder opBuilder = scope.env().opBuilder("SegmentMean", scope.makeOpName("SegmentMean")); opBuilder.addInput(data.asOutput()); opBuilder.addInput(segmentIds.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SegmentMean(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentMin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentMin.java index b7ab590e976..19ab9059871 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentMin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentMin.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the minimum along segments of a tensor. @@ -73,7 +72,7 @@ public static SegmentMin create(Scope OperationBuilder opBuilder = scope.env().opBuilder("SegmentMin", scope.makeOpName("SegmentMin")); opBuilder.addInput(data.asOutput()); opBuilder.addInput(segmentIds.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SegmentMin(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentProd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentProd.java index 0f1179072e5..9fb8e26c721 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentProd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentProd.java @@ -73,7 +73,7 @@ public static SegmentProd create(Scope s OperationBuilder opBuilder = scope.env().opBuilder("SegmentProd", scope.makeOpName("SegmentProd")); opBuilder.addInput(data.asOutput()); opBuilder.addInput(segmentIds.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SegmentProd(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentSum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentSum.java index fceec1bfe43..708d4e7d000 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentSum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentSum.java @@ -73,7 +73,7 @@ public static SegmentSum create(Scope sc OperationBuilder opBuilder = scope.env().opBuilder("SegmentSum", scope.makeOpName("SegmentSum")); opBuilder.addInput(data.asOutput()); opBuilder.addInput(segmentIds.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SegmentSum(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sigmoid.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sigmoid.java index a54e4ae51ea..bd2a43a910f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sigmoid.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sigmoid.java @@ -48,7 +48,7 @@ public final class Sigmoid extends RawOp implements Operand public static Sigmoid create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Sigmoid", scope.makeOpName("Sigmoid")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Sigmoid(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SigmoidGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SigmoidGrad.java index 125397bfd65..5bb275ca5ce 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SigmoidGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SigmoidGrad.java @@ -50,7 +50,7 @@ public static SigmoidGrad create(Scope scope, Operand y, OperationBuilder opBuilder = scope.env().opBuilder("SigmoidGrad", scope.makeOpName("SigmoidGrad")); opBuilder.addInput(y.asOutput()); opBuilder.addInput(dy.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SigmoidGrad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sign.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sign.java index c9d8609872e..ca2ae2cda02 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sign.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sign.java @@ -54,7 +54,7 @@ public final class Sign extends RawOp implements Operand { public static Sign create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Sign", scope.makeOpName("Sign")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Sign(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sin.java index a17ea9d288e..35f6f8fd812 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sin.java @@ -56,7 +56,7 @@ public final class Sin extends RawOp implements Operand { public static Sin create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Sin", scope.makeOpName("Sin")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Sin(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sinh.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sinh.java index 613d983eef5..8ee456108fa 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sinh.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sinh.java @@ -56,7 +56,7 @@ public final class Sinh extends RawOp implements Operand { public static Sinh create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Sinh", scope.makeOpName("Sinh")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Sinh(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SobolSample.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SobolSample.java index 131cb7ed792..5424188a9a6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SobolSample.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SobolSample.java @@ -17,11 +17,11 @@ package org.tensorflow.op.math; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -29,7 +29,6 @@ import org.tensorflow.types.TFloat32; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Generates points from the Sobol sequence. @@ -54,13 +53,13 @@ public final class SobolSample extends RawOp implements Opera * @return a new instance of SobolSample */ @Endpoint(describeByClass = true) - public static SobolSample create(Scope scope, Operand dim, Operand numResults, Operand skip, DataType dtype) { + public static SobolSample create(Scope scope, Operand dim, Operand numResults, Operand skip, Class dtype) { OperationBuilder opBuilder = scope.env().opBuilder("SobolSample", scope.makeOpName("SobolSample")); opBuilder.addInput(dim.asOutput()); opBuilder.addInput(numResults.asOutput()); opBuilder.addInput(skip.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); return new SobolSample(opBuilder.build()); } @@ -77,7 +76,7 @@ public static SobolSample create(Scope scope, Operand create(Scope scope, Operand dim, Operand numResults, Operand skip) { - return create(scope, dim, numResults, skip, TFloat32.DTYPE); + return create(scope, dim, numResults, skip, TFloat32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Softplus.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Softplus.java index 79adcf30d76..1014467d255 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Softplus.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Softplus.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes softplus: `log(exp(features) + 1)`. @@ -47,7 +46,7 @@ public final class Softplus extends RawOp implements Operand< public static Softplus create(Scope scope, Operand features) { OperationBuilder opBuilder = scope.env().opBuilder("Softplus", scope.makeOpName("Softplus")); opBuilder.addInput(features.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Softplus(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SoftplusGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SoftplusGrad.java index 90174757bc3..e3582acab64 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SoftplusGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SoftplusGrad.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes softplus gradients for a softplus operation. @@ -48,7 +47,7 @@ public static SoftplusGrad create(Scope scope, Operand OperationBuilder opBuilder = scope.env().opBuilder("SoftplusGrad", scope.makeOpName("SoftplusGrad")); opBuilder.addInput(gradients.asOutput()); opBuilder.addInput(features.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SoftplusGrad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sqrt.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sqrt.java index de62810d7ce..5cf9dd2327f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sqrt.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sqrt.java @@ -48,7 +48,7 @@ public final class Sqrt extends RawOp implements Operand { public static Sqrt create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Sqrt", scope.makeOpName("Sqrt")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Sqrt(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SqrtGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SqrtGrad.java index 2c4b301a60b..9b9bef4fd92 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SqrtGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SqrtGrad.java @@ -50,7 +50,7 @@ public static SqrtGrad create(Scope scope, Operand y, Op OperationBuilder opBuilder = scope.env().opBuilder("SqrtGrad", scope.makeOpName("SqrtGrad")); opBuilder.addInput(y.asOutput()); opBuilder.addInput(dy.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SqrtGrad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Square.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Square.java index 01ccd098cc8..c7f2781605f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Square.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Square.java @@ -48,7 +48,7 @@ public final class Square extends RawOp implements Operand { public static Square create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Square", scope.makeOpName("Square")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Square(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SquaredDifference.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SquaredDifference.java index bed2fe9bb77..4f1e0306df8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SquaredDifference.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SquaredDifference.java @@ -51,7 +51,7 @@ public static SquaredDifference create(Scope scope, Operand OperationBuilder opBuilder = scope.env().opBuilder("SquaredDifference", scope.makeOpName("SquaredDifference")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SquaredDifference(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sub.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sub.java index 3578a962622..bb81618f654 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sub.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sub.java @@ -51,7 +51,7 @@ public static Sub create(Scope scope, Operand x, Operand OperationBuilder opBuilder = scope.env().opBuilder("Sub", scope.makeOpName("Sub")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Sub(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Tan.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Tan.java index f09d909e8cb..0ea80fcfaa8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Tan.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Tan.java @@ -57,7 +57,7 @@ public final class Tan extends RawOp implements Operand { public static Tan create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Tan", scope.makeOpName("Tan")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Tan(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Tanh.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Tanh.java index 04d9d1e092c..86a2b74e72f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Tanh.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Tanh.java @@ -56,7 +56,7 @@ public final class Tanh extends RawOp implements Operand { public static Tanh create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Tanh", scope.makeOpName("Tanh")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Tanh(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/TanhGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/TanhGrad.java index 273c5a1f76d..8b292523cce 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/TanhGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/TanhGrad.java @@ -50,7 +50,7 @@ public static TanhGrad create(Scope scope, Operand y, Op OperationBuilder opBuilder = scope.env().opBuilder("TanhGrad", scope.makeOpName("TanhGrad")); opBuilder.addInput(y.asOutput()); opBuilder.addInput(dy.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TanhGrad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/TruncateDiv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/TruncateDiv.java index 5cd4b52fbed..5902ad64c3f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/TruncateDiv.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/TruncateDiv.java @@ -56,7 +56,7 @@ public static TruncateDiv create(Scope scope, Operand x, OperationBuilder opBuilder = scope.env().opBuilder("TruncateDiv", scope.makeOpName("TruncateDiv")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TruncateDiv(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/TruncateMod.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/TruncateMod.java index 48c92574eb4..9419e0db0e4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/TruncateMod.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/TruncateMod.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Returns element-wise remainder of division. This emulates C semantics in that @@ -55,7 +54,7 @@ public static TruncateMod create(Scope scope, Operand OperationBuilder opBuilder = scope.env().opBuilder("TruncateMod", scope.makeOpName("TruncateMod")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TruncateMod(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentMax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentMax.java index 582113e3320..efaaf2dea96 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentMax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentMax.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the maximum along segments of a tensor. @@ -82,7 +81,7 @@ public static Unsorted opBuilder.addInput(data.asOutput()); opBuilder.addInput(segmentIds.asOutput()); opBuilder.addInput(numSegments.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new UnsortedSegmentMax(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentMin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentMin.java index 397ac5706a0..e73ec14aa1b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentMin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentMin.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the minimum along segments of a tensor. @@ -76,7 +75,7 @@ public static Unsorted opBuilder.addInput(data.asOutput()); opBuilder.addInput(segmentIds.asOutput()); opBuilder.addInput(numSegments.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new UnsortedSegmentMin(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentProd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentProd.java index c65fc484e4c..8dfa3b48922 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentProd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentProd.java @@ -75,7 +75,7 @@ public static UnsortedSe opBuilder.addInput(data.asOutput()); opBuilder.addInput(segmentIds.asOutput()); opBuilder.addInput(numSegments.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new UnsortedSegmentProd(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentSum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentSum.java index aaaf5b7bd23..06441ef1d6d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentSum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentSum.java @@ -78,7 +78,7 @@ public static UnsortedSe opBuilder.addInput(data.asOutput()); opBuilder.addInput(segmentIds.asOutput()); opBuilder.addInput(numSegments.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new UnsortedSegmentSum(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Xdivy.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Xdivy.java index 1a5e57836fc..445519d405c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Xdivy.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Xdivy.java @@ -48,7 +48,7 @@ public static Xdivy create(Scope scope, Operand x, Opera OperationBuilder opBuilder = scope.env().opBuilder("Xdivy", scope.makeOpName("Xdivy")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Xdivy(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Xlog1py.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Xlog1py.java index a15f29dab04..0bfd71e66b4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Xlog1py.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Xlog1py.java @@ -48,7 +48,7 @@ public static Xlog1py create(Scope scope, Operand x, Ope OperationBuilder opBuilder = scope.env().opBuilder("Xlog1py", scope.makeOpName("Xlog1py")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Xlog1py(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Xlogy.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Xlogy.java index a140c8aa6fe..2311fb50cf8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Xlogy.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Xlogy.java @@ -48,7 +48,7 @@ public static Xlogy create(Scope scope, Operand x, Opera OperationBuilder opBuilder = scope.env().opBuilder("Xlogy", scope.makeOpName("Xlogy")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Xlogy(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Zeta.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Zeta.java index 0f3cee188fc..73c290262c8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Zeta.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Zeta.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Compute the Hurwitz zeta function \\(\zeta(x, q)\\). @@ -53,7 +52,7 @@ public static Zeta create(Scope scope, Operand x, Oper OperationBuilder opBuilder = scope.env().opBuilder("Zeta", scope.makeOpName("Zeta")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(q.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Zeta(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/erfinv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/erfinv.java index de2a4482f65..cfa2adab329 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/erfinv.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/erfinv.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code y()} output @@ -45,7 +44,7 @@ public final class erfinv extends RawOp implements Operand public static erfinv create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Erfinv", scope.makeOpName("erfinv")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new erfinv(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselJ0.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselJ0.java index 8d2184a49cb..597e82504d0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselJ0.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselJ0.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code y()} output @@ -44,7 +43,7 @@ public final class BesselJ0 extends RawOp implements Operand< public static BesselJ0 create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("BesselJ0", scope.makeOpName("BesselJ0")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BesselJ0(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselJ1.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselJ1.java index d8f9621a36c..0e05c32334d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselJ1.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselJ1.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code y()} output @@ -44,7 +43,7 @@ public final class BesselJ1 extends RawOp implements Operand< public static BesselJ1 create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("BesselJ1", scope.makeOpName("BesselJ1")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BesselJ1(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK0.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK0.java index eaae243f83f..ae0586d549c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK0.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK0.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code y()} output @@ -44,7 +43,7 @@ public final class BesselK0 extends RawOp implements Operand< public static BesselK0 create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("BesselK0", scope.makeOpName("BesselK0")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BesselK0(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK0e.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK0e.java index c57ae64e233..e4a677d2f1a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK0e.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK0e.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code y()} output @@ -44,7 +43,7 @@ public final class BesselK0e extends RawOp implements Operand public static BesselK0e create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("BesselK0e", scope.makeOpName("BesselK0e")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BesselK0e(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK1.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK1.java index 1858d25fe3d..bcdd407508b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK1.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK1.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code y()} output @@ -44,7 +43,7 @@ public final class BesselK1 extends RawOp implements Operand< public static BesselK1 create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("BesselK1", scope.makeOpName("BesselK1")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BesselK1(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK1e.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK1e.java index e4a5cc23efd..c5824c47cbd 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK1e.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK1e.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code y()} output @@ -44,7 +43,7 @@ public final class BesselK1e extends RawOp implements Operand public static BesselK1e create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("BesselK1e", scope.makeOpName("BesselK1e")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BesselK1e(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselY0.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselY0.java index 9228d1b6145..03c8c1ade60 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselY0.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselY0.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code y()} output @@ -44,7 +43,7 @@ public final class BesselY0 extends RawOp implements Operand< public static BesselY0 create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("BesselY0", scope.makeOpName("BesselY0")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BesselY0(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselY1.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselY1.java index 0461416b808..92a7561ee8a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselY1.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselY1.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code y()} output @@ -44,7 +43,7 @@ public final class BesselY1 extends RawOp implements Operand< public static BesselY1 create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("BesselY1", scope.makeOpName("BesselY1")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BesselY1(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/Dawsn.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/Dawsn.java index 74388434149..9e50d639d02 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/Dawsn.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/Dawsn.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code y()} output @@ -44,7 +43,7 @@ public final class Dawsn extends RawOp implements Operand public static Dawsn create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Dawsn", scope.makeOpName("Dawsn")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Dawsn(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/Expint.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/Expint.java index b36c55fdeb6..8cff09b15c3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/Expint.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/Expint.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code y()} output @@ -44,7 +43,7 @@ public final class Expint extends RawOp implements Operand public static Expint create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Expint", scope.makeOpName("Expint")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Expint(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/FresnelCos.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/FresnelCos.java index bb9a9f47e78..f3d0848f814 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/FresnelCos.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/FresnelCos.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code y()} output @@ -44,7 +43,7 @@ public final class FresnelCos extends RawOp implements Operan public static FresnelCos create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("FresnelCos", scope.makeOpName("FresnelCos")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new FresnelCos(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/FresnelSin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/FresnelSin.java index 36681c87678..33d738bf9fd 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/FresnelSin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/FresnelSin.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code y()} output @@ -44,7 +43,7 @@ public final class FresnelSin extends RawOp implements Operan public static FresnelSin create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("FresnelSin", scope.makeOpName("FresnelSin")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new FresnelSin(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/Spence.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/Spence.java index ed613a28b1a..39a3c134ebb 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/Spence.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/Spence.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code y()} output @@ -44,7 +43,7 @@ public final class Spence extends RawOp implements Operand public static Spence create(Scope scope, Operand x) { OperationBuilder opBuilder = scope.env().opBuilder("Spence", scope.makeOpName("Spence")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Spence(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPool.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPool.java index 527d1a49713..77fb90557ec 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPool.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPool.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Performs average pooling on the input. @@ -78,7 +77,7 @@ private Options() { public static AvgPool create(Scope scope, Operand value, List ksize, List strides, String padding, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("AvgPool", scope.makeOpName("AvgPool")); opBuilder.addInput(value.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); long[] ksizeArray = new long[ksize.size()]; for (int i = 0; i < ksizeArray.length; ++i) { ksizeArray[i] = ksize.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPool3d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPool3d.java index 87467c8a982..7b675fc816e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPool3d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPool3d.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Performs 3D average pooling on the input. @@ -77,7 +76,7 @@ private Options() { public static AvgPool3d create(Scope scope, Operand input, List ksize, List strides, String padding, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("AvgPool3D", scope.makeOpName("AvgPool3d")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); long[] ksizeArray = new long[ksize.size()]; for (int i = 0; i < ksizeArray.length; ++i) { ksizeArray[i] = ksize.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPool3dGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPool3dGrad.java index 3e34c87f9b6..96ad463e8aa 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPool3dGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPool3dGrad.java @@ -28,7 +28,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes gradients of average pooling function. @@ -80,7 +79,7 @@ public static AvgPool3dGrad create(Scope scope, Operand AvgPoolGrad create(Scope scope, Operand BatchNormWithGlobalNormalization create(Scope opBuilder.addInput(v.asOutput()); opBuilder.addInput(beta.asOutput()); opBuilder.addInput(gamma.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("variance_epsilon", varianceEpsilon); opBuilder.setAttr("scale_after_normalization", scaleAfterNormalization); return new BatchNormWithGlobalNormalization(opBuilder.build()); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BatchNormWithGlobalNormalizationGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BatchNormWithGlobalNormalizationGrad.java index be07a5eea25..31819d472e9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BatchNormWithGlobalNormalizationGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BatchNormWithGlobalNormalizationGrad.java @@ -65,7 +65,7 @@ public static BatchNormWithGlobalNormalizationGrad create(S opBuilder.addInput(v.asOutput()); opBuilder.addInput(gamma.asOutput()); opBuilder.addInput(backprop.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("variance_epsilon", varianceEpsilon); opBuilder.setAttr("scale_after_normalization", scaleAfterNormalization); return new BatchNormWithGlobalNormalizationGrad(opBuilder.build()); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BiasAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BiasAdd.java index 462eaa6edc7..2d402e4b608 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BiasAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BiasAdd.java @@ -77,7 +77,7 @@ public static BiasAdd create(Scope scope, Operand value, OperationBuilder opBuilder = scope.env().opBuilder("BiasAdd", scope.makeOpName("BiasAdd")); opBuilder.addInput(value.asOutput()); opBuilder.addInput(bias.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.dataFormat != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BiasAddGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BiasAddGrad.java index df90cf9a2f3..05b7cad74b7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BiasAddGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BiasAddGrad.java @@ -76,7 +76,7 @@ private Options() { public static BiasAddGrad create(Scope scope, Operand outBackprop, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("BiasAddGrad", scope.makeOpName("BiasAddGrad")); opBuilder.addInput(outBackprop.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.dataFormat != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BlockLSTM.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BlockLSTM.java index 79de4f2f88c..9b1b33daee8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BlockLSTM.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BlockLSTM.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the LSTM cell forward propagation for all the time steps. @@ -115,7 +114,7 @@ public static BlockLSTM create(Scope scope, Operand BlockLSTMGrad create(Scope scope, Operand(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CTCLossV2.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CTCLossV2.java index c60fef4b2a7..b39d4bfeba5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CTCLossV2.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CTCLossV2.java @@ -100,7 +100,7 @@ public static CTCLossV2 create(Scope scope, Operand inputs, Operand trueClas OperationBuilder opBuilder = scope.env().opBuilder("ComputeAccidentalHits", scope.makeOpName("ComputeAccidentalHits")); opBuilder.addInput(trueClasses.asOutput()); opBuilder.addInput(sampledCandidates.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_true", numTrue); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2d.java index 79f2022d807..e3d98fe0882 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2d.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes a 2-D convolution given 4-D `input` and `filter` tensors. @@ -136,7 +135,7 @@ public static Conv2d create(Scope scope, Operand input OperationBuilder opBuilder = scope.env().opBuilder("Conv2D", scope.makeOpName("Conv2d")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(filter.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); long[] stridesArray = new long[strides.size()]; for (int i = 0; i < stridesArray.length; ++i) { stridesArray[i] = strides.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2dBackpropFilter.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2dBackpropFilter.java index 9c145dc3d60..bc282d8b349 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2dBackpropFilter.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2dBackpropFilter.java @@ -28,7 +28,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the gradients of convolution with respect to the filter. @@ -118,7 +117,7 @@ public static Conv2dBackpropFilter create(Scope scope, Op opBuilder.addInput(input.asOutput()); opBuilder.addInput(filterSizes.asOutput()); opBuilder.addInput(outBackprop.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); long[] stridesArray = new long[strides.size()]; for (int i = 0; i < stridesArray.length; ++i) { stridesArray[i] = strides.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2dBackpropInput.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2dBackpropInput.java index 492c4f2aebb..3b43fa3301d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2dBackpropInput.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2dBackpropInput.java @@ -28,7 +28,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the gradients of convolution with respect to the input. @@ -118,7 +117,7 @@ public static Conv2dBackpropInput create(Scope scope, Ope opBuilder.addInput(inputSizes.asOutput()); opBuilder.addInput(filter.asOutput()); opBuilder.addInput(outBackprop.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); long[] stridesArray = new long[strides.size()]; for (int i = 0; i < stridesArray.length; ++i) { stridesArray[i] = strides.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv3d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv3d.java index 94ae4ffd2b5..b778819c0ce 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv3d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv3d.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes a 3-D convolution given 5-D `input` and `filter` tensors. @@ -97,7 +96,7 @@ public static Conv3d create(Scope scope, Operand input OperationBuilder opBuilder = scope.env().opBuilder("Conv3D", scope.makeOpName("Conv3d")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(filter.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); long[] stridesArray = new long[strides.size()]; for (int i = 0; i < stridesArray.length; ++i) { stridesArray[i] = strides.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv3dBackpropFilter.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv3dBackpropFilter.java index 0d73e491717..6ec7dd5b71a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv3dBackpropFilter.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv3dBackpropFilter.java @@ -28,7 +28,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the gradients of 3-D convolution with respect to the filter. @@ -97,7 +96,7 @@ public static Conv3dBackpropFilter create(Scope scope, Op opBuilder.addInput(input.asOutput()); opBuilder.addInput(filterSizes.asOutput()); opBuilder.addInput(outBackprop.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); long[] stridesArray = new long[strides.size()]; for (int i = 0; i < stridesArray.length; ++i) { stridesArray[i] = strides.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv3dBackpropInput.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv3dBackpropInput.java index 8b153890811..0d6c1792495 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv3dBackpropInput.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv3dBackpropInput.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the gradients of 3-D convolution with respect to the input. @@ -96,7 +95,7 @@ public static Conv3dBackpropInput crea opBuilder.addInput(inputSizes.asOutput()); opBuilder.addInput(filter.asOutput()); opBuilder.addInput(outBackprop.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); long[] stridesArray = new long[strides.size()]; for (int i = 0; i < stridesArray.length; ++i) { stridesArray[i] = strides.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CtcBeamSearchDecoder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CtcBeamSearchDecoder.java index 96f179641e7..6fb3ae265f4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CtcBeamSearchDecoder.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CtcBeamSearchDecoder.java @@ -30,7 +30,6 @@ import org.tensorflow.types.TInt32; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Performs beam search decoding on the logits given in input. @@ -81,7 +80,7 @@ public static CtcBeamSearchDecoder create(Scope scope, Op OperationBuilder opBuilder = scope.env().opBuilder("CTCBeamSearchDecoder", scope.makeOpName("CtcBeamSearchDecoder")); opBuilder.addInput(inputs.asOutput()); opBuilder.addInput(sequenceLength.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("beam_width", beamWidth); opBuilder.setAttr("top_paths", topPaths); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CtcGreedyDecoder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CtcGreedyDecoder.java index b8b35b8ceaa..2e22105a783 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CtcGreedyDecoder.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CtcGreedyDecoder.java @@ -28,7 +28,6 @@ import org.tensorflow.types.TInt32; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Performs greedy decoding on the logits given in inputs. @@ -81,7 +80,7 @@ public static CtcGreedyDecoder create(Scope scope, Operan OperationBuilder opBuilder = scope.env().opBuilder("CTCGreedyDecoder", scope.makeOpName("CtcGreedyDecoder")); opBuilder.addInput(inputs.asOutput()); opBuilder.addInput(sequenceLength.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.mergeRepeated != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CtcLoss.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CtcLoss.java index ceb60a4baf7..1ea61f47a0b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CtcLoss.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CtcLoss.java @@ -28,7 +28,6 @@ import org.tensorflow.types.TInt32; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Calculates the CTC Loss (log probability) for each batch entry. Also calculates @@ -103,7 +102,7 @@ public static CtcLoss create(Scope scope, Operand inpu opBuilder.addInput(labelsIndices.asOutput()); opBuilder.addInput(labelsValues.asOutput()); opBuilder.addInput(sequenceLength.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.preprocessCollapseRepeated != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNN.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNN.java index 7c179d7e578..12e94a102f6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNN.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNN.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * A RNN backed by cuDNN. @@ -185,7 +184,7 @@ public static CudnnRNN create(Scope scope, Operand inp opBuilder.addInput(inputC.asOutput()); opBuilder.addInput(params.asOutput()); opBuilder.addInput(sequenceLengths.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.rnnMode != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNNBackprop.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNNBackprop.java index 3719c186716..78a08d58328 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNNBackprop.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNNBackprop.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Backprop step of CudnnRNNV3. @@ -202,7 +201,7 @@ public static CudnnRNNBackprop create(Scope scope, Operan opBuilder.addInput(outputCBackprop.asOutput()); opBuilder.addInput(reserveSpace.asOutput()); opBuilder.addInput(hostReserved.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.rnnMode != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNNCanonicalToParams.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNNCanonicalToParams.java index 155cfd2c0a4..2c5c451fac8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNNCanonicalToParams.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNNCanonicalToParams.java @@ -28,7 +28,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Converts CudnnRNN params from canonical form to usable form. It supports the projection in LSTM. @@ -162,7 +161,7 @@ public static CudnnRNNCanonicalToParams create(Scope scop opBuilder.addInput(inputSize.asOutput()); opBuilder.addInputList(Operands.asOutputs(weights)); opBuilder.addInputList(Operands.asOutputs(biases)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.rnnMode != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNNParamsToCanonical.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNNParamsToCanonical.java index ea575f2d7a1..adf30df3312 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNNParamsToCanonical.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNNParamsToCanonical.java @@ -29,7 +29,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Retrieves CudnnRNN params in canonical form. It supports the projection in LSTM. @@ -163,7 +162,7 @@ public static CudnnRNNParamsToCanonical create(Scope scop opBuilder.addInput(numUnits.asOutput()); opBuilder.addInput(inputSize.asOutput()); opBuilder.addInput(params.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_params_weights", numParamsWeights); opBuilder.setAttr("num_params_biases", numParamsBiases); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRnnParamsSize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRnnParamsSize.java index 94421d0aa6e..14dcc23a10e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRnnParamsSize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRnnParamsSize.java @@ -17,18 +17,17 @@ package org.tensorflow.op.nn; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes size of weights that can be used by a Cudnn RNN model. @@ -146,14 +145,14 @@ private Options() { * @return a new instance of CudnnRnnParamsSize */ @Endpoint(describeByClass = true) - public static CudnnRnnParamsSize create(Scope scope, Operand numLayers, Operand numUnits, Operand inputSize, DataType T, DataType S, Options... options) { + public static CudnnRnnParamsSize create(Scope scope, Operand numLayers, Operand numUnits, Operand inputSize, Class T, Class S, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("CudnnRNNParamsSize", scope.makeOpName("CudnnRnnParamsSize")); opBuilder.addInput(numLayers.asOutput()); opBuilder.addInput(numUnits.asOutput()); opBuilder.addInput(inputSize.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("T", T); - opBuilder.setAttr("S", S); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("T", Operands.toDataType(T)); + opBuilder.setAttr("S", Operands.toDataType(S)); if (options != null) { for (Options opts : options) { if (opts.rnnMode != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DataFormatDimMap.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DataFormatDimMap.java index 6b1ff40761b..115a5bb12d8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DataFormatDimMap.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DataFormatDimMap.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Returns the dimension index in the destination data format given the one in @@ -79,7 +78,7 @@ private Options() { public static DataFormatDimMap create(Scope scope, Operand x, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("DataFormatDimMap", scope.makeOpName("DataFormatDimMap")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.srcFormat != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DataFormatVecPermute.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DataFormatVecPermute.java index ba218c1923f..6f8799f0e68 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DataFormatVecPermute.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DataFormatVecPermute.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Returns the permuted vector/tensor in the destination data format given the @@ -78,7 +77,7 @@ private Options() { public static DataFormatVecPermute create(Scope scope, Operand x, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("DataFormatVecPermute", scope.makeOpName("DataFormatVecPermute")); opBuilder.addInput(x.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.srcFormat != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthToSpace.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthToSpace.java index 6456eff1f95..2f95879ddd7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthToSpace.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthToSpace.java @@ -147,7 +147,7 @@ private Options() { public static DepthToSpace create(Scope scope, Operand input, Long blockSize, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("DepthToSpace", scope.makeOpName("DepthToSpace")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("block_size", blockSize); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthwiseConv2dNative.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthwiseConv2dNative.java index 6549d8b9dfc..8420a6524dc 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthwiseConv2dNative.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthwiseConv2dNative.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes a 2-D depthwise convolution given 4-D `input` and `filter` tensors. @@ -116,7 +115,7 @@ public static DepthwiseConv2dNative create(Scope scope, O OperationBuilder opBuilder = scope.env().opBuilder("DepthwiseConv2dNative", scope.makeOpName("DepthwiseConv2dNative")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(filter.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); long[] stridesArray = new long[strides.size()]; for (int i = 0; i < stridesArray.length; ++i) { stridesArray[i] = strides.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthwiseConv2dNativeBackpropFilter.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthwiseConv2dNativeBackpropFilter.java index fadfdacc823..3825826677b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthwiseConv2dNativeBackpropFilter.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthwiseConv2dNativeBackpropFilter.java @@ -28,7 +28,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the gradients of depthwise convolution with respect to the filter. @@ -109,7 +108,7 @@ public static DepthwiseConv2dNativeBackpropFilter create( opBuilder.addInput(input.asOutput()); opBuilder.addInput(filterSizes.asOutput()); opBuilder.addInput(outBackprop.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); long[] stridesArray = new long[strides.size()]; for (int i = 0; i < stridesArray.length; ++i) { stridesArray[i] = strides.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthwiseConv2dNativeBackpropInput.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthwiseConv2dNativeBackpropInput.java index d2e3e733a01..35f10aaed5d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthwiseConv2dNativeBackpropInput.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthwiseConv2dNativeBackpropInput.java @@ -28,7 +28,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the gradients of depthwise convolution with respect to the input. @@ -108,7 +107,7 @@ public static DepthwiseConv2dNativeBackpropInput create(S opBuilder.addInput(inputSizes.asOutput()); opBuilder.addInput(filter.asOutput()); opBuilder.addInput(outBackprop.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); long[] stridesArray = new long[strides.size()]; for (int i = 0; i < stridesArray.length; ++i) { stridesArray[i] = strides.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Dilation2d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Dilation2d.java index c7135b20361..d87f33ca07f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Dilation2d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Dilation2d.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the grayscale dilation of 4-D `input` and 3-D `filter` tensors. @@ -79,7 +78,7 @@ public static Dilation2d create(Scope scope, Operand i OperationBuilder opBuilder = scope.env().opBuilder("Dilation2D", scope.makeOpName("Dilation2d")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(filter.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); long[] stridesArray = new long[strides.size()]; for (int i = 0; i < stridesArray.length; ++i) { stridesArray[i] = strides.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Dilation2dBackpropFilter.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Dilation2dBackpropFilter.java index 9254ff8c285..c4e1d45a440 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Dilation2dBackpropFilter.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Dilation2dBackpropFilter.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the gradient of morphological 2-D dilation with respect to the filter. @@ -57,7 +56,7 @@ public static Dilation2dBackpropFilter create(Scope scope opBuilder.addInput(input.asOutput()); opBuilder.addInput(filter.asOutput()); opBuilder.addInput(outBackprop.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); long[] stridesArray = new long[strides.size()]; for (int i = 0; i < stridesArray.length; ++i) { stridesArray[i] = strides.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Dilation2dBackpropInput.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Dilation2dBackpropInput.java index 525e06182c5..3f6bb100bc5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Dilation2dBackpropInput.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Dilation2dBackpropInput.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the gradient of morphological 2-D dilation with respect to the input. @@ -57,7 +56,7 @@ public static Dilation2dBackpropInput create(Scope scope, opBuilder.addInput(input.asOutput()); opBuilder.addInput(filter.asOutput()); opBuilder.addInput(outBackprop.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); long[] stridesArray = new long[strides.size()]; for (int i = 0; i < stridesArray.length; ++i) { stridesArray[i] = strides.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Elu.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Elu.java index daeef97895b..86012a4c4ef 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Elu.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Elu.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes exponential linear: `exp(features) - 1` if < 0, `features` otherwise. @@ -50,7 +49,7 @@ public final class Elu extends RawOp implements Operand { public static Elu create(Scope scope, Operand features) { OperationBuilder opBuilder = scope.env().opBuilder("Elu", scope.makeOpName("Elu")); opBuilder.addInput(features.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Elu(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/EluGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/EluGrad.java index 664475879a0..4771374123e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/EluGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/EluGrad.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes gradients for the exponential linear (Elu) operation. @@ -48,7 +47,7 @@ public static EluGrad create(Scope scope, Operand grad OperationBuilder opBuilder = scope.env().opBuilder("EluGrad", scope.makeOpName("EluGrad")); opBuilder.addInput(gradients.asOutput()); opBuilder.addInput(outputs.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new EluGrad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.java index 25fd11071f9..6e72e03eb38 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.java @@ -170,7 +170,7 @@ private Options() { public static FixedUnigramCandidateSampler create(Scope scope, Operand trueClasses, Long numTrue, Long numSampled, Boolean unique, Long rangeMax, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("FixedUnigramCandidateSampler", scope.makeOpName("FixedUnigramCandidateSampler")); opBuilder.addInput(trueClasses.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_true", numTrue); opBuilder.setAttr("num_sampled", numSampled); opBuilder.setAttr("unique", unique); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalAvgPool.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalAvgPool.java index 101ea21ec8c..a9bddf8774c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalAvgPool.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalAvgPool.java @@ -28,7 +28,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Performs fractional average pooling on the input. @@ -131,7 +130,7 @@ private Options() { public static FractionalAvgPool create(Scope scope, Operand value, List poolingRatio, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("FractionalAvgPool", scope.makeOpName("FractionalAvgPool")); opBuilder.addInput(value.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); float[] poolingRatioArray = new float[poolingRatio.size()]; for (int i = 0; i < poolingRatioArray.length; ++i) { poolingRatioArray[i] = poolingRatio.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalAvgPoolGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalAvgPoolGrad.java index 03ae0136311..094ce640a09 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalAvgPoolGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalAvgPoolGrad.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes gradient of the FractionalAvgPool function. @@ -90,7 +89,7 @@ public static FractionalAvgPoolGrad create(Scope scope, O opBuilder.addInput(outBackprop.asOutput()); opBuilder.addInput(rowPoolingSequence.asOutput()); opBuilder.addInput(colPoolingSequence.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.overlapping != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalMaxPool.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalMaxPool.java index a621e037740..86c7e204757 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalMaxPool.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalMaxPool.java @@ -28,7 +28,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Performs fractional max pooling on the input. @@ -155,7 +154,7 @@ private Options() { public static FractionalMaxPool create(Scope scope, Operand value, List poolingRatio, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("FractionalMaxPool", scope.makeOpName("FractionalMaxPool")); opBuilder.addInput(value.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); float[] poolingRatioArray = new float[poolingRatio.size()]; for (int i = 0; i < poolingRatioArray.length; ++i) { poolingRatioArray[i] = poolingRatio.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalMaxPoolGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalMaxPoolGrad.java index 1b2bcc62dbf..e059e233e05 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalMaxPoolGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalMaxPoolGrad.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes gradient of the FractionalMaxPool function. @@ -86,7 +85,7 @@ public static FractionalMaxPoolGrad create(Scope scope, O opBuilder.addInput(outBackprop.asOutput()); opBuilder.addInput(rowPoolingSequence.asOutput()); opBuilder.addInput(colPoolingSequence.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.overlapping != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedBatchNorm.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedBatchNorm.java index 04e8d71e1e5..29a6c2bdad3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedBatchNorm.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedBatchNorm.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Batch normalization. @@ -109,7 +108,7 @@ public static FusedBatchNorm create opBuilder.addInput(offset.asOutput()); opBuilder.addInput(mean.asOutput()); opBuilder.addInput(variance.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.epsilon != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedBatchNormGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedBatchNormGrad.java index 4d2ecc74a4f..aa8d3b94b99 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedBatchNormGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedBatchNormGrad.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TFloat32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Gradient for batch normalization. @@ -111,7 +110,7 @@ public static FusedBatchNormGrad cr opBuilder.addInput(reserveSpace1.asOutput()); opBuilder.addInput(reserveSpace2.asOutput()); opBuilder.addInput(reserveSpace3.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.epsilon != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedPadConv2d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedPadConv2d.java index 2d3de921f0b..db1a7dac897 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedPadConv2d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedPadConv2d.java @@ -28,7 +28,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Performs a padding as a preprocess during a convolution. @@ -71,7 +70,7 @@ public static FusedPadConv2d create(Scope scope, Operand< opBuilder.addInput(input.asOutput()); opBuilder.addInput(paddings.asOutput()); opBuilder.addInput(filter.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("mode", mode); long[] stridesArray = new long[strides.size()]; for (int i = 0; i < stridesArray.length; ++i) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedResizeAndPadConv2d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedResizeAndPadConv2d.java index 02f82242c7a..1bc106ee063 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedResizeAndPadConv2d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedResizeAndPadConv2d.java @@ -28,7 +28,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Performs a resize and padding as a preprocess during a convolution. @@ -94,7 +93,7 @@ public static FusedResizeAndPadConv2d create(Scope scope, opBuilder.addInput(size.asOutput()); opBuilder.addInput(paddings.asOutput()); opBuilder.addInput(filter.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("mode", mode); long[] stridesArray = new long[strides.size()]; for (int i = 0; i < stridesArray.length; ++i) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/GRUBlockCell.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/GRUBlockCell.java index 446f43cfb0c..19ee4709eb8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/GRUBlockCell.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/GRUBlockCell.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the GRU cell forward propagation for 1 time step. @@ -101,7 +100,7 @@ public static GRUBlockCell create(Scope scope, Operand opBuilder.addInput(wC.asOutput()); opBuilder.addInput(bRu.asOutput()); opBuilder.addInput(bC.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new GRUBlockCell(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/GRUBlockCellGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/GRUBlockCellGrad.java index 4a6b72b8e4c..16d2efc3dd5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/GRUBlockCellGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/GRUBlockCellGrad.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the GRU cell back-propagation for 1 time step. @@ -145,7 +144,7 @@ public static GRUBlockCellGrad create(Scope scope, Operan opBuilder.addInput(u.asOutput()); opBuilder.addInput(c.asOutput()); opBuilder.addInput(dH.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new GRUBlockCellGrad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/InTopK.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/InTopK.java index d38388a3fd5..bdf5f761d1a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/InTopK.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/InTopK.java @@ -28,7 +28,6 @@ import org.tensorflow.types.TBool; import org.tensorflow.types.TFloat32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Says whether the targets are in the top `K` predictions. @@ -66,7 +65,7 @@ public static InTopK create(Scope scope, Operand p opBuilder.addInput(predictions.asOutput()); opBuilder.addInput(targets.asOutput()); opBuilder.addInput(k.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new InTopK(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/InvGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/InvGrad.java index 161d8771b83..97c79db904a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/InvGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/InvGrad.java @@ -50,7 +50,7 @@ public static InvGrad create(Scope scope, Operand y, Ope OperationBuilder opBuilder = scope.env().opBuilder("InvGrad", scope.makeOpName("InvGrad")); opBuilder.addInput(y.asOutput()); opBuilder.addInput(dy.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new InvGrad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/L2Loss.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/L2Loss.java index b38d9e99d96..45856e6c255 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/L2Loss.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/L2Loss.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * L2 Loss. @@ -51,7 +50,7 @@ public final class L2Loss extends RawOp implements Operand public static L2Loss create(Scope scope, Operand t) { OperationBuilder opBuilder = scope.env().opBuilder("L2Loss", scope.makeOpName("L2Loss")); opBuilder.addInput(t.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new L2Loss(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LSTMBlockCell.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LSTMBlockCell.java index ab5d1b8aee2..ad144fed082 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LSTMBlockCell.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LSTMBlockCell.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the LSTM cell forward propagation for 1 time step. @@ -123,7 +122,7 @@ public static LSTMBlockCell create(Scope scope, Operand LSTMBlockCellGrad create(Scope scope, Opera opBuilder.addInput(co.asOutput()); opBuilder.addInput(csGrad.asOutput()); opBuilder.addInput(hGrad.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("use_peephole", usePeephole); return new LSTMBlockCellGrad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LeakyRelu.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LeakyRelu.java index 8ca3f540cad..2016d3a6abb 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LeakyRelu.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LeakyRelu.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes rectified linear: `max(features, features * alpha)`. @@ -67,7 +66,7 @@ private Options() { public static LeakyRelu create(Scope scope, Operand features, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("LeakyRelu", scope.makeOpName("LeakyRelu")); opBuilder.addInput(features.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.alpha != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LearnedUnigramCandidateSampler.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LearnedUnigramCandidateSampler.java index 3f850ce672c..fdd595e76cf 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LearnedUnigramCandidateSampler.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LearnedUnigramCandidateSampler.java @@ -93,7 +93,7 @@ private Options() { public static LearnedUnigramCandidateSampler create(Scope scope, Operand trueClasses, Long numTrue, Long numSampled, Boolean unique, Long rangeMax, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("LearnedUnigramCandidateSampler", scope.makeOpName("LearnedUnigramCandidateSampler")); opBuilder.addInput(trueClasses.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_true", numTrue); opBuilder.setAttr("num_sampled", numSampled); opBuilder.setAttr("unique", unique); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LocalResponseNormalization.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LocalResponseNormalization.java index a560c9cfb58..1e28dd0ee14 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LocalResponseNormalization.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LocalResponseNormalization.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Local Response Normalization. @@ -106,7 +105,7 @@ private Options() { public static LocalResponseNormalization create(Scope scope, Operand input, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("LRN", scope.makeOpName("LocalResponseNormalization")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.depthRadius != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LocalResponseNormalizationGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LocalResponseNormalizationGrad.java index 08f10c12f26..51915dc43a7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LocalResponseNormalizationGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LocalResponseNormalizationGrad.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Gradients for Local Response Normalization. @@ -97,7 +96,7 @@ public static LocalResponseNormalizationGrad create(Scope opBuilder.addInput(inputGrads.asOutput()); opBuilder.addInput(inputImage.asOutput()); opBuilder.addInput(outputImage.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.depthRadius != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LogSoftmax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LogSoftmax.java index bd1bff467a1..75addd4b6a8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LogSoftmax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LogSoftmax.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes log softmax activations. @@ -51,7 +50,7 @@ public final class LogSoftmax extends RawOp implements Operan public static LogSoftmax create(Scope scope, Operand logits) { OperationBuilder opBuilder = scope.env().opBuilder("LogSoftmax", scope.makeOpName("LogSoftmax")); opBuilder.addInput(logits.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new LogSoftmax(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool.java index f7b75951e31..ad87046045e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool.java @@ -77,7 +77,7 @@ public static MaxPool create(Scope scope, Operand input, opBuilder.addInput(input.asOutput()); opBuilder.addInput(ksize.asOutput()); opBuilder.addInput(strides.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("padding", padding); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool3d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool3d.java index 61bf43372cc..bb802045fc4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool3d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool3d.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Performs 3D max pooling on the input. @@ -77,7 +76,7 @@ private Options() { public static MaxPool3d create(Scope scope, Operand input, List ksize, List strides, String padding, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("MaxPool3D", scope.makeOpName("MaxPool3d")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); long[] ksizeArray = new long[ksize.size()]; for (int i = 0; i < ksizeArray.length; ++i) { ksizeArray[i] = ksize.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool3dGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool3dGrad.java index 2a4fe5e61f9..12966ef1c04 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool3dGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool3dGrad.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes gradients of 3D max pooling function. @@ -81,7 +80,7 @@ public static MaxPool3dGrad create(Sco opBuilder.addInput(origInput.asOutput()); opBuilder.addInput(origOutput.asOutput()); opBuilder.addInput(grad.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); long[] ksizeArray = new long[ksize.size()]; for (int i = 0; i < ksizeArray.length; ++i) { ksizeArray[i] = ksize.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool3dGradGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool3dGradGrad.java index 4243e1e5143..1153cc1fb68 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool3dGradGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool3dGradGrad.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes second-order gradients of the maxpooling function. @@ -81,7 +80,7 @@ public static MaxPool3dGradGrad create(Scope scope, Opera opBuilder.addInput(origInput.asOutput()); opBuilder.addInput(origOutput.asOutput()); opBuilder.addInput(grad.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); long[] ksizeArray = new long[ksize.size()]; for (int i = 0; i < ksizeArray.length; ++i) { ksizeArray[i] = ksize.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGrad.java index 6f5cbd2ce64..58bcd623533 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGrad.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes gradients of the maxpooling function. @@ -82,7 +81,7 @@ public static MaxPoolGrad create(Scope scope, Operand opBuilder.addInput(grad.asOutput()); opBuilder.addInput(ksize.asOutput()); opBuilder.addInput(strides.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("padding", padding); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGradGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGradGrad.java index 4f9255e9286..84ad249f82d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGradGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGradGrad.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes second-order gradients of the maxpooling function. @@ -82,7 +81,7 @@ public static MaxPoolGradGrad create(Scope scope, Operand opBuilder.addInput(grad.asOutput()); opBuilder.addInput(ksize.asOutput()); opBuilder.addInput(strides.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("padding", padding); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGradGradWithArgmax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGradGradWithArgmax.java index 6258024daa9..5b4af53845d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGradGradWithArgmax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGradGradWithArgmax.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes second-order gradients of the maxpooling function. @@ -77,7 +76,7 @@ public static MaxPoolGradGradWithArgmax MaxPoolGradWithArgmax cr opBuilder.addInput(input.asOutput()); opBuilder.addInput(grad.asOutput()); opBuilder.addInput(argmax.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); long[] ksizeArray = new long[ksize.size()]; for (int i = 0; i < ksizeArray.length; ++i) { ksizeArray[i] = ksize.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolWithArgmax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolWithArgmax.java index 63f92de1fea..f269753c21b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolWithArgmax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolWithArgmax.java @@ -18,18 +18,17 @@ package org.tensorflow.op.nn; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Performs max pooling on the input and outputs both max values and indices. @@ -83,10 +82,10 @@ private Options() { * @return a new instance of MaxPoolWithArgmax */ @Endpoint(describeByClass = true) - public static MaxPoolWithArgmax create(Scope scope, Operand input, List ksize, List strides, DataType Targmax, String padding, Options... options) { + public static MaxPoolWithArgmax create(Scope scope, Operand input, List ksize, List strides, Class Targmax, String padding, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("MaxPoolWithArgmax", scope.makeOpName("MaxPoolWithArgmax")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); long[] ksizeArray = new long[ksize.size()]; for (int i = 0; i < ksizeArray.length; ++i) { ksizeArray[i] = ksize.get(i); @@ -97,7 +96,7 @@ public static MaxPoolWithArgmax cre stridesArray[i] = strides.get(i); } opBuilder.setAttr("strides", stridesArray); - opBuilder.setAttr("Targmax", Targmax); + opBuilder.setAttr("Targmax", Operands.toDataType(Targmax)); opBuilder.setAttr("padding", padding); if (options != null) { for (Options opts : options) { @@ -123,7 +122,7 @@ public static MaxPoolWithArgmax cre */ @Endpoint(describeByClass = true) public static MaxPoolWithArgmax create(Scope scope, Operand input, List ksize, List strides, String padding, Options... options) { - return create(scope, input, ksize, strides, TInt64.DTYPE, padding, options); + return create(scope, input, ksize, strides, TInt64.class, padding, options); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/NthElement.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/NthElement.java index 340cd4b98f7..9ea182bb4e5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/NthElement.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/NthElement.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Finds values of the `n`-th order statistic for the last dimension. @@ -80,7 +79,7 @@ public static NthElement create(Scope scope, Operand i OperationBuilder opBuilder = scope.env().opBuilder("NthElement", scope.makeOpName("NthElement")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(n.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.reverse != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedAvgPool.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedAvgPool.java index 0da9f10b1ef..1548219e9e0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedAvgPool.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedAvgPool.java @@ -57,7 +57,7 @@ public static QuantizedAvgPool create(Scope scope, Operand< opBuilder.addInput(input.asOutput()); opBuilder.addInput(minInput.asOutput()); opBuilder.addInput(maxInput.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); long[] ksizeArray = new long[ksize.size()]; for (int i = 0; i < ksizeArray.length; ++i) { ksizeArray[i] = ksize.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedBatchNormWithGlobalNormalization.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedBatchNormWithGlobalNormalization.java index 41cc16017fc..60f242ef636 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedBatchNormWithGlobalNormalization.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedBatchNormWithGlobalNormalization.java @@ -17,11 +17,11 @@ package org.tensorflow.op.nn; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -73,7 +73,7 @@ public final class QuantizedBatchNormWithGlobalNormalization ex * @return a new instance of QuantizedBatchNormWithGlobalNormalization */ @Endpoint(describeByClass = true) - public static QuantizedBatchNormWithGlobalNormalization create(Scope scope, Operand t, Operand tMin, Operand tMax, Operand m, Operand mMin, Operand mMax, Operand v, Operand vMin, Operand vMax, Operand beta, Operand betaMin, Operand betaMax, Operand gamma, Operand gammaMin, Operand gammaMax, DataType outType, Float varianceEpsilon, Boolean scaleAfterNormalization) { + public static QuantizedBatchNormWithGlobalNormalization create(Scope scope, Operand t, Operand tMin, Operand tMax, Operand m, Operand mMin, Operand mMax, Operand v, Operand vMin, Operand vMax, Operand beta, Operand betaMin, Operand betaMax, Operand gamma, Operand gammaMin, Operand gammaMax, Class outType, Float varianceEpsilon, Boolean scaleAfterNormalization) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedBatchNormWithGlobalNormalization", scope.makeOpName("QuantizedBatchNormWithGlobalNormalization")); opBuilder.addInput(t.asOutput()); opBuilder.addInput(tMin.asOutput()); @@ -90,8 +90,8 @@ public static QuantizedBatchNormWithGlobalNor opBuilder.addInput(gamma.asOutput()); opBuilder.addInput(gammaMin.asOutput()); opBuilder.addInput(gammaMax.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); opBuilder.setAttr("variance_epsilon", varianceEpsilon); opBuilder.setAttr("scale_after_normalization", scaleAfterNormalization); return new QuantizedBatchNormWithGlobalNormalization(opBuilder.build()); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedBiasAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedBiasAdd.java index 62a8002ad49..05e2ec67aa5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedBiasAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedBiasAdd.java @@ -17,11 +17,11 @@ package org.tensorflow.op.nn; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -53,7 +53,7 @@ public final class QuantizedBiasAdd extends RawOp { * @return a new instance of QuantizedBiasAdd */ @Endpoint(describeByClass = true) - public static QuantizedBiasAdd create(Scope scope, Operand input, Operand bias, Operand minInput, Operand maxInput, Operand minBias, Operand maxBias, DataType outType) { + public static QuantizedBiasAdd create(Scope scope, Operand input, Operand bias, Operand minInput, Operand maxInput, Operand minBias, Operand maxBias, Class outType) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedBiasAdd", scope.makeOpName("QuantizedBiasAdd")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(bias.asOutput()); @@ -61,8 +61,8 @@ public static QuantizedBiasA opBuilder.addInput(maxInput.asOutput()); opBuilder.addInput(minBias.asOutput()); opBuilder.addInput(maxBias.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); return new QuantizedBiasAdd(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DAndRelu.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DAndRelu.java index 961a4245155..89aee4bd5f5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DAndRelu.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DAndRelu.java @@ -18,11 +18,11 @@ package org.tensorflow.op.nn; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -80,7 +80,7 @@ private Options() { * @return a new instance of QuantizedConv2DAndRelu */ @Endpoint(describeByClass = true) - public static QuantizedConv2DAndRelu create(Scope scope, Operand input, Operand filter, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, DataType outType, List strides, String padding, Options... options) { + public static QuantizedConv2DAndRelu create(Scope scope, Operand input, Operand filter, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, Class outType, List strides, String padding, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedConv2DAndRelu", scope.makeOpName("QuantizedConv2DAndRelu")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(filter.asOutput()); @@ -88,8 +88,8 @@ public static QuantizedConv2 opBuilder.addInput(maxInput.asOutput()); opBuilder.addInput(minFilter.asOutput()); opBuilder.addInput(maxFilter.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); long[] stridesArray = new long[strides.size()]; for (int i = 0; i < stridesArray.length; ++i) { stridesArray[i] = strides.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DAndReluAndRequantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DAndReluAndRequantize.java index 8b231edc09b..513a9b240e5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DAndReluAndRequantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DAndReluAndRequantize.java @@ -18,11 +18,11 @@ package org.tensorflow.op.nn; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -82,7 +82,7 @@ private Options() { * @return a new instance of QuantizedConv2DAndReluAndRequantize */ @Endpoint(describeByClass = true) - public static QuantizedConv2DAndReluAndRequantize create(Scope scope, Operand input, Operand filter, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, Operand minFreezedOutput, Operand maxFreezedOutput, DataType outType, List strides, String padding, Options... options) { + public static QuantizedConv2DAndReluAndRequantize create(Scope scope, Operand input, Operand filter, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, Operand minFreezedOutput, Operand maxFreezedOutput, Class outType, List strides, String padding, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedConv2DAndReluAndRequantize", scope.makeOpName("QuantizedConv2DAndReluAndRequantize")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(filter.asOutput()); @@ -92,8 +92,8 @@ public static QuantizedConv2 opBuilder.addInput(maxFilter.asOutput()); opBuilder.addInput(minFreezedOutput.asOutput()); opBuilder.addInput(maxFreezedOutput.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); long[] stridesArray = new long[strides.size()]; for (int i = 0; i < stridesArray.length; ++i) { stridesArray[i] = strides.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DAndRequantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DAndRequantize.java index 8c9f1247d97..80a1ddf146a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DAndRequantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DAndRequantize.java @@ -18,11 +18,11 @@ package org.tensorflow.op.nn; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -82,7 +82,7 @@ private Options() { * @return a new instance of QuantizedConv2DAndRequantize */ @Endpoint(describeByClass = true) - public static QuantizedConv2DAndRequantize create(Scope scope, Operand input, Operand filter, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, Operand minFreezedOutput, Operand maxFreezedOutput, DataType outType, List strides, String padding, Options... options) { + public static QuantizedConv2DAndRequantize create(Scope scope, Operand input, Operand filter, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, Operand minFreezedOutput, Operand maxFreezedOutput, Class outType, List strides, String padding, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedConv2DAndRequantize", scope.makeOpName("QuantizedConv2DAndRequantize")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(filter.asOutput()); @@ -92,8 +92,8 @@ public static QuantizedConv2 opBuilder.addInput(maxFilter.asOutput()); opBuilder.addInput(minFreezedOutput.asOutput()); opBuilder.addInput(maxFreezedOutput.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); long[] stridesArray = new long[strides.size()]; for (int i = 0; i < stridesArray.length; ++i) { stridesArray[i] = strides.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DPerChannel.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DPerChannel.java index efc0132e2a8..f51143d15be 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DPerChannel.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DPerChannel.java @@ -18,11 +18,11 @@ package org.tensorflow.op.nn; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -73,7 +73,7 @@ private Options() { * @return a new instance of QuantizedConv2DPerChannel */ @Endpoint(describeByClass = true) - public static QuantizedConv2DPerChannel create(Scope scope, Operand input, Operand filter, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, DataType outType, List strides, String padding, Options... options) { + public static QuantizedConv2DPerChannel create(Scope scope, Operand input, Operand filter, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, Class outType, List strides, String padding, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedConv2DPerChannel", scope.makeOpName("QuantizedConv2DPerChannel")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(filter.asOutput()); @@ -81,8 +81,8 @@ public static QuantizedConv2 opBuilder.addInput(maxInput.asOutput()); opBuilder.addInput(minFilter.asOutput()); opBuilder.addInput(maxFilter.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); long[] stridesArray = new long[strides.size()]; for (int i = 0; i < stridesArray.length; ++i) { stridesArray[i] = strides.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBias.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBias.java index bc78b5b4ec1..c579e306102 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBias.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBias.java @@ -18,11 +18,11 @@ package org.tensorflow.op.nn; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -81,7 +81,7 @@ private Options() { * @return a new instance of QuantizedConv2DWithBias */ @Endpoint(describeByClass = true) - public static QuantizedConv2DWithBias create(Scope scope, Operand input, Operand filter, Operand bias, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, DataType outType, List strides, String padding, Options... options) { + public static QuantizedConv2DWithBias create(Scope scope, Operand input, Operand filter, Operand bias, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, Class outType, List strides, String padding, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedConv2DWithBias", scope.makeOpName("QuantizedConv2DWithBias")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(filter.asOutput()); @@ -90,8 +90,8 @@ public static QuantizedConv2 opBuilder.addInput(maxInput.asOutput()); opBuilder.addInput(minFilter.asOutput()); opBuilder.addInput(maxFilter.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); long[] stridesArray = new long[strides.size()]; for (int i = 0; i < stridesArray.length; ++i) { stridesArray[i] = strides.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasAndRelu.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasAndRelu.java index 719150ee139..ac9672e9f94 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasAndRelu.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasAndRelu.java @@ -18,11 +18,11 @@ package org.tensorflow.op.nn; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -81,7 +81,7 @@ private Options() { * @return a new instance of QuantizedConv2DWithBiasAndRelu */ @Endpoint(describeByClass = true) - public static QuantizedConv2DWithBiasAndRelu create(Scope scope, Operand input, Operand filter, Operand bias, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, DataType outType, List strides, String padding, Options... options) { + public static QuantizedConv2DWithBiasAndRelu create(Scope scope, Operand input, Operand filter, Operand bias, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, Class outType, List strides, String padding, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedConv2DWithBiasAndRelu", scope.makeOpName("QuantizedConv2DWithBiasAndRelu")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(filter.asOutput()); @@ -90,8 +90,8 @@ public static QuantizedConv2 opBuilder.addInput(maxInput.asOutput()); opBuilder.addInput(minFilter.asOutput()); opBuilder.addInput(maxFilter.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); long[] stridesArray = new long[strides.size()]; for (int i = 0; i < stridesArray.length; ++i) { stridesArray[i] = strides.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasAndReluAndRequantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasAndReluAndRequantize.java index a61cab41d5e..084f211be2c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasAndReluAndRequantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasAndReluAndRequantize.java @@ -18,11 +18,11 @@ package org.tensorflow.op.nn; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -83,7 +83,7 @@ private Options() { * @return a new instance of QuantizedConv2DWithBiasAndReluAndRequantize */ @Endpoint(describeByClass = true) - public static QuantizedConv2DWithBiasAndReluAndRequantize create(Scope scope, Operand input, Operand filter, Operand bias, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, Operand minFreezedOutput, Operand maxFreezedOutput, DataType outType, List strides, String padding, Options... options) { + public static QuantizedConv2DWithBiasAndReluAndRequantize create(Scope scope, Operand input, Operand filter, Operand bias, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, Operand minFreezedOutput, Operand maxFreezedOutput, Class outType, List strides, String padding, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedConv2DWithBiasAndReluAndRequantize", scope.makeOpName("QuantizedConv2DWithBiasAndReluAndRequantize")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(filter.asOutput()); @@ -94,8 +94,8 @@ public static QuantizedConv2DWithBiasAndRequantize create(Scope scope, Operand input, Operand filter, Operand bias, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, Operand minFreezedOutput, Operand maxFreezedOutput, DataType outType, List strides, String padding, Options... options) { + public static QuantizedConv2DWithBiasAndRequantize create(Scope scope, Operand input, Operand filter, Operand bias, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, Operand minFreezedOutput, Operand maxFreezedOutput, Class outType, List strides, String padding, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedConv2DWithBiasAndRequantize", scope.makeOpName("QuantizedConv2DWithBiasAndRequantize")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(filter.asOutput()); @@ -94,8 +94,8 @@ public static QuantizedConv2DWithBiasSignedSumAndReluAndRequantize create(Scope scope, Operand input, Operand filter, Operand bias, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, Operand minFreezedOutput, Operand maxFreezedOutput, Operand summand, Operand minSummand, Operand maxSummand, DataType outType, List strides, String padding, Options... options) { + public static QuantizedConv2DWithBiasSignedSumAndReluAndRequantize create(Scope scope, Operand input, Operand filter, Operand bias, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, Operand minFreezedOutput, Operand maxFreezedOutput, Operand summand, Operand minSummand, Operand maxSummand, Class outType, List strides, String padding, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedConv2DWithBiasSignedSumAndReluAndRequantize", scope.makeOpName("QuantizedConv2DWithBiasSignedSumAndReluAndRequantize")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(filter.asOutput()); @@ -100,8 +100,8 @@ public static QuantizedConv2DWithBiasSumAndRelu create(Scope scope, Operand input, Operand filter, Operand bias, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, Operand summand, DataType outType, List strides, String padding, Options... options) { + public static QuantizedConv2DWithBiasSumAndRelu create(Scope scope, Operand input, Operand filter, Operand bias, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, Operand summand, Class outType, List strides, String padding, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedConv2DWithBiasSumAndRelu", scope.makeOpName("QuantizedConv2DWithBiasSumAndRelu")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(filter.asOutput()); @@ -92,8 +92,8 @@ public static QuantizedConv2 opBuilder.addInput(minFilter.asOutput()); opBuilder.addInput(maxFilter.asOutput()); opBuilder.addInput(summand.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); long[] stridesArray = new long[strides.size()]; for (int i = 0; i < stridesArray.length; ++i) { stridesArray[i] = strides.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasSumAndReluAndRequantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasSumAndReluAndRequantize.java index 55adb0e016d..68052783adb 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasSumAndReluAndRequantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasSumAndReluAndRequantize.java @@ -18,11 +18,11 @@ package org.tensorflow.op.nn; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -86,7 +86,7 @@ private Options() { * @return a new instance of QuantizedConv2DWithBiasSumAndReluAndRequantize */ @Endpoint(describeByClass = true) - public static QuantizedConv2DWithBiasSumAndReluAndRequantize create(Scope scope, Operand input, Operand filter, Operand bias, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, Operand minFreezedOutput, Operand maxFreezedOutput, Operand summand, Operand minSummand, Operand maxSummand, DataType outType, List strides, String padding, Options... options) { + public static QuantizedConv2DWithBiasSumAndReluAndRequantize create(Scope scope, Operand input, Operand filter, Operand bias, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, Operand minFreezedOutput, Operand maxFreezedOutput, Operand summand, Operand minSummand, Operand maxSummand, Class outType, List strides, String padding, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedConv2DWithBiasSumAndReluAndRequantize", scope.makeOpName("QuantizedConv2DWithBiasSumAndReluAndRequantize")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(filter.asOutput()); @@ -100,8 +100,8 @@ public static QuantizedConv2d create(Scope scope, Operand input, Operand filter, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, DataType outType, List strides, String padding, Options... options) { + public static QuantizedConv2d create(Scope scope, Operand input, Operand filter, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, Class outType, List strides, String padding, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedConv2D", scope.makeOpName("QuantizedConv2d")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(filter.asOutput()); @@ -92,8 +92,8 @@ public static QuantizedConv2 opBuilder.addInput(maxInput.asOutput()); opBuilder.addInput(minFilter.asOutput()); opBuilder.addInput(maxFilter.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); long[] stridesArray = new long[strides.size()]; for (int i = 0; i < stridesArray.length; ++i) { stridesArray[i] = strides.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2D.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2D.java index f64d9a7efbb..7dae76d87bc 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2D.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2D.java @@ -18,11 +18,11 @@ package org.tensorflow.op.nn; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -73,7 +73,7 @@ private Options() { * @return a new instance of QuantizedDepthwiseConv2D */ @Endpoint(describeByClass = true) - public static QuantizedDepthwiseConv2D create(Scope scope, Operand input, Operand filter, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, DataType outType, List strides, String padding, Options... options) { + public static QuantizedDepthwiseConv2D create(Scope scope, Operand input, Operand filter, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, Class outType, List strides, String padding, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedDepthwiseConv2D", scope.makeOpName("QuantizedDepthwiseConv2D")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(filter.asOutput()); @@ -81,8 +81,8 @@ public static QuantizedDepth opBuilder.addInput(maxInput.asOutput()); opBuilder.addInput(minFilter.asOutput()); opBuilder.addInput(maxFilter.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); long[] stridesArray = new long[strides.size()]; for (int i = 0; i < stridesArray.length; ++i) { stridesArray[i] = strides.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2DWithBias.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2DWithBias.java index be5e2bb8657..fc7f07525af 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2DWithBias.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2DWithBias.java @@ -18,11 +18,11 @@ package org.tensorflow.op.nn; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -74,7 +74,7 @@ private Options() { * @return a new instance of QuantizedDepthwiseConv2DWithBias */ @Endpoint(describeByClass = true) - public static QuantizedDepthwiseConv2DWithBias create(Scope scope, Operand input, Operand filter, Operand bias, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, DataType outType, List strides, String padding, Options... options) { + public static QuantizedDepthwiseConv2DWithBias create(Scope scope, Operand input, Operand filter, Operand bias, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, Class outType, List strides, String padding, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedDepthwiseConv2DWithBias", scope.makeOpName("QuantizedDepthwiseConv2DWithBias")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(filter.asOutput()); @@ -83,8 +83,8 @@ public static QuantizedDepth opBuilder.addInput(maxInput.asOutput()); opBuilder.addInput(minFilter.asOutput()); opBuilder.addInput(maxFilter.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); long[] stridesArray = new long[strides.size()]; for (int i = 0; i < stridesArray.length; ++i) { stridesArray[i] = strides.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2DWithBiasAndRelu.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2DWithBiasAndRelu.java index 8abd12b865f..c16b3c91a0e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2DWithBiasAndRelu.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2DWithBiasAndRelu.java @@ -18,11 +18,11 @@ package org.tensorflow.op.nn; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -83,7 +83,7 @@ private Options() { * @return a new instance of QuantizedDepthwiseConv2DWithBiasAndRelu */ @Endpoint(describeByClass = true) - public static QuantizedDepthwiseConv2DWithBiasAndRelu create(Scope scope, Operand input, Operand filter, Operand bias, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, DataType outType, List strides, String padding, Options... options) { + public static QuantizedDepthwiseConv2DWithBiasAndRelu create(Scope scope, Operand input, Operand filter, Operand bias, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, Class outType, List strides, String padding, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedDepthwiseConv2DWithBiasAndRelu", scope.makeOpName("QuantizedDepthwiseConv2DWithBiasAndRelu")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(filter.asOutput()); @@ -92,8 +92,8 @@ public static QuantizedDepth opBuilder.addInput(maxInput.asOutput()); opBuilder.addInput(minFilter.asOutput()); opBuilder.addInput(maxFilter.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); long[] stridesArray = new long[strides.size()]; for (int i = 0; i < stridesArray.length; ++i) { stridesArray[i] = strides.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize.java index 78c8048266e..02dccc28354 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize.java @@ -18,11 +18,11 @@ package org.tensorflow.op.nn; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -85,7 +85,7 @@ private Options() { * @return a new instance of QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize */ @Endpoint(describeByClass = true) - public static QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize create(Scope scope, Operand input, Operand filter, Operand bias, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, Operand minFreezedOutput, Operand maxFreezedOutput, DataType outType, List strides, String padding, Options... options) { + public static QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize create(Scope scope, Operand input, Operand filter, Operand bias, Operand minInput, Operand maxInput, Operand minFilter, Operand maxFilter, Operand minFreezedOutput, Operand maxFreezedOutput, Class outType, List strides, String padding, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize", scope.makeOpName("QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(filter.asOutput()); @@ -96,8 +96,8 @@ public static QuantizedInstanceNorm create(Scope scope, Ope opBuilder.addInput(x.asOutput()); opBuilder.addInput(xMin.asOutput()); opBuilder.addInput(xMax.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.outputRangeGiven != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedMaxPool.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedMaxPool.java index 2cec96e411c..be2c093614a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedMaxPool.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedMaxPool.java @@ -57,7 +57,7 @@ public static QuantizedMaxPool create(Scope scope, Operand< opBuilder.addInput(input.asOutput()); opBuilder.addInput(minInput.asOutput()); opBuilder.addInput(maxInput.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); long[] ksizeArray = new long[ksize.size()]; for (int i = 0; i < ksizeArray.length; ++i) { ksizeArray[i] = ksize.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedRelu.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedRelu.java index 308e14e9512..56b755f2a71 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedRelu.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedRelu.java @@ -17,11 +17,11 @@ package org.tensorflow.op.nn; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -48,13 +48,13 @@ public final class QuantizedRelu extends RawOp { * @return a new instance of QuantizedRelu */ @Endpoint(describeByClass = true) - public static QuantizedRelu create(Scope scope, Operand features, Operand minFeatures, Operand maxFeatures, DataType outType) { + public static QuantizedRelu create(Scope scope, Operand features, Operand minFeatures, Operand maxFeatures, Class outType) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedRelu", scope.makeOpName("QuantizedRelu")); opBuilder.addInput(features.asOutput()); opBuilder.addInput(minFeatures.asOutput()); opBuilder.addInput(maxFeatures.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); return new QuantizedRelu(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedRelu6.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedRelu6.java index 46f04fd5722..2f99d1ab861 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedRelu6.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedRelu6.java @@ -17,11 +17,11 @@ package org.tensorflow.op.nn; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -48,13 +48,13 @@ public final class QuantizedRelu6 extends RawOp { * @return a new instance of QuantizedRelu6 */ @Endpoint(describeByClass = true) - public static QuantizedRelu6 create(Scope scope, Operand features, Operand minFeatures, Operand maxFeatures, DataType outType) { + public static QuantizedRelu6 create(Scope scope, Operand features, Operand minFeatures, Operand maxFeatures, Class outType) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedRelu6", scope.makeOpName("QuantizedRelu6")); opBuilder.addInput(features.asOutput()); opBuilder.addInput(minFeatures.asOutput()); opBuilder.addInput(maxFeatures.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); return new QuantizedRelu6(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedReluX.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedReluX.java index e47a6a5c043..afd943b7595 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedReluX.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedReluX.java @@ -17,11 +17,11 @@ package org.tensorflow.op.nn; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -49,14 +49,14 @@ public final class QuantizedReluX extends RawOp { * @return a new instance of QuantizedReluX */ @Endpoint(describeByClass = true) - public static QuantizedReluX create(Scope scope, Operand features, Operand maxValue, Operand minFeatures, Operand maxFeatures, DataType outType) { + public static QuantizedReluX create(Scope scope, Operand features, Operand maxValue, Operand minFeatures, Operand maxFeatures, Class outType) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedReluX", scope.makeOpName("QuantizedReluX")); opBuilder.addInput(features.asOutput()); opBuilder.addInput(maxValue.asOutput()); opBuilder.addInput(minFeatures.asOutput()); opBuilder.addInput(maxFeatures.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); return new QuantizedReluX(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu.java index c6a515d4c75..eb0e8957e13 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu.java @@ -51,7 +51,7 @@ public final class Relu extends RawOp implements Operand { public static Relu create(Scope scope, Operand features) { OperationBuilder opBuilder = scope.env().opBuilder("Relu", scope.makeOpName("Relu")); opBuilder.addInput(features.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Relu(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu6.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu6.java index e4e674b7e35..efb80c73be6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu6.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu6.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes rectified linear 6: `min(max(features, 0), 6)`. @@ -47,7 +46,7 @@ public final class Relu6 extends RawOp implements Operand public static Relu6 create(Scope scope, Operand features) { OperationBuilder opBuilder = scope.env().opBuilder("Relu6", scope.makeOpName("Relu6")); opBuilder.addInput(features.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Relu6(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu6Grad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu6Grad.java index cf4edc9debf..38e042b1635 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu6Grad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu6Grad.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes rectified linear 6 gradients for a Relu6 operation. @@ -49,7 +48,7 @@ public static Relu6Grad create(Scope scope, Operand gr OperationBuilder opBuilder = scope.env().opBuilder("Relu6Grad", scope.makeOpName("Relu6Grad")); opBuilder.addInput(gradients.asOutput()); opBuilder.addInput(features.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Relu6Grad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/ReluGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/ReluGrad.java index d1c7cf7d44c..27999096f0e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/ReluGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/ReluGrad.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes rectified linear gradients for a Relu operation. @@ -49,7 +48,7 @@ public static ReluGrad create(Scope scope, Operand gra OperationBuilder opBuilder = scope.env().opBuilder("ReluGrad", scope.makeOpName("ReluGrad")); opBuilder.addInput(gradients.asOutput()); opBuilder.addInput(features.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ReluGrad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Selu.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Selu.java index 2ce8484b299..0e7b45fcd6a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Selu.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Selu.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes scaled exponential linear: `scale * alpha * (exp(features) - 1)` @@ -55,7 +54,7 @@ public final class Selu extends RawOp implements Operand { public static Selu create(Scope scope, Operand features) { OperationBuilder opBuilder = scope.env().opBuilder("Selu", scope.makeOpName("Selu")); opBuilder.addInput(features.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Selu(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SeluGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SeluGrad.java index 514ad00b38d..e80b0e7114b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SeluGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SeluGrad.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes gradients for the scaled exponential linear (Selu) operation. @@ -48,7 +47,7 @@ public static SeluGrad create(Scope scope, Operand gra OperationBuilder opBuilder = scope.env().opBuilder("SeluGrad", scope.makeOpName("SeluGrad")); opBuilder.addInput(gradients.asOutput()); opBuilder.addInput(outputs.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SeluGrad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Softmax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Softmax.java index d9971b6667d..d7180ef953f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Softmax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Softmax.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes softmax activations. @@ -51,7 +50,7 @@ public final class Softmax extends RawOp implements Operand Softmax create(Scope scope, Operand logits) { OperationBuilder opBuilder = scope.env().opBuilder("Softmax", scope.makeOpName("Softmax")); opBuilder.addInput(logits.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Softmax(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Softsign.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Softsign.java index e4276c679a3..efd21d04476 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Softsign.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Softsign.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes softsign: `features / (abs(features) + 1)`. @@ -47,7 +46,7 @@ public final class Softsign extends RawOp implements Operand< public static Softsign create(Scope scope, Operand features) { OperationBuilder opBuilder = scope.env().opBuilder("Softsign", scope.makeOpName("Softsign")); opBuilder.addInput(features.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Softsign(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SoftsignGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SoftsignGrad.java index 220763e57a2..a8d5669551d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SoftsignGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SoftsignGrad.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes softsign gradients for a softsign operation. @@ -48,7 +47,7 @@ public static SoftsignGrad create(Scope scope, Operand OperationBuilder opBuilder = scope.env().opBuilder("SoftsignGrad", scope.makeOpName("SoftsignGrad")); opBuilder.addInput(gradients.asOutput()); opBuilder.addInput(features.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SoftsignGrad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SpaceToBatch.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SpaceToBatch.java index 9b1796c99aa..edc741c19ac 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SpaceToBatch.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SpaceToBatch.java @@ -126,7 +126,7 @@ public static SpaceToBatch create(Scope OperationBuilder opBuilder = scope.env().opBuilder("SpaceToBatch", scope.makeOpName("SpaceToBatch")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(paddings.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("block_size", blockSize); return new SpaceToBatch(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SpaceToDepth.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SpaceToDepth.java index 0e9068c9b31..6894eb287af 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SpaceToDepth.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SpaceToDepth.java @@ -141,7 +141,7 @@ private Options() { public static SpaceToDepth create(Scope scope, Operand input, Long blockSize, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("SpaceToDepth", scope.makeOpName("SpaceToDepth")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("block_size", blockSize); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/TopK.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/TopK.java index acd4ba679f7..d86357aa90d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/TopK.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/TopK.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Finds values and indices of the `k` largest elements for the last dimension. @@ -83,7 +82,7 @@ public static TopK create(Scope scope, Operand input, OperationBuilder opBuilder = scope.env().opBuilder("TopKV2", scope.makeOpName("TopK")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(k.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.sorted != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/raw/SoftmaxCrossEntropyWithLogits.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/raw/SoftmaxCrossEntropyWithLogits.java index 4c23683d9ef..8032a4c2512 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/raw/SoftmaxCrossEntropyWithLogits.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/raw/SoftmaxCrossEntropyWithLogits.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes softmax cross entropy cost and gradients to backpropagate. @@ -53,7 +52,7 @@ public static SoftmaxCrossEntropyWithLogits create(Scope OperationBuilder opBuilder = scope.env().opBuilder("SoftmaxCrossEntropyWithLogits", scope.makeOpName("SoftmaxCrossEntropyWithLogits")); opBuilder.addInput(features.asOutput()); opBuilder.addInput(labels.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SoftmaxCrossEntropyWithLogits(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/raw/SparseSoftmaxCrossEntropyWithLogits.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/raw/SparseSoftmaxCrossEntropyWithLogits.java index e7cb45231de..6cbd4fddeb1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/raw/SparseSoftmaxCrossEntropyWithLogits.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/raw/SparseSoftmaxCrossEntropyWithLogits.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes softmax cross entropy cost and gradients to backpropagate. @@ -57,7 +56,7 @@ public static SparseSoftmaxCrossEntropyWi OperationBuilder opBuilder = scope.env().opBuilder("SparseSoftmaxCrossEntropyWithLogits", scope.makeOpName("SparseSoftmaxCrossEntropyWithLogits")); opBuilder.addInput(features.asOutput()); opBuilder.addInput(labels.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SparseSoftmaxCrossEntropyWithLogits(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/Dequantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/Dequantize.java index 760dd9fe913..19c738bc721 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/Dequantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/Dequantize.java @@ -17,11 +17,11 @@ package org.tensorflow.op.quantization; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -137,13 +137,13 @@ private Options() { * @return a new instance of Dequantize */ @Endpoint(describeByClass = true) - public static Dequantize create(Scope scope, Operand input, Operand minRange, Operand maxRange, DataType dtype, Options... options) { + public static Dequantize create(Scope scope, Operand input, Operand minRange, Operand maxRange, Class dtype, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("Dequantize", scope.makeOpName("Dequantize")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(minRange.asOutput()); opBuilder.addInput(maxRange.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); if (options != null) { for (Options opts : options) { if (opts.mode != null) { @@ -172,7 +172,7 @@ public static Dequantize create(Scope sc */ @Endpoint(describeByClass = true) public static Dequantize create(Scope scope, Operand input, Operand minRange, Operand maxRange, Options... options) { - return create(scope, input, minRange, maxRange, TFloat32.DTYPE, options); + return create(scope, input, minRange, maxRange, TFloat32.class, options); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/FakeQuantWithMinMaxArgs.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/FakeQuantWithMinMaxArgs.java index 986097339a9..671c5f0ad4f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/FakeQuantWithMinMaxArgs.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/FakeQuantWithMinMaxArgs.java @@ -124,7 +124,7 @@ private Options() { public static FakeQuantWithMinMaxArgs create(Scope scope, Operand inputs, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("FakeQuantWithMinMaxArgs", scope.makeOpName("FakeQuantWithMinMaxArgs")); opBuilder.addInput(inputs.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.min != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/FakeQuantWithMinMaxArgsGradient.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/FakeQuantWithMinMaxArgsGradient.java index 62057eaefed..e44b1f9ae73 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/FakeQuantWithMinMaxArgsGradient.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/FakeQuantWithMinMaxArgsGradient.java @@ -93,7 +93,7 @@ public static FakeQuantWithMinMaxArgsGradient create(Scope scope, Operand inpu opBuilder.addInput(inputs.asOutput()); opBuilder.addInput(min.asOutput()); opBuilder.addInput(max.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.numBits != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/FakeQuantWithMinMaxVarsGradient.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/FakeQuantWithMinMaxVarsGradient.java index e9fcd339a75..fb18431f99b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/FakeQuantWithMinMaxVarsGradient.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/FakeQuantWithMinMaxVarsGradient.java @@ -80,7 +80,7 @@ public static FakeQuantWithMinMaxVarsGradient create(Scope scope, Operand Quantize create(Scope scope, Operand input, Operand minRange, Operand maxRange, DataType T, Options... options) { + public static Quantize create(Scope scope, Operand input, Operand minRange, Operand maxRange, Class T, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizeV2", scope.makeOpName("Quantize")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(minRange.asOutput()); opBuilder.addInput(maxRange.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("T", T); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("T", Operands.toDataType(T)); if (options != null) { for (Options opts : options) { if (opts.mode != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeAndDequantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeAndDequantize.java index fd75b330e41..d66ff6c4871 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeAndDequantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeAndDequantize.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Quantizes then dequantizes a tensor. @@ -104,7 +103,7 @@ public static QuantizeAndDequantize create(Scope scope, O opBuilder.addInput(inputMin.asOutput()); opBuilder.addInput(inputMax.asOutput()); opBuilder.addInput(numBits.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.signedInput != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeDownAndShrinkRange.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeDownAndShrinkRange.java index 362375b40e2..5430dbc69ca 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeDownAndShrinkRange.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeDownAndShrinkRange.java @@ -17,11 +17,11 @@ package org.tensorflow.op.quantization; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -71,13 +71,13 @@ public final class QuantizeDownAndShrinkRange extends RawOp { * @return a new instance of QuantizeDownAndShrinkRange */ @Endpoint(describeByClass = true) - public static QuantizeDownAndShrinkRange create(Scope scope, Operand input, Operand inputMin, Operand inputMax, DataType outType) { + public static QuantizeDownAndShrinkRange create(Scope scope, Operand input, Operand inputMin, Operand inputMax, Class outType) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizeDownAndShrinkRange", scope.makeOpName("QuantizeDownAndShrinkRange")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(inputMin.asOutput()); opBuilder.addInput(inputMax.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); return new QuantizeDownAndShrinkRange(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizedConcat.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizedConcat.java index 43839d072de..ba525886639 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizedConcat.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizedConcat.java @@ -57,7 +57,7 @@ public static QuantizedConcat create(Scope scope, Operand(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizedMatMulWithBiasAndDequantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizedMatMulWithBiasAndDequantize.java index baa20635c51..e925c15546b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizedMatMulWithBiasAndDequantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizedMatMulWithBiasAndDequantize.java @@ -17,11 +17,11 @@ package org.tensorflow.op.quantization; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -90,7 +90,7 @@ private Options() { * @return a new instance of QuantizedMatMulWithBiasAndDequantize */ @Endpoint(describeByClass = true) - public static QuantizedMatMulWithBiasAndDequantize create(Scope scope, Operand a, Operand b, Operand bias, Operand minA, Operand maxA, Operand minB, Operand maxB, Operand minFreezedOutput, Operand maxFreezedOutput, DataType Toutput, Options... options) { + public static QuantizedMatMulWithBiasAndDequantize create(Scope scope, Operand a, Operand b, Operand bias, Operand minA, Operand maxA, Operand minB, Operand maxB, Operand minFreezedOutput, Operand maxFreezedOutput, Class Toutput, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedMatMulWithBiasAndDequantize", scope.makeOpName("QuantizedMatMulWithBiasAndDequantize")); opBuilder.addInput(a.asOutput()); opBuilder.addInput(b.asOutput()); @@ -101,8 +101,8 @@ public static QuantizedMatMulWithBiasAndRequantize create(Scope scope, Operand a, Operand b, Operand bias, Operand minA, Operand maxA, Operand minB, Operand maxB, Operand minFreezedOutput, Operand maxFreezedOutput, DataType Toutput, Options... options) { + public static QuantizedMatMulWithBiasAndRequantize create(Scope scope, Operand a, Operand b, Operand bias, Operand minA, Operand maxA, Operand minB, Operand maxB, Operand minFreezedOutput, Operand maxFreezedOutput, Class Toutput, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("QuantizedMatMulWithBiasAndRequantize", scope.makeOpName("QuantizedMatMulWithBiasAndRequantize")); opBuilder.addInput(a.asOutput()); opBuilder.addInput(b.asOutput()); @@ -100,8 +100,8 @@ public static RequantizationRange create(Scope scope, Operand< opBuilder.addInput(input.asOutput()); opBuilder.addInput(inputMin.asOutput()); opBuilder.addInput(inputMax.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new RequantizationRange(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/Requantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/Requantize.java index 5df8ca0b622..cec1e8823e4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/Requantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/Requantize.java @@ -17,11 +17,11 @@ package org.tensorflow.op.quantization; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -58,15 +58,15 @@ public final class Requantize extends RawOp { * @return a new instance of Requantize */ @Endpoint(describeByClass = true) - public static Requantize create(Scope scope, Operand input, Operand inputMin, Operand inputMax, Operand requestedOutputMin, Operand requestedOutputMax, DataType outType) { + public static Requantize create(Scope scope, Operand input, Operand inputMin, Operand inputMax, Operand requestedOutputMin, Operand requestedOutputMax, Class outType) { OperationBuilder opBuilder = scope.env().opBuilder("Requantize", scope.makeOpName("Requantize")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(inputMin.asOutput()); opBuilder.addInput(inputMax.asOutput()); opBuilder.addInput(requestedOutputMin.asOutput()); opBuilder.addInput(requestedOutputMax.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); return new Requantize(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedBincount.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedBincount.java index 1e0224aa9ef..12ca81cf3c6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedBincount.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedBincount.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Counts the number of occurrences of each value in an integer array. @@ -84,7 +83,7 @@ public static RaggedBincount create(Sc opBuilder.addInput(values.asOutput()); opBuilder.addInput(size.asOutput()); opBuilder.addInput(weights.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.binaryOutput != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedCountSparseOutput.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedCountSparseOutput.java index 4829e49488b..857d412129f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedCountSparseOutput.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedCountSparseOutput.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Performs sparse-output bin counting for a ragged tensor input. @@ -84,7 +83,7 @@ public static RaggedCountSparseOutput opBuilder.addInput(splits.asOutput()); opBuilder.addInput(values.asOutput()); opBuilder.addInput(weights.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("binary_output", binaryOutput); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedCross.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedCross.java index 9ea32878257..3ad9d57582f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedCross.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedCross.java @@ -17,7 +17,6 @@ package org.tensorflow.op.ragged; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; @@ -62,7 +61,7 @@ public final class RaggedCross extends RawOp * @return a new instance of RaggedCross */ @Endpoint(describeByClass = true) - public static RaggedCross create(Scope scope, Iterable> raggedValues, Iterable> raggedRowSplits, Iterable> sparseIndices, Iterable> sparseValues, Iterable> sparseShape, Iterable> denseInputs, String inputOrder, Boolean hashedOutput, Long numBuckets, Long hashKey, DataType outValuesType, DataType outRowSplitsType) { + public static RaggedCross create(Scope scope, Iterable> raggedValues, Iterable> raggedRowSplits, Iterable> sparseIndices, Iterable> sparseValues, Iterable> sparseShape, Iterable> denseInputs, String inputOrder, Boolean hashedOutput, Long numBuckets, Long hashKey, Class outValuesType, Class outRowSplitsType) { OperationBuilder opBuilder = scope.env().opBuilder("RaggedCross", scope.makeOpName("RaggedCross")); opBuilder.addInputList(Operands.asOutputs(raggedValues)); opBuilder.addInputList(Operands.asOutputs(raggedRowSplits)); @@ -70,13 +69,13 @@ public static RaggedCross create(Scop opBuilder.addInputList(Operands.asOutputs(sparseValues)); opBuilder.addInputList(Operands.asOutputs(sparseShape)); opBuilder.addInputList(Operands.asOutputs(denseInputs)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("input_order", inputOrder); opBuilder.setAttr("hashed_output", hashedOutput); opBuilder.setAttr("num_buckets", numBuckets); opBuilder.setAttr("hash_key", hashKey); - opBuilder.setAttr("out_values_type", outValuesType); - opBuilder.setAttr("out_row_splits_type", outRowSplitsType); + opBuilder.setAttr("out_values_type", Operands.toDataType(outValuesType)); + opBuilder.setAttr("out_row_splits_type", Operands.toDataType(outRowSplitsType)); return new RaggedCross(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedGather.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedGather.java index 7cc7de6d3db..bd027000139 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedGather.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedGather.java @@ -89,7 +89,7 @@ public static RaggedGath opBuilder.addInputList(Operands.asOutputs(paramsNestedSplits)); opBuilder.addInput(paramsDenseValues.asOutput()); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("OUTPUT_RAGGED_RANK", OUTPUTRAGGEDRANK); return new RaggedGather(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedRange.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedRange.java index 9d8f5594fd9..67df6a76a63 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedRange.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedRange.java @@ -17,18 +17,17 @@ package org.tensorflow.op.ragged; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Returns a `RaggedTensor` containing the specified sequences of numbers. @@ -64,13 +63,13 @@ public final class RaggedRange extends Raw * @return a new instance of RaggedRange */ @Endpoint(describeByClass = true) - public static RaggedRange create(Scope scope, Operand starts, Operand limits, Operand deltas, DataType Tsplits) { + public static RaggedRange create(Scope scope, Operand starts, Operand limits, Operand deltas, Class Tsplits) { OperationBuilder opBuilder = scope.env().opBuilder("RaggedRange", scope.makeOpName("RaggedRange")); opBuilder.addInput(starts.asOutput()); opBuilder.addInput(limits.asOutput()); opBuilder.addInput(deltas.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("Tsplits", Tsplits); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("Tsplits", Operands.toDataType(Tsplits)); return new RaggedRange(opBuilder.build()); } @@ -85,7 +84,7 @@ public static RaggedRange create(Sc */ @Endpoint(describeByClass = true) public static RaggedRange create(Scope scope, Operand starts, Operand limits, Operand deltas) { - return create(scope, starts, limits, deltas, TInt64.DTYPE); + return create(scope, starts, limits, deltas, TInt64.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorFromVariant.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorFromVariant.java index c9dcfe54bda..f58a5ca64f3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorFromVariant.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorFromVariant.java @@ -19,11 +19,11 @@ import java.util.Arrays; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -67,14 +67,14 @@ public final class RaggedTensorFromVariant e * @return a new instance of RaggedTensorFromVariant */ @Endpoint(describeByClass = true) - public static RaggedTensorFromVariant create(Scope scope, Operand encodedRagged, Long inputRaggedRank, Long outputRaggedRank, DataType Tvalues, DataType Tsplits) { + public static RaggedTensorFromVariant create(Scope scope, Operand encodedRagged, Long inputRaggedRank, Long outputRaggedRank, Class Tvalues, Class Tsplits) { OperationBuilder opBuilder = scope.env().opBuilder("RaggedTensorFromVariant", scope.makeOpName("RaggedTensorFromVariant")); opBuilder.addInput(encodedRagged.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("input_ragged_rank", inputRaggedRank); opBuilder.setAttr("output_ragged_rank", outputRaggedRank); - opBuilder.setAttr("Tvalues", Tvalues); - opBuilder.setAttr("Tsplits", Tsplits); + opBuilder.setAttr("Tvalues", Operands.toDataType(Tvalues)); + opBuilder.setAttr("Tsplits", Operands.toDataType(Tsplits)); return new RaggedTensorFromVariant(opBuilder.build()); } @@ -91,8 +91,8 @@ public static RaggedTensorFromVariant * @return a new instance of RaggedTensorFromVariant */ @Endpoint(describeByClass = true) - public static RaggedTensorFromVariant create(Scope scope, Operand encodedRagged, Long inputRaggedRank, Long outputRaggedRank, DataType Tvalues) { - return create(scope, encodedRagged, inputRaggedRank, outputRaggedRank, Tvalues, TInt64.DTYPE); + public static RaggedTensorFromVariant create(Scope scope, Operand encodedRagged, Long inputRaggedRank, Long outputRaggedRank, Class Tvalues) { + return create(scope, encodedRagged, inputRaggedRank, outputRaggedRank, Tvalues, TInt64.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToSparse.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToSparse.java index 7906048788d..a67a72e1687 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToSparse.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToSparse.java @@ -54,7 +54,7 @@ public static RaggedTensorToSparse creat OperationBuilder opBuilder = scope.env().opBuilder("RaggedTensorToSparse", scope.makeOpName("RaggedTensorToSparse")); opBuilder.addInputList(Operands.asOutputs(rtNestedSplits)); opBuilder.addInput(rtDenseValues.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new RaggedTensorToSparse(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToTensor.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToTensor.java index e469e6fc020..6849b77593f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToTensor.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToTensor.java @@ -112,7 +112,7 @@ public static RaggedTens opBuilder.addInput(values.asOutput()); opBuilder.addInput(defaultValue.asOutput()); opBuilder.addInputList(Operands.asOutputs(rowPartitionTensors)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); String[] rowPartitionTypesArray = new String[rowPartitionTypes.size()]; for (int i = 0; i < rowPartitionTypesArray.length; ++i) { rowPartitionTypesArray[i] = rowPartitionTypes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToVariant.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToVariant.java index 6c22a0c4529..d2f890dbefb 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToVariant.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToVariant.java @@ -62,7 +62,7 @@ public static RaggedTensorToVariant create( OperationBuilder opBuilder = scope.env().opBuilder("RaggedTensorToVariant", scope.makeOpName("RaggedTensorToVariant")); opBuilder.addInputList(Operands.asOutputs(rtNestedSplits)); opBuilder.addInput(rtDenseValues.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("batched_input", batchedInput); return new RaggedTensorToVariant(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/AllCandidateSampler.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/AllCandidateSampler.java index de24d12678f..5ceef808b8d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/AllCandidateSampler.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/AllCandidateSampler.java @@ -92,7 +92,7 @@ private Options() { public static AllCandidateSampler create(Scope scope, Operand trueClasses, Long numTrue, Long numSampled, Boolean unique, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("AllCandidateSampler", scope.makeOpName("AllCandidateSampler")); opBuilder.addInput(trueClasses.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_true", numTrue); opBuilder.setAttr("num_sampled", numSampled); opBuilder.setAttr("unique", unique); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/AnonymousRandomSeedGenerator.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/AnonymousRandomSeedGenerator.java index a87026cd7f1..3409545d91e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/AnonymousRandomSeedGenerator.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/AnonymousRandomSeedGenerator.java @@ -44,7 +44,7 @@ public static AnonymousRandomSeedGenerator create(Scope scope, Operand s OperationBuilder opBuilder = scope.env().opBuilder("AnonymousRandomSeedGenerator", scope.makeOpName("AnonymousRandomSeedGenerator")); opBuilder.addInput(seed.asOutput()); opBuilder.addInput(seed2.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new AnonymousRandomSeedGenerator(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/AnonymousSeedGenerator.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/AnonymousSeedGenerator.java index c724bb6d110..56c49e0d2ef 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/AnonymousSeedGenerator.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/AnonymousSeedGenerator.java @@ -47,7 +47,7 @@ public static AnonymousSeedGenerator create(Scope scope, Operand seed, O opBuilder.addInput(seed.asOutput()); opBuilder.addInput(seed2.asOutput()); opBuilder.addInput(reshuffle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new AnonymousSeedGenerator(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/DeleteRandomSeedGenerator.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/DeleteRandomSeedGenerator.java index 23b154f9d75..3dcd1320b52 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/DeleteRandomSeedGenerator.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/DeleteRandomSeedGenerator.java @@ -42,7 +42,7 @@ public static DeleteRandomSeedGenerator create(Scope scope, Operand handle, O OperationBuilder opBuilder = scope.env().opBuilder("DeleteRandomSeedGenerator", scope.makeOpName("DeleteRandomSeedGenerator")); opBuilder.addInput(handle.asOutput()); opBuilder.addInput(deleter.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DeleteRandomSeedGenerator(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/DeleteSeedGenerator.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/DeleteSeedGenerator.java index 16982946d1f..7bf6ecac561 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/DeleteSeedGenerator.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/DeleteSeedGenerator.java @@ -42,7 +42,7 @@ public static DeleteSeedGenerator create(Scope scope, Operand handle, Operand OperationBuilder opBuilder = scope.env().opBuilder("DeleteSeedGenerator", scope.makeOpName("DeleteSeedGenerator")); opBuilder.addInput(handle.asOutput()); opBuilder.addInput(deleter.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DeleteSeedGenerator(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/LogUniformCandidateSampler.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/LogUniformCandidateSampler.java index 761f945de1a..4beb87660ef 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/LogUniformCandidateSampler.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/LogUniformCandidateSampler.java @@ -93,7 +93,7 @@ private Options() { public static LogUniformCandidateSampler create(Scope scope, Operand trueClasses, Long numTrue, Long numSampled, Boolean unique, Long rangeMax, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("LogUniformCandidateSampler", scope.makeOpName("LogUniformCandidateSampler")); opBuilder.addInput(trueClasses.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_true", numTrue); opBuilder.setAttr("num_sampled", numSampled); opBuilder.setAttr("unique", unique); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/Multinomial.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/Multinomial.java index 58cc57d6c52..5dc566feb29 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/Multinomial.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/Multinomial.java @@ -17,11 +17,11 @@ package org.tensorflow.op.random; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -29,7 +29,6 @@ import org.tensorflow.types.TInt32; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Draws samples from a multinomial distribution. @@ -80,12 +79,12 @@ private Options() { * @return a new instance of Multinomial */ @Endpoint(describeByClass = true) - public static Multinomial create(Scope scope, Operand logits, Operand numSamples, DataType outputDtype, Options... options) { + public static Multinomial create(Scope scope, Operand logits, Operand numSamples, Class outputDtype, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("Multinomial", scope.makeOpName("Multinomial")); opBuilder.addInput(logits.asOutput()); opBuilder.addInput(numSamples.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("output_dtype", outputDtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_dtype", Operands.toDataType(outputDtype)); if (options != null) { for (Options opts : options) { if (opts.seed != null) { @@ -111,7 +110,7 @@ public static Multinomial create(Scope */ @Endpoint(describeByClass = true) public static Multinomial create(Scope scope, Operand logits, Operand numSamples, Options... options) { - return create(scope, logits, numSamples, TInt64.DTYPE, options); + return create(scope, logits, numSamples, TInt64.class, options); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/NonDeterministicInts.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/NonDeterministicInts.java index 246974eaf6f..2f9aad878b3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/NonDeterministicInts.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/NonDeterministicInts.java @@ -17,11 +17,11 @@ package org.tensorflow.op.random; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -47,11 +47,11 @@ public final class NonDeterministicInts extends RawOp implement * @return a new instance of NonDeterministicInts */ @Endpoint(describeByClass = true) - public static NonDeterministicInts create(Scope scope, Operand shape, DataType dtype) { + public static NonDeterministicInts create(Scope scope, Operand shape, Class dtype) { OperationBuilder opBuilder = scope.env().opBuilder("NonDeterministicInts", scope.makeOpName("NonDeterministicInts")); opBuilder.addInput(shape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); return new NonDeterministicInts(opBuilder.build()); } @@ -64,7 +64,7 @@ public static NonDeterministicInts create( */ @Endpoint(describeByClass = true) public static NonDeterministicInts create(Scope scope, Operand shape) { - return create(scope, shape, TInt64.DTYPE); + return create(scope, shape, TInt64.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/ParameterizedTruncatedNormal.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/ParameterizedTruncatedNormal.java index 4be50b9cde0..f4300ebaa75 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/ParameterizedTruncatedNormal.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/ParameterizedTruncatedNormal.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Outputs random values from a normal distribution. The parameters may each be a @@ -90,7 +89,7 @@ public static ParameterizedTruncatedNorma opBuilder.addInput(stdevs.asOutput()); opBuilder.addInput(minvals.asOutput()); opBuilder.addInput(maxvals.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.seed != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomGamma.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomGamma.java index 13963e09ecb..ddf132eacb8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomGamma.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomGamma.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Outputs random values from the Gamma distribution(s) described by alpha. @@ -86,7 +85,7 @@ public static RandomGamma create(Scope OperationBuilder opBuilder = scope.env().opBuilder("RandomGamma", scope.makeOpName("RandomGamma")); opBuilder.addInput(shape.asOutput()); opBuilder.addInput(alpha.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.seed != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomGammaGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomGammaGrad.java index ce3798cef3f..35f9c06d172 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomGammaGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomGammaGrad.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the derivative of a Gamma random sample w.r.t. `alpha`. @@ -48,7 +47,7 @@ public static RandomGammaGrad create(Scope scope, Operand OperationBuilder opBuilder = scope.env().opBuilder("RandomGammaGrad", scope.makeOpName("RandomGammaGrad")); opBuilder.addInput(alpha.asOutput()); opBuilder.addInput(sample.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new RandomGammaGrad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomPoisson.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomPoisson.java index d4b516343ac..8b3c70059e0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomPoisson.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomPoisson.java @@ -17,18 +17,17 @@ package org.tensorflow.op.random; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Outputs random values from the Poisson distribution(s) described by rate. @@ -91,12 +90,12 @@ private Options() { * @return a new instance of RandomPoisson */ @Endpoint(describeByClass = true) - public static RandomPoisson create(Scope scope, Operand shape, Operand rate, DataType dtype, Options... options) { + public static RandomPoisson create(Scope scope, Operand shape, Operand rate, Class dtype, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RandomPoissonV2", scope.makeOpName("RandomPoisson")); opBuilder.addInput(shape.asOutput()); opBuilder.addInput(rate.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); if (options != null) { for (Options opts : options) { if (opts.seed != null) { @@ -123,7 +122,7 @@ public static RandomPo */ @Endpoint(describeByClass = true) public static RandomPoisson create(Scope scope, Operand shape, Operand rate, Options... options) { - return create(scope, shape, rate, TInt64.DTYPE, options); + return create(scope, shape, rate, TInt64.class, options); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomShuffle.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomShuffle.java index b08c31031ec..3ef940e631d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomShuffle.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomShuffle.java @@ -87,7 +87,7 @@ private Options() { public static RandomShuffle create(Scope scope, Operand value, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RandomShuffle", scope.makeOpName("RandomShuffle")); opBuilder.addInput(value.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.seed != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomStandardNormal.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomStandardNormal.java index bdd971cc19d..c699ec4509c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomStandardNormal.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomStandardNormal.java @@ -17,17 +17,16 @@ package org.tensorflow.op.random; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Outputs random values from a normal distribution. @@ -79,11 +78,11 @@ private Options() { * @return a new instance of RandomStandardNormal */ @Endpoint(describeByClass = true) - public static RandomStandardNormal create(Scope scope, Operand shape, DataType dtype, Options... options) { + public static RandomStandardNormal create(Scope scope, Operand shape, Class dtype, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RandomStandardNormal", scope.makeOpName("RandomStandardNormal")); opBuilder.addInput(shape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); if (options != null) { for (Options opts : options) { if (opts.seed != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomUniform.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomUniform.java index 5e42c2d9691..d3bbe991d60 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomUniform.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomUniform.java @@ -17,17 +17,16 @@ package org.tensorflow.op.random; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Outputs random values from a uniform distribution. @@ -80,11 +79,11 @@ private Options() { * @return a new instance of RandomUniform */ @Endpoint(describeByClass = true) - public static RandomUniform create(Scope scope, Operand shape, DataType dtype, Options... options) { + public static RandomUniform create(Scope scope, Operand shape, Class dtype, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RandomUniform", scope.makeOpName("RandomUniform")); opBuilder.addInput(shape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); if (options != null) { for (Options opts : options) { if (opts.seed != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomUniformInt.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomUniformInt.java index 5232135ac1c..f6ab24df811 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomUniformInt.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomUniformInt.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Outputs random integers from a uniform distribution. @@ -90,7 +89,7 @@ public static RandomUniformInt create( opBuilder.addInput(shape.asOutput()); opBuilder.addInput(minval.asOutput()); opBuilder.addInput(maxval.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.seed != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RecordInput.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RecordInput.java index 7e3550cb71c..e7319f4b593 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RecordInput.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RecordInput.java @@ -110,7 +110,7 @@ private Options() { @Endpoint(describeByClass = true) public static RecordInput create(Scope scope, String filePattern, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RecordInput", scope.makeOpName("RecordInput")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("file_pattern", filePattern); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RngSkip.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RngSkip.java index f41cff35b04..72238907917 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RngSkip.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RngSkip.java @@ -51,7 +51,7 @@ public static RngSkip create(Scope scope, Operand resource, Operand a opBuilder.addInput(resource.asOutput()); opBuilder.addInput(algorithm.asOutput()); opBuilder.addInput(delta.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new RngSkip(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulRandomBinomial.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulRandomBinomial.java index b3c2dfce166..67264028253 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulRandomBinomial.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulRandomBinomial.java @@ -17,18 +17,17 @@ package org.tensorflow.op.random; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code output()} output @@ -49,15 +48,15 @@ public final class StatefulRandomBinomial extends RawOp imple * @return a new instance of StatefulRandomBinomial */ @Endpoint(describeByClass = true) - public static StatefulRandomBinomial create(Scope scope, Operand resource, Operand algorithm, Operand shape, Operand counts, Operand probs, DataType dtype) { + public static StatefulRandomBinomial create(Scope scope, Operand resource, Operand algorithm, Operand shape, Operand counts, Operand probs, Class dtype) { OperationBuilder opBuilder = scope.env().opBuilder("StatefulRandomBinomial", scope.makeOpName("StatefulRandomBinomial")); opBuilder.addInput(resource.asOutput()); opBuilder.addInput(algorithm.asOutput()); opBuilder.addInput(shape.asOutput()); opBuilder.addInput(counts.asOutput()); opBuilder.addInput(probs.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); return new StatefulRandomBinomial(opBuilder.build()); } @@ -74,7 +73,7 @@ public static Stateful */ @Endpoint(describeByClass = true) public static StatefulRandomBinomial create(Scope scope, Operand resource, Operand algorithm, Operand shape, Operand counts, Operand probs) { - return create(scope, resource, algorithm, shape, counts, probs, TInt64.DTYPE); + return create(scope, resource, algorithm, shape, counts, probs, TInt64.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulStandardNormal.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulStandardNormal.java index 12aabfa2a73..340703444ef 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulStandardNormal.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulStandardNormal.java @@ -17,11 +17,11 @@ package org.tensorflow.op.random; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -51,13 +51,13 @@ public final class StatefulStandardNormal extends RawOp impleme * @return a new instance of StatefulStandardNormal */ @Endpoint(describeByClass = true) - public static StatefulStandardNormal create(Scope scope, Operand resource, Operand algorithm, Operand shape, DataType dtype) { + public static StatefulStandardNormal create(Scope scope, Operand resource, Operand algorithm, Operand shape, Class dtype) { OperationBuilder opBuilder = scope.env().opBuilder("StatefulStandardNormalV2", scope.makeOpName("StatefulStandardNormal")); opBuilder.addInput(resource.asOutput()); opBuilder.addInput(algorithm.asOutput()); opBuilder.addInput(shape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); return new StatefulStandardNormal(opBuilder.build()); } @@ -72,7 +72,7 @@ public static StatefulStandardNormal creat */ @Endpoint(describeByClass = true) public static StatefulStandardNormal create(Scope scope, Operand resource, Operand algorithm, Operand shape) { - return create(scope, resource, algorithm, shape, TFloat32.DTYPE); + return create(scope, resource, algorithm, shape, TFloat32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulTruncatedNormal.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulTruncatedNormal.java index 86904de711f..850473f7662 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulTruncatedNormal.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulTruncatedNormal.java @@ -17,11 +17,11 @@ package org.tensorflow.op.random; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -52,13 +52,13 @@ public final class StatefulTruncatedNormal extends RawOp implem * @return a new instance of StatefulTruncatedNormal */ @Endpoint(describeByClass = true) - public static StatefulTruncatedNormal create(Scope scope, Operand resource, Operand algorithm, Operand shape, DataType dtype) { + public static StatefulTruncatedNormal create(Scope scope, Operand resource, Operand algorithm, Operand shape, Class dtype) { OperationBuilder opBuilder = scope.env().opBuilder("StatefulTruncatedNormal", scope.makeOpName("StatefulTruncatedNormal")); opBuilder.addInput(resource.asOutput()); opBuilder.addInput(algorithm.asOutput()); opBuilder.addInput(shape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); return new StatefulTruncatedNormal(opBuilder.build()); } @@ -73,7 +73,7 @@ public static StatefulTruncatedNormal crea */ @Endpoint(describeByClass = true) public static StatefulTruncatedNormal create(Scope scope, Operand resource, Operand algorithm, Operand shape) { - return create(scope, resource, algorithm, shape, TFloat32.DTYPE); + return create(scope, resource, algorithm, shape, TFloat32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulUniform.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulUniform.java index dd9a2c10af0..b33ced6beec 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulUniform.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulUniform.java @@ -17,11 +17,11 @@ package org.tensorflow.op.random; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -51,13 +51,13 @@ public final class StatefulUniform extends RawOp implements Ope * @return a new instance of StatefulUniform */ @Endpoint(describeByClass = true) - public static StatefulUniform create(Scope scope, Operand resource, Operand algorithm, Operand shape, DataType dtype) { + public static StatefulUniform create(Scope scope, Operand resource, Operand algorithm, Operand shape, Class dtype) { OperationBuilder opBuilder = scope.env().opBuilder("StatefulUniform", scope.makeOpName("StatefulUniform")); opBuilder.addInput(resource.asOutput()); opBuilder.addInput(algorithm.asOutput()); opBuilder.addInput(shape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); return new StatefulUniform(opBuilder.build()); } @@ -72,7 +72,7 @@ public static StatefulUniform create(Scope */ @Endpoint(describeByClass = true) public static StatefulUniform create(Scope scope, Operand resource, Operand algorithm, Operand shape) { - return create(scope, resource, algorithm, shape, TFloat32.DTYPE); + return create(scope, resource, algorithm, shape, TFloat32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulUniformFullInt.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulUniformFullInt.java index 0bf991bd72e..6a06923808a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulUniformFullInt.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulUniformFullInt.java @@ -17,11 +17,11 @@ package org.tensorflow.op.random; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -49,13 +49,13 @@ public final class StatefulUniformFullInt extends RawOp impleme * @return a new instance of StatefulUniformFullInt */ @Endpoint(describeByClass = true) - public static StatefulUniformFullInt create(Scope scope, Operand resource, Operand algorithm, Operand shape, DataType dtype) { + public static StatefulUniformFullInt create(Scope scope, Operand resource, Operand algorithm, Operand shape, Class dtype) { OperationBuilder opBuilder = scope.env().opBuilder("StatefulUniformFullInt", scope.makeOpName("StatefulUniformFullInt")); opBuilder.addInput(resource.asOutput()); opBuilder.addInput(algorithm.asOutput()); opBuilder.addInput(shape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); return new StatefulUniformFullInt(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulUniformInt.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulUniformInt.java index 74337edc44d..b8212de6e03 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulUniformInt.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulUniformInt.java @@ -62,7 +62,7 @@ public static StatefulUniformInt create(Sc opBuilder.addInput(shape.asOutput()); opBuilder.addInput(minval.asOutput()); opBuilder.addInput(maxval.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new StatefulUniformInt(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessMultinomial.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessMultinomial.java index 1dbe0e5a7d0..93f7a9254de 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessMultinomial.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessMultinomial.java @@ -17,11 +17,11 @@ package org.tensorflow.op.random; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -29,7 +29,6 @@ import org.tensorflow.types.TInt32; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Draws samples from a multinomial distribution. @@ -51,13 +50,13 @@ public final class StatelessMultinomial extends RawOp impleme * @return a new instance of StatelessMultinomial */ @Endpoint(describeByClass = true) - public static StatelessMultinomial create(Scope scope, Operand logits, Operand numSamples, Operand seed, DataType outputDtype) { + public static StatelessMultinomial create(Scope scope, Operand logits, Operand numSamples, Operand seed, Class outputDtype) { OperationBuilder opBuilder = scope.env().opBuilder("StatelessMultinomial", scope.makeOpName("StatelessMultinomial")); opBuilder.addInput(logits.asOutput()); opBuilder.addInput(numSamples.asOutput()); opBuilder.addInput(seed.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("output_dtype", outputDtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("output_dtype", Operands.toDataType(outputDtype)); return new StatelessMultinomial(opBuilder.build()); } @@ -73,7 +72,7 @@ public static Stateles */ @Endpoint(describeByClass = true) public static StatelessMultinomial create(Scope scope, Operand logits, Operand numSamples, Operand seed) { - return create(scope, logits, numSamples, seed, TInt64.DTYPE); + return create(scope, logits, numSamples, seed, TInt64.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessParameterizedTruncatedNormal.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessParameterizedTruncatedNormal.java index 179160463c7..f6d5deadabf 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessParameterizedTruncatedNormal.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessParameterizedTruncatedNormal.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * @param data type for {@code output()} output @@ -55,7 +54,7 @@ public static Stateles opBuilder.addInput(stddevs.asOutput()); opBuilder.addInput(minvals.asOutput()); opBuilder.addInput(maxvals.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new StatelessParameterizedTruncatedNormal(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomBinomial.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomBinomial.java index 03543495413..6da606468d1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomBinomial.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomBinomial.java @@ -17,18 +17,17 @@ package org.tensorflow.op.random; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Outputs deterministic pseudorandom random numbers from a binomial distribution. @@ -55,14 +54,14 @@ public final class StatelessRandomBinomial extends RawOp impl * @return a new instance of StatelessRandomBinomial */ @Endpoint(describeByClass = true) - public static StatelessRandomBinomial create(Scope scope, Operand shape, Operand seed, Operand counts, Operand probs, DataType dtype) { + public static StatelessRandomBinomial create(Scope scope, Operand shape, Operand seed, Operand counts, Operand probs, Class dtype) { OperationBuilder opBuilder = scope.env().opBuilder("StatelessRandomBinomial", scope.makeOpName("StatelessRandomBinomial")); opBuilder.addInput(shape.asOutput()); opBuilder.addInput(seed.asOutput()); opBuilder.addInput(counts.asOutput()); opBuilder.addInput(probs.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); return new StatelessRandomBinomial(opBuilder.build()); } @@ -80,7 +79,7 @@ public static StatelessRandomBinomial create(Scope scope, Operand shape, Operand seed, Operand counts, Operand probs) { - return create(scope, shape, seed, counts, probs, TInt64.DTYPE); + return create(scope, shape, seed, counts, probs, TInt64.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomGamma.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomGamma.java index 2c4eef75ff7..2b4ca37dee9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomGamma.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomGamma.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Outputs deterministic pseudorandom random numbers from a gamma distribution. @@ -55,7 +54,7 @@ public static Stateles opBuilder.addInput(shape.asOutput()); opBuilder.addInput(seed.asOutput()); opBuilder.addInput(alpha.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new StatelessRandomGamma(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomNormal.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomNormal.java index 07c5298cca0..6438b29ec4c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomNormal.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomNormal.java @@ -17,18 +17,17 @@ package org.tensorflow.op.random; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TFloat32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Outputs deterministic pseudorandom values from a normal distribution. @@ -52,12 +51,12 @@ public final class StatelessRandomNormal extends RawOp implem * @return a new instance of StatelessRandomNormal */ @Endpoint(describeByClass = true) - public static StatelessRandomNormal create(Scope scope, Operand shape, Operand seed, DataType dtype) { + public static StatelessRandomNormal create(Scope scope, Operand shape, Operand seed, Class dtype) { OperationBuilder opBuilder = scope.env().opBuilder("StatelessRandomNormal", scope.makeOpName("StatelessRandomNormal")); opBuilder.addInput(shape.asOutput()); opBuilder.addInput(seed.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); return new StatelessRandomNormal(opBuilder.build()); } @@ -71,7 +70,7 @@ public static Stateles */ @Endpoint(describeByClass = true) public static StatelessRandomNormal create(Scope scope, Operand shape, Operand seed) { - return create(scope, shape, seed, TFloat32.DTYPE); + return create(scope, shape, seed, TFloat32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomPoisson.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomPoisson.java index e71c70e2c1f..c44af6a5e72 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomPoisson.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomPoisson.java @@ -17,17 +17,16 @@ package org.tensorflow.op.random; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Outputs deterministic pseudorandom random numbers from a Poisson distribution. @@ -52,13 +51,13 @@ public final class StatelessRandomPoisson extends RawOp imple * @return a new instance of StatelessRandomPoisson */ @Endpoint(describeByClass = true) - public static StatelessRandomPoisson create(Scope scope, Operand shape, Operand seed, Operand lam, DataType dtype) { + public static StatelessRandomPoisson create(Scope scope, Operand shape, Operand seed, Operand lam, Class dtype) { OperationBuilder opBuilder = scope.env().opBuilder("StatelessRandomPoisson", scope.makeOpName("StatelessRandomPoisson")); opBuilder.addInput(shape.asOutput()); opBuilder.addInput(seed.asOutput()); opBuilder.addInput(lam.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); return new StatelessRandomPoisson(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniform.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniform.java index 9eb6edc67e5..814b89ba69c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniform.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniform.java @@ -17,18 +17,17 @@ package org.tensorflow.op.random; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TFloat32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Outputs deterministic pseudorandom random values from a uniform distribution. @@ -53,12 +52,12 @@ public final class StatelessRandomUniform extends RawOp imple * @return a new instance of StatelessRandomUniform */ @Endpoint(describeByClass = true) - public static StatelessRandomUniform create(Scope scope, Operand shape, Operand seed, DataType dtype) { + public static StatelessRandomUniform create(Scope scope, Operand shape, Operand seed, Class dtype) { OperationBuilder opBuilder = scope.env().opBuilder("StatelessRandomUniform", scope.makeOpName("StatelessRandomUniform")); opBuilder.addInput(shape.asOutput()); opBuilder.addInput(seed.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); return new StatelessRandomUniform(opBuilder.build()); } @@ -72,7 +71,7 @@ public static Stateles */ @Endpoint(describeByClass = true) public static StatelessRandomUniform create(Scope scope, Operand shape, Operand seed) { - return create(scope, shape, seed, TFloat32.DTYPE); + return create(scope, shape, seed, TFloat32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformFullInt.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformFullInt.java index 291cce74d19..d90112620a5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformFullInt.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformFullInt.java @@ -17,17 +17,16 @@ package org.tensorflow.op.random; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Outputs deterministic pseudorandom random integers from a uniform distribution. @@ -50,12 +49,12 @@ public final class StatelessRandomUniformFullInt extends RawO * @return a new instance of StatelessRandomUniformFullInt */ @Endpoint(describeByClass = true) - public static StatelessRandomUniformFullInt create(Scope scope, Operand shape, Operand seed, DataType dtype) { + public static StatelessRandomUniformFullInt create(Scope scope, Operand shape, Operand seed, Class dtype) { OperationBuilder opBuilder = scope.env().opBuilder("StatelessRandomUniformFullInt", scope.makeOpName("StatelessRandomUniformFullInt")); opBuilder.addInput(shape.asOutput()); opBuilder.addInput(seed.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); return new StatelessRandomUniformFullInt(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformInt.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformInt.java index 4695718a186..fb88cc4f69d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformInt.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformInt.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Outputs deterministic pseudorandom random integers from a uniform distribution. @@ -56,7 +55,7 @@ public static Stateles opBuilder.addInput(seed.asOutput()); opBuilder.addInput(minval.asOutput()); opBuilder.addInput(maxval.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new StatelessRandomUniformInt(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessTruncatedNormal.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessTruncatedNormal.java index 3d4761fc4df..e38cd931564 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessTruncatedNormal.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessTruncatedNormal.java @@ -17,18 +17,17 @@ package org.tensorflow.op.random; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TFloat32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Outputs deterministic pseudorandom values from a truncated normal distribution. @@ -54,12 +53,12 @@ public final class StatelessTruncatedNormal extends RawOp imp * @return a new instance of StatelessTruncatedNormal */ @Endpoint(describeByClass = true) - public static StatelessTruncatedNormal create(Scope scope, Operand shape, Operand seed, DataType dtype) { + public static StatelessTruncatedNormal create(Scope scope, Operand shape, Operand seed, Class dtype) { OperationBuilder opBuilder = scope.env().opBuilder("StatelessTruncatedNormal", scope.makeOpName("StatelessTruncatedNormal")); opBuilder.addInput(shape.asOutput()); opBuilder.addInput(seed.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); return new StatelessTruncatedNormal(opBuilder.build()); } @@ -73,7 +72,7 @@ public static Stateles */ @Endpoint(describeByClass = true) public static StatelessTruncatedNormal create(Scope scope, Operand shape, Operand seed) { - return create(scope, shape, seed, TFloat32.DTYPE); + return create(scope, shape, seed, TFloat32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/TruncatedNormal.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/TruncatedNormal.java index 7b88d720386..ff111c2e8d1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/TruncatedNormal.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/TruncatedNormal.java @@ -17,17 +17,16 @@ package org.tensorflow.op.random; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Outputs random values from a truncated normal distribution. @@ -81,11 +80,11 @@ private Options() { * @return a new instance of TruncatedNormal */ @Endpoint(describeByClass = true) - public static TruncatedNormal create(Scope scope, Operand shape, DataType dtype, Options... options) { + public static TruncatedNormal create(Scope scope, Operand shape, Class dtype, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("TruncatedNormal", scope.makeOpName("TruncatedNormal")); opBuilder.addInput(shape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); if (options != null) { for (Options opts : options) { if (opts.seed != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/UniformCandidateSampler.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/UniformCandidateSampler.java index 9e1f2b1abbd..8a5a7ce3c21 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/UniformCandidateSampler.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/UniformCandidateSampler.java @@ -93,7 +93,7 @@ private Options() { public static UniformCandidateSampler create(Scope scope, Operand trueClasses, Long numTrue, Long numSampled, Boolean unique, Long rangeMax, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("UniformCandidateSampler", scope.makeOpName("UniformCandidateSampler")); opBuilder.addInput(trueClasses.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_true", numTrue); opBuilder.setAttr("num_sampled", numSampled); opBuilder.setAttr("unique", unique); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/experimental/DummySeedGenerator.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/experimental/DummySeedGenerator.java index dd537fa2d68..8c60fc6350f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/experimental/DummySeedGenerator.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/experimental/DummySeedGenerator.java @@ -40,7 +40,7 @@ public final class DummySeedGenerator extends RawOp implements Operand { @Endpoint(describeByClass = true) public static DummySeedGenerator create(Scope scope) { OperationBuilder opBuilder = scope.env().opBuilder("DummySeedGenerator", scope.makeOpName("DummySeedGenerator")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DummySeedGenerator(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/BatchFft.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/BatchFft.java index 9eaacf4b26a..fcc3eaa813b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/BatchFft.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/BatchFft.java @@ -43,7 +43,7 @@ public final class BatchFft extends RawOp implements Operand { public static BatchFft create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("BatchFFT", scope.makeOpName("BatchFft")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BatchFft(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/BatchFft2d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/BatchFft2d.java index 551d7c3f139..13fc0ba9d42 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/BatchFft2d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/BatchFft2d.java @@ -43,7 +43,7 @@ public final class BatchFft2d extends RawOp implements Operand { public static BatchFft2d create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("BatchFFT2D", scope.makeOpName("BatchFft2d")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BatchFft2d(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/BatchFft3d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/BatchFft3d.java index beeb97ee414..9f28e6634f0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/BatchFft3d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/BatchFft3d.java @@ -43,7 +43,7 @@ public final class BatchFft3d extends RawOp implements Operand { public static BatchFft3d create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("BatchFFT3D", scope.makeOpName("BatchFft3d")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BatchFft3d(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/BatchIfft.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/BatchIfft.java index 262b02d2bc5..282eec13ac1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/BatchIfft.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/BatchIfft.java @@ -43,7 +43,7 @@ public final class BatchIfft extends RawOp implements Operand { public static BatchIfft create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("BatchIFFT", scope.makeOpName("BatchIfft")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BatchIfft(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/BatchIfft2d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/BatchIfft2d.java index 2145f201419..318102e94ac 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/BatchIfft2d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/BatchIfft2d.java @@ -43,7 +43,7 @@ public final class BatchIfft2d extends RawOp implements Operand { public static BatchIfft2d create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("BatchIFFT2D", scope.makeOpName("BatchIfft2d")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BatchIfft2d(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/BatchIfft3d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/BatchIfft3d.java index 6a271795308..f50257f0129 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/BatchIfft3d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/BatchIfft3d.java @@ -43,7 +43,7 @@ public final class BatchIfft3d extends RawOp implements Operand { public static BatchIfft3d create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("BatchIFFT3D", scope.makeOpName("BatchIfft3d")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BatchIfft3d(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Fft.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Fft.java index 632500fad5e..7e64778dd99 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Fft.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Fft.java @@ -49,7 +49,7 @@ public final class Fft extends RawOp implements Operand { public static Fft create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("FFT", scope.makeOpName("Fft")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Fft(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Fft2d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Fft2d.java index 201b2e3c8af..d8c1d3332b9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Fft2d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Fft2d.java @@ -49,7 +49,7 @@ public final class Fft2d extends RawOp implements Operand { public static Fft2d create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("FFT2D", scope.makeOpName("Fft2d")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Fft2d(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Fft3d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Fft3d.java index 7e840fbfb62..167e6e6dd23 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Fft3d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Fft3d.java @@ -49,7 +49,7 @@ public final class Fft3d extends RawOp implements Operand { public static Fft3d create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("FFT3D", scope.makeOpName("Fft3d")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Fft3d(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Ifft.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Ifft.java index c020956beec..21b794f0731 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Ifft.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Ifft.java @@ -49,7 +49,7 @@ public final class Ifft extends RawOp implements Operand { public static Ifft create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("IFFT", scope.makeOpName("Ifft")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Ifft(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Ifft2d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Ifft2d.java index c8cac107ff4..4a5a3063d9d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Ifft2d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Ifft2d.java @@ -49,7 +49,7 @@ public final class Ifft2d extends RawOp implements Operand { public static Ifft2d create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("IFFT2D", scope.makeOpName("Ifft2d")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Ifft2d(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Ifft3d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Ifft3d.java index ce7f87a9aa2..24995f28a16 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Ifft3d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Ifft3d.java @@ -49,7 +49,7 @@ public final class Ifft3d extends RawOp implements Operand { public static Ifft3d create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("IFFT3D", scope.makeOpName("Ifft3d")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Ifft3d(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Irfft.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Irfft.java index 80d3bb85291..bd0d2a330ee 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Irfft.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Irfft.java @@ -17,11 +17,11 @@ package org.tensorflow.op.signal; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -63,12 +63,12 @@ public final class Irfft extends RawOp implements Operand * @return a new instance of Irfft */ @Endpoint(describeByClass = true) - public static Irfft create(Scope scope, Operand input, Operand fftLength, DataType Treal) { + public static Irfft create(Scope scope, Operand input, Operand fftLength, Class Treal) { OperationBuilder opBuilder = scope.env().opBuilder("IRFFT", scope.makeOpName("Irfft")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(fftLength.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("Treal", Treal); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("Treal", Operands.toDataType(Treal)); return new Irfft(opBuilder.build()); } @@ -82,7 +82,7 @@ public static Irfft create(Scope scope, */ @Endpoint(describeByClass = true) public static Irfft create(Scope scope, Operand input, Operand fftLength) { - return create(scope, input, fftLength, TFloat32.DTYPE); + return create(scope, input, fftLength, TFloat32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Irfft2d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Irfft2d.java index 8acf23a4f23..861e7aaf62e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Irfft2d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Irfft2d.java @@ -17,11 +17,11 @@ package org.tensorflow.op.signal; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -64,12 +64,12 @@ public final class Irfft2d extends RawOp implements Operand Irfft2d create(Scope scope, Operand input, Operand fftLength, DataType Treal) { + public static Irfft2d create(Scope scope, Operand input, Operand fftLength, Class Treal) { OperationBuilder opBuilder = scope.env().opBuilder("IRFFT2D", scope.makeOpName("Irfft2d")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(fftLength.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("Treal", Treal); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("Treal", Operands.toDataType(Treal)); return new Irfft2d(opBuilder.build()); } @@ -83,7 +83,7 @@ public static Irfft2d create(Scope scope */ @Endpoint(describeByClass = true) public static Irfft2d create(Scope scope, Operand input, Operand fftLength) { - return create(scope, input, fftLength, TFloat32.DTYPE); + return create(scope, input, fftLength, TFloat32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Irfft3d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Irfft3d.java index c7b9efabfd2..d68a0904eff 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Irfft3d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Irfft3d.java @@ -17,11 +17,11 @@ package org.tensorflow.op.signal; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -64,12 +64,12 @@ public final class Irfft3d extends RawOp implements Operand Irfft3d create(Scope scope, Operand input, Operand fftLength, DataType Treal) { + public static Irfft3d create(Scope scope, Operand input, Operand fftLength, Class Treal) { OperationBuilder opBuilder = scope.env().opBuilder("IRFFT3D", scope.makeOpName("Irfft3d")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(fftLength.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("Treal", Treal); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("Treal", Operands.toDataType(Treal)); return new Irfft3d(opBuilder.build()); } @@ -83,7 +83,7 @@ public static Irfft3d create(Scope scope */ @Endpoint(describeByClass = true) public static Irfft3d create(Scope scope, Operand input, Operand fftLength) { - return create(scope, input, fftLength, TFloat32.DTYPE); + return create(scope, input, fftLength, TFloat32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Rfft.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Rfft.java index 9764bcbf0f2..3b8e54a361e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Rfft.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Rfft.java @@ -17,11 +17,11 @@ package org.tensorflow.op.signal; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -59,12 +59,12 @@ public final class Rfft extends RawOp implements Operand { * @return a new instance of Rfft */ @Endpoint(describeByClass = true) - public static Rfft create(Scope scope, Operand input, Operand fftLength, DataType Tcomplex) { + public static Rfft create(Scope scope, Operand input, Operand fftLength, Class Tcomplex) { OperationBuilder opBuilder = scope.env().opBuilder("RFFT", scope.makeOpName("Rfft")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(fftLength.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("Tcomplex", Tcomplex); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("Tcomplex", Operands.toDataType(Tcomplex)); return new Rfft(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Rfft2d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Rfft2d.java index 91187dced7b..cf00ae1b33b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Rfft2d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Rfft2d.java @@ -17,11 +17,11 @@ package org.tensorflow.op.signal; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -60,12 +60,12 @@ public final class Rfft2d extends RawOp implements Operand { * @return a new instance of Rfft2d */ @Endpoint(describeByClass = true) - public static Rfft2d create(Scope scope, Operand input, Operand fftLength, DataType Tcomplex) { + public static Rfft2d create(Scope scope, Operand input, Operand fftLength, Class Tcomplex) { OperationBuilder opBuilder = scope.env().opBuilder("RFFT2D", scope.makeOpName("Rfft2d")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(fftLength.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("Tcomplex", Tcomplex); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("Tcomplex", Operands.toDataType(Tcomplex)); return new Rfft2d(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Rfft3d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Rfft3d.java index 1eb113e9cf1..c01d979d7cb 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Rfft3d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Rfft3d.java @@ -17,11 +17,11 @@ package org.tensorflow.op.signal; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -60,12 +60,12 @@ public final class Rfft3d extends RawOp implements Operand { * @return a new instance of Rfft3d */ @Endpoint(describeByClass = true) - public static Rfft3d create(Scope scope, Operand input, Operand fftLength, DataType Tcomplex) { + public static Rfft3d create(Scope scope, Operand input, Operand fftLength, Class Tcomplex) { OperationBuilder opBuilder = scope.env().opBuilder("RFFT3D", scope.makeOpName("Rfft3d")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(fftLength.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("Tcomplex", Tcomplex); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("Tcomplex", Operands.toDataType(Tcomplex)); return new Rfft3d(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/AddManySparseToTensorsMap.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/AddManySparseToTensorsMap.java index ec66167f7e6..57dd04bb693 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/AddManySparseToTensorsMap.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/AddManySparseToTensorsMap.java @@ -103,7 +103,7 @@ public static AddManySparseToTensorsMap create(Scope scope, Op opBuilder.addInput(sparseIndices.asOutput()); opBuilder.addInput(sparseValues.asOutput()); opBuilder.addInput(sparseShape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.container != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/AddSparseToTensorsMap.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/AddSparseToTensorsMap.java index 153e326aa9d..9f6fd118a0d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/AddSparseToTensorsMap.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/AddSparseToTensorsMap.java @@ -94,7 +94,7 @@ public static AddSparseToTensorsMap create(Scope scope, Operan opBuilder.addInput(sparseIndices.asOutput()); opBuilder.addInput(sparseValues.asOutput()); opBuilder.addInput(sparseShape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.container != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DenseCountSparseOutput.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DenseCountSparseOutput.java index ed390a7ba47..c06191594a3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DenseCountSparseOutput.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DenseCountSparseOutput.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Performs sparse-output bin counting for a tf.tensor input. @@ -82,7 +81,7 @@ public static DenseCountSparseOutput c OperationBuilder opBuilder = scope.env().opBuilder("DenseCountSparseOutput", scope.makeOpName("DenseCountSparseOutput")); opBuilder.addInput(values.asOutput()); opBuilder.addInput(weights.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("binary_output", binaryOutput); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DenseToDenseSetOperation.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DenseToDenseSetOperation.java index 15e62be4fa8..bb71fd48284 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DenseToDenseSetOperation.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DenseToDenseSetOperation.java @@ -80,7 +80,7 @@ public static DenseToDenseSetOperation create(Scope scope, OperationBuilder opBuilder = scope.env().opBuilder("DenseToDenseSetOperation", scope.makeOpName("DenseToDenseSetOperation")); opBuilder.addInput(set1.asOutput()); opBuilder.addInput(set2.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("set_operation", setOperation); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DenseToSparseSetOperation.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DenseToSparseSetOperation.java index 107f32524ea..82da6d7902e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DenseToSparseSetOperation.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DenseToSparseSetOperation.java @@ -95,7 +95,7 @@ public static DenseToSparseSetOperation create(Scope scope, opBuilder.addInput(set2Indices.asOutput()); opBuilder.addInput(set2Values.asOutput()); opBuilder.addInput(set2Shape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("set_operation", setOperation); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DeserializeSparse.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DeserializeSparse.java index a1a6bb2fa49..f229dd2ad98 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DeserializeSparse.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DeserializeSparse.java @@ -17,11 +17,11 @@ package org.tensorflow.op.sparse; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -89,11 +89,11 @@ public final class DeserializeSparse extends RawOp { * @return a new instance of DeserializeSparse */ @Endpoint(describeByClass = true) - public static DeserializeSparse create(Scope scope, Operand serializedSparse, DataType dtype) { + public static DeserializeSparse create(Scope scope, Operand serializedSparse, Class dtype) { OperationBuilder opBuilder = scope.env().opBuilder("DeserializeSparse", scope.makeOpName("DeserializeSparse")); opBuilder.addInput(serializedSparse.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); return new DeserializeSparse(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAccumulatorApplyGradient.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAccumulatorApplyGradient.java index 328fe0c49ea..9fbf6a1efdf 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAccumulatorApplyGradient.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAccumulatorApplyGradient.java @@ -61,7 +61,7 @@ public static SparseAccumulatorApplyGradient create(Scope scop opBuilder.addInput(gradientIndices.asOutput()); opBuilder.addInput(gradientValues.asOutput()); opBuilder.addInput(gradientShape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("has_known_shape", hasKnownShape); return new SparseAccumulatorApplyGradient(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAccumulatorTakeGradient.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAccumulatorTakeGradient.java index 87cbd112e57..f7250020c10 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAccumulatorTakeGradient.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAccumulatorTakeGradient.java @@ -17,11 +17,11 @@ package org.tensorflow.op.sparse; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -57,12 +57,12 @@ public final class SparseAccumulatorTakeGradient extends RawOp * @return a new instance of SparseAccumulatorTakeGradient */ @Endpoint(describeByClass = true) - public static SparseAccumulatorTakeGradient create(Scope scope, Operand handle, Operand numRequired, DataType dtype) { + public static SparseAccumulatorTakeGradient create(Scope scope, Operand handle, Operand numRequired, Class dtype) { OperationBuilder opBuilder = scope.env().opBuilder("SparseAccumulatorTakeGradient", scope.makeOpName("SparseAccumulatorTakeGradient")); opBuilder.addInput(handle.asOutput()); opBuilder.addInput(numRequired.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); return new SparseAccumulatorTakeGradient(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAdd.java index bc8beb287bb..9153c575162 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAdd.java @@ -75,7 +75,7 @@ public static SparseAdd create(Scope sco opBuilder.addInput(bValues.asOutput()); opBuilder.addInput(bShape.asOutput()); opBuilder.addInput(thresh.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SparseAdd(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAddGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAddGrad.java index c3fdf2952a9..19c9594386c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAddGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAddGrad.java @@ -60,7 +60,7 @@ public static SparseAddGrad create(Scope scope, Operand opBuilder.addInput(aIndices.asOutput()); opBuilder.addInput(bIndices.asOutput()); opBuilder.addInput(sumIndices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SparseAddGrad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseBincount.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseBincount.java index 344e27f1346..bea0d8b3c71 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseBincount.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseBincount.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Counts the number of occurrences of each value in an integer array. @@ -86,7 +85,7 @@ public static SparseBincount create(Sc opBuilder.addInput(denseShape.asOutput()); opBuilder.addInput(size.asOutput()); opBuilder.addInput(weights.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.binaryOutput != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseConcat.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseConcat.java index c6866997e30..0b3ac3389e5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseConcat.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseConcat.java @@ -96,7 +96,7 @@ public static SparseConcat create(Scope scope, Iterable(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseConditionalAccumulator.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseConditionalAccumulator.java index b38fc0a6c46..e012cb631c8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseConditionalAccumulator.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseConditionalAccumulator.java @@ -17,12 +17,12 @@ package org.tensorflow.op.sparse; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -92,10 +92,10 @@ private Options() { * @return a new instance of SparseConditionalAccumulator */ @Endpoint(describeByClass = true) - public static SparseConditionalAccumulator create(Scope scope, DataType dtype, Shape shape, Options... options) { + public static SparseConditionalAccumulator create(Scope scope, Class dtype, Shape shape, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("SparseConditionalAccumulator", scope.makeOpName("SparseConditionalAccumulator")); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); opBuilder.setAttr("shape", shape); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseCountSparseOutput.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseCountSparseOutput.java index 5e5566db5ec..85e6707f0c0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseCountSparseOutput.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseCountSparseOutput.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Performs sparse-output bin counting for a sparse tensor input. @@ -86,7 +85,7 @@ public static SparseCountSparseOutput opBuilder.addInput(values.asOutput()); opBuilder.addInput(denseShape.asOutput()); opBuilder.addInput(weights.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("binary_output", binaryOutput); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseCross.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseCross.java index 1cd471349c2..93b76d3e56f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseCross.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseCross.java @@ -91,7 +91,7 @@ public static SparseCross create(Scope scope, Iterable> indices, opBuilder.addInputList(Operands.asOutputs(shapes)); opBuilder.addInputList(Operands.asOutputs(denseInputs)); opBuilder.addInput(sep.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SparseCross(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseCrossHashed.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseCrossHashed.java index 2fc6976079e..c3a3b987da7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseCrossHashed.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseCrossHashed.java @@ -96,7 +96,7 @@ public static SparseCrossHashed create(Scope scope, Iterable> in opBuilder.addInput(numBuckets.asOutput()); opBuilder.addInput(strongHash.asOutput()); opBuilder.addInput(salt.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SparseCrossHashed(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseDenseCwiseAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseDenseCwiseAdd.java index 40c5fc1446b..600c582c56d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseDenseCwiseAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseDenseCwiseAdd.java @@ -63,7 +63,7 @@ public static SparseDenseCwiseAdd create(Scope scope, Opera opBuilder.addInput(spValues.asOutput()); opBuilder.addInput(spShape.asOutput()); opBuilder.addInput(dense.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SparseDenseCwiseAdd(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseDenseCwiseDiv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseDenseCwiseDiv.java index 1d88f78e482..900f8ef6b64 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseDenseCwiseDiv.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseDenseCwiseDiv.java @@ -57,7 +57,7 @@ public static SparseDenseCwiseDiv create(Scope scope, Opera opBuilder.addInput(spValues.asOutput()); opBuilder.addInput(spShape.asOutput()); opBuilder.addInput(dense.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SparseDenseCwiseDiv(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseDenseCwiseMul.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseDenseCwiseMul.java index b0144601eb3..85e13890111 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseDenseCwiseMul.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseDenseCwiseMul.java @@ -61,7 +61,7 @@ public static SparseDenseCwiseMul create(Scope scope, Opera opBuilder.addInput(spValues.asOutput()); opBuilder.addInput(spShape.asOutput()); opBuilder.addInput(dense.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SparseDenseCwiseMul(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseFillEmptyRows.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseFillEmptyRows.java index 6c8066061fc..47a7d90793e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseFillEmptyRows.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseFillEmptyRows.java @@ -93,7 +93,7 @@ public static SparseFillEmptyRows create(Scope scope, Opera opBuilder.addInput(values.asOutput()); opBuilder.addInput(denseShape.asOutput()); opBuilder.addInput(defaultValue.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SparseFillEmptyRows(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseFillEmptyRowsGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseFillEmptyRowsGrad.java index 3942e8bc8b3..e776ff51246 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseFillEmptyRowsGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseFillEmptyRowsGrad.java @@ -58,7 +58,7 @@ public static SparseFillEmptyRowsGrad create(Scope scope, O OperationBuilder opBuilder = scope.env().opBuilder("SparseFillEmptyRowsGrad", scope.makeOpName("SparseFillEmptyRowsGrad")); opBuilder.addInput(reverseIndexMap.asOutput()); opBuilder.addInput(gradValues.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SparseFillEmptyRowsGrad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseMatMul.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseMatMul.java index 295063d560a..d254cb3224c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseMatMul.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseMatMul.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TFloat32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Multiply matrix "a" by matrix "b". @@ -105,7 +104,7 @@ public static SparseMatMul create(Scope s OperationBuilder opBuilder = scope.env().opBuilder("SparseMatMul", scope.makeOpName("SparseMatMul")); opBuilder.addInput(a.asOutput()); opBuilder.addInput(b.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.transposeA != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceMax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceMax.java index 5288f7b5b88..190f06c2dbf 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceMax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceMax.java @@ -28,7 +28,6 @@ import org.tensorflow.types.TInt32; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the max of elements across dimensions of a SparseTensor. @@ -89,7 +88,7 @@ public static SparseReduceMax create(Scope scope, Operand opBuilder.addInput(inputValues.asOutput()); opBuilder.addInput(inputShape.asOutput()); opBuilder.addInput(reductionAxes.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.keepDims != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceMaxSparse.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceMaxSparse.java index 93ce28bb66a..ae36fcb07e3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceMaxSparse.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceMaxSparse.java @@ -28,7 +28,6 @@ import org.tensorflow.types.TInt32; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the max of elements across dimensions of a SparseTensor. @@ -89,7 +88,7 @@ public static SparseReduceMaxSparse create(Scope scope, O opBuilder.addInput(inputValues.asOutput()); opBuilder.addInput(inputShape.asOutput()); opBuilder.addInput(reductionAxes.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.keepDims != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceSum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceSum.java index 138bb1aab5b..03243c81939 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceSum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceSum.java @@ -88,7 +88,7 @@ public static SparseReduceSum create(Scope scope, Operand SparseReduceSumSparse create(Scope scope, Ope opBuilder.addInput(inputValues.asOutput()); opBuilder.addInput(inputShape.asOutput()); opBuilder.addInput(reductionAxes.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.keepDims != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReorder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReorder.java index 16713d1f767..66de5ab2f40 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReorder.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReorder.java @@ -61,7 +61,7 @@ public static SparseReorder create(Scope scope, Operand(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReshape.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReshape.java index 772b19db9c5..9c79e07f447 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReshape.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReshape.java @@ -65,7 +65,7 @@ public static SparseReshape create(Scope scope, Operand inputIndices, Op opBuilder.addInput(inputIndices.asOutput()); opBuilder.addInput(inputShape.asOutput()); opBuilder.addInput(newShape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SparseReshape(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentMean.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentMean.java index 14dd3df8c2f..a373bd33f03 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentMean.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentMean.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the mean along sparse segments of a tensor. @@ -56,7 +55,7 @@ public static SparseSe opBuilder.addInput(data.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(segmentIds.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SparseSegmentMean(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentMeanGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentMeanGrad.java index b5ae14a0f03..8e558afbe9e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentMeanGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentMeanGrad.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes gradients for SparseSegmentMean. @@ -57,7 +56,7 @@ public static SparseSe opBuilder.addInput(indices.asOutput()); opBuilder.addInput(segmentIds.asOutput()); opBuilder.addInput(outputDim0.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SparseSegmentMeanGrad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentMeanWithNumSegments.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentMeanWithNumSegments.java index 214d4983c81..d62b956b096 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentMeanWithNumSegments.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentMeanWithNumSegments.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the mean along sparse segments of a tensor. @@ -60,7 +59,7 @@ public static (opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSqrtN.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSqrtN.java index c1889eae169..50fe5cc8068 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSqrtN.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSqrtN.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the sum along sparse segments of a tensor divided by the sqrt of N. @@ -56,7 +55,7 @@ public static SparseSe opBuilder.addInput(data.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(segmentIds.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SparseSegmentSqrtN(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSqrtNGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSqrtNGrad.java index 3366dbac0c8..9faa31633c0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSqrtNGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSqrtNGrad.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes gradients for SparseSegmentSqrtN. @@ -57,7 +56,7 @@ public static SparseSe opBuilder.addInput(indices.asOutput()); opBuilder.addInput(segmentIds.asOutput()); opBuilder.addInput(outputDim0.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SparseSegmentSqrtNGrad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSqrtNWithNumSegments.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSqrtNWithNumSegments.java index 41000f65cdf..f962af5be0f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSqrtNWithNumSegments.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSqrtNWithNumSegments.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the sum along sparse segments of a tensor divided by the sqrt of N. @@ -62,7 +61,7 @@ public static (opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSum.java index 991653b2c02..add00c19798 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSum.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the sum along sparse segments of a tensor. @@ -81,7 +80,7 @@ public static SparseSe opBuilder.addInput(data.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(segmentIds.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SparseSegmentSum(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSumWithNumSegments.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSumWithNumSegments.java index f5414151cbe..b956d005069 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSumWithNumSegments.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSumWithNumSegments.java @@ -26,7 +26,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Computes the sum along sparse segments of a tensor. @@ -81,7 +80,7 @@ public static (opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSlice.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSlice.java index 4ed30d8e2eb..cca3f77b72e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSlice.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSlice.java @@ -73,7 +73,7 @@ public static SparseSlice create(Scope scope, Operand(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSliceGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSliceGrad.java index 480631eccbc..be3ffd7b15c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSliceGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSliceGrad.java @@ -58,7 +58,7 @@ public static SparseSliceGrad create(Scope scope, Operand(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSoftmax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSoftmax.java index 0906213115f..252a00e838b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSoftmax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSoftmax.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Applies softmax to a batched N-D `SparseTensor`. @@ -69,7 +68,7 @@ public static SparseSoftmax create(Scope scope, Operand(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSparseMaximum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSparseMaximum.java index 3cbf1a6ef7d..8886a6fda12 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSparseMaximum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSparseMaximum.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Returns the element-wise max of two SparseTensors. @@ -61,7 +60,7 @@ public static SparseSparseMaximum create(Scope scope, Ope opBuilder.addInput(bIndices.asOutput()); opBuilder.addInput(bValues.asOutput()); opBuilder.addInput(bShape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SparseSparseMaximum(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSparseMinimum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSparseMinimum.java index b2f6aedbccb..4ac7a7b9dbc 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSparseMinimum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSparseMinimum.java @@ -60,7 +60,7 @@ public static SparseSparseMinimum create(Scope scope, Opera opBuilder.addInput(bIndices.asOutput()); opBuilder.addInput(bValues.asOutput()); opBuilder.addInput(bShape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SparseSparseMinimum(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSplit.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSplit.java index e93f6ebe40e..3ca435ff577 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSplit.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSplit.java @@ -77,7 +77,7 @@ public static SparseSplit create(Scope scope, Operand(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseTensorDenseAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseTensorDenseAdd.java index 9959d57d16b..f104606ea34 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseTensorDenseAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseTensorDenseAdd.java @@ -55,7 +55,7 @@ public static SparseTensorDenseAdd creat opBuilder.addInput(aValues.asOutput()); opBuilder.addInput(aShape.asOutput()); opBuilder.addInput(b.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SparseTensorDenseAdd(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseTensorDenseMatMul.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseTensorDenseMatMul.java index 63f3d3116c0..cadce484f8f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseTensorDenseMatMul.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseTensorDenseMatMul.java @@ -95,7 +95,7 @@ public static SparseTensorDenseMatMul cr opBuilder.addInput(aValues.asOutput()); opBuilder.addInput(aShape.asOutput()); opBuilder.addInput(b.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.adjointA != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseToDense.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseToDense.java index 0f86af1327d..11dccb5873a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseToDense.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseToDense.java @@ -95,7 +95,7 @@ public static SparseToDense create(Scope opBuilder.addInput(outputShape.asOutput()); opBuilder.addInput(sparseValues.asOutput()); opBuilder.addInput(defaultValue.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.validateIndices != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseToSparseSetOperation.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseToSparseSetOperation.java index 31cbe67a914..68d17c8eeca 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseToSparseSetOperation.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseToSparseSetOperation.java @@ -110,7 +110,7 @@ public static SparseToSparseSetOperation create(Scope scope opBuilder.addInput(set2Indices.asOutput()); opBuilder.addInput(set2Values.asOutput()); opBuilder.addInput(set2Shape.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("set_operation", setOperation); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/TakeManySparseFromTensorsMap.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/TakeManySparseFromTensorsMap.java index 7fd5242cb20..a18674e8c4c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/TakeManySparseFromTensorsMap.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/TakeManySparseFromTensorsMap.java @@ -17,11 +17,11 @@ package org.tensorflow.op.sparse; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -124,11 +124,11 @@ private Options() { * @return a new instance of TakeManySparseFromTensorsMap */ @Endpoint(describeByClass = true) - public static TakeManySparseFromTensorsMap create(Scope scope, Operand sparseHandles, DataType dtype, Options... options) { + public static TakeManySparseFromTensorsMap create(Scope scope, Operand sparseHandles, Class dtype, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("TakeManySparseFromTensorsMap", scope.makeOpName("TakeManySparseFromTensorsMap")); opBuilder.addInput(sparseHandles.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); if (options != null) { for (Options opts : options) { if (opts.container != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/Join.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/Join.java index 633457793a3..9d2247185e7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/Join.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/Join.java @@ -75,7 +75,7 @@ private Options() { public static Join create(Scope scope, Iterable> inputs, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("StringJoin", scope.makeOpName("Join")); opBuilder.addInputList(Operands.asOutputs(inputs)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.separator != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/Lower.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/Lower.java index 0b214f47017..2d3e8393e40 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/Lower.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/Lower.java @@ -70,7 +70,7 @@ private Options() { public static Lower create(Scope scope, Operand input, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("StringLower", scope.makeOpName("Lower")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.encoding != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/ReduceJoin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/ReduceJoin.java index 23d90b3a2b1..6ea85330626 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/ReduceJoin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/ReduceJoin.java @@ -102,7 +102,7 @@ public static ReduceJoin create(Scope scope, Operand inputs, Operand input, Operand OperationBuilder opBuilder = scope.env().opBuilder("RegexFullMatch", scope.makeOpName("RegexFullMatch")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(pattern.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new RegexFullMatch(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/RegexReplace.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/RegexReplace.java index 3eaec903fee..31063d7d2ba 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/RegexReplace.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/RegexReplace.java @@ -74,7 +74,7 @@ public static RegexReplace create(Scope scope, Operand input, Operand public static StaticRegexFullMatch create(Scope scope, Operand input, String pattern) { OperationBuilder opBuilder = scope.env().opBuilder("StaticRegexFullMatch", scope.makeOpName("StaticRegexFullMatch")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("pattern", pattern); return new StaticRegexFullMatch(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/StaticRegexReplace.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/StaticRegexReplace.java index c1802f48001..b6a4a47f641 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/StaticRegexReplace.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/StaticRegexReplace.java @@ -68,7 +68,7 @@ private Options() { public static StaticRegexReplace create(Scope scope, Operand input, String pattern, String rewrite, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("StaticRegexReplace", scope.makeOpName("StaticRegexReplace")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("pattern", pattern); opBuilder.setAttr("rewrite", rewrite); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/StringFormat.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/StringFormat.java index 3decf1e5c93..de8827e32e5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/StringFormat.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/StringFormat.java @@ -85,7 +85,7 @@ private Options() { public static StringFormat create(Scope scope, Iterable> inputs, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("StringFormat", scope.makeOpName("StringFormat")); opBuilder.addInputList(Operands.asOutputs(inputs)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.template != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/StringLength.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/StringLength.java index d9fc036ad22..d9a76aad6fe 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/StringLength.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/StringLength.java @@ -78,7 +78,7 @@ private Options() { public static StringLength create(Scope scope, Operand input, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("StringLength", scope.makeOpName("StringLength")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.unit != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/StringNGrams.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/StringNGrams.java index 6d68c11fe1b..e504e164c41 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/StringNGrams.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/StringNGrams.java @@ -28,7 +28,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TString; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Creates ngrams from ragged string data. @@ -67,7 +66,7 @@ public static StringNGrams create(Scope scope, Operand input, Operand { public static Strip create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("StringStrip", scope.makeOpName("Strip")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Strip(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/Substr.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/Substr.java index f1eb5a05485..472e30bc98c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/Substr.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/Substr.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TString; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Return substrings from `Tensor` of strings. @@ -150,7 +149,7 @@ public static Substr create(Scope scope, Operand in opBuilder.addInput(input.asOutput()); opBuilder.addInput(pos.asOutput()); opBuilder.addInput(len.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.unit != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/ToHashBucket.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/ToHashBucket.java index 11f025a4055..51820eae8fd 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/ToHashBucket.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/ToHashBucket.java @@ -53,7 +53,7 @@ public final class ToHashBucket extends RawOp implements Operand { public static ToHashBucket create(Scope scope, Operand stringTensor, Long numBuckets) { OperationBuilder opBuilder = scope.env().opBuilder("StringToHashBucket", scope.makeOpName("ToHashBucket")); opBuilder.addInput(stringTensor.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_buckets", numBuckets); return new ToHashBucket(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/ToHashBucketFast.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/ToHashBucketFast.java index b1025fb9ccd..2b0ed1ba044 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/ToHashBucketFast.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/ToHashBucketFast.java @@ -58,7 +58,7 @@ public final class ToHashBucketFast extends RawOp implements Operand { public static ToHashBucketFast create(Scope scope, Operand input, Long numBuckets) { OperationBuilder opBuilder = scope.env().opBuilder("StringToHashBucketFast", scope.makeOpName("ToHashBucketFast")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_buckets", numBuckets); return new ToHashBucketFast(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/ToHashBucketStrong.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/ToHashBucketStrong.java index 28af44e377f..1ef7188b816 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/ToHashBucketStrong.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/ToHashBucketStrong.java @@ -68,7 +68,7 @@ public final class ToHashBucketStrong extends RawOp implements Operand { public static ToHashBucketStrong create(Scope scope, Operand input, Long numBuckets, List key) { OperationBuilder opBuilder = scope.env().opBuilder("StringToHashBucketStrong", scope.makeOpName("ToHashBucketStrong")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_buckets", numBuckets); long[] keyArray = new long[key.size()]; for (int i = 0; i < keyArray.length; ++i) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/ToNumber.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/ToNumber.java index e8e5e4039b9..547a4f17b95 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/ToNumber.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/ToNumber.java @@ -17,11 +17,11 @@ package org.tensorflow.op.strings; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -29,7 +29,6 @@ import org.tensorflow.types.TFloat32; import org.tensorflow.types.TString; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Converts each string in the input Tensor to the specified numeric type. @@ -58,11 +57,11 @@ public final class ToNumber extends RawOp implements Operand< * @return a new instance of ToNumber */ @Endpoint(describeByClass = true) - public static ToNumber create(Scope scope, Operand stringTensor, DataType outType) { + public static ToNumber create(Scope scope, Operand stringTensor, Class outType) { OperationBuilder opBuilder = scope.env().opBuilder("StringToNumber", scope.makeOpName("ToNumber")); opBuilder.addInput(stringTensor.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("out_type", outType); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("out_type", Operands.toDataType(outType)); return new ToNumber(opBuilder.build()); } @@ -75,7 +74,7 @@ public static ToNumber create(Scope scope, Operand create(Scope scope, Operand stringTensor) { - return create(scope, stringTensor, TFloat32.DTYPE); + return create(scope, stringTensor, TFloat32.class); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnicodeDecode.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnicodeDecode.java index a39b08b1f5a..65e5e256780 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnicodeDecode.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnicodeDecode.java @@ -17,11 +17,11 @@ package org.tensorflow.op.strings; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -30,7 +30,6 @@ import org.tensorflow.types.TInt64; import org.tensorflow.types.TString; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Decodes each string in `input` into a sequence of Unicode code points. @@ -116,12 +115,12 @@ private Options() { * @return a new instance of UnicodeDecode */ @Endpoint(describeByClass = true) - public static UnicodeDecode create(Scope scope, Operand input, String inputEncoding, DataType Tsplits, Options... options) { + public static UnicodeDecode create(Scope scope, Operand input, String inputEncoding, Class Tsplits, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("UnicodeDecode", scope.makeOpName("UnicodeDecode")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("input_encoding", inputEncoding); - opBuilder.setAttr("Tsplits", Tsplits); + opBuilder.setAttr("Tsplits", Operands.toDataType(Tsplits)); if (options != null) { for (Options opts : options) { if (opts.errors != null) { @@ -151,7 +150,7 @@ public static UnicodeDecode create(Scope scope, Operand create(Scope scope, Operand input, String inputEncoding, Options... options) { - return create(scope, input, inputEncoding, TInt64.DTYPE, options); + return create(scope, input, inputEncoding, TInt64.class, options); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnicodeDecodeWithOffsets.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnicodeDecodeWithOffsets.java index ce6977b63ef..2b10934b37a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnicodeDecodeWithOffsets.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnicodeDecodeWithOffsets.java @@ -17,11 +17,11 @@ package org.tensorflow.op.strings; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -30,7 +30,6 @@ import org.tensorflow.types.TInt64; import org.tensorflow.types.TString; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Decodes each string in `input` into a sequence of Unicode code points. @@ -122,12 +121,12 @@ private Options() { * @return a new instance of UnicodeDecodeWithOffsets */ @Endpoint(describeByClass = true) - public static UnicodeDecodeWithOffsets create(Scope scope, Operand input, String inputEncoding, DataType Tsplits, Options... options) { + public static UnicodeDecodeWithOffsets create(Scope scope, Operand input, String inputEncoding, Class Tsplits, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("UnicodeDecodeWithOffsets", scope.makeOpName("UnicodeDecodeWithOffsets")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("input_encoding", inputEncoding); - opBuilder.setAttr("Tsplits", Tsplits); + opBuilder.setAttr("Tsplits", Operands.toDataType(Tsplits)); if (options != null) { for (Options opts : options) { if (opts.errors != null) { @@ -157,7 +156,7 @@ public static UnicodeDecodeWithOffsets create(Scope scope */ @Endpoint(describeByClass = true) public static UnicodeDecodeWithOffsets create(Scope scope, Operand input, String inputEncoding, Options... options) { - return create(scope, input, inputEncoding, TInt64.DTYPE, options); + return create(scope, input, inputEncoding, TInt64.class, options); } /** diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnicodeEncode.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnicodeEncode.java index ab83ef9dcda..d24d09a67ef 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnicodeEncode.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnicodeEncode.java @@ -28,7 +28,6 @@ import org.tensorflow.types.TInt32; import org.tensorflow.types.TString; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Encode a tensor of ints into unicode strings. @@ -106,7 +105,7 @@ public static UnicodeEncode create(Scope scope, Operand { public static UnicodeScript create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("UnicodeScript", scope.makeOpName("UnicodeScript")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new UnicodeScript(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnicodeTranscode.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnicodeTranscode.java index 8f62db46152..b2f8b87a991 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnicodeTranscode.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnicodeTranscode.java @@ -136,7 +136,7 @@ private Options() { public static UnicodeTranscode create(Scope scope, Operand input, String inputEncoding, String outputEncoding, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("UnicodeTranscode", scope.makeOpName("UnicodeTranscode")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("input_encoding", inputEncoding); opBuilder.setAttr("output_encoding", outputEncoding); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnsortedSegmentJoin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnsortedSegmentJoin.java index df1bbc68b68..075d21d219e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnsortedSegmentJoin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnsortedSegmentJoin.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TString; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Joins the elements of `inputs` based on `segment_ids`. @@ -98,7 +97,7 @@ public static UnsortedSegmentJoin create( opBuilder.addInput(inputs.asOutput()); opBuilder.addInput(segmentIds.asOutput()); opBuilder.addInput(numSegments.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.separator != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/Upper.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/Upper.java index e90dc891dd8..6a531f4878d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/Upper.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/Upper.java @@ -70,7 +70,7 @@ private Options() { public static Upper create(Scope scope, Operand input, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("StringUpper", scope.makeOpName("Upper")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.encoding != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/AudioSummary.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/AudioSummary.java index 6743a4ef4c1..ce960396e7b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/AudioSummary.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/AudioSummary.java @@ -84,7 +84,7 @@ public static AudioSummary create(Scope scope, Operand tag, Operand writer) { OperationBuilder opBuilder = scope.env().opBuilder("CloseSummaryWriter", scope.makeOpName("CloseSummaryWriter")); opBuilder.addInput(writer.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new CloseSummaryWriter(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/CreateSummaryDbWriter.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/CreateSummaryDbWriter.java index 8e40aa798d6..c704ba6ab41 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/CreateSummaryDbWriter.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/CreateSummaryDbWriter.java @@ -49,7 +49,7 @@ public static CreateSummaryDbWriter create(Scope scope, Operand writer, Opera opBuilder.addInput(experimentName.asOutput()); opBuilder.addInput(runName.asOutput()); opBuilder.addInput(userName.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new CreateSummaryDbWriter(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/CreateSummaryFileWriter.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/CreateSummaryFileWriter.java index e429fab20e2..e24b292c37a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/CreateSummaryFileWriter.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/CreateSummaryFileWriter.java @@ -50,7 +50,7 @@ public static CreateSummaryFileWriter create(Scope scope, Operand writer, Ope opBuilder.addInput(maxQueue.asOutput()); opBuilder.addInput(flushMillis.asOutput()); opBuilder.addInput(filenameSuffix.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new CreateSummaryFileWriter(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/FlushSummaryWriter.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/FlushSummaryWriter.java index e1586542972..98dad5552ea 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/FlushSummaryWriter.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/FlushSummaryWriter.java @@ -40,7 +40,7 @@ public final class FlushSummaryWriter extends RawOp { public static FlushSummaryWriter create(Scope scope, Operand writer) { OperationBuilder opBuilder = scope.env().opBuilder("FlushSummaryWriter", scope.makeOpName("FlushSummaryWriter")); opBuilder.addInput(writer.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new FlushSummaryWriter(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/HistogramSummary.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/HistogramSummary.java index 669cbf5c2fb..0acfec7cac1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/HistogramSummary.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/HistogramSummary.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TString; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Outputs a `Summary` protocol buffer with a histogram. @@ -54,7 +53,7 @@ public static HistogramSummary create(Scope scope, Operand badColor) { + public Options badColor(Tensor badColor) { this.badColor = badColor; return this; } private Long maxImages; - private Tensor badColor; + private Tensor badColor; private Options() { } @@ -126,7 +125,7 @@ public static ImageSummary create(Scope scope, Operand badColor) { + public static Options badColor(Tensor badColor) { return new Options().badColor(badColor); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/ImportEvent.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/ImportEvent.java index 7bd97de571e..0089a7d5257 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/ImportEvent.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/ImportEvent.java @@ -43,7 +43,7 @@ public static ImportEvent create(Scope scope, Operand writer, Operand { public static MergeSummary create(Scope scope, Iterable> inputs) { OperationBuilder opBuilder = scope.env().opBuilder("MergeSummary", scope.makeOpName("MergeSummary")); opBuilder.addInputList(Operands.asOutputs(inputs)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new MergeSummary(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/ScalarSummary.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/ScalarSummary.java index 416251aa6b1..37740dc7ef3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/ScalarSummary.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/ScalarSummary.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TString; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Outputs a `Summary` protocol buffer with scalar values. @@ -51,7 +50,7 @@ public static ScalarSummary create(Scope scope, Operand iterator) { OperationBuilder opBuilder = scope.env().opBuilder("StatsAggregatorSummary", scope.makeOpName("StatsAggregatorSummary")); opBuilder.addInput(iterator.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new StatsAggregatorSummary(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/SummaryWriter.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/SummaryWriter.java index 131cb6e4a9d..459a16dc62c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/SummaryWriter.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/SummaryWriter.java @@ -69,7 +69,7 @@ private Options() { @Endpoint(describeByClass = true) public static SummaryWriter create(Scope scope, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("SummaryWriter", scope.makeOpName("SummaryWriter")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.sharedName != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/TensorSummary.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/TensorSummary.java index 85e0f8d533b..4b0d0fb1c4d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/TensorSummary.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/TensorSummary.java @@ -50,7 +50,7 @@ public static TensorSummary create(Scope scope, Operand writer, Operand writer, Operand WriteHistogramSummary create(Scope scope, Oper opBuilder.addInput(step.asOutput()); opBuilder.addInput(tag.asOutput()); opBuilder.addInput(values.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new WriteHistogramSummary(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/WriteImageSummary.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/WriteImageSummary.java index 757ddf59a1c..70eed3c13a1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/WriteImageSummary.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/WriteImageSummary.java @@ -28,7 +28,6 @@ import org.tensorflow.types.TString; import org.tensorflow.types.TUint8; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** */ @@ -73,7 +72,7 @@ public static WriteImageSummary create(Scope scope, Operand< opBuilder.addInput(tag.asOutput()); opBuilder.addInput(tensor.asOutput()); opBuilder.addInput(badColor.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.maxImages != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/WriteRawProtoSummary.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/WriteRawProtoSummary.java index 75499c1ff69..6a2eefcb5f3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/WriteRawProtoSummary.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/WriteRawProtoSummary.java @@ -46,7 +46,7 @@ public static WriteRawProtoSummary create(Scope scope, Operand writer, Operan opBuilder.addInput(writer.asOutput()); opBuilder.addInput(step.asOutput()); opBuilder.addInput(tensor.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new WriteRawProtoSummary(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/WriteScalarSummary.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/WriteScalarSummary.java index f173651001a..ce5a91db59b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/WriteScalarSummary.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/WriteScalarSummary.java @@ -27,7 +27,6 @@ import org.tensorflow.types.TInt64; import org.tensorflow.types.TString; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** */ @@ -50,7 +49,7 @@ public static WriteScalarSummary create(Scope scope, Operand opBuilder.addInput(step.asOutput()); opBuilder.addInput(tag.asOutput()); opBuilder.addInput(value.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new WriteScalarSummary(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/WriteSummary.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/WriteSummary.java index 5404e593f27..9555f1add0b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/WriteSummary.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/summary/WriteSummary.java @@ -51,7 +51,7 @@ public static WriteSummary create(Scope scope, Operand writ opBuilder.addInput(tensor.asOutput()); opBuilder.addInput(tag.asOutput()); opBuilder.addInput(summaryMetadata.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new WriteSummary(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/AllToAll.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/AllToAll.java index 9bbac83ac2c..afc01cae05e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/AllToAll.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/AllToAll.java @@ -71,7 +71,7 @@ public static AllToAll create(Scope scope, Operand input OperationBuilder opBuilder = scope.env().opBuilder("AllToAll", scope.makeOpName("AllToAll")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(groupAssignment.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("concat_dimension", concatDimension); opBuilder.setAttr("split_dimension", splitDimension); opBuilder.setAttr("split_count", splitCount); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/CollectivePermute.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/CollectivePermute.java index bafa9a893f9..43fe40a06dc 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/CollectivePermute.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/CollectivePermute.java @@ -55,7 +55,7 @@ public static CollectivePermute create(Scope scope, Operand OperationBuilder opBuilder = scope.env().opBuilder("CollectivePermute", scope.makeOpName("CollectivePermute")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(sourceTargetPairs.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new CollectivePermute(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/ConfigureDistributedTPU.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/ConfigureDistributedTPU.java index bfdde5b98e2..35853993c2e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/ConfigureDistributedTPU.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/ConfigureDistributedTPU.java @@ -98,7 +98,7 @@ private Options() { @Endpoint(describeByClass = true) public static ConfigureDistributedTPU create(Scope scope, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("ConfigureDistributedTPU", scope.makeOpName("ConfigureDistributedTPU")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.embeddingConfig != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/ConfigureTPUEmbedding.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/ConfigureTPUEmbedding.java index 76bccd51f83..2083167b0ec 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/ConfigureTPUEmbedding.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/ConfigureTPUEmbedding.java @@ -40,7 +40,7 @@ public final class ConfigureTPUEmbedding extends RawOp { @Endpoint(describeByClass = true) public static ConfigureTPUEmbedding create(Scope scope, String config) { OperationBuilder opBuilder = scope.env().opBuilder("ConfigureTPUEmbedding", scope.makeOpName("ConfigureTPUEmbedding")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("config", config); return new ConfigureTPUEmbedding(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/CrossReplicaSum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/CrossReplicaSum.java index 79dc79410a1..ff2cb8390be 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/CrossReplicaSum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/CrossReplicaSum.java @@ -27,7 +27,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * An Op to sum inputs across replicated TPU instances. @@ -58,7 +57,7 @@ public static CrossReplicaSum create(Scope scope, Operand OperationBuilder opBuilder = scope.env().opBuilder("CrossReplicaSum", scope.makeOpName("CrossReplicaSum")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(groupAssignment.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new CrossReplicaSum(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/EnqueueTPUEmbeddingIntegerBatch.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/EnqueueTPUEmbeddingIntegerBatch.java index 0a1a80c7a0a..a7457ea77de 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/EnqueueTPUEmbeddingIntegerBatch.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/EnqueueTPUEmbeddingIntegerBatch.java @@ -71,7 +71,7 @@ public static EnqueueTPUEmbeddingIntegerBatch create(Scope scope, Iterable EnqueueT opBuilder.addInputList(Operands.asOutputs(embeddingIndices)); opBuilder.addInputList(Operands.asOutputs(aggregationWeights)); opBuilder.addInput(modeOverride.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); long[] tableIdsArray = new long[tableIds.size()]; for (int i = 0; i < tableIdsArray.length; ++i) { tableIdsArray[i] = tableIds.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/EnqueueTPUEmbeddingSparseBatch.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/EnqueueTPUEmbeddingSparseBatch.java index 2cb7dfb674b..f302cf7ad5f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/EnqueueTPUEmbeddingSparseBatch.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/EnqueueTPUEmbeddingSparseBatch.java @@ -28,7 +28,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TString; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * An op that enqueues TPUEmbedding input indices from a SparseTensor. @@ -105,7 +104,7 @@ public static EnqueueT opBuilder.addInputList(Operands.asOutputs(embeddingIndices)); opBuilder.addInputList(Operands.asOutputs(aggregationWeights)); opBuilder.addInput(modeOverride.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.deviceOrdinal != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/EnqueueTPUEmbeddingSparseTensorBatch.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/EnqueueTPUEmbeddingSparseTensorBatch.java index 3d93c6a0f71..a482e5f5ebf 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/EnqueueTPUEmbeddingSparseTensorBatch.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/EnqueueTPUEmbeddingSparseTensorBatch.java @@ -28,7 +28,6 @@ import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TString; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Eases the porting of code that uses tf.nn.embedding_lookup_sparse(). @@ -118,7 +117,7 @@ public static EnqueueT opBuilder.addInputList(Operands.asOutputs(embeddingIndices)); opBuilder.addInputList(Operands.asOutputs(aggregationWeights)); opBuilder.addInput(modeOverride.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); long[] tableIdsArray = new long[tableIds.size()]; for (int i = 0; i < tableIdsArray.length; ++i) { tableIdsArray[i] = tableIds.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/InfeedDequeue.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/InfeedDequeue.java index ad4d5f52fa8..325db448246 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/InfeedDequeue.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/InfeedDequeue.java @@ -17,12 +17,12 @@ package org.tensorflow.op.tpu; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -45,10 +45,10 @@ public final class InfeedDequeue extends RawOp implements Opera * @return a new instance of InfeedDequeue */ @Endpoint(describeByClass = true) - public static InfeedDequeue create(Scope scope, DataType dtype, Shape shape) { + public static InfeedDequeue create(Scope scope, Class dtype, Shape shape) { OperationBuilder opBuilder = scope.env().opBuilder("InfeedDequeue", scope.makeOpName("InfeedDequeue")); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); opBuilder.setAttr("shape", shape); return new InfeedDequeue(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/InfeedDequeueTuple.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/InfeedDequeueTuple.java index f471da5b5d7..4816ea0a306 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/InfeedDequeueTuple.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/InfeedDequeueTuple.java @@ -20,12 +20,12 @@ import java.util.Arrays; import java.util.Iterator; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -46,14 +46,10 @@ public final class InfeedDequeueTuple extends RawOp implements Iterable> dtypes, List shapes) { + public static InfeedDequeueTuple create(Scope scope, List> dtypes, List shapes) { OperationBuilder opBuilder = scope.env().opBuilder("InfeedDequeueTuple", scope.makeOpName("InfeedDequeueTuple")); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] dtypesArray = new DataType[dtypes.size()]; - for (int i = 0; i < dtypesArray.length; ++i) { - dtypesArray[i] = dtypes.get(i); - } - opBuilder.setAttr("dtypes", dtypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtypes", Operands.toDataTypes(dtypes)); Shape[] shapesArray = new Shape[shapes.size()]; for (int i = 0; i < shapesArray.length; ++i) { shapesArray[i] = shapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/InfeedEnqueue.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/InfeedEnqueue.java index 391d51a9ab0..f0a9ee049b3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/InfeedEnqueue.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/InfeedEnqueue.java @@ -86,7 +86,7 @@ private Options() { public static InfeedEnqueue create(Scope scope, Operand input, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("InfeedEnqueue", scope.makeOpName("InfeedEnqueue")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.shape != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/InfeedEnqueuePrelinearizedBuffer.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/InfeedEnqueuePrelinearizedBuffer.java index 9344352791c..11c71e10f32 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/InfeedEnqueuePrelinearizedBuffer.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/InfeedEnqueuePrelinearizedBuffer.java @@ -62,7 +62,7 @@ private Options() { public static InfeedEnqueuePrelinearizedBuffer create(Scope scope, Operand input, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("InfeedEnqueuePrelinearizedBuffer", scope.makeOpName("InfeedEnqueuePrelinearizedBuffer")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.deviceOrdinal != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/InfeedEnqueueTuple.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/InfeedEnqueueTuple.java index b439df84f71..694a536703f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/InfeedEnqueueTuple.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/InfeedEnqueueTuple.java @@ -79,7 +79,7 @@ private Options() { public static InfeedEnqueueTuple create(Scope scope, Iterable> inputs, List shapes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("InfeedEnqueueTuple", scope.makeOpName("InfeedEnqueueTuple")); opBuilder.addInputList(Operands.asOutputs(inputs)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); Shape[] shapesArray = new Shape[shapes.size()]; for (int i = 0; i < shapesArray.length; ++i) { shapesArray[i] = shapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/LoadTPUEmbeddingADAMParameters.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/LoadTPUEmbeddingADAMParameters.java index 744688cee23..65747b5e8fe 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/LoadTPUEmbeddingADAMParameters.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/LoadTPUEmbeddingADAMParameters.java @@ -92,7 +92,7 @@ public static LoadTPUEmbeddingADAMParameters create(Scope scope, Operand parameters, Long numShards, Long shardId, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("LoadTPUEmbeddingStochasticGradientDescentParameters", scope.makeOpName("LoadTPUEmbeddingStochasticGradientDescentParameters")); opBuilder.addInput(parameters.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_shards", numShards); opBuilder.setAttr("shard_id", shardId); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug.java index e408844e484..ed7b16f59b5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug.java @@ -90,7 +90,7 @@ public static LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug OperationBuilder opBuilder = scope.env().opBuilder("LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug", scope.makeOpName("LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug")); opBuilder.addInput(parameters.asOutput()); opBuilder.addInput(gradientAccumulators.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_shards", numShards); opBuilder.setAttr("shard_id", shardId); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/OutfeedDequeue.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/OutfeedDequeue.java index 3be811cd039..e5aa5a35ed7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/OutfeedDequeue.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/OutfeedDequeue.java @@ -17,12 +17,12 @@ package org.tensorflow.op.tpu; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -69,10 +69,10 @@ private Options() { * @return a new instance of OutfeedDequeue */ @Endpoint(describeByClass = true) - public static OutfeedDequeue create(Scope scope, DataType dtype, Shape shape, Options... options) { + public static OutfeedDequeue create(Scope scope, Class dtype, Shape shape, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("OutfeedDequeue", scope.makeOpName("OutfeedDequeue")); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); opBuilder.setAttr("shape", shape); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/OutfeedDequeueTuple.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/OutfeedDequeueTuple.java index 6b9110232d8..705666e1f02 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/OutfeedDequeueTuple.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/OutfeedDequeueTuple.java @@ -20,12 +20,12 @@ import java.util.Arrays; import java.util.Iterator; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -71,14 +71,10 @@ private Options() { * @return a new instance of OutfeedDequeueTuple */ @Endpoint(describeByClass = true) - public static OutfeedDequeueTuple create(Scope scope, List> dtypes, List shapes, Options... options) { + public static OutfeedDequeueTuple create(Scope scope, List> dtypes, List shapes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("OutfeedDequeueTuple", scope.makeOpName("OutfeedDequeueTuple")); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] dtypesArray = new DataType[dtypes.size()]; - for (int i = 0; i < dtypesArray.length; ++i) { - dtypesArray[i] = dtypes.get(i); - } - opBuilder.setAttr("dtypes", dtypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtypes", Operands.toDataTypes(dtypes)); Shape[] shapesArray = new Shape[shapes.size()]; for (int i = 0; i < shapesArray.length; ++i) { shapesArray[i] = shapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/OutfeedEnqueue.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/OutfeedEnqueue.java index 5b5f059a81e..f7c3c08f967 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/OutfeedEnqueue.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/OutfeedEnqueue.java @@ -42,7 +42,7 @@ public final class OutfeedEnqueue extends RawOp { public static OutfeedEnqueue create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("OutfeedEnqueue", scope.makeOpName("OutfeedEnqueue")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new OutfeedEnqueue(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/OutfeedEnqueueTuple.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/OutfeedEnqueueTuple.java index 8bfd04b9a2c..8826f495013 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/OutfeedEnqueueTuple.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/OutfeedEnqueueTuple.java @@ -43,7 +43,7 @@ public final class OutfeedEnqueueTuple extends RawOp { public static OutfeedEnqueueTuple create(Scope scope, Iterable> inputs) { OperationBuilder opBuilder = scope.env().opBuilder("OutfeedEnqueueTuple", scope.makeOpName("OutfeedEnqueueTuple")); opBuilder.addInputList(Operands.asOutputs(inputs)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new OutfeedEnqueueTuple(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/Prelinearize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/Prelinearize.java index c5c9573fb75..6e3e451c61f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/Prelinearize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/Prelinearize.java @@ -76,7 +76,7 @@ private Options() { public static Prelinearize create(Scope scope, Operand input, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("Prelinearize", scope.makeOpName("Prelinearize")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.shape != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/PrelinearizeTuple.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/PrelinearizeTuple.java index 6ff29f7b63a..73385063175 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/PrelinearizeTuple.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/PrelinearizeTuple.java @@ -70,7 +70,7 @@ private Options() { public static PrelinearizeTuple create(Scope scope, Iterable> inputs, List shapes, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("PrelinearizeTuple", scope.makeOpName("PrelinearizeTuple")); opBuilder.addInputList(Operands.asOutputs(inputs)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); Shape[] shapesArray = new Shape[shapes.size()]; for (int i = 0; i < shapesArray.length; ++i) { shapesArray[i] = shapes.get(i); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RecvTPUEmbeddingActivations.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RecvTPUEmbeddingActivations.java index e2bacade157..ac19cb8fc81 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RecvTPUEmbeddingActivations.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RecvTPUEmbeddingActivations.java @@ -54,7 +54,7 @@ public final class RecvTPUEmbeddingActivations extends RawOp implements Iterable @Endpoint(describeByClass = true) public static RecvTPUEmbeddingActivations create(Scope scope, Long numOutputs, String config) { OperationBuilder opBuilder = scope.env().opBuilder("RecvTPUEmbeddingActivations", scope.makeOpName("RecvTPUEmbeddingActivations")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_outputs", numOutputs); opBuilder.setAttr("config", config); return new RecvTPUEmbeddingActivations(opBuilder.build()); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingADAMParameters.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingADAMParameters.java index 6201ed4b9eb..63614394c3d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingADAMParameters.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingADAMParameters.java @@ -85,7 +85,7 @@ private Options() { @Endpoint(describeByClass = true) public static RetrieveTPUEmbeddingADAMParameters create(Scope scope, Long numShards, Long shardId, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RetrieveTPUEmbeddingADAMParameters", scope.makeOpName("RetrieveTPUEmbeddingADAMParameters")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_shards", numShards); opBuilder.setAttr("shard_id", shardId); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingADAMParametersGradAccumDebug.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingADAMParametersGradAccumDebug.java index 423fc97541e..06112fd6a38 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingADAMParametersGradAccumDebug.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingADAMParametersGradAccumDebug.java @@ -85,7 +85,7 @@ private Options() { @Endpoint(describeByClass = true) public static RetrieveTPUEmbeddingADAMParametersGradAccumDebug create(Scope scope, Long numShards, Long shardId, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RetrieveTPUEmbeddingADAMParametersGradAccumDebug", scope.makeOpName("RetrieveTPUEmbeddingADAMParametersGradAccumDebug")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_shards", numShards); opBuilder.setAttr("shard_id", shardId); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingAdadeltaParameters.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingAdadeltaParameters.java index 9a00080e017..dc1ee88d9de 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingAdadeltaParameters.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingAdadeltaParameters.java @@ -85,7 +85,7 @@ private Options() { @Endpoint(describeByClass = true) public static RetrieveTPUEmbeddingAdadeltaParameters create(Scope scope, Long numShards, Long shardId, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RetrieveTPUEmbeddingAdadeltaParameters", scope.makeOpName("RetrieveTPUEmbeddingAdadeltaParameters")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_shards", numShards); opBuilder.setAttr("shard_id", shardId); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug.java index 3fec5d6a6f7..c6749fdd3a2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug.java @@ -85,7 +85,7 @@ private Options() { @Endpoint(describeByClass = true) public static RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug create(Scope scope, Long numShards, Long shardId, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug", scope.makeOpName("RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_shards", numShards); opBuilder.setAttr("shard_id", shardId); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingAdagradParameters.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingAdagradParameters.java index 07ed32ae1f9..bbc8f9984f1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingAdagradParameters.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingAdagradParameters.java @@ -85,7 +85,7 @@ private Options() { @Endpoint(describeByClass = true) public static RetrieveTPUEmbeddingAdagradParameters create(Scope scope, Long numShards, Long shardId, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RetrieveTPUEmbeddingAdagradParameters", scope.makeOpName("RetrieveTPUEmbeddingAdagradParameters")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_shards", numShards); opBuilder.setAttr("shard_id", shardId); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingAdagradParametersGradAccumDebug.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingAdagradParametersGradAccumDebug.java index 39a8a7ab791..b0c27d9ae36 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingAdagradParametersGradAccumDebug.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingAdagradParametersGradAccumDebug.java @@ -85,7 +85,7 @@ private Options() { @Endpoint(describeByClass = true) public static RetrieveTPUEmbeddingAdagradParametersGradAccumDebug create(Scope scope, Long numShards, Long shardId, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RetrieveTPUEmbeddingAdagradParametersGradAccumDebug", scope.makeOpName("RetrieveTPUEmbeddingAdagradParametersGradAccumDebug")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_shards", numShards); opBuilder.setAttr("shard_id", shardId); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingCenteredRMSPropParameters.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingCenteredRMSPropParameters.java index 800cbd10aff..b23f32857b0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingCenteredRMSPropParameters.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingCenteredRMSPropParameters.java @@ -85,7 +85,7 @@ private Options() { @Endpoint(describeByClass = true) public static RetrieveTPUEmbeddingCenteredRMSPropParameters create(Scope scope, Long numShards, Long shardId, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RetrieveTPUEmbeddingCenteredRMSPropParameters", scope.makeOpName("RetrieveTPUEmbeddingCenteredRMSPropParameters")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_shards", numShards); opBuilder.setAttr("shard_id", shardId); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingFTRLParameters.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingFTRLParameters.java index 0e7114d3744..ea4e7d8b7cc 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingFTRLParameters.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingFTRLParameters.java @@ -85,7 +85,7 @@ private Options() { @Endpoint(describeByClass = true) public static RetrieveTPUEmbeddingFTRLParameters create(Scope scope, Long numShards, Long shardId, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RetrieveTPUEmbeddingFTRLParameters", scope.makeOpName("RetrieveTPUEmbeddingFTRLParameters")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_shards", numShards); opBuilder.setAttr("shard_id", shardId); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingFTRLParametersGradAccumDebug.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingFTRLParametersGradAccumDebug.java index 2dbff3ea109..ae3103b45de 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingFTRLParametersGradAccumDebug.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingFTRLParametersGradAccumDebug.java @@ -85,7 +85,7 @@ private Options() { @Endpoint(describeByClass = true) public static RetrieveTPUEmbeddingFTRLParametersGradAccumDebug create(Scope scope, Long numShards, Long shardId, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RetrieveTPUEmbeddingFTRLParametersGradAccumDebug", scope.makeOpName("RetrieveTPUEmbeddingFTRLParametersGradAccumDebug")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_shards", numShards); opBuilder.setAttr("shard_id", shardId); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingMDLAdagradLightParameters.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingMDLAdagradLightParameters.java index aa4be2cb318..6e14c023852 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingMDLAdagradLightParameters.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingMDLAdagradLightParameters.java @@ -85,7 +85,7 @@ private Options() { @Endpoint(describeByClass = true) public static RetrieveTPUEmbeddingMDLAdagradLightParameters create(Scope scope, Long numShards, Long shardId, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RetrieveTPUEmbeddingMDLAdagradLightParameters", scope.makeOpName("RetrieveTPUEmbeddingMDLAdagradLightParameters")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_shards", numShards); opBuilder.setAttr("shard_id", shardId); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingMomentumParameters.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingMomentumParameters.java index 7f397adda1c..b7c5466f9ab 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingMomentumParameters.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingMomentumParameters.java @@ -85,7 +85,7 @@ private Options() { @Endpoint(describeByClass = true) public static RetrieveTPUEmbeddingMomentumParameters create(Scope scope, Long numShards, Long shardId, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RetrieveTPUEmbeddingMomentumParameters", scope.makeOpName("RetrieveTPUEmbeddingMomentumParameters")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_shards", numShards); opBuilder.setAttr("shard_id", shardId); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingMomentumParametersGradAccumDebug.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingMomentumParametersGradAccumDebug.java index 15aceae7f2a..730a7ca9da5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingMomentumParametersGradAccumDebug.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingMomentumParametersGradAccumDebug.java @@ -85,7 +85,7 @@ private Options() { @Endpoint(describeByClass = true) public static RetrieveTPUEmbeddingMomentumParametersGradAccumDebug create(Scope scope, Long numShards, Long shardId, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RetrieveTPUEmbeddingMomentumParametersGradAccumDebug", scope.makeOpName("RetrieveTPUEmbeddingMomentumParametersGradAccumDebug")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_shards", numShards); opBuilder.setAttr("shard_id", shardId); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingProximalAdagradParameters.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingProximalAdagradParameters.java index 4f20964f27f..97cc1e69f5a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingProximalAdagradParameters.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingProximalAdagradParameters.java @@ -85,7 +85,7 @@ private Options() { @Endpoint(describeByClass = true) public static RetrieveTPUEmbeddingProximalAdagradParameters create(Scope scope, Long numShards, Long shardId, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RetrieveTPUEmbeddingProximalAdagradParameters", scope.makeOpName("RetrieveTPUEmbeddingProximalAdagradParameters")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_shards", numShards); opBuilder.setAttr("shard_id", shardId); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug.java index abde61ec5a9..c6c07d28081 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug.java @@ -85,7 +85,7 @@ private Options() { @Endpoint(describeByClass = true) public static RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug create(Scope scope, Long numShards, Long shardId, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug", scope.makeOpName("RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_shards", numShards); opBuilder.setAttr("shard_id", shardId); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingProximalYogiParameters.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingProximalYogiParameters.java index a46cae90359..bf7af3b3084 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingProximalYogiParameters.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingProximalYogiParameters.java @@ -79,7 +79,7 @@ private Options() { @Endpoint(describeByClass = true) public static RetrieveTPUEmbeddingProximalYogiParameters create(Scope scope, Long numShards, Long shardId, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RetrieveTPUEmbeddingProximalYogiParameters", scope.makeOpName("RetrieveTPUEmbeddingProximalYogiParameters")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_shards", numShards); opBuilder.setAttr("shard_id", shardId); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug.java index 55535a573f6..109c1d82716 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug.java @@ -79,7 +79,7 @@ private Options() { @Endpoint(describeByClass = true) public static RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug create(Scope scope, Long numShards, Long shardId, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug", scope.makeOpName("RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_shards", numShards); opBuilder.setAttr("shard_id", shardId); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingRMSPropParameters.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingRMSPropParameters.java index fcc01589e38..13a95cae5c2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingRMSPropParameters.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingRMSPropParameters.java @@ -85,7 +85,7 @@ private Options() { @Endpoint(describeByClass = true) public static RetrieveTPUEmbeddingRMSPropParameters create(Scope scope, Long numShards, Long shardId, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RetrieveTPUEmbeddingRMSPropParameters", scope.makeOpName("RetrieveTPUEmbeddingRMSPropParameters")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_shards", numShards); opBuilder.setAttr("shard_id", shardId); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug.java index 0c3814b23b4..97b915ecc3b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug.java @@ -85,7 +85,7 @@ private Options() { @Endpoint(describeByClass = true) public static RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug create(Scope scope, Long numShards, Long shardId, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug", scope.makeOpName("RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_shards", numShards); opBuilder.setAttr("shard_id", shardId); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingStochasticGradientDescentParameters.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingStochasticGradientDescentParameters.java index e69247fa0ce..9d9d1a5c29a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingStochasticGradientDescentParameters.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingStochasticGradientDescentParameters.java @@ -86,7 +86,7 @@ private Options() { @Endpoint(describeByClass = true) public static RetrieveTPUEmbeddingStochasticGradientDescentParameters create(Scope scope, Long numShards, Long shardId, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RetrieveTPUEmbeddingStochasticGradientDescentParameters", scope.makeOpName("RetrieveTPUEmbeddingStochasticGradientDescentParameters")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_shards", numShards); opBuilder.setAttr("shard_id", shardId); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug.java index 9f35ffcd8e0..6c0ac7d76a7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug.java @@ -85,7 +85,7 @@ private Options() { @Endpoint(describeByClass = true) public static RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug create(Scope scope, Long numShards, Long shardId, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug", scope.makeOpName("RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_shards", numShards); opBuilder.setAttr("shard_id", shardId); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/SendTPUEmbeddingGradients.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/SendTPUEmbeddingGradients.java index 482080bde5d..e46d77e7506 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/SendTPUEmbeddingGradients.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/SendTPUEmbeddingGradients.java @@ -56,7 +56,7 @@ public static SendTPUEmbeddingGradients create(Scope scope, Iterable embe OperationBuilder opBuilder = scope.env().opBuilder("TPUEmbeddingActivations", scope.makeOpName("TPUEmbeddingActivations")); opBuilder.addInput(embeddingVariable.asOutput()); opBuilder.addInput(slicedActivations.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("table_id", tableId); opBuilder.setAttr("lookup_id", lookupId); return new TPUEmbeddingActivations(opBuilder.build()); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUOrdinalSelector.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUOrdinalSelector.java index 2df183cb793..1cfdfbbf901 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUOrdinalSelector.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUOrdinalSelector.java @@ -45,7 +45,7 @@ public final class TPUOrdinalSelector extends RawOp implements Operand { @Endpoint(describeByClass = true) public static TPUOrdinalSelector create(Scope scope) { OperationBuilder opBuilder = scope.env().opBuilder("TPUOrdinalSelector", scope.makeOpName("TPUOrdinalSelector")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TPUOrdinalSelector(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUReplicateMetadata.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUReplicateMetadata.java index 3fb9b782f9c..cb0212ce2ec 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUReplicateMetadata.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUReplicateMetadata.java @@ -134,7 +134,7 @@ private Options() { @Endpoint(describeByClass = true) public static TPUReplicateMetadata create(Scope scope, Long numReplicas, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("TPUReplicateMetadata", scope.makeOpName("TPUReplicateMetadata")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_replicas", numReplicas); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUReplicatedInput.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUReplicatedInput.java index 51fe43aea06..7063310c20d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUReplicatedInput.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUReplicatedInput.java @@ -96,7 +96,7 @@ private Options() { public static TPUReplicatedInput create(Scope scope, Iterable> inputs, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("TPUReplicatedInput", scope.makeOpName("TPUReplicatedInput")); opBuilder.addInputList(Operands.asOutputs(inputs)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.isMirroredVariable != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUReplicatedOutput.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUReplicatedOutput.java index 24c9418b0c3..b6571949586 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUReplicatedOutput.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUReplicatedOutput.java @@ -59,7 +59,7 @@ public final class TPUReplicatedOutput extends RawOp implements public static TPUReplicatedOutput create(Scope scope, Operand input, Long numReplicas) { OperationBuilder opBuilder = scope.env().opBuilder("TPUReplicatedOutput", scope.makeOpName("TPUReplicatedOutput")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("num_replicas", numReplicas); return new TPUReplicatedOutput(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/WorkerHeartbeat.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/WorkerHeartbeat.java index 49895008bd2..507d13eab75 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/WorkerHeartbeat.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/WorkerHeartbeat.java @@ -46,7 +46,7 @@ public final class WorkerHeartbeat extends RawOp implements Operand { public static WorkerHeartbeat create(Scope scope, Operand request) { OperationBuilder opBuilder = scope.env().opBuilder("WorkerHeartbeat", scope.makeOpName("WorkerHeartbeat")); opBuilder.addInput(request.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new WorkerHeartbeat(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/AccumulatorApplyGradient.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/AccumulatorApplyGradient.java index 504acba4c96..925916e8954 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/AccumulatorApplyGradient.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/AccumulatorApplyGradient.java @@ -51,7 +51,7 @@ public static AccumulatorApplyGradient create(Scope scope, Ope opBuilder.addInput(handle.asOutput()); opBuilder.addInput(localStep.asOutput()); opBuilder.addInput(gradient.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new AccumulatorApplyGradient(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/AccumulatorNumAccumulated.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/AccumulatorNumAccumulated.java index 9fca915c550..400f8951523 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/AccumulatorNumAccumulated.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/AccumulatorNumAccumulated.java @@ -45,7 +45,7 @@ public final class AccumulatorNumAccumulated extends RawOp implements Operand handle) { OperationBuilder opBuilder = scope.env().opBuilder("AccumulatorNumAccumulated", scope.makeOpName("AccumulatorNumAccumulated")); opBuilder.addInput(handle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new AccumulatorNumAccumulated(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/AccumulatorSetGlobalStep.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/AccumulatorSetGlobalStep.java index 9039d3a654d..3b4cd9c093b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/AccumulatorSetGlobalStep.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/AccumulatorSetGlobalStep.java @@ -49,7 +49,7 @@ public static AccumulatorSetGlobalStep create(Scope scope, Operand hand OperationBuilder opBuilder = scope.env().opBuilder("AccumulatorSetGlobalStep", scope.makeOpName("AccumulatorSetGlobalStep")); opBuilder.addInput(handle.asOutput()); opBuilder.addInput(newGlobalStep.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new AccumulatorSetGlobalStep(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/AccumulatorTakeGradient.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/AccumulatorTakeGradient.java index 51de5485845..ed8becceee2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/AccumulatorTakeGradient.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/AccumulatorTakeGradient.java @@ -17,11 +17,11 @@ package org.tensorflow.op.train; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -55,12 +55,12 @@ public final class AccumulatorTakeGradient extends RawOp implem * @return a new instance of AccumulatorTakeGradient */ @Endpoint(describeByClass = true) - public static AccumulatorTakeGradient create(Scope scope, Operand handle, Operand numRequired, DataType dtype) { + public static AccumulatorTakeGradient create(Scope scope, Operand handle, Operand numRequired, Class dtype) { OperationBuilder opBuilder = scope.env().opBuilder("AccumulatorTakeGradient", scope.makeOpName("AccumulatorTakeGradient")); opBuilder.addInput(handle.asOutput()); opBuilder.addInput(numRequired.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); return new AccumulatorTakeGradient(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdaMax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdaMax.java index 1b24ac1fe26..d44777f59f0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdaMax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdaMax.java @@ -87,7 +87,7 @@ public static ApplyAdaMax create(Scope scope, Operand va opBuilder.addInput(beta2.asOutput()); opBuilder.addInput(epsilon.asOutput()); opBuilder.addInput(grad.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdadelta.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdadelta.java index 7e68618da7d..b780e2040da 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdadelta.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdadelta.java @@ -84,7 +84,7 @@ public static ApplyAdadelta create(Scope scope, Operand opBuilder.addInput(rho.asOutput()); opBuilder.addInput(epsilon.asOutput()); opBuilder.addInput(grad.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdagrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdagrad.java index c8311ac541a..e519957a71d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdagrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdagrad.java @@ -86,7 +86,7 @@ public static ApplyAdagrad create(Scope scope, Operand v opBuilder.addInput(accum.asOutput()); opBuilder.addInput(lr.asOutput()); opBuilder.addInput(grad.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdagradDa.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdagradDa.java index 3bb9f9cae4b..815c64c23f8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdagradDa.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdagradDa.java @@ -82,7 +82,7 @@ public static ApplyAdagradDa create(Scope scope, Operand opBuilder.addInput(l1.asOutput()); opBuilder.addInput(l2.asOutput()); opBuilder.addInput(globalStep.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdagradV2.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdagradV2.java index da399e31eda..b74a36ef265 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdagradV2.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdagradV2.java @@ -87,7 +87,7 @@ public static ApplyAdagradV2 create(Scope scope, Operand opBuilder.addInput(lr.asOutput()); opBuilder.addInput(epsilon.asOutput()); opBuilder.addInput(grad.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdam.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdam.java index 31d98fa299b..ce33080b7a1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdam.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdam.java @@ -100,7 +100,7 @@ public static ApplyAdam create(Scope scope, Operand var, opBuilder.addInput(beta2.asOutput()); opBuilder.addInput(epsilon.asOutput()); opBuilder.addInput(grad.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAddSign.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAddSign.java index 1fe2cd756af..9d86187da98 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAddSign.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAddSign.java @@ -84,7 +84,7 @@ public static ApplyAddSign create(Scope scope, Operand v opBuilder.addInput(signDecay.asOutput()); opBuilder.addInput(beta.asOutput()); opBuilder.addInput(grad.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyCenteredRmsProp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyCenteredRmsProp.java index 22aeeed0d91..1ff4778eba9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyCenteredRmsProp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyCenteredRmsProp.java @@ -103,7 +103,7 @@ public static ApplyCenteredRmsProp create(Scope scope, Oper opBuilder.addInput(momentum.asOutput()); opBuilder.addInput(epsilon.asOutput()); opBuilder.addInput(grad.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyFtrl.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyFtrl.java index f85cf2769c0..71b3488d323 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyFtrl.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyFtrl.java @@ -101,7 +101,7 @@ public static ApplyFtrl create(Scope scope, Operand var, opBuilder.addInput(l2.asOutput()); opBuilder.addInput(l2Shrinkage.asOutput()); opBuilder.addInput(lrPower.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyGradientDescent.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyGradientDescent.java index 729312860fd..049ec73a76d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyGradientDescent.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyGradientDescent.java @@ -71,7 +71,7 @@ public static ApplyGradientDescent create(Scope scope, Oper opBuilder.addInput(var.asOutput()); opBuilder.addInput(alpha.asOutput()); opBuilder.addInput(delta.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyMomentum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyMomentum.java index d7885da2e32..320edadbfb0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyMomentum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyMomentum.java @@ -92,7 +92,7 @@ public static ApplyMomentum create(Scope scope, Operand opBuilder.addInput(lr.asOutput()); opBuilder.addInput(grad.asOutput()); opBuilder.addInput(momentum.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyPowerSign.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyPowerSign.java index d508e939714..bea7429ed04 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyPowerSign.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyPowerSign.java @@ -84,7 +84,7 @@ public static ApplyPowerSign create(Scope scope, Operand opBuilder.addInput(signDecay.asOutput()); opBuilder.addInput(beta.asOutput()); opBuilder.addInput(grad.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyProximalAdagrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyProximalAdagrad.java index bd710eb08ca..da570a57223 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyProximalAdagrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyProximalAdagrad.java @@ -81,7 +81,7 @@ public static ApplyProximalAdagrad create(Scope scope, Oper opBuilder.addInput(l1.asOutput()); opBuilder.addInput(l2.asOutput()); opBuilder.addInput(grad.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyProximalGradientDescent.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyProximalGradientDescent.java index eb5e9a96dc9..12ea6d3a84a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyProximalGradientDescent.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyProximalGradientDescent.java @@ -78,7 +78,7 @@ public static ApplyProximalGradientDescent create(Scope sco opBuilder.addInput(l1.asOutput()); opBuilder.addInput(l2.asOutput()); opBuilder.addInput(delta.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyRmsProp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyRmsProp.java index 388fc062c5d..df9be3f00d5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyRmsProp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyRmsProp.java @@ -93,7 +93,7 @@ public static ApplyRmsProp create(Scope scope, Operand v opBuilder.addInput(momentum.asOutput()); opBuilder.addInput(epsilon.asOutput()); opBuilder.addInput(grad.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/BatchMatMul.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/BatchMatMul.java index 3b6da5b0811..87a25fa3ff4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/BatchMatMul.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/BatchMatMul.java @@ -101,7 +101,7 @@ public static BatchMatMul create(Scope scope, Operand x, OperationBuilder opBuilder = scope.env().opBuilder("BatchMatMulV2", scope.makeOpName("BatchMatMul")); opBuilder.addInput(x.asOutput()); opBuilder.addInput(y.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.adjX != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ConditionalAccumulator.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ConditionalAccumulator.java index f35e9f5001f..684d9e3485e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ConditionalAccumulator.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ConditionalAccumulator.java @@ -17,12 +17,12 @@ package org.tensorflow.op.train; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -92,10 +92,10 @@ private Options() { * @return a new instance of ConditionalAccumulator */ @Endpoint(describeByClass = true) - public static ConditionalAccumulator create(Scope scope, DataType dtype, Shape shape, Options... options) { + public static ConditionalAccumulator create(Scope scope, Class dtype, Shape shape, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("ConditionalAccumulator", scope.makeOpName("ConditionalAccumulator")); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); opBuilder.setAttr("shape", shape); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/GenerateVocabRemapping.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/GenerateVocabRemapping.java index e91afa44cd8..f5e47b453d0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/GenerateVocabRemapping.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/GenerateVocabRemapping.java @@ -100,7 +100,7 @@ public static GenerateVocabRemapping create(Scope scope, Operand newVoc OperationBuilder opBuilder = scope.env().opBuilder("GenerateVocabRemapping", scope.makeOpName("GenerateVocabRemapping")); opBuilder.addInput(newVocabFile.asOutput()); opBuilder.addInput(oldVocabFile.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("new_vocab_offset", newVocabOffset); opBuilder.setAttr("num_new_vocab", numNewVocab); if (options != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/MergeV2Checkpoints.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/MergeV2Checkpoints.java index 986553a2d8e..47a71b701ba 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/MergeV2Checkpoints.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/MergeV2Checkpoints.java @@ -75,7 +75,7 @@ public static MergeV2Checkpoints create(Scope scope, Operand checkpoint OperationBuilder opBuilder = scope.env().opBuilder("MergeV2Checkpoints", scope.makeOpName("MergeV2Checkpoints")); opBuilder.addInput(checkpointPrefixes.asOutput()); opBuilder.addInput(destinationPrefix.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.deleteOldDirs != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/NegTrain.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/NegTrain.java index b3e5316ad7e..03a2d2fd49c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/NegTrain.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/NegTrain.java @@ -55,7 +55,7 @@ public static NegTrain create(Scope scope, Operand wIn, Operand PreventGradient create(Scope scope, Operand input, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("PreventGradient", scope.makeOpName("PreventGradient")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.message != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceAccumulatorApplyGradient.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceAccumulatorApplyGradient.java index 560c3400c3b..363a80b95a9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceAccumulatorApplyGradient.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceAccumulatorApplyGradient.java @@ -49,7 +49,7 @@ public static ResourceAccumulatorApplyGradient create(Scope sc opBuilder.addInput(handle.asOutput()); opBuilder.addInput(localStep.asOutput()); opBuilder.addInput(gradient.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ResourceAccumulatorApplyGradient(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceAccumulatorNumAccumulated.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceAccumulatorNumAccumulated.java index 628a916f659..9c77e31351f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceAccumulatorNumAccumulated.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceAccumulatorNumAccumulated.java @@ -43,7 +43,7 @@ public final class ResourceAccumulatorNumAccumulated extends RawOp implements Op public static ResourceAccumulatorNumAccumulated create(Scope scope, Operand handle) { OperationBuilder opBuilder = scope.env().opBuilder("ResourceAccumulatorNumAccumulated", scope.makeOpName("ResourceAccumulatorNumAccumulated")); opBuilder.addInput(handle.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ResourceAccumulatorNumAccumulated(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceAccumulatorSetGlobalStep.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceAccumulatorSetGlobalStep.java index 37570909340..7f2f421c6e6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceAccumulatorSetGlobalStep.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceAccumulatorSetGlobalStep.java @@ -47,7 +47,7 @@ public static ResourceAccumulatorSetGlobalStep create(Scope scope, Operand ha OperationBuilder opBuilder = scope.env().opBuilder("ResourceAccumulatorSetGlobalStep", scope.makeOpName("ResourceAccumulatorSetGlobalStep")); opBuilder.addInput(handle.asOutput()); opBuilder.addInput(newGlobalStep.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ResourceAccumulatorSetGlobalStep(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceAccumulatorTakeGradient.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceAccumulatorTakeGradient.java index c27fb1db524..62e33a44749 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceAccumulatorTakeGradient.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceAccumulatorTakeGradient.java @@ -17,11 +17,11 @@ package org.tensorflow.op.train; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -53,12 +53,12 @@ public final class ResourceAccumulatorTakeGradient extends RawO * @return a new instance of ResourceAccumulatorTakeGradient */ @Endpoint(describeByClass = true) - public static ResourceAccumulatorTakeGradient create(Scope scope, Operand handle, Operand numRequired, DataType dtype) { + public static ResourceAccumulatorTakeGradient create(Scope scope, Operand handle, Operand numRequired, Class dtype) { OperationBuilder opBuilder = scope.env().opBuilder("ResourceAccumulatorTakeGradient", scope.makeOpName("ResourceAccumulatorTakeGradient")); opBuilder.addInput(handle.asOutput()); opBuilder.addInput(numRequired.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); return new ResourceAccumulatorTakeGradient(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAdaMax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAdaMax.java index 169da75fecd..868d8664fa2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAdaMax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAdaMax.java @@ -84,7 +84,7 @@ public static ResourceApplyAdaMax create(Scope scope, Operand< opBuilder.addInput(beta2.asOutput()); opBuilder.addInput(epsilon.asOutput()); opBuilder.addInput(grad.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAdadelta.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAdadelta.java index 4323a39de45..0897bb4a2bd 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAdadelta.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAdadelta.java @@ -81,7 +81,7 @@ public static ResourceApplyAdadelta create(Scope scope, Operan opBuilder.addInput(rho.asOutput()); opBuilder.addInput(epsilon.asOutput()); opBuilder.addInput(grad.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAdagrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAdagrad.java index b60ad1fc0e0..8cf24a3e443 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAdagrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAdagrad.java @@ -84,7 +84,7 @@ public static ResourceApplyAdagrad create(Scope scope, Operand opBuilder.addInput(lr.asOutput()); opBuilder.addInput(epsilon.asOutput()); opBuilder.addInput(grad.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAdagradDa.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAdagradDa.java index 7c6f06634ef..cf572e06da5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAdagradDa.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAdagradDa.java @@ -79,7 +79,7 @@ public static ResourceApplyAdagradDa create(Scope scope, Opera opBuilder.addInput(l1.asOutput()); opBuilder.addInput(l2.asOutput()); opBuilder.addInput(globalStep.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAdam.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAdam.java index 4a1aea5d355..d2a570aa424 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAdam.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAdam.java @@ -97,7 +97,7 @@ public static ResourceApplyAdam create(Scope scope, Operand opBuilder.addInput(beta2.asOutput()); opBuilder.addInput(epsilon.asOutput()); opBuilder.addInput(grad.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAdamWithAmsgrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAdamWithAmsgrad.java index a436bc7fdd2..2c9f48fc751 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAdamWithAmsgrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAdamWithAmsgrad.java @@ -91,7 +91,7 @@ public static ResourceApplyAdamWithAmsgrad create(Scope scope, opBuilder.addInput(beta2.asOutput()); opBuilder.addInput(epsilon.asOutput()); opBuilder.addInput(grad.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAddSign.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAddSign.java index 85c9c587979..c8d64fc2894 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAddSign.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyAddSign.java @@ -81,7 +81,7 @@ public static ResourceApplyAddSign create(Scope scope, Operand opBuilder.addInput(signDecay.asOutput()); opBuilder.addInput(beta.asOutput()); opBuilder.addInput(grad.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyCenteredRmsProp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyCenteredRmsProp.java index 6fc3a8a02ff..36c94fb2f16 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyCenteredRmsProp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyCenteredRmsProp.java @@ -100,7 +100,7 @@ public static ResourceApplyCenteredRmsProp create(Scope scope, opBuilder.addInput(momentum.asOutput()); opBuilder.addInput(epsilon.asOutput()); opBuilder.addInput(grad.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyFtrl.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyFtrl.java index e69b6b99959..3c86fc8c313 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyFtrl.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyFtrl.java @@ -98,7 +98,7 @@ public static ResourceApplyFtrl create(Scope scope, Operand opBuilder.addInput(l2.asOutput()); opBuilder.addInput(l2Shrinkage.asOutput()); opBuilder.addInput(lrPower.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyGradientDescent.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyGradientDescent.java index f33c6b9ca87..bf119a731ec 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyGradientDescent.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyGradientDescent.java @@ -68,7 +68,7 @@ public static ResourceApplyGradientDescent create(Scope scope, opBuilder.addInput(var.asOutput()); opBuilder.addInput(alpha.asOutput()); opBuilder.addInput(delta.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyKerasMomentum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyKerasMomentum.java index 3922439dcad..6c55590f8ac 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyKerasMomentum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyKerasMomentum.java @@ -89,7 +89,7 @@ public static ResourceApplyKerasMomentum create(Scope scope, O opBuilder.addInput(lr.asOutput()); opBuilder.addInput(grad.asOutput()); opBuilder.addInput(momentum.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyMomentum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyMomentum.java index c554c8a939d..7d8a4b68f77 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyMomentum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyMomentum.java @@ -89,7 +89,7 @@ public static ResourceApplyMomentum create(Scope scope, Operan opBuilder.addInput(lr.asOutput()); opBuilder.addInput(grad.asOutput()); opBuilder.addInput(momentum.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyPowerSign.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyPowerSign.java index 662c2253264..3f4cfe11582 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyPowerSign.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyPowerSign.java @@ -81,7 +81,7 @@ public static ResourceApplyPowerSign create(Scope scope, Opera opBuilder.addInput(signDecay.asOutput()); opBuilder.addInput(beta.asOutput()); opBuilder.addInput(grad.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyProximalAdagrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyProximalAdagrad.java index 8036d891e33..8c2aab6b265 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyProximalAdagrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyProximalAdagrad.java @@ -78,7 +78,7 @@ public static ResourceApplyProximalAdagrad create(Scope scope, opBuilder.addInput(l1.asOutput()); opBuilder.addInput(l2.asOutput()); opBuilder.addInput(grad.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyProximalGradientDescent.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyProximalGradientDescent.java index 3b217c88c67..56499971a02 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyProximalGradientDescent.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyProximalGradientDescent.java @@ -75,7 +75,7 @@ public static ResourceApplyProximalGradientDescent create(Scop opBuilder.addInput(l1.asOutput()); opBuilder.addInput(l2.asOutput()); opBuilder.addInput(delta.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyRmsProp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyRmsProp.java index ae42295c1f7..703ae96376d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyRmsProp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceApplyRmsProp.java @@ -90,7 +90,7 @@ public static ResourceApplyRmsProp create(Scope scope, Operand opBuilder.addInput(momentum.asOutput()); opBuilder.addInput(epsilon.asOutput()); opBuilder.addInput(grad.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceConditionalAccumulator.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceConditionalAccumulator.java index 2935d3ca6bc..d44b93e6ac1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceConditionalAccumulator.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceConditionalAccumulator.java @@ -17,12 +17,12 @@ package org.tensorflow.op.train; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -92,10 +92,10 @@ private Options() { * @return a new instance of ResourceConditionalAccumulator */ @Endpoint(describeByClass = true) - public static ResourceConditionalAccumulator create(Scope scope, DataType dtype, Shape shape, Options... options) { + public static ResourceConditionalAccumulator create(Scope scope, Class dtype, Shape shape, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("ResourceConditionalAccumulator", scope.makeOpName("ResourceConditionalAccumulator")); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); opBuilder.setAttr("shape", shape); if (options != null) { for (Options opts : options) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyAdadelta.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyAdadelta.java index baea98fc1f7..018921b0a5e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyAdadelta.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyAdadelta.java @@ -79,7 +79,7 @@ public static ResourceSparseApplyAdadelta c opBuilder.addInput(epsilon.asOutput()); opBuilder.addInput(grad.asOutput()); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyAdagrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyAdagrad.java index f7816e78d0c..3376b099eba 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyAdagrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyAdagrad.java @@ -87,7 +87,7 @@ public static ResourceSparseApplyAdagrad cr opBuilder.addInput(lr.asOutput()); opBuilder.addInput(grad.asOutput()); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyAdagradDa.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyAdagradDa.java index 417eca86a80..467f96c0b0f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyAdagradDa.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyAdagradDa.java @@ -82,7 +82,7 @@ public static ResourceSparseApplyAdagradDa opBuilder.addInput(l1.asOutput()); opBuilder.addInput(l2.asOutput()); opBuilder.addInput(globalStep.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyAdagradV2.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyAdagradV2.java index f60d192c368..a4d61d2cdf6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyAdagradV2.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyAdagradV2.java @@ -88,7 +88,7 @@ public static ResourceSparseApplyAdagradV2 opBuilder.addInput(epsilon.asOutput()); opBuilder.addInput(grad.asOutput()); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyCenteredRmsProp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyCenteredRmsProp.java index d6806c36abf..d94e88f06dc 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyCenteredRmsProp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyCenteredRmsProp.java @@ -101,7 +101,7 @@ public static ResourceSparseApplyCenteredRm opBuilder.addInput(epsilon.asOutput()); opBuilder.addInput(grad.asOutput()); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyFtrl.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyFtrl.java index a13382272c8..2e302d18037 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyFtrl.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyFtrl.java @@ -102,7 +102,7 @@ public static ResourceSparseApplyFtrl creat opBuilder.addInput(l2.asOutput()); opBuilder.addInput(l2Shrinkage.asOutput()); opBuilder.addInput(lrPower.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyKerasMomentum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyKerasMomentum.java index b385403f989..7a914ea54d4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyKerasMomentum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyKerasMomentum.java @@ -94,7 +94,7 @@ public static ResourceSparseApplyKerasMomen opBuilder.addInput(grad.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(momentum.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyMomentum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyMomentum.java index bc303bfbbf0..2ee7d166cbe 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyMomentum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyMomentum.java @@ -94,7 +94,7 @@ public static ResourceSparseApplyMomentum c opBuilder.addInput(grad.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(momentum.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyProximalAdagrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyProximalAdagrad.java index 678601d6aea..afb578d6519 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyProximalAdagrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyProximalAdagrad.java @@ -83,7 +83,7 @@ public static ResourceSparseApplyProximalAd opBuilder.addInput(l2.asOutput()); opBuilder.addInput(grad.asOutput()); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyProximalGradientDescent.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyProximalGradientDescent.java index 11ad213524c..840290696ff 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyProximalGradientDescent.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyProximalGradientDescent.java @@ -79,7 +79,7 @@ public static ResourceSparseApplyProximalGr opBuilder.addInput(l2.asOutput()); opBuilder.addInput(grad.asOutput()); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyRmsProp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyRmsProp.java index 8c519504f89..233b0db5f2b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyRmsProp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceSparseApplyRmsProp.java @@ -93,7 +93,7 @@ public static ResourceSparseApplyRmsProp cr opBuilder.addInput(epsilon.asOutput()); opBuilder.addInput(grad.asOutput()); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/Restore.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/Restore.java index 5a2466f501d..bf19384f360 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/Restore.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/Restore.java @@ -20,11 +20,11 @@ import java.util.Arrays; import java.util.Iterator; import java.util.List; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -65,17 +65,13 @@ public final class Restore extends RawOp implements Iterable> { * @return a new instance of Restore */ @Endpoint(describeByClass = true) - public static Restore create(Scope scope, Operand prefix, Operand tensorNames, Operand shapeAndSlices, List> dtypes) { + public static Restore create(Scope scope, Operand prefix, Operand tensorNames, Operand shapeAndSlices, List> dtypes) { OperationBuilder opBuilder = scope.env().opBuilder("RestoreV2", scope.makeOpName("Restore")); opBuilder.addInput(prefix.asOutput()); opBuilder.addInput(tensorNames.asOutput()); opBuilder.addInput(shapeAndSlices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - DataType[] dtypesArray = new DataType[dtypes.size()]; - for (int i = 0; i < dtypesArray.length; ++i) { - dtypesArray[i] = dtypes.get(i); - } - opBuilder.setAttr("dtypes", dtypesArray); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtypes", Operands.toDataTypes(dtypes)); return new Restore(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/RestoreSlice.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/RestoreSlice.java index 631a127a44f..579b5b8dbad 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/RestoreSlice.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/RestoreSlice.java @@ -17,11 +17,11 @@ package org.tensorflow.op.train; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -79,13 +79,13 @@ private Options() { * @return a new instance of RestoreSlice */ @Endpoint(describeByClass = true) - public static RestoreSlice create(Scope scope, Operand filePattern, Operand tensorName, Operand shapeAndSlice, DataType dt, Options... options) { + public static RestoreSlice create(Scope scope, Operand filePattern, Operand tensorName, Operand shapeAndSlice, Class dt, Options... options) { OperationBuilder opBuilder = scope.env().opBuilder("RestoreSlice", scope.makeOpName("RestoreSlice")); opBuilder.addInput(filePattern.asOutput()); opBuilder.addInput(tensorName.asOutput()); opBuilder.addInput(shapeAndSlice.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dt", dt); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dt", Operands.toDataType(dt)); if (options != null) { for (Options opts : options) { if (opts.preferredShard != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/Save.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/Save.java index c5de40fc91b..fc4b2167194 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/Save.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/Save.java @@ -56,7 +56,7 @@ public static Save create(Scope scope, Operand prefix, Operand opBuilder.addInput(tensorNames.asOutput()); opBuilder.addInput(shapeAndSlices.asOutput()); opBuilder.addInputList(Operands.asOutputs(tensors)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Save(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SaveSlices.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SaveSlices.java index 73325d1d1bc..002d3a36fd7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SaveSlices.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SaveSlices.java @@ -82,7 +82,7 @@ public static SaveSlices create(Scope scope, Operand filename, Operand< opBuilder.addInput(tensorNames.asOutput()); opBuilder.addInput(shapesAndSlices.asOutput()); opBuilder.addInputList(Operands.asOutputs(data)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SaveSlices(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SdcaFprint.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SdcaFprint.java index cdee1af05f5..ac5d223ec6b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SdcaFprint.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SdcaFprint.java @@ -45,7 +45,7 @@ public final class SdcaFprint extends RawOp implements Operand { public static SdcaFprint create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("SdcaFprint", scope.makeOpName("SdcaFprint")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new SdcaFprint(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SdcaOptimizer.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SdcaOptimizer.java index a38f6773d7f..1c2d500faab 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SdcaOptimizer.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SdcaOptimizer.java @@ -116,7 +116,7 @@ public static SdcaOptimizer create(Scope scope, Iterable> sparse opBuilder.addInputList(Operands.asOutputs(sparseWeights)); opBuilder.addInputList(Operands.asOutputs(denseWeights)); opBuilder.addInput(exampleStateData.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("loss_type", lossType); opBuilder.setAttr("l1", l1); opBuilder.setAttr("l2", l2); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SdcaShrinkL1.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SdcaShrinkL1.java index 748a2eacaec..ddd44197c72 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SdcaShrinkL1.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SdcaShrinkL1.java @@ -47,7 +47,7 @@ public final class SdcaShrinkL1 extends RawOp { public static SdcaShrinkL1 create(Scope scope, Iterable> weights, Float l1, Float l2) { OperationBuilder opBuilder = scope.env().opBuilder("SdcaShrinkL1", scope.makeOpName("SdcaShrinkL1")); opBuilder.addInputList(Operands.asOutputs(weights)); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("l1", l1); opBuilder.setAttr("l2", l2); return new SdcaShrinkL1(opBuilder.build()); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyAdadelta.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyAdadelta.java index 190449c8ca7..4a0ad5e6a4f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyAdadelta.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyAdadelta.java @@ -82,7 +82,7 @@ public static SparseApplyAdadelta create opBuilder.addInput(epsilon.asOutput()); opBuilder.addInput(grad.asOutput()); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyAdagrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyAdagrad.java index 71776f4fd26..7c925080bc1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyAdagrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyAdagrad.java @@ -91,7 +91,7 @@ public static SparseApplyAdagrad create( opBuilder.addInput(epsilon.asOutput()); opBuilder.addInput(grad.asOutput()); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyAdagradDa.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyAdagradDa.java index 7f13dd080dd..971525a877b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyAdagradDa.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyAdagradDa.java @@ -85,7 +85,7 @@ public static SparseApplyAdagradDa creat opBuilder.addInput(l1.asOutput()); opBuilder.addInput(l2.asOutput()); opBuilder.addInput(globalStep.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyCenteredRmsProp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyCenteredRmsProp.java index b73275139d1..6d7e47cb235 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyCenteredRmsProp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyCenteredRmsProp.java @@ -104,7 +104,7 @@ public static SparseApplyCenteredRmsProp opBuilder.addInput(epsilon.asOutput()); opBuilder.addInput(grad.asOutput()); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyFtrl.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyFtrl.java index 2eb27c33f45..f5add81d0fe 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyFtrl.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyFtrl.java @@ -105,7 +105,7 @@ public static SparseApplyFtrl create(Sco opBuilder.addInput(l2.asOutput()); opBuilder.addInput(l2Shrinkage.asOutput()); opBuilder.addInput(lrPower.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyMomentum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyMomentum.java index 5e8bf197092..bb0417ad8d4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyMomentum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyMomentum.java @@ -97,7 +97,7 @@ public static SparseApplyMomentum create opBuilder.addInput(grad.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(momentum.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyProximalAdagrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyProximalAdagrad.java index 19ede0d5f71..780fe1e4b84 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyProximalAdagrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyProximalAdagrad.java @@ -86,7 +86,7 @@ public static SparseApplyProximalAdagrad opBuilder.addInput(l2.asOutput()); opBuilder.addInput(grad.asOutput()); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyProximalGradientDescent.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyProximalGradientDescent.java index 14735403f02..e9c62c888d5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyProximalGradientDescent.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyProximalGradientDescent.java @@ -82,7 +82,7 @@ public static SparseApplyProximalGradientDe opBuilder.addInput(l2.asOutput()); opBuilder.addInput(grad.asOutput()); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyRmsProp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyRmsProp.java index c0b39b65e5e..19a36d1a1fb 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyRmsProp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyRmsProp.java @@ -96,7 +96,7 @@ public static SparseApplyRmsProp create( opBuilder.addInput(epsilon.asOutput()); opBuilder.addInput(grad.asOutput()); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); if (options != null) { for (Options opts : options) { if (opts.useLocking != null) { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/TileGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/TileGrad.java index 1bcfde7b183..f1b8b1ee444 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/TileGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/TileGrad.java @@ -53,7 +53,7 @@ public static TileGrad create(Scope scope, Operand input OperationBuilder opBuilder = scope.env().opBuilder("TileGrad", scope.makeOpName("TileGrad")); opBuilder.addInput(input.asOutput()); opBuilder.addInput(multiples.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new TileGrad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/BroadcastHelper.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/BroadcastHelper.java index e06919d04bd..0bb729b45ae 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/BroadcastHelper.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/BroadcastHelper.java @@ -55,7 +55,7 @@ public static BroadcastHelper create(Sco opBuilder.addInput(lhs.asOutput()); opBuilder.addInput(rhs.asOutput()); opBuilder.addInput(broadcastDims.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new BroadcastHelper(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/ClusterOutput.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/ClusterOutput.java index 717b65c931e..ffd282478a5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/ClusterOutput.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/ClusterOutput.java @@ -46,7 +46,7 @@ public final class ClusterOutput extends RawOp implements Opera public static ClusterOutput create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("XlaClusterOutput", scope.makeOpName("ClusterOutput")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ClusterOutput(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Conv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Conv.java index 05cec5b6d51..d8daba47f27 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Conv.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Conv.java @@ -64,7 +64,7 @@ public static Conv create(Scope scope, O opBuilder.addInput(lhsDilation.asOutput()); opBuilder.addInput(rhsDilation.asOutput()); opBuilder.addInput(featureGroupCount.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("dimension_numbers", dimensionNumbers); opBuilder.setAttr("precision_config", precisionConfig); return new Conv(opBuilder.build()); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Dequantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Dequantize.java index f8cdec66d1f..9e62c69996a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Dequantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Dequantize.java @@ -51,7 +51,7 @@ public final class Dequantize extends RawOp implements Operand { public static Dequantize create(Scope scope, Operand input, Float minRange, Float maxRange, String mode, Boolean transposeOutput) { OperationBuilder opBuilder = scope.env().opBuilder("XlaDequantize", scope.makeOpName("Dequantize")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("min_range", minRange); opBuilder.setAttr("max_range", maxRange); opBuilder.setAttr("mode", mode); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Dot.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Dot.java index 9cb83d061cb..ea4c485db6d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Dot.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Dot.java @@ -53,7 +53,7 @@ public static Dot create(Scope scope, Operand lhs, Opera OperationBuilder opBuilder = scope.env().opBuilder("XlaDot", scope.makeOpName("Dot")); opBuilder.addInput(lhs.asOutput()); opBuilder.addInput(rhs.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("dimension_numbers", dimensionNumbers); opBuilder.setAttr("precision_config", precisionConfig); return new Dot(opBuilder.build()); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/DynamicSlice.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/DynamicSlice.java index b9e2bebf9b8..631e22513cf 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/DynamicSlice.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/DynamicSlice.java @@ -63,7 +63,7 @@ public static DynamicSlice create(Scope opBuilder.addInput(input.asOutput()); opBuilder.addInput(startIndices.asOutput()); opBuilder.addInput(sizeIndices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DynamicSlice(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/DynamicUpdateSlice.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/DynamicUpdateSlice.java index dccbdd10da8..adcc4a1ec69 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/DynamicUpdateSlice.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/DynamicUpdateSlice.java @@ -62,7 +62,7 @@ public static DynamicUpdateSlice create( opBuilder.addInput(input.asOutput()); opBuilder.addInput(update.asOutput()); opBuilder.addInput(indices.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new DynamicUpdateSlice(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Einsum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Einsum.java index 451fb27bc49..3ddffcd2e94 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Einsum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Einsum.java @@ -52,7 +52,7 @@ public static Einsum create(Scope scope, Operand a, Oper OperationBuilder opBuilder = scope.env().opBuilder("XlaEinsum", scope.makeOpName("Einsum")); opBuilder.addInput(a.asOutput()); opBuilder.addInput(b.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("equation", equation); return new Einsum(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Gather.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Gather.java index 9daa1808620..c01483049dd 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Gather.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Gather.java @@ -55,7 +55,7 @@ public static Gather create(Scope scope, opBuilder.addInput(operand.asOutput()); opBuilder.addInput(startIndices.asOutput()); opBuilder.addInput(sliceSizes.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("dimension_numbers", dimensionNumbers); opBuilder.setAttr("indices_are_sorted", indicesAreSorted); return new Gather(opBuilder.build()); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/KeyValueSort.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/KeyValueSort.java index d1cf154bd8a..eb657bb4220 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/KeyValueSort.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/KeyValueSort.java @@ -55,7 +55,7 @@ public static KeyValueSort create(Sco OperationBuilder opBuilder = scope.env().opBuilder("XlaKeyValueSort", scope.makeOpName("KeyValueSort")); opBuilder.addInput(keys.asOutput()); opBuilder.addInput(values.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new KeyValueSort(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Pad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Pad.java index c56631c48f2..aa4df05f3e0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Pad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Pad.java @@ -58,7 +58,7 @@ public static Pad create(Scope scope, Op opBuilder.addInput(paddingLow.asOutput()); opBuilder.addInput(paddingHigh.asOutput()); opBuilder.addInput(paddingInterior.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Pad(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Recv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Recv.java index fe26ee27587..05781f61017 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Recv.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Recv.java @@ -17,12 +17,12 @@ package org.tensorflow.op.xla; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; import org.tensorflow.op.RawOp; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; @@ -50,10 +50,10 @@ public final class Recv extends RawOp implements Operand { * @return a new instance of Recv */ @Endpoint(describeByClass = true) - public static Recv create(Scope scope, DataType dtype, String tensorName, Shape shape) { + public static Recv create(Scope scope, Class dtype, String tensorName, Shape shape) { OperationBuilder opBuilder = scope.env().opBuilder("XlaRecv", scope.makeOpName("Recv")); - opBuilder = scope.applyControlDependencies(opBuilder); - opBuilder.setAttr("dtype", dtype); + opBuilder = scope.apply(opBuilder); + opBuilder.setAttr("dtype", Operands.toDataType(dtype)); opBuilder.setAttr("tensor_name", tensorName); opBuilder.setAttr("shape", shape); return new Recv(opBuilder.build()); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/ReplicaId.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/ReplicaId.java index 886cc40b3ab..74386cc395d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/ReplicaId.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/ReplicaId.java @@ -42,7 +42,7 @@ public final class ReplicaId extends RawOp implements Operand { @Endpoint(describeByClass = true) public static ReplicaId create(Scope scope) { OperationBuilder opBuilder = scope.env().opBuilder("XlaReplicaId", scope.makeOpName("ReplicaId")); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new ReplicaId(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/SelfAdjointEig.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/SelfAdjointEig.java index 9ce4468fdfe..5f3f8e69c89 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/SelfAdjointEig.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/SelfAdjointEig.java @@ -59,7 +59,7 @@ public final class SelfAdjointEig extends RawOp { public static SelfAdjointEig create(Scope scope, Operand a, Boolean lower, Long maxIter, Float epsilon) { OperationBuilder opBuilder = scope.env().opBuilder("XlaSelfAdjointEig", scope.makeOpName("SelfAdjointEig")); opBuilder.addInput(a.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("lower", lower); opBuilder.setAttr("max_iter", maxIter); opBuilder.setAttr("epsilon", epsilon); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Send.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Send.java index b18a86458ca..f1806a79b10 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Send.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Send.java @@ -47,7 +47,7 @@ public final class Send extends RawOp { public static Send create(Scope scope, Operand tensor, String tensorName) { OperationBuilder opBuilder = scope.env().opBuilder("XlaSend", scope.makeOpName("Send")); opBuilder.addInput(tensor.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("tensor_name", tensorName); return new Send(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Sharding.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Sharding.java index dbc255aa607..4404d297105 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Sharding.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Sharding.java @@ -46,7 +46,7 @@ public final class Sharding extends RawOp implements Operand public static Sharding create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("XlaSharding", scope.makeOpName("Sharding")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Sharding(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Sort.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Sort.java index d7f9aae6449..b8bb34526ba 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Sort.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Sort.java @@ -51,7 +51,7 @@ public final class Sort extends RawOp implements Operand { public static Sort create(Scope scope, Operand input) { OperationBuilder opBuilder = scope.env().opBuilder("XlaSort", scope.makeOpName("Sort")); opBuilder.addInput(input.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); return new Sort(opBuilder.build()); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Svd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Svd.java index cd0a67f33b4..9e7f75bee8c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Svd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/Svd.java @@ -57,7 +57,7 @@ public final class Svd extends RawOp { public static Svd create(Scope scope, Operand a, Long maxIter, Float epsilon, String precisionConfig) { OperationBuilder opBuilder = scope.env().opBuilder("XlaSvd", scope.makeOpName("Svd")); opBuilder.addInput(a.asOutput()); - opBuilder = scope.applyControlDependencies(opBuilder); + opBuilder = scope.apply(opBuilder); opBuilder.setAttr("max_iter", maxIter); opBuilder.setAttr("epsilon", epsilon); opBuilder.setAttr("precision_config", precisionConfig); diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/AbstractOperation.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/AbstractOperation.java index 96da6bc5ff4..0ffd6c2205e 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/AbstractOperation.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/AbstractOperation.java @@ -17,6 +17,7 @@ import org.bytedeco.javacpp.Pointer; import org.tensorflow.ndarray.Shape; +import org.tensorflow.proto.framework.DataType; import org.tensorflow.types.family.TType; /** @@ -76,7 +77,7 @@ public String toString() { * @param outputIdx index of the output of this operation * @return output tensor datatype */ - abstract DataType dtype(int outputIdx); + abstract DataType dtype(int outputIdx); /** * Returns the tensor of the {@code outputIdx}th output of this operation. @@ -86,5 +87,5 @@ public String toString() { * @param outputIdx index of the output of this operation * @return output tensor */ - abstract Tensor tensor(int outputIdx); + abstract Tensor tensor(int outputIdx); } diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/ConcreteFunction.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/ConcreteFunction.java index 872b4b4d16d..71dc0f7cefc 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/ConcreteFunction.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/ConcreteFunction.java @@ -34,7 +34,7 @@ * *

{@code
  * ConcreteFunction myFunction = savedModelBundle.function("myFunctionSignatureName");
- * Map> outputTensorMap = myFunction.call(inputTensorMap);
+ * Map outputTensorMap = myFunction.call(inputTensorMap);
  * }
*/ public class ConcreteFunction implements AutoCloseable { @@ -54,15 +54,15 @@ public class ConcreteFunction implements AutoCloseable { * public class MyModel { * * public static Signature addTwo(Ops tf) { - * Placeholder input = tf.placeholder(TFloat32.DTYPE); + * Placeholder input = tf.placeholder(TFloat32.class); * Add output = tf.math.add(input, tf.constant(2.0f)); * return Signature.builder("addTwo").input("x", input).output("y", output).build(); * } * * public static void main(String args[]) { * try (ConcreteFunction function = ConcreteFunction.create(MyModel::addTwo); - * Tensor x = TFloat32.scalarOf(2.0f)) { - * assertEquals(4.0f, function.call(x).expect(TFloat32.DTYPE).data().getFloat()); + * TFloat32 x = TFloat32.scalarOf(2.0f)) { + * assertEquals(4.0f, ((TFloat32)function.call(x)).getFloat()); * } * } * } @@ -92,13 +92,13 @@ public static ConcreteFunction create(Function functionBuilder) * *
{@code
    * try (Graph g = new Graph()) {
-   *   Placeholder input = tf.placeholder(TFloat32.DTYPE);
+   *   Placeholder input = tf.placeholder(TFloat32.class);
    *   Add output = tf.math.add(input, tf.constant(2.0f));
    *   Signature signature = Signature.builder().input("x", input).output("y", output).build();
    *
    *   try (ConcreteFunction f = ConcreteFunction.create(signature, g);
-   *       Tensor x = TFloat32.scalarOf(2.0f)) {
-   *     assertEquals(4.0f, function.call(x).expect(TFloat32.DTYPE).data().getFloat());
+   *       TFloat32 x = TFloat32.scalarOf(2.0f)) {
+   *     assertEquals(4.0f, ((TFloat32)function.call(x)).getFloat());
    *   }
    *   // Graph g is still valid at this point
    * }
@@ -121,7 +121,7 @@ public static ConcreteFunction create(Signature signature, Graph graph) {
    *
    * 
{@code
    * try (Graph g = new Graph()) {
-   *   Placeholder input = tf.placeholder(TFloat32.DTYPE);
+   *   Placeholder input = tf.placeholder(TFloat32.class);
    *   Add output = tf.math.add(input, tf.constant(2.0f));
    *   Signature signature = Signature.builder().input("x", input).output("y", output).build();
    *
@@ -129,8 +129,8 @@ public static ConcreteFunction create(Signature signature, Graph graph) {
    *     // Auto-closing the function just as an example but this is not required since it has
    *     // no effect
    *     try (ConcreteFunction f = ConcreteFunction.create(signature, s);
-   *         Tensor t = TFloat32.scalarOf(2.0f)) {
-   *       assertEquals(4.0f, function.call(x).expect(TFloat32.DTYPE).data().getFloat());
+   *         TFloat32 t = TFloat32.scalarOf(2.0f)) {
+   *       assertEquals(4.0f, ((TFloat32)function.call(x)).getFloat());
    *     }
    *     // Session s is still valid at this point
    *   }
@@ -163,14 +163,14 @@ public Signature signature() {
    * @return output tensors resulting from the execution of the function,
    *         mapped by their signature name
    */
-  public Map> call(Map> arguments)
+  public Map call(Map arguments)
       throws IllegalArgumentException {
 
     final SignatureDef signatureDef = signature.asSignatureDef();
     final Session.Runner runner = session.runner();
 
     signatureDef.getInputsMap().forEach((argName, t) -> {
-      Tensor tensor = arguments.get(argName);
+      Tensor tensor = arguments.get(argName);
       if (tensor == null) {
         throw new IllegalArgumentException(String.format("Missing argument [%s]", argName));
       }
@@ -180,10 +180,10 @@ public Map> call(Map> arguments)
     Map outputToNode = signatureDef.getOutputsMap();
     outputToNode.values().forEach(t -> runner.fetch(t.getName()));
 
-    List> resultTensors = runner.run();
+    List resultTensors = runner.run();
     try {
-      ListIterator> resultTensorIter = resultTensors.listIterator();
-      Map> returnMap = new HashMap>();
+      ListIterator resultTensorIter = resultTensors.listIterator();
+      Map returnMap = new HashMap();
 
       // Use the output names as present in the signature definition
       for (String nodeName: outputToNode.keySet()) {
@@ -193,7 +193,7 @@ public Map> call(Map> arguments)
 
     } catch (Exception e) {
       // Release tensors before throwing exception
-      for (Tensor t : resultTensors) {
+      for (Tensor t : resultTensors) {
         t.close();
       }
       throw e;
@@ -210,7 +210,7 @@ public Map> call(Map> arguments)
    * @throws IllegalArgumentException if there are multiple input or output parameters defined
    *                                  in the function
    */
-  public Tensor call(Tensor tensor) throws IllegalArgumentException {
+  public Tensor call(Tensor tensor) throws IllegalArgumentException {
     final SignatureDef signatureDef = signature.asSignatureDef();
 
     if (signatureDef.getInputsCount() != 1) {
diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/DataType.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/DataType.java
deleted file mode 100644
index 7b76b6dd02e..00000000000
--- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/DataType.java
+++ /dev/null
@@ -1,181 +0,0 @@
-/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
-You may obtain a copy of the License at
-
-    http://www.apache.org/licenses/LICENSE-2.0
-
-Unless required by applicable law or agreed to in writing, software
-distributed under the License is distributed on an "AS IS" BASIS,
-WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-See the License for the specific language governing permissions and
-limitations under the License.
-==============================================================================*/
-
-package org.tensorflow;
-
-import org.tensorflow.internal.c_api.TF_Tensor;
-import org.tensorflow.ndarray.Shape;
-import org.tensorflow.types.TBfloat16;
-import org.tensorflow.types.TBool;
-import org.tensorflow.types.TFloat16;
-import org.tensorflow.types.TFloat32;
-import org.tensorflow.types.TFloat64;
-import org.tensorflow.types.TInt32;
-import org.tensorflow.types.TInt64;
-import org.tensorflow.types.TUint8;
-import org.tensorflow.types.TString;
-import org.tensorflow.types.family.TType;
-
-/** Represents a type of elements in a {@link Tensor} */
-public final class DataType {
-
-  @FunctionalInterface
-  public interface TensorMapper {
-
-    /**
-     * Maps tensor memory to a data structure for manipulating elements of this type.
-     *
-     * @param nativeTensor pointer to the native tensor
-     * @param shape the shape of the tensor
-     * @return data structure of elements of this type
-     */
-    T apply(TF_Tensor nativeTensor, Shape shape);
-  }
-
-  /**
-   * Creates a new datatype
-   *
-   * @param name readable-name for this type
-   * @param value must match the corresponding TF_* value in the TensorFlow C API.
-   * @param byteSize size of an element of this type, in bytes, -1 if unknown
-   * @param  a tensor type
-   * @param tensorMapper method for mapping tensor memory to elements of this type
-   */
-  public static  DataType create(
-      String name, int value, int byteSize, TensorMapper tensorMapper) {
-    return new DataType<>(name, value, byteSize, tensorMapper);
-  }
-
-  /**
-   * Gets the DataType associated with the readable-name for the type
-   * 

The name must match exactly the name used to create the desired DataType

- * - * @param name readable-name for the type - * @return the DataType - * @throws java.lang.IllegalArgumentException if the name is not a valid data type name - * @throws java.lang.NullPointerException if name is null - */ - public static DataType of(String name) { - switch (name) { - case TBfloat16.NAME: - return TBfloat16.DTYPE; - case TFloat16.NAME: - return TFloat16.DTYPE; - case TFloat32.NAME: - return TFloat32.DTYPE; - case TFloat64.NAME: - return TFloat64.DTYPE; - case TUint8.NAME: - return TUint8.DTYPE; - case TInt32.NAME: - return TInt32.DTYPE; - case TInt64.NAME: - return TInt64.DTYPE; - case TBool.NAME: - return TBool.DTYPE; - case TString.NAME: - return TString.DTYPE; - default: - throw new IllegalArgumentException(String.format("%s is an unknown DataType", name)); - } - } - - /** Returns true if this data type represents a floating point type */ - public boolean isFloating() { - switch (this.name()) { - case TBfloat16.NAME: - case TFloat16.NAME: - case TFloat32.NAME: - case TFloat64.NAME: - return true; - default: - return false; - } - } - - /** Returns true if this data type represents an integer type */ - public boolean isInteger() { - switch (this.name()) { - case TInt32.NAME: - case TInt64.NAME: - case TUint8.NAME: - return true; - default: - return false; - } - } - - /** Returns true if this data type represents a numeric type */ - public boolean isNumeric() { - return isFloating() || isInteger(); - } - - /** Returns true if this data type represents a boolean type */ - public boolean isBoolean() { - return this.name().equals(TBool.NAME); - } - - /** Returns true if this data type represents a string type */ - public boolean isString() { - return this.name().equals(TString.NAME); - } - - /** Returns the size of an element of this type, in bytes, or -1 if element size is variable. */ - public int byteSize() { - return byteSize; - } - - /** Returns true if this datatype has elements of variable length */ - public boolean isVariableLength() { - return byteSize == -1; - } - - /** Returns a readable name for this type */ - public String name() { - return name; - } - - @Override - public String toString() { - return name + " (" + nativeCode + ")"; - } - - /** Returns the numeric code for this datatype, as recognized by the native library (C API) */ - int nativeCode() { - return nativeCode; - } - - /** - * Maps a tensor to a data structure for manipulating elements of this type. - * - * @param tensor tensor to map - * @return data structure of elements of this type - */ - T map(Tensor tensor) { - return tensorMapper.apply(tensor.nativeHandle(), tensor.shape()); - } - - private final int nativeCode; - private final int byteSize; - private final String name; - private final TensorMapper tensorMapper; - - private DataType(String name, int nativeCode, int byteSize, TensorMapper tensorMapper) { - this.name = name; - this.nativeCode = nativeCode; - this.byteSize = byteSize; - this.tensorMapper = tensorMapper; - } -} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/DataTypes.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/DataTypes.java deleted file mode 100644 index 77c0de0c83f..00000000000 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/DataTypes.java +++ /dev/null @@ -1,75 +0,0 @@ -/* - * Copyright 2019 The TensorFlow Authors. All Rights Reserved. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - * ======================================================================= - */ - -package org.tensorflow; - -import java.util.HashMap; -import java.util.Map; -import org.tensorflow.types.TBfloat16; -import org.tensorflow.types.TBool; -import org.tensorflow.types.TFloat16; -import org.tensorflow.types.TFloat32; -import org.tensorflow.types.TFloat64; -import org.tensorflow.types.TInt32; -import org.tensorflow.types.TInt64; -import org.tensorflow.types.TString; -import org.tensorflow.types.TUint8; - -/** - * Utility class for working with {@link DataType} objects. - */ -final class DataTypes { - - /** - * Find a data type from the type code returned by the native layer (C API). - * - *

Only data types registered via {@link #register(DataType)} can be resolved. - * - * @param nativeCode native code - * @return data type for this code - * @throws IllegalArgumentException if the code matches no registered data type - */ - static DataType fromNativeCode(int nativeCode) { - DataType dataType = DATA_TYPE_REGISTRY.get(nativeCode); - if (dataType == null) { - throw new IllegalArgumentException( - "DataType " + nativeCode + " is not recognized in Java (version " + TensorFlow.version() + ")"); - } - return dataType; - } - - private static final Map> DATA_TYPE_REGISTRY = new HashMap<>(); - - static { - register(TBool.DTYPE); - register(TFloat64.DTYPE); - register(TFloat32.DTYPE); - register(TFloat16.DTYPE); - register(TInt32.DTYPE); - register(TInt64.DTYPE); - register(TString.DTYPE); - register(TUint8.DTYPE); - register(TBfloat16.DTYPE); - } - - // TODO (karllessard): Right now this method is private but we might want to expose it - // to allow user to register custom data types? - private static void register(DataType dataType) { - DATA_TYPE_REGISTRY.put(dataType.nativeCode(), dataType); - DATA_TYPE_REGISTRY.put(dataType.nativeCode() + 100, dataType); - } -} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/DeviceSpec.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/DeviceSpec.java index a9923c75bb4..1fe55670681 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/DeviceSpec.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/DeviceSpec.java @@ -114,7 +114,7 @@ private static String EmptyOrWithPrefix(Integer i, String prefix) { } /** A Builder class for building {@link DeviceSpec} class. */ - static class Builder { + public static class Builder { private String job = null; private Integer replica = null; private Integer task = null; @@ -123,27 +123,27 @@ static class Builder { private Builder() {} - Builder job(String job) { + public Builder job(String job) { this.job = job; return this; } - Builder replica(Integer replica) { + public Builder replica(Integer replica) { this.replica = replica; return this; } - Builder task(Integer task) { + public Builder task(Integer task) { this.task = task; return this; } - Builder deviceIndex(Integer deviceIndex) { + public Builder deviceIndex(Integer deviceIndex) { this.deviceIndex = deviceIndex; return this; } - Builder deviceType(DeviceSpec.DeviceType deviceType) { + public Builder deviceType(DeviceSpec.DeviceType deviceType) { this.deviceType = deviceType; return this; } diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/EagerOperation.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/EagerOperation.java index 012981ac59c..09e5a47f8fd 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/EagerOperation.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/EagerOperation.java @@ -29,6 +29,7 @@ import org.tensorflow.internal.c_api.TF_Status; import org.tensorflow.internal.c_api.TF_Tensor; import org.tensorflow.ndarray.Shape; +import org.tensorflow.proto.framework.DataType; /** * Implementation of an {@link Operation} executed eagerly. @@ -83,15 +84,15 @@ public int inputListLength(final String name) { } @Override - public TFE_TensorHandle getUnsafeNativeHandle(int outputIndex) { + TFE_TensorHandle getUnsafeNativeHandle(int outputIndex) { return outputHandles[outputIndex]; } @Override - public Shape shape(int outputIndex) { + Shape shape(int outputIndex) { // If the tensor of this output has already been resolved, return its shape. // Otherwise, retrieve the tensor shape from the native library. - Tensor tensor = outputTensors.get(outputIndex); + Tensor tensor = outputTensors.get(outputIndex); if (tensor != null) { return tensor.shape(); } @@ -104,20 +105,20 @@ public Shape shape(int outputIndex) { } @Override - public DataType dtype(int outputIndex) { + DataType dtype(int outputIndex) { // If the tensor of this output has already been resolved, return its datatype. // Otherwise, retrieve the tensor datatype from the native library. - Tensor tensor = outputTensors.get(outputIndex); + Tensor tensor = outputTensors.get(outputIndex); if (tensor != null) { return tensor.dataType(); } TFE_TensorHandle outputNativeHandle = getUnsafeNativeHandle(outputIndex); - return DataTypes.fromNativeCode(dataType(outputNativeHandle)); + return DataType.forNumber(dataType(outputNativeHandle)); } @Override - public Tensor tensor(int outputIndex) { - Tensor tensor = outputTensors.get(outputIndex); + Tensor tensor(int outputIndex) { + Tensor tensor = outputTensors.get(outputIndex); if (tensor == null) { tensor = resolveTensor(outputIndex); } @@ -127,21 +128,21 @@ public Tensor tensor(int outputIndex) { private final EagerSession session; private final String type; private final String name; - private final AtomicReferenceArray> outputTensors; + private final AtomicReferenceArray outputTensors; - private Tensor resolveTensor(int outputIndex) { + private Tensor resolveTensor(int outputIndex) { // Take an optimistic approach, where we attempt to resolve the output tensor without locking. // If another thread has resolved it meanwhile, release our copy and reuse the existing one // instead. - Tensor tensor = resolveTensorHandle(getUnsafeNativeHandle(outputIndex), session); + Tensor tensor = resolveTensorHandle(getUnsafeNativeHandle(outputIndex), session); if (!outputTensors.compareAndSet(outputIndex, null, tensor)) { - session.detach(tensor.nativeHandle()); + session.detach(tensor.asRawTensor().nativeHandle()); tensor = outputTensors.get(outputIndex); } return tensor; } - private TFE_Op opHandle; + private final TFE_Op opHandle; private final TFE_TensorHandle[] outputHandles; private static void requireOp(TFE_Op handle) { @@ -156,13 +157,13 @@ private static void requireTensorHandle(TFE_TensorHandle handle) { } } - private static Tensor resolveTensorHandle(TFE_TensorHandle handle, EagerSession session) { + private static Tensor resolveTensorHandle(TFE_TensorHandle handle, EagerSession session) { requireTensorHandle(handle); try (PointerScope scope = new PointerScope()) { TF_Status status = TF_Status.newStatus(); TF_Tensor tensor = TFE_TensorHandleResolve(handle, status).withDeallocator(); status.throwExceptionIfNotOK(); - return Tensor.fromHandle(tensor, session); + return RawTensor.fromHandle(tensor, session).asTypedTensor(); } } diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/EagerOperationBuilder.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/EagerOperationBuilder.java index f14795df55a..9df8444a11f 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/EagerOperationBuilder.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/EagerOperationBuilder.java @@ -48,6 +48,7 @@ import org.tensorflow.internal.c_api.TF_Status; import org.tensorflow.internal.c_api.TF_Tensor; import org.tensorflow.ndarray.Shape; +import org.tensorflow.proto.framework.DataType; /** * An {@link OperationBuilder} for building {@link Operation Operations} that are executed eagerly. @@ -90,8 +91,8 @@ public EagerOperationBuilder addInputList(Output[] inputs) { @Override public OperationBuilder addControlInput(Operation control) { - throw new UnsupportedOperationException( - "Control inputs are not supported in an eager execution environment"); + // No-op. Any operations passed to this method will already be evaluated (b/c eager evaluation). + return this; } @Override @@ -159,29 +160,29 @@ public EagerOperationBuilder setAttr(String name, boolean[] values) { } @Override - public EagerOperationBuilder setAttr(String name, DataType value) { - setAttrType(opHandle, name, value.nativeCode()); + public EagerOperationBuilder setAttr(String name, DataType value) { + setAttrType(opHandle, name, value.getNumber()); return this; } @Override - public EagerOperationBuilder setAttr(String name, DataType[] values) { + public EagerOperationBuilder setAttr(String name, DataType[] values) { int[] c = new int[values.length]; for (int i = 0; i < values.length; ++i) { - c[i] = values[i].nativeCode(); + c[i] = values[i].getNumber(); } setAttrTypeList(opHandle, name, c); return this; } @Override - public EagerOperationBuilder setAttr(String name, Tensor value) { - setAttrTensor(opHandle, name, value.nativeHandle()); + public EagerOperationBuilder setAttr(String name, Tensor value) { + setAttrTensor(opHandle, name, value.asRawTensor().nativeHandle()); return this; } @Override - public EagerOperationBuilder setAttr(String name, Tensor[] values) { + public EagerOperationBuilder setAttr(String name, Tensor[] values) { // TODO (karllessard) could be supported by adding this attribute type in the eager C API throw new UnsupportedOperationException( "Tensor list attributes are not supported in eager mode"); diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/Graph.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/Graph.java index 142d481c04f..d70460ee4ea 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/Graph.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/Graph.java @@ -54,6 +54,7 @@ import org.tensorflow.proto.framework.GraphDef; import org.tensorflow.proto.util.SaverDef; import org.tensorflow.types.TString; +import org.tensorflow.types.family.TType; /** @@ -767,14 +768,14 @@ private static SaverDef addVariableSaver(Graph graph) { List varNames = new ArrayList<>(); List> varOutputs = new ArrayList<>(); - List> varTypes = new ArrayList<>(); + List> varTypes = new ArrayList<>(); for (Iterator iter = graph.operations(); iter.hasNext();) { Operation op = iter.next(); if (op.type().equals("VariableV2")) { varNames.add(op.name()); varOutputs.add(op.output(0)); - varTypes.add(op.output(0).dataType()); + varTypes.add(op.output(0).type()); } } @@ -783,7 +784,7 @@ private static SaverDef addVariableSaver(Graph graph) { Constant varNamesTensor = tf.constant(StdArrays.ndCopyOf(varNames.toArray(tmp))); Operand varSlices = tf.zerosLike(varNamesTensor); - Placeholder saveFilename = tf.placeholder(TString.DTYPE); + Placeholder saveFilename = tf.placeholder(TString.class); Save saveVariables = tf.train.save( saveFilename, varNamesTensor, diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/GraphOperation.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/GraphOperation.java index 70cd31366ce..e1255748c3b 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/GraphOperation.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/GraphOperation.java @@ -31,6 +31,7 @@ import org.tensorflow.internal.c_api.TF_Output; import org.tensorflow.internal.c_api.TF_Status; import org.tensorflow.ndarray.Shape; +import org.tensorflow.proto.framework.DataType; /** * Implementation for an {@link Operation} added as a node to a {@link Graph}. @@ -148,17 +149,17 @@ Shape shape(int outputIdx) { } @Override - DataType dtype(int outputIdx) { + DataType dtype(int outputIdx) { Graph.Reference r = graph.ref(); try { - return DataTypes.fromNativeCode(dtype(r.nativeHandle(), getUnsafeNativeHandle(), outputIdx)); + return DataType.forNumber(dtype(r.nativeHandle(), getUnsafeNativeHandle(), outputIdx)); } finally { r.close(); } } @Override - Tensor tensor(int outputIdx) { + Tensor tensor(int outputIdx) { throw new IllegalStateException("Graph tensors must be fetched by running a session"); } diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/GraphOperationBuilder.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/GraphOperationBuilder.java index 2ef5c9010a1..927d9c52dd1 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/GraphOperationBuilder.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/GraphOperationBuilder.java @@ -52,6 +52,7 @@ import org.tensorflow.internal.c_api.TF_Status; import org.tensorflow.internal.c_api.TF_Tensor; import org.tensorflow.ndarray.Shape; +import org.tensorflow.proto.framework.DataType; /** An {@link OperationBuilder} for adding {@link GraphOperation}s to a {@link Graph}. */ public final class GraphOperationBuilder implements OperationBuilder { @@ -224,7 +225,7 @@ public GraphOperationBuilder setAttr(String name, boolean[] value) { public GraphOperationBuilder setAttr(String name, DataType value) { Graph.Reference r = graph.ref(); try { - setAttrType(unsafeNativeHandle, name, value.nativeCode()); + setAttrType(unsafeNativeHandle, name, value.getNumber()); } finally { r.close(); } @@ -235,7 +236,7 @@ public GraphOperationBuilder setAttr(String name, DataType value) { public GraphOperationBuilder setAttr(String name, DataType[] value) { int[] ctypes = new int[value.length]; for (int i = 0; i < value.length; ++i) { - ctypes[i] = value[i].nativeCode(); + ctypes[i] = value[i].getNumber(); } Graph.Reference r = graph.ref(); try { @@ -247,10 +248,10 @@ public GraphOperationBuilder setAttr(String name, DataType[] value) { } @Override - public GraphOperationBuilder setAttr(String name, Tensor value) { + public GraphOperationBuilder setAttr(String name, Tensor value) { Graph.Reference r = graph.ref(); try { - setAttrTensor(unsafeNativeHandle, name, value.nativeHandle()); + setAttrTensor(unsafeNativeHandle, name, value.asRawTensor().nativeHandle()); } finally { r.close(); } @@ -258,11 +259,11 @@ public GraphOperationBuilder setAttr(String name, Tensor value) { } @Override - public GraphOperationBuilder setAttr(String name, Tensor[] value) { + public GraphOperationBuilder setAttr(String name, Tensor[] value) { TF_Tensor[] handles = new TF_Tensor[value.length]; int idx = 0; - for (Tensor t : value) { - handles[idx++] = t.nativeHandle(); + for (Tensor t : value) { + handles[idx++] = t.asRawTensor().nativeHandle(); } Graph.Reference r = graph.ref(); try { diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/Operand.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/Operand.java index fa21f32d4ce..80f62eb5acc 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/Operand.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/Operand.java @@ -15,6 +15,8 @@ package org.tensorflow; +import org.tensorflow.ndarray.Shape; +import org.tensorflow.ndarray.Shaped; import org.tensorflow.op.Op; import org.tensorflow.types.family.TType; @@ -28,18 +30,18 @@ * * // The "decodeJpeg" operation can be used as an operand to the "cast" operation * Operand decodeJpeg = tf.image.decodeJpeg(...); - * tf.dtypes.cast(decodeJpeg, TFloat32.DTYPE); + * tf.dtypes.cast(decodeJpeg, TFloat32.class); * * // The output "y" of the "unique" operation can be used as an operand to the "cast" operation * Output y = tf.unique(...).y(); - * tf.dtypes.cast(y, TFloat32.DTYPE); + * tf.dtypes.cast(y, TFloat32.class); * * // The "split" operation can be used as operand list to the "concat" operation * Iterable> split = tf.split(...); * tf.concat(split, tf.constant(0)); * }

*/ -public interface Operand extends Op { +public interface Operand extends Op, Shaped { /** * Returns the symbolic handle of the tensor. @@ -52,28 +54,29 @@ public interface Operand extends Op { Output asOutput(); /** - * Returns this operand as a tensor. + * Returns the tensor at this operand. * * Only works when running in an eager execution - *

This helper method is equivalent to {@code asOutput().tensor()} * * @return the tensor * @throws IllegalStateException if this is an operand of a graph */ - default Tensor asTensor() { - return asOutput().tensor(); + default T asTensor() { + return asOutput().asTensor(); } /** - * Returns the data of this operand. - * - * Only works when running in an eager execution - *

This helper method is equivalent to {@code asTensor().data()} - * - * @return the tensor data - * @throws IllegalStateException if this is an operand of a graph + * Returns the tensor type of this operand + */ + default Class type() { + return asOutput().type(); + } + + /** + * Returns the (possibly partially known) shape of the tensor referred to by the {@link Output} of this operand. */ - default T data() { - return asOutput().tensor().data(); + @Override + default Shape shape() { + return asOutput().shape(); } } diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/OperationBuilder.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/OperationBuilder.java index af1b8cc9130..a487d8b9237 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/OperationBuilder.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/OperationBuilder.java @@ -16,6 +16,7 @@ package org.tensorflow; import org.tensorflow.ndarray.Shape; +import org.tensorflow.proto.framework.DataType; /** * A builder for {@link Operation}s. @@ -177,7 +178,7 @@ public interface OperationBuilder { * @param value attribute value * @return the OperationBuilder instance for chaining. */ - OperationBuilder setAttr(String name, DataType value); + OperationBuilder setAttr(String name, DataType value); /** * Set the type values of an attribute of the operation being built. @@ -186,7 +187,7 @@ public interface OperationBuilder { * @param value attribute values * @return the OperationBuilder instance for chaining. */ - OperationBuilder setAttr(String name, DataType[] value); + OperationBuilder setAttr(String name, DataType[] value); /** * Set the tensor value of an attribute of the operation being built. @@ -195,7 +196,7 @@ public interface OperationBuilder { * @param value attribute value * @return the OperationBuilder instance for chaining. */ - OperationBuilder setAttr(String name, Tensor value); + OperationBuilder setAttr(String name, Tensor value); /** * Set the tensor values of an attribute of the operation being built. @@ -204,7 +205,7 @@ public interface OperationBuilder { * @param value attribute values * @return the OperationBuilder instance for chaining. */ - OperationBuilder setAttr(String name, Tensor[] value); + OperationBuilder setAttr(String name, Tensor[] value); /** * Set the shape value of an attribute of the operation being built. diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/Output.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/Output.java index a873df8ff4c..9e7dedfdc75 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/Output.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/Output.java @@ -17,7 +17,9 @@ import java.util.Objects; import org.bytedeco.javacpp.Pointer; +import org.tensorflow.internal.types.registry.TensorTypeRegistry; import org.tensorflow.ndarray.Shape; +import org.tensorflow.proto.framework.DataType; import org.tensorflow.types.family.TType; /** @@ -36,35 +38,36 @@ public int index() { return index; } - /** Returns the (possibly partially known) shape of the tensor referred to by this Output. */ - public Shape shape() { - return operation.shape(index); + /** Returns the DataType of the tensor referred to by this Output. */ + @SuppressWarnings("unchecked") + public DataType dataType() { + return operation.dtype(index); } - /** Returns the DataType of the tensor referred to by this Output. */ + /** Returns the type of the tensor referred to by this Output. */ @SuppressWarnings("unchecked") - public DataType dataType() { - return (DataType)operation.dtype(index); + @Override + public Class type() { + return (Class)TensorTypeRegistry.find(dataType()).type(); } /** * Returns this Output object with the type {@code Output}. This method is useful when given a * value of type {@code Output}. * - * @param dt any supported tensor data type + * @param type any supported tensor type * @throws IllegalArgumentException if the actual data type of this object does not match the type * {@code U}. */ @SuppressWarnings("unchecked") - public Output expect(DataType dt) { - if (!dt.equals(this.dataType())) { + public Output expect(Class type) { + if (type != type()) { throw new IllegalArgumentException( - "Cannot cast from output of " + this.dataType() + " to output of " + dt); + "Cannot cast from output of " + this.type().getSimpleName() + " to output of " + type.getSimpleName()); } return ((Output) this); } - /** * Returns the tensor at this output. * @@ -77,11 +80,20 @@ public Output expect(DataType dt) { * * @return tensor * @throws IllegalStateException if this output results from a graph + * @throws ClassCastException if the type of the tensor and this output are unexpectedly incompatible * @see EagerSession */ @SuppressWarnings("unchecked") - public Tensor tensor() { - return (Tensor) operation.tensor(index); + public T asTensor() { + return (T)operation.tensor(index); + } + + /** + * Returns the (possibly partially known) shape of the tensor referred to by this output. + */ + @Override + public Shape shape() { + return operation.shape(index); } @Override diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/RawTensor.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/RawTensor.java new file mode 100644 index 00000000000..c332fd7f1d1 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/RawTensor.java @@ -0,0 +1,233 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +package org.tensorflow; + +import static org.tensorflow.internal.c_api.global.tensorflow.TF_Dim; +import static org.tensorflow.internal.c_api.global.tensorflow.TF_NumDims; +import static org.tensorflow.internal.c_api.global.tensorflow.TF_TensorByteSize; +import static org.tensorflow.internal.c_api.global.tensorflow.TF_TensorType; + +import org.bytedeco.javacpp.PointerScope; +import org.tensorflow.internal.buffer.TensorBuffers; +import org.tensorflow.internal.c_api.TF_Tensor; +import org.tensorflow.internal.types.registry.TensorTypeInfo; +import org.tensorflow.internal.types.registry.TensorTypeRegistry; +import org.tensorflow.ndarray.Shape; +import org.tensorflow.ndarray.buffer.ByteDataBuffer; +import org.tensorflow.proto.framework.DataType; +import org.tensorflow.types.family.TType; + +/** + * A tensor which memory has not been mapped to a data space directly accessible from the JVM. + * + *

A raw tensor is a minimalist representation of a tensor allocated in native memory by the + * TensorFlow runtime library and it controls its lifetime within the current process. The data + * is represented by a flat {@link ByteDataBuffer buffer of bytes}, until it is mapped in a + * n-dimensional typed space by a {@link TType typed tensor}.

+ * + *

Instances of a RawTensor are not thread-safe and their resource must be released + * by calling {@link #close()} explicitly or implicitly via try-with-resources.

+ */ +public final class RawTensor implements Tensor { + + @Override + public DataType dataType() { + return typeInfo.dataType(); + } + + @Override + public long numBytes() { + return TF_TensorByteSize(nativeHandle()); + } + + @Override + public Shape shape() { + return shape; + } + + @Override + public RawTensor asRawTensor() { + return this; + } + + @Override + public void close() { + tensorScope.close(); + } + + /** + * Returns the raw data of this tensor as a buffer of bytes. + * + * @return the tensor bytes + * @throws IllegalStateException if the tensor has been closed + */ + public ByteDataBuffer data() { + if (buffer == null) { + buffer = TensorBuffers.toBytes(nativeHandle()); + } + return buffer; + } + + /** + * Returns a string describing the type and shape of the tensor. + */ + @Override + public String toString() { + return String.format("%s tensor with shape %s", typeInfo.dataType(), shape); + } + + /** + * Allocates a new tensor in native memory of the given type, shape and size. + * + *

The size of the tensor must be at least large enough to contain all scalars for the + * given type and shape. More memory can also be allocated to store also metadata within the + * tensor itself, e.g. a lookup table in a string tensor. + * + * @param type tensor type class + * @param shape shape of the tensor + * @param size size in bytes of the tensor, or -1 to compute the size from the shape + * @return allocated tensor + * @throws IllegalArgumentException if {@code size} is smaller than the minimum space required to + * store the tensor data + * @throws IllegalArgumentException if {@code size} is set to -1 but elements of the given + * {@code type} are of variable length (e.g. strings) + * @throws IllegalArgumentException if {@code shape} is totally or partially + * {@link Shape#hasUnknownDimension() unknown} + * @throws IllegalStateException if tensor failed to be allocated + */ + static RawTensor allocate(Class type, Shape shape, long size) { + if (shape.hasUnknownDimension()) { + throw new IllegalArgumentException( + "Cannot allocate a tensor from a totally or partially unknown shape"); + } + TensorTypeInfo typeInfo = TensorTypeRegistry.find(type); + long allocatedSize = size; + if (allocatedSize < 0) { + if (typeInfo.isVariableLength()) { + throw new IllegalArgumentException( + "Explicit size is required for variable-length tensor types"); + } + allocatedSize = shape.size() * typeInfo.byteSize(); + + } else if (!typeInfo.isVariableLength() && shape.size() * typeInfo.byteSize() > allocatedSize) { + // Minimum requirements for datatypes of variable length cannot be verified in a relevant way so + // we only validate them for fixed length datatypes + throw new IllegalArgumentException( + "Tensor size is not large enough to contain all scalar values"); + } + TF_Tensor nativeHandle = allocate(typeInfo.dataType().getNumber(), shape.asArray(), allocatedSize); + try (PointerScope scope = new PointerScope()) { + scope.attach(nativeHandle); + RawTensor t = new RawTensor(typeInfo, shape); + t.tensorHandle = nativeHandle; + t.tensorScope = scope.extend(); + return t; + } + } + + /** + * Create a Tensor object from a handle to the C TF_Tensor object. + * + *

Takes ownership of the handle. + */ + static RawTensor fromHandle(TF_Tensor handle) { + TensorTypeInfo typeInfo = TensorTypeRegistry.find(DataType.forNumber(dtype(handle))); + RawTensor t = new RawTensor(typeInfo, Shape.of(shape(handle))); + try (PointerScope scope = new PointerScope()) { + scope.attach(handle); + t.tensorHandle = handle; + t.tensorScope = scope.extend(); + } + return t; + } + + /** + * Create an eager Tensor object from a handle to the C TF_Tensor object. + * + *

Takes ownership of the handle. + */ + static RawTensor fromHandle(TF_Tensor handle, EagerSession session) { + RawTensor t = fromHandle(handle); + session.attach(handle); + t.tensorScope.detach(handle); + return t; + } + + /** + * Returns the native handle to this tensor + * @throws IllegalStateException if tensor has been closed + */ + TF_Tensor nativeHandle() { + return requireHandle(tensorHandle); + } + + /** + * Returns a typed reference to this tensor + * + *

In some cases, it is more useful to keep a typed reference to a tensor rather than its raw + * nature to prevent mapping its memory on every access (e.g. when calling {@link Operand#asTensor()}). + * + * @return typed reference to this tensor + */ + TType asTypedTensor() { + return typeInfo.mapper().mapDense(this); + } + + private static TF_Tensor requireHandle(TF_Tensor handle) { + if (handle == null || handle.isNull()) { + throw new IllegalStateException("close() was called on the Tensor"); + } + return handle; + } + + private static TF_Tensor allocate(int dtype, long[] shape, long byteSize) { + TF_Tensor t = TF_Tensor.allocateTensor(dtype, shape, byteSize); + if (t == null || t.isNull()) { + throw new IllegalStateException("unable to allocate memory for the Tensor"); + } + return t; + } + + private static int dtype(TF_Tensor handle) { + requireHandle(handle); + return TF_TensorType(handle); + } + + private static long[] shape(TF_Tensor handle) { + requireHandle(handle); + int numDims = TF_NumDims(handle); + long[] dims = new long[numDims]; + for (int i = 0; i < numDims; ++i) { + dims[i] = TF_Dim(handle, i); + } + return dims; + } + + RawTensor(TensorTypeInfo typeInfo, Shape shape) { + this.typeInfo = typeInfo; + this.shape = shape; + } + + private PointerScope tensorScope; + private TF_Tensor tensorHandle; + private final TensorTypeInfo typeInfo; + private final Shape shape; + private ByteDataBuffer buffer = null; + + static { + TensorFlow.init(); + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/SavedModelBundle.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/SavedModelBundle.java index 093898ae56c..0974cc94a24 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/SavedModelBundle.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/SavedModelBundle.java @@ -301,7 +301,7 @@ public List signatures() { * *

{@code
    * ConcreteFunction myFunction = savedModelBundle.function("mySignatureKey");
-   * Map> outputTensorMap = myFunction.call(session, inputTensorMap);
+   * Map outputTensorMap = myFunction.call(session, inputTensorMap);
    * }
* * @param signatureKey name of the {@code SignatureDef} in the saved model. @@ -334,7 +334,7 @@ public ConcreteFunction function(String signatureKey) { * @return list of output tensors, mapped by the signature name * @throws IllegalArgumentException if no function can be selected by default */ - public Map> call(Map> arguments) { + public Map call(Map arguments) { ConcreteFunction function = null; if (functions.size() == 1) { function = functions.values().iterator().next(); diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/Session.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/Session.java index 4e82f3944b8..e9d517a6548 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/Session.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/Session.java @@ -158,7 +158,7 @@ public final class Runner { * @param t the tensor substituting the operation * @return this session runner */ - public Runner feed(String operation, Tensor t) { + public Runner feed(String operation, Tensor t) { return feed(parseOutput(operation), t); } @@ -173,7 +173,7 @@ public Runner feed(String operation, Tensor t) { * @param t the tensor substituting the operation * @return this session runner */ - public Runner feed(String operation, int index, Tensor t) { + public Runner feed(String operation, int index, Tensor t) { Operation op = operationByName(operation); if (op != null) { inputs.add(op.output(index)); @@ -190,7 +190,7 @@ public Runner feed(String operation, int index, Tensor t) { * @param t the tensor substituting the operation * @return this session runner */ - public Runner feed(Operand operand, Tensor t) { + public Runner feed(Operand operand, Tensor t) { inputs.add(operand.asOutput()); inputTensors.add(t); return this; @@ -325,7 +325,7 @@ public Runner setOptions(RunOptions options) { * * @return list of resulting tensors fetched by this session runner */ - public List> run() { + public List run() { return runHelper(false).outputs; } @@ -354,8 +354,8 @@ private Run runHelper(boolean wantMetadata) { // It's okay to use Operation.getUnsafeNativeHandle() here since the safety depends on the // validity of the Graph and graphRef ensures that. int idx = 0; - for (Tensor t : inputTensors) { - inputTensorHandles[idx++] = t.nativeHandle(); + for (Tensor t : inputTensors) { + inputTensorHandles[idx++] = t.asRawTensor().nativeHandle(); } idx = 0; for (Output o : inputs) { @@ -375,7 +375,7 @@ private Run runHelper(boolean wantMetadata) { } Reference runRef = new Reference(); RunMetadata metadata = null; - List> outputs = new ArrayList<>(); + List outputs = new ArrayList<>(); try { metadata = Session.run( @@ -390,7 +390,7 @@ private Run runHelper(boolean wantMetadata) { wantMetadata, outputs); } catch (Exception e) { - for (Tensor t : outputs) { + for (Tensor t : outputs) { t.close(); } outputs.clear(); @@ -450,10 +450,10 @@ private Output parseOutput(String opName) { } } - private ArrayList> inputs = new ArrayList<>(); - private ArrayList> inputTensors = new ArrayList<>(); - private ArrayList> outputs = new ArrayList<>(); - private ArrayList targets = new ArrayList<>(); + private final ArrayList> inputs = new ArrayList<>(); + private final ArrayList inputTensors = new ArrayList<>(); + private final ArrayList> outputs = new ArrayList<>(); + private final ArrayList targets = new ArrayList<>(); private RunOptions runOptions = null; } @@ -518,7 +518,7 @@ public void save(String prefix) { */ public static final class Run { /** Tensors from requested fetches. */ - public List> outputs; + public List outputs; /** * Metadata about the run. @@ -627,7 +627,7 @@ private static RunMetadata run( int[] outputOpIndices, TF_Operation[] targetOpHandles, boolean wantRunMetadata, - List> outputTensors) { + List outputTensors) { requireHandle(handle); int ninputs = inputTensorHandles.length; @@ -667,7 +667,7 @@ private static RunMetadata run( for (int i = 0; i < noutputs; ++i) { TF_Tensor h = outputValues.get(TF_Tensor.class, i).withDeallocator(); - outputTensors.add(Tensor.fromHandle(h)); + outputTensors.add(RawTensor.fromHandle(h).asTypedTensor()); } try { return runMetadata != null ? RunMetadata.parseFrom(runMetadata.dataAsByteBuffer()) : null; diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/Signature.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/Signature.java index 376dc9039fc..ea32d1fff13 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/Signature.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/Signature.java @@ -18,7 +18,6 @@ import java.util.Map; import java.util.Set; import org.tensorflow.ndarray.Shape; -import org.tensorflow.proto.framework.DataType; import org.tensorflow.proto.framework.SignatureDef; import org.tensorflow.proto.framework.TensorInfo; import org.tensorflow.proto.framework.TensorShapeProto; @@ -113,7 +112,7 @@ private static TensorInfo toTensorInfo(Output operand) { tensorShapeBuilder.addDim(Dim.newBuilder().setSize(shape.size(i))); } return TensorInfo.newBuilder() - .setDtype(DataType.forNumber(operand.dataType().nativeCode())) + .setDtype(operand.dataType()) .setTensorShape(tensorShapeBuilder) .setName(operand.op().name() + ":" + operand.index()) .build(); diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/Tensor.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/Tensor.java index 6787713418f..fc1275229bf 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/Tensor.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/Tensor.java @@ -15,24 +15,20 @@ package org.tensorflow; -import static org.tensorflow.internal.c_api.global.tensorflow.TF_Dim; -import static org.tensorflow.internal.c_api.global.tensorflow.TF_NumDims; -import static org.tensorflow.internal.c_api.global.tensorflow.TF_TensorByteSize; -import static org.tensorflow.internal.c_api.global.tensorflow.TF_TensorType; - import java.util.function.Consumer; -import org.bytedeco.javacpp.PointerScope; -import org.tensorflow.internal.buffer.TensorBuffers; -import org.tensorflow.internal.c_api.TF_Tensor; -import org.tensorflow.ndarray.NdArray; import org.tensorflow.ndarray.Shape; +import org.tensorflow.ndarray.Shaped; import org.tensorflow.ndarray.buffer.ByteDataBuffer; +import org.tensorflow.proto.framework.DataType; import org.tensorflow.types.family.TType; /** - * A statically typed multi-dimensional array whose elements are of a type described by T. + * A statically typed multi-dimensional array. * - *

Instances of a Tensor are not thread-safe. + *

There are two categories of tensors in TensorFlow Java: {@link TType typed tensors} and + * {@link RawTensor raw tensors}. The former maps the tensor native memory to an + * n-dimensional typed data space, allowing direct I/O operations from the JVM, while the latter + * is only a reference to a native tensor allowing basic operations and flat data access.

* *

WARNING: Resources consumed by the Tensor object must be explicitly freed by * invoking the {@link #close()} method when the object is no longer needed. For example, using a @@ -43,67 +39,58 @@ * doSomethingWith(t); * } * }

+ *

Instances of a Tensor are not thread-safe. */ -public final class Tensor implements AutoCloseable { +public interface Tensor extends Shaped, AutoCloseable { /** * Allocates a tensor of a given datatype and shape. * - *

The amount of memory to allocate is derived from the datatype and the shape of the tensor. - * Memory is left uninitialized after this method returns, so it is the responsibility of the - * caller to initialize the tensor data before it is used, via the {@link #data()} accessor. - * For example: + *

The amount of memory to allocate is derived from the datatype and the shape of the tensor, + * and is left uninitialized. * - *

{@code
-   * FloatNdArray data = ...
-   * try (Tensor t = Tensor.of(TFloat32.DTYPE, Shape.of(2, 2))) {
-   *   data.copyTo(t.data());
-   *   ...
-   * }
-   * }
- * - * @param the tensor element type - * @param dtype datatype of the tensor + * @param the tensor type + * @param type the tensor type class * @param shape shape of the tensor * @return an allocated but uninitialized tensor + * @throws IllegalArgumentException if elements of the given {@code type} are of variable length + * (e.g. strings) + * @throws IllegalArgumentException if {@code shape} is totally or partially + * {@link Shape#hasUnknownDimension() unknown} * @throws IllegalStateException if tensor failed to be allocated */ - public static Tensor of(DataType dtype, Shape shape) { - return of(dtype, shape, shape.size() * dtype.byteSize()); + static T of(Class type, Shape shape) { + return of(type, shape, -1); } /** * Allocates a tensor of a given datatype, shape and size. * - *

This method is identical to {@link #of(DataType, Shape)}, except that the final size of the - * tensor is explicitly set instead of computing it from the datatype and shape. + *

This method is identical to {@link #of(Class, Shape)}, except that the final size of the + * tensor can be explicitly set instead of computing it from the datatype and shape, which could be + * larger than the actual space required to store the data but not smaller. * - *

This could be useful for tensor types that stores data but also metadata in the tensor memory, - * like {@link org.tensorflow.types.TString TString}. - * - * @param the tensor element type - * @param dtype datatype of the tensor + * @param the tensor type + * @param type the tensor type class * @param shape shape of the tensor - * @param size size, in bytes, of the tensor + * @param size size in bytes of the tensor or -1 to compute the size from the shape * @return an allocated but uninitialized tensor - * @see #of(DataType, Shape) + * @see #of(Class, Shape) * @throws IllegalArgumentException if {@code size} is smaller than the minimum space required to * store the tensor data + * @throws IllegalArgumentException if {@code size} is set to -1 but elements of the given + * {@code type} are of variable length (e.g. strings) + * @throws IllegalArgumentException if {@code shape} is totally or partially + * {@link Shape#hasUnknownDimension() unknown} * @throws IllegalStateException if tensor failed to be allocated */ - public static Tensor of(DataType dtype, Shape shape, long size) { - // Minimum requirements for datatypes of variable length cannot be verified in a relevant way so - // we only validate them for fixed length datatypes - if (!dtype.isVariableLength() && shape.size() * dtype.byteSize() > size) { - throw new IllegalArgumentException("Tensor size is not large enough to contain all scalar values"); - } - Tensor t = new Tensor<>(dtype, shape); - TF_Tensor nativeHandle = allocate(t.dtype.nativeCode(), shape.asArray(), size); - try (PointerScope scope = new PointerScope()) { - scope.attach(nativeHandle); - t.tensorHandle = nativeHandle; - t.tensorScope = scope.extend(); - return t; + static T of(Class type, Shape shape, long size) { + RawTensor tensor = RawTensor.allocate(type, shape, size); + try { + return (T)tensor.asTypedTensor(); + } catch (Exception e) { + tensor.close(); + throw e; } } @@ -116,7 +103,7 @@ public static Tensor of(DataType dtype, Shape shape, lon * *

{@code
    * FloatNdArray data = ...
-   * try (Tensor t = Tensor.of(TFloat32.DTYPE, Shape.of(2, 2), data::copyTo)) {
+   * try (TFloat32 t = Tensor.of(TFloat32.class, Shape.of(2, 2), data::copyTo)) {
    *   ...
    * }
    * }
@@ -124,45 +111,51 @@ public static Tensor of(DataType dtype, Shape shape, lon *

If {@code dataInitializer} fails and throws an exception, the allocated tensor will be * automatically released before rethrowing the same exception. * - * @param the tensor element type - * @param dtype datatype of the tensor + * @param the tensor type + * @param type the tensor type class * @param shape shape of the tensor * @param dataInitializer method receiving accessor to the allocated tensor data for initialization * @return an allocated and initialized tensor + * @throws IllegalArgumentException if elements of the given {@code type} are of variable length + * (e.g. strings) + * @throws IllegalArgumentException if {@code shape} is totally or partially + * {@link Shape#hasUnknownDimension() unknown} * @throws IllegalStateException if tensor failed to be allocated */ - public static Tensor of(DataType dtype, Shape shape, - Consumer dataInitializer) { - return of(dtype, shape, shape.size() * dtype.byteSize(), dataInitializer); + static T of(Class type, Shape shape, Consumer dataInitializer) { + return of(type, shape, -1, dataInitializer); } /** * Allocates a tensor of a given datatype, shape and size. * - *

This method is identical to {@link #of(DataType, Shape, Consumer)}, except that the final - * size for the tensor is explicitly set instead of being computed from the datatype and shape. + *

This method is identical to {@link #of(Class, Shape, Consumer)}, except that the final + * size for the tensor can be explicitly set instead of being computed from the datatype and shape. * *

This could be useful for tensor types that stores data but also metadata in the tensor memory, - * such as {@link org.tensorflow.types.TString TString}. + * such as the lookup table in a tensor of strings. * - * @param the tensor element type - * @param dtype datatype of the tensor + * @param the tensor type + * @param type the tensor type class * @param shape shape of the tensor - * @param size size, in bytes, of the tensor + * @param size size in bytes of the tensor or -1 to compute the size from the shape * @param dataInitializer method receiving accessor to the allocated tensor data for initialization * @return an allocated and initialized tensor - * @see #of(DataType, Shape, long, Consumer) + * @see #of(Class, Shape, long, Consumer) * @throws IllegalArgumentException if {@code size} is smaller than the minimum space required to * store the tensor data + * @throws IllegalArgumentException if {@code size} is set to -1 but elements of the given + * {@code type} are of variable length (e.g. strings) + * @throws IllegalArgumentException if {@code shape} is totally or partially + * {@link Shape#hasUnknownDimension() unknown} * @throws IllegalStateException if tensor failed to be allocated */ - public static Tensor of(DataType dtype, Shape shape, long size, - Consumer dataInitializer) { - Tensor tensor = of(dtype, shape, size); + static T of(Class type, Shape shape, long size, Consumer dataInitializer) { + T tensor = of(type, shape, size); try { - dataInitializer.accept(tensor.data()); + dataInitializer.accept(tensor); return tensor; - } catch (Throwable t) { + } catch (Exception t) { tensor.close(); throw t; } @@ -174,214 +167,49 @@ public static Tensor of(DataType dtype, Shape shape, lon *

Data must have been encoded into {@code data} as per the specification of the TensorFlow C API. * - * @param the tensor element type - * @param dtype the tensor element data type + * @param the tensor type + * @param type the tensor type class * @param shape the tensor shape. * @param rawData a buffer containing the tensor raw data. - * @throws IllegalArgumentException if {@code rawData} is not large enough to contain the tensor data + * @throws IllegalArgumentException if {@code rawData} is not large enough to contain the tensor + * data + * @throws IllegalArgumentException if {@code shape} is totally or partially + * {@link Shape#hasUnknownDimension() unknown} * @throws IllegalStateException if tensor failed to be allocated with the given parameters */ - public static Tensor of(DataType dtype, Shape shape, ByteDataBuffer rawData) { - Tensor t = of(dtype, shape, rawData.size()); - rawData.copyTo(TensorBuffers.toBytes(t.nativeHandle()), rawData.size()); - return t; + static T of(Class type, Shape shape, ByteDataBuffer rawData) { + return of(type, shape, rawData.size(), t -> rawData.copyTo(t.asRawTensor().data(), rawData.size())); } /** - * Returns this Tensor object with the type {@code Tensor}. This method is useful when given a - * value of type {@code Tensor}. - * - * @param dt any supported tensor data type - * @param a tensor type - * @return a tensor of the requested data type - * @throws IllegalArgumentException if the actual data type of this object does not match the type - * {@code U}. + * Returns the {@link DataType} of elements stored in the tensor. */ - @SuppressWarnings("unchecked") - public Tensor expect(DataType dt) { - if (!dt.equals(this.dtype)) { - throw new IllegalArgumentException( - "Cannot cast from tensor of " + dtype + " to tensor of " + dt); - } - return ((Tensor) this); - } + DataType dataType(); /** - * Release resources associated with the Tensor. - * - *

WARNING:This must be invoked for all tensors that were not been produced by an eager - * operation or memory will be leaked. - * - *

The Tensor object is no longer usable after {@code close} returns. + * Returns the size, in bytes, of the tensor data. */ - @Override - public void close() { - tensorScope.close(); - } - - /** Returns the {@link DataType} of elements stored in the Tensor. */ - public DataType dataType() { - return dtype; - } - - /** Returns the size, in bytes, of the tensor data. */ - public long numBytes() { - if (numBytes == null) { - numBytes = TF_TensorByteSize(tensorHandle); - } - return numBytes; - } + long numBytes(); /** - * Returns the shape of - * the Tensor, i.e., the sizes of each dimension. - * - * @return shape of this tensor + * Returns the shape of the tensor. */ - public Shape shape() { - return shape; - } + @Override + Shape shape(); /** - * Returns the data of this tensor. - * - *

This method returns an accessor to the tensor data as an instance of {@code T}, which - * commonly maps this data to an {@link NdArray NdArray}. Input and - * output operations performed on the returned n-dimensional array are applied directly to the - * tensor native memory. For example: - * - *

{@code
-   * Ops tf = Ops.create();
-   * try (Tensor t = TFloat32.tensorOf(Shape.of(2, 2))) {
-   *   TFloat32 data = t.data();
-   *
-   *   StdArrays.copyTo(data, new float[][] {
-   *     {1.0f, 2.0f},
-   *     {3.0f, 4.0f}
-   *   });
-   *   assertEquals(NdArrays.vectorOf(3.0f, 4.0f), data.getFloat(1));
-   *
-   *   Constant c = tf.constant(t);
-   *   assertEquals(4.0f, c.data().getFloat(1, 1));
-   * }
-   * }
- * - *

Please refer to the documentation of the {@link NdArray NdArray} - * classes for more information on the various techniques to read or write data in an - * n-dimensional space using this data structure. - * - * @return the tensor data mapped to an n-dimensional space - * @throws IllegalStateException if the tensor has been closed - * @see NdArray + * Returns a raw (untyped) representation of this tensor */ - public T data() { - if (data == null) { - data = dtype.map(this); - } else { - nativeHandle(); // Checks that the tensor has not been released or will throw - } - return data; - } + RawTensor asRawTensor(); /** - * Returns the raw data of this tensor as a buffer of bytes. + * Release resources associated with the Tensor. * - *

Use this method to obtain a read-only serializable view of the tensor raw data and must be - * used with care since there is no guard on the element boundaries. For regular input or output - * operations, use {@link #data()}. + *

WARNING:This must be invoked for all tensors that were not been produced by an eager + * operation or memory will be leaked. * - * @return the tensor raw data mapped to a read-only byte buffer - * @throws IllegalStateException if the tensor has been closed + *

The Tensor object is no longer usable after {@code close} returns. */ - public ByteDataBuffer rawData() { - return TensorBuffers.toBytes(nativeHandle(), true); - } - - /** Returns a string describing the type and shape of the Tensor. */ @Override - public String toString() { - return String.format("%s tensor with shape %s", dtype.toString(), shape); - } - - /** - * Create a Tensor object from a handle to the C TF_Tensor object. - * - *

Takes ownership of the handle. - */ - static Tensor fromHandle(TF_Tensor handle) { - Tensor t = new Tensor<>(DataTypes.fromNativeCode(dtype(handle)), Shape.of(shape(handle))); - try (PointerScope scope = new PointerScope()) { - scope.attach(handle); - t.tensorHandle = handle; - t.tensorScope = scope.extend(); - } - return t; - } - - /** - * Create an eager Tensor object from a handle to the C TF_Tensor object. - * - *

Takes ownership of the handle. - */ - static Tensor fromHandle(TF_Tensor handle, EagerSession session) { - Tensor t = fromHandle(handle); - session.attach(handle); - t.tensorScope.detach(handle); - return t; - } - - /** - * @return native handle to this tensor - * @throws IllegalStateException if tensor has been closed - */ - TF_Tensor nativeHandle() { - return requireHandle(tensorHandle); - } - - private PointerScope tensorScope; - private TF_Tensor tensorHandle; - - private static TF_Tensor requireHandle(TF_Tensor handle) { - if (handle == null || handle.isNull()) { - throw new IllegalStateException("close() was called on the Tensor"); - } - return handle; - } - - private static TF_Tensor allocate(int dtype, long[] shape, long byteSize) { - TF_Tensor t = TF_Tensor.allocateTensor(dtype, shape, byteSize); - if (t == null || t.isNull()) { - throw new IllegalStateException("unable to allocate memory for the Tensor"); - } - return t; - } - - private static int dtype(TF_Tensor handle) { - requireHandle(handle); - return TF_TensorType(handle); - } - - private static long[] shape(TF_Tensor handle) { - requireHandle(handle); - int numDims = TF_NumDims(handle); - long[] dims = new long[numDims]; - for (int i = 0; i < numDims; ++i) { - dims[i] = TF_Dim(handle, i); - } - return dims; - } - - private final DataType dtype; - private final Shape shape; - private T data = null; - private Long numBytes = null; - - private Tensor(DataType dtype, Shape shape) { - this.dtype = dtype; - this.shape = shape; - } - - static { - TensorFlow.init(); - } + void close(); } diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/TensorMapper.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/TensorMapper.java new file mode 100644 index 00000000000..2c67fcac807 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/TensorMapper.java @@ -0,0 +1,51 @@ +/* + * Copyright 2020 The TensorFlow Authors. All Rights Reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ======================================================================= + */ +package org.tensorflow; + +import org.tensorflow.internal.c_api.TF_Tensor; +import org.tensorflow.types.family.TType; + +/** + * Maps the native memory of a {@link RawTensor} to a n-dimensional typed data space + * accessible from the JVM. + * + *

Usage of this class is reserved for internal purposes only. + * + * @param tensor type mapped by this object + * @see {@link TType} + */ +public abstract class TensorMapper { + + /** + * Maps the provided dense raw {@code tensor} as a tensor of type {@code T}. + * + * @param tensor the dense tensor to map, in its raw nature + * @return an instance of {@code T} + */ + protected abstract T mapDense(RawTensor tensor); + + /** + * Helper for retrieving the native handle of a raw tensor + * + * @param tensor a raw tensor + * @return the native handle of that tensor + * @throws IllegalStateException if the tensor has been released + */ + protected static TF_Tensor nativeHandle(RawTensor tensor) { + return tensor.nativeHandle(); + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/buffer/ByteSequenceProvider.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/buffer/ByteSequenceProvider.java new file mode 100644 index 00000000000..1a63d551336 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/buffer/ByteSequenceProvider.java @@ -0,0 +1,68 @@ +/* + * Copyright 2020 The TensorFlow Authors. All Rights Reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ======================================================================= + */ +package org.tensorflow.internal.buffer; + +import java.util.Iterator; +import java.util.function.Function; +import org.tensorflow.ndarray.NdArray; + +/** + * Produces sequence of bytes to be stored in a {@link ByteSequenceTensorBuffer}. + * + * @param source of bytes (byte arrays or strings) + */ +public class ByteSequenceProvider implements Iterable { + + /** + * Constructor + * + * @param source source of data + * @param byteExtractor method that converts one value of the source into a sequence of bytes + */ + public ByteSequenceProvider(NdArray source, Function byteExtractor) { + this.source = source; + this.byteExtractor = byteExtractor; + } + + @Override + public Iterator iterator() { + return new Iterator() { + + @Override + public boolean hasNext() { + return scalarIterator.hasNext(); + } + + @Override + public byte[] next() { + return byteExtractor.apply(scalarIterator.next().getObject()); + } + + private final Iterator> scalarIterator = source.scalars().iterator(); + }; + } + + /** + * @return total number of byte sequences that can be produced by this sequencer + */ + long numSequences() { + return source.size(); + } + + private final NdArray source; + private final Function byteExtractor; +} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/buffer/StringTensorBuffer.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/buffer/ByteSequenceTensorBuffer.java similarity index 81% rename from tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/buffer/StringTensorBuffer.java rename to tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/buffer/ByteSequenceTensorBuffer.java index 83cdab33452..e3b9152c6ba 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/buffer/StringTensorBuffer.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/buffer/ByteSequenceTensorBuffer.java @@ -50,23 +50,21 @@ *

After its data has been initialized, the buffer is read-only as it is not possible to change * safely a value without reinitializing the whole data. */ -public class StringTensorBuffer extends AbstractDataBuffer { +public class ByteSequenceTensorBuffer extends AbstractDataBuffer { /** * Computes how many bytes are required to store the given data in a string buffer. * - * @param data data to store eventually by calling {@link #init(NdArray, Function)} - * @param getBytes method that converts one value of the data into a sequence of bytes + * @param byteSequenceProvider produces sequences of bytes * @return number of bytes required to store the data. */ - public static long computeSize(NdArray data, Function getBytes) { + public static long computeSize(ByteSequenceProvider byteSequenceProvider) { // reserve space to store 64-bit offsets - long size = data.size() * Long.BYTES; + long size = byteSequenceProvider.numSequences() * Long.BYTES; // reserve space to store length and data of each values - for (NdArray scalar : data.scalars()) { - byte[] elementBytes = getBytes.apply(scalar.getObject()); - size += elementBytes.length + StringTensorBuffer.varintLength(elementBytes.length); + for (byte[] elementBytes : byteSequenceProvider) { + size += elementBytes.length + ByteSequenceTensorBuffer.varintLength(elementBytes.length); } return size; } @@ -79,14 +77,11 @@ public static long computeSize(NdArray data, Function getBytes * same set of data, calling {@link #computeSize(NdArray, Function)} priory to make sure there is * enough space to store it. * - * @param data data to store - * @param getBytes method that converts one value of the data into a sequence of bytes + * @param byteSequenceProvider produces sequences of bytes to use as the tensor data */ - public void init(NdArray data, Function getBytes) { + public void init(ByteSequenceProvider byteSequenceProvider) { InitDataWriter writer = new InitDataWriter(); - for (NdArray scalar : data.scalars()) { - writer.writeNext(getBytes.apply(scalar.getObject())); - } + byteSequenceProvider.forEach(writer::writeNext); } @Override @@ -129,8 +124,8 @@ public boolean isReadOnly() { @Override public DataBuffer copyTo(DataBuffer dst, long size) { - if (size == size() && dst instanceof StringTensorBuffer) { - StringTensorBuffer tensorDst = (StringTensorBuffer) dst; + if (size == size() && dst instanceof ByteSequenceTensorBuffer) { + ByteSequenceTensorBuffer tensorDst = (ByteSequenceTensorBuffer) dst; if (offsets.size() != size || data.size() != size) { throw new IllegalArgumentException( "Cannot copy string tensor data to another tensor of a different size"); @@ -145,20 +140,20 @@ public DataBuffer copyTo(DataBuffer dst, long size) { @Override public DataBuffer offset(long index) { - return new StringTensorBuffer(offsets.offset(index), data); + return new ByteSequenceTensorBuffer(offsets.offset(index), data); } @Override public DataBuffer narrow(long size) { - return new StringTensorBuffer(offsets.narrow(size), data); + return new ByteSequenceTensorBuffer(offsets.narrow(size), data); } @Override public DataBuffer slice(long index, long size) { - return new StringTensorBuffer(offsets.slice(index, size), data); + return new ByteSequenceTensorBuffer(offsets.slice(index, size), data); } - StringTensorBuffer(LongDataBuffer offsets, ByteDataBuffer data) { + ByteSequenceTensorBuffer(LongDataBuffer offsets, ByteDataBuffer data) { this.offsets = offsets; this.data = data; } diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/buffer/TensorBuffers.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/buffer/TensorBuffers.java index f29396dd321..415c5ca35ef 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/buffer/TensorBuffers.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/buffer/TensorBuffers.java @@ -156,7 +156,7 @@ public static BooleanDataBuffer toBooleans(TF_Tensor nativeTensor) { * @param nativeTensor native reference to the tensor * @return a string buffer */ - public static StringTensorBuffer toStrings(TF_Tensor nativeTensor, long numElements) { + public static ByteSequenceTensorBuffer toStrings(TF_Tensor nativeTensor, long numElements) { Pointer tensorMemory = tensorMemory(nativeTensor); if (TensorRawDataBufferFactory.canBeUsed()) { return TensorRawDataBufferFactory.mapTensorToStrings(tensorMemory, numElements); @@ -173,7 +173,7 @@ public static StringTensorBuffer toStrings(TF_Tensor nativeTensor, long numEleme dataBuffer.position((int)numElements * Long.BYTES); ByteDataBuffer data = DataBuffers.of(dataBuffer.slice()); - return new StringTensorBuffer(offsets, data); + return new ByteSequenceTensorBuffer(offsets, data); } private static Pointer tensorMemory(TF_Tensor nativeTensor) { diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/buffer/TensorRawDataBufferFactory.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/buffer/TensorRawDataBufferFactory.java index 1cfb1c9ab9a..dbaf31f1dcc 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/buffer/TensorRawDataBufferFactory.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/buffer/TensorRawDataBufferFactory.java @@ -57,13 +57,13 @@ static BooleanDataBuffer mapTensorToBooleans(Pointer tensorMemory) { return mapNativeBooleans(tensorMemory.address(), tensorMemory.capacity(), false); } - static StringTensorBuffer mapTensorToStrings(Pointer tensorMemory, long numElements) { + static ByteSequenceTensorBuffer mapTensorToStrings(Pointer tensorMemory, long numElements) { long offsetByteSize = numElements * Long.BYTES; LongDataBuffer offsets = mapNativeLongs(tensorMemory.address(), offsetByteSize, false); ByteDataBuffer data = mapNativeBytes( tensorMemory.address() + offsetByteSize, tensorMemory.capacity() - offsetByteSize, false); - return new StringTensorBuffer(offsets, data); + return new ByteSequenceTensorBuffer(offsets, data); } } diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TBfloat16Mapper.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TBfloat16Mapper.java new file mode 100644 index 00000000000..27688e55779 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TBfloat16Mapper.java @@ -0,0 +1,58 @@ +/* + * Copyright 2020 The TensorFlow Authors. All Rights Reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ======================================================================= + */ +package org.tensorflow.internal.types; + +import org.tensorflow.RawTensor; +import org.tensorflow.TensorMapper; +import org.tensorflow.internal.buffer.TensorBuffers; +import org.tensorflow.ndarray.buffer.FloatDataBuffer; +import org.tensorflow.ndarray.buffer.layout.DataLayouts; +import org.tensorflow.ndarray.impl.dense.FloatDenseNdArray; +import org.tensorflow.types.TBfloat16; + +/** + * Maps memory of {@link org.tensorflow.proto.framework.DataType#DT_BFLOAT16} tensors + * to a n-dimensional data space. + */ +public final class TBfloat16Mapper extends TensorMapper { + + @Override + protected TBfloat16 mapDense(RawTensor tensor) { + FloatDataBuffer buffer = DataLayouts.BFLOAT16.applyTo(TensorBuffers.toShorts(nativeHandle(tensor))); + return new DenseTBfloat16(tensor, buffer); + } + + private static final class DenseTBfloat16 extends FloatDenseNdArray implements TBfloat16 { + + @Override + public Class type() { + return TBfloat16.class; + } + + @Override + public RawTensor asRawTensor() { + return rawTensor; + } + + final RawTensor rawTensor; + + DenseTBfloat16(RawTensor rawTensor, FloatDataBuffer buffer) { + super(buffer, rawTensor.shape()); + this.rawTensor = rawTensor; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TBoolMapper.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TBoolMapper.java new file mode 100644 index 00000000000..ff4c11a521b --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TBoolMapper.java @@ -0,0 +1,57 @@ +/* + * Copyright 2020 The TensorFlow Authors. All Rights Reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ======================================================================= + */ +package org.tensorflow.internal.types; + +import org.tensorflow.RawTensor; +import org.tensorflow.TensorMapper; +import org.tensorflow.internal.buffer.TensorBuffers; +import org.tensorflow.ndarray.buffer.BooleanDataBuffer; +import org.tensorflow.ndarray.impl.dense.BooleanDenseNdArray; +import org.tensorflow.types.TBool; + +/** + * Maps memory of {@link org.tensorflow.proto.framework.DataType#DT_BOOL} tensors + * to a n-dimensional data space. + */ +public final class TBoolMapper extends TensorMapper { + + @Override + protected TBool mapDense(RawTensor tensor) { + BooleanDataBuffer buffer = TensorBuffers.toBooleans(nativeHandle(tensor)); + return new DenseTBool(tensor, buffer); + } + + private static final class DenseTBool extends BooleanDenseNdArray implements TBool { + + @Override + public Class type() { + return TBool.class; + } + + @Override + public RawTensor asRawTensor() { + return rawTensor; + } + + final RawTensor rawTensor; + + DenseTBool(RawTensor rawTensor, BooleanDataBuffer buffer) { + super(buffer, rawTensor.shape()); + this.rawTensor = rawTensor; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TFloat16Mapper.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TFloat16Mapper.java new file mode 100644 index 00000000000..fec84843f57 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TFloat16Mapper.java @@ -0,0 +1,58 @@ +/* + * Copyright 2020 The TensorFlow Authors. All Rights Reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ======================================================================= + */ +package org.tensorflow.internal.types; + +import org.tensorflow.RawTensor; +import org.tensorflow.TensorMapper; +import org.tensorflow.internal.buffer.TensorBuffers; +import org.tensorflow.ndarray.buffer.FloatDataBuffer; +import org.tensorflow.ndarray.buffer.layout.DataLayouts; +import org.tensorflow.ndarray.impl.dense.FloatDenseNdArray; +import org.tensorflow.types.TFloat16; + +/** + * Maps memory of {@link org.tensorflow.proto.framework.DataType#DT_HALF} tensors + * to a n-dimensional data space. + */ +public final class TFloat16Mapper extends TensorMapper { + + @Override + protected TFloat16 mapDense(RawTensor tensor) { + FloatDataBuffer buffer = DataLayouts.FLOAT16.applyTo(TensorBuffers.toShorts(nativeHandle(tensor))); + return new DenseTFloat16(tensor, buffer); + } + + private static final class DenseTFloat16 extends FloatDenseNdArray implements TFloat16 { + + @Override + public Class type() { + return TFloat16.class; + } + + @Override + public RawTensor asRawTensor() { + return rawTensor; + } + + final RawTensor rawTensor; + + DenseTFloat16(RawTensor rawTensor, FloatDataBuffer buffer) { + super(buffer, rawTensor.shape()); + this.rawTensor = rawTensor; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TFloat32Mapper.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TFloat32Mapper.java new file mode 100644 index 00000000000..62fc0d226ac --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TFloat32Mapper.java @@ -0,0 +1,57 @@ +/* + * Copyright 2020 The TensorFlow Authors. All Rights Reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ======================================================================= + */ +package org.tensorflow.internal.types; + +import org.tensorflow.RawTensor; +import org.tensorflow.TensorMapper; +import org.tensorflow.internal.buffer.TensorBuffers; +import org.tensorflow.ndarray.buffer.FloatDataBuffer; +import org.tensorflow.ndarray.impl.dense.FloatDenseNdArray; +import org.tensorflow.types.TFloat32; + +/** + * Maps memory of {@link org.tensorflow.proto.framework.DataType#DT_FLOAT} tensors + * to a n-dimensional data space. + */ +public final class TFloat32Mapper extends TensorMapper { + + @Override + protected TFloat32 mapDense(RawTensor tensor) { + FloatDataBuffer buffer = TensorBuffers.toFloats(nativeHandle(tensor)); + return new DenseTFloat32(tensor, buffer); + } + + private static final class DenseTFloat32 extends FloatDenseNdArray implements TFloat32 { + + @Override + public Class type() { + return TFloat32.class; + } + + @Override + public RawTensor asRawTensor() { + return rawTensor; + } + + final RawTensor rawTensor; + + DenseTFloat32(RawTensor rawTensor, FloatDataBuffer buffer) { + super(buffer, rawTensor.shape()); + this.rawTensor = rawTensor; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TFloat64Mapper.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TFloat64Mapper.java new file mode 100644 index 00000000000..375a7429950 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TFloat64Mapper.java @@ -0,0 +1,57 @@ +/* + * Copyright 2020 The TensorFlow Authors. All Rights Reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ======================================================================= + */ +package org.tensorflow.internal.types; + +import org.tensorflow.RawTensor; +import org.tensorflow.TensorMapper; +import org.tensorflow.internal.buffer.TensorBuffers; +import org.tensorflow.ndarray.buffer.DoubleDataBuffer; +import org.tensorflow.ndarray.impl.dense.DoubleDenseNdArray; +import org.tensorflow.types.TFloat64; + +/** + * Maps memory of {@link org.tensorflow.proto.framework.DataType#DT_DOUBLE} tensors + * to a n-dimensional data space. + */ +public final class TFloat64Mapper extends TensorMapper { + + @Override + protected TFloat64 mapDense(RawTensor tensor) { + DoubleDataBuffer buffer = TensorBuffers.toDoubles(nativeHandle(tensor)); + return new DenseTFloat64(tensor, buffer); + } + + private static final class DenseTFloat64 extends DoubleDenseNdArray implements TFloat64 { + + @Override + public Class type() { + return TFloat64.class; + } + + @Override + public RawTensor asRawTensor() { + return rawTensor; + } + + final RawTensor rawTensor; + + DenseTFloat64(RawTensor rawTensor, DoubleDataBuffer buffer) { + super(buffer, rawTensor.shape()); + this.rawTensor = rawTensor; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TInt32Mapper.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TInt32Mapper.java new file mode 100644 index 00000000000..fa0852a8b09 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TInt32Mapper.java @@ -0,0 +1,57 @@ +/* + * Copyright 2020 The TensorFlow Authors. All Rights Reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ======================================================================= + */ +package org.tensorflow.internal.types; + +import org.tensorflow.RawTensor; +import org.tensorflow.TensorMapper; +import org.tensorflow.internal.buffer.TensorBuffers; +import org.tensorflow.ndarray.buffer.IntDataBuffer; +import org.tensorflow.ndarray.impl.dense.IntDenseNdArray; +import org.tensorflow.types.TInt32; + +/** + * Maps memory of {@link org.tensorflow.proto.framework.DataType#DT_INT32} tensors + * to a n-dimensional data space. + */ +public final class TInt32Mapper extends TensorMapper { + + @Override + protected TInt32 mapDense(RawTensor tensor) { + IntDataBuffer buffer = TensorBuffers.toInts(nativeHandle(tensor)); + return new DenseTInt32(tensor, buffer); + } + + private static final class DenseTInt32 extends IntDenseNdArray implements TInt32 { + + @Override + public Class type() { + return TInt32.class; + } + + @Override + public RawTensor asRawTensor() { + return rawTensor; + } + + final RawTensor rawTensor; + + DenseTInt32(RawTensor rawTensor, IntDataBuffer buffer) { + super(buffer, rawTensor.shape()); + this.rawTensor = rawTensor; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TInt64Mapper.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TInt64Mapper.java new file mode 100644 index 00000000000..c5f2325e25a --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TInt64Mapper.java @@ -0,0 +1,57 @@ +/* + * Copyright 2020 The TensorFlow Authors. All Rights Reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ======================================================================= + */ +package org.tensorflow.internal.types; + +import org.tensorflow.RawTensor; +import org.tensorflow.TensorMapper; +import org.tensorflow.internal.buffer.TensorBuffers; +import org.tensorflow.ndarray.buffer.LongDataBuffer; +import org.tensorflow.ndarray.impl.dense.LongDenseNdArray; +import org.tensorflow.types.TInt64; + +/** + * Maps memory of {@link org.tensorflow.proto.framework.DataType#DT_INT64} tensors + * to a n-dimensional data space. + */ +public final class TInt64Mapper extends TensorMapper { + + @Override + protected TInt64 mapDense(RawTensor tensor) { + LongDataBuffer buffer = TensorBuffers.toLongs(nativeHandle(tensor)); + return new DenseTInt64(tensor, buffer); + } + + private static final class DenseTInt64 extends LongDenseNdArray implements TInt64 { + + @Override + public Class type() { + return TInt64.class; + } + + @Override + public RawTensor asRawTensor() { + return rawTensor; + } + + final RawTensor rawTensor; + + DenseTInt64(RawTensor rawTensor, LongDataBuffer buffer) { + super(buffer, rawTensor.shape()); + this.rawTensor = rawTensor; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TStringInitializer.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TStringInitializer.java new file mode 100644 index 00000000000..74db0f5285c --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TStringInitializer.java @@ -0,0 +1,54 @@ +/* + * Copyright 2020 The TensorFlow Authors. All Rights Reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ======================================================================= + */ +package org.tensorflow.internal.types; + +import java.util.function.Consumer; +import java.util.function.Function; +import org.tensorflow.internal.buffer.ByteSequenceTensorBuffer; +import org.tensorflow.internal.buffer.ByteSequenceProvider; +import org.tensorflow.internal.types.TStringMapper.TStringInternal; +import org.tensorflow.ndarray.NdArray; +import org.tensorflow.types.TString; + +/** + * Helper class for initializing a {@link TString} tensor. + * + * @param source of bytes ({@code byte[]} or {@code String}) + */ +public final class TStringInitializer implements Consumer { + + public TStringInitializer(NdArray source, Function byteExtractor) { + this.byteSequenceProvider = new ByteSequenceProvider<>(source, byteExtractor); + } + + /** + * Compute the minimum size for a tensor to hold all the data provided by the source. + * + * @return minimum tensor size, in bytes + * @see ByteSequenceTensorBuffer#computeSize(ByteSequenceProvider) + */ + public long computeRequiredSize() { + return ByteSequenceTensorBuffer.computeSize(byteSequenceProvider); + } + + @Override + public void accept(TString tensor) { + ((TStringInternal)tensor).init(byteSequenceProvider); + } + + private final ByteSequenceProvider byteSequenceProvider; +} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TStringMapper.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TStringMapper.java new file mode 100644 index 00000000000..de7c6016e0e --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TStringMapper.java @@ -0,0 +1,103 @@ +/* + * Copyright 2020 The TensorFlow Authors. All Rights Reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ======================================================================= + */ +package org.tensorflow.internal.types; + +import java.nio.charset.Charset; +import java.nio.charset.StandardCharsets; +import org.tensorflow.RawTensor; +import org.tensorflow.TensorMapper; +import org.tensorflow.internal.buffer.ByteSequenceProvider; +import org.tensorflow.internal.buffer.ByteSequenceTensorBuffer; +import org.tensorflow.internal.buffer.TensorBuffers; +import org.tensorflow.ndarray.NdArray; +import org.tensorflow.ndarray.NdArrays; +import org.tensorflow.ndarray.buffer.DataBuffer; +import org.tensorflow.ndarray.buffer.layout.DataLayout; +import org.tensorflow.ndarray.buffer.layout.DataLayouts; +import org.tensorflow.ndarray.impl.dense.DenseNdArray; +import org.tensorflow.types.TString; + +/** + * Maps memory of {@link org.tensorflow.proto.framework.DataType#DT_STRING} tensors + * to a n-dimensional data space. + */ +public final class TStringMapper extends TensorMapper { + + private static final DataLayout, String> UTF_8_LAYOUT = + DataLayouts.ofStrings(StandardCharsets.UTF_8); + + @Override + protected TString mapDense(RawTensor tensor) { + ByteSequenceTensorBuffer buffer = TensorBuffers.toStrings(nativeHandle(tensor), tensor.shape().size()); + return new DenseTString(tensor, buffer, UTF_8_LAYOUT); + } + + /** + * Adds package-private methods to all instances of {@code TString} + */ + interface TStringInternal extends TString { + + /** + * Initialize the buffer of this string tensor using the provided byte sequencer. + * + * @param byteSequenceProvider produces sequences of bytes to use as the tensor data + * @param source of bytes ({@code byte[]} or {@code String}) + */ + void init(ByteSequenceProvider byteSequenceProvider); + } + + private static final class DenseTString extends DenseNdArray implements TStringInternal { + + @Override + public void init(ByteSequenceProvider byteSequenceProvider) { + buffer.init(byteSequenceProvider); + } + + @Override + public TString using(Charset charset) { + return new DenseTString(rawTensor, buffer, DataLayouts.ofStrings(charset)); + } + + @Override + public NdArray asBytes() { + return NdArrays.wrap(shape(), buffer); + } + + @Override + public Class type() { + return TString.class; + } + + @Override + public RawTensor asRawTensor() { + return rawTensor; + } + + final RawTensor rawTensor; + final ByteSequenceTensorBuffer buffer; + + DenseTString( + RawTensor rawTensor, + ByteSequenceTensorBuffer buffer, + DataLayout, String> layout + ) { + super(layout.applyTo(buffer), rawTensor.shape()); + this.rawTensor = rawTensor; + this.buffer = buffer; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TUint8Mapper.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TUint8Mapper.java new file mode 100644 index 00000000000..427debd1ac8 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TUint8Mapper.java @@ -0,0 +1,57 @@ +/* + * Copyright 2020 The TensorFlow Authors. All Rights Reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ======================================================================= + */ +package org.tensorflow.internal.types; + +import org.tensorflow.RawTensor; +import org.tensorflow.TensorMapper; +import org.tensorflow.internal.buffer.TensorBuffers; +import org.tensorflow.ndarray.buffer.ByteDataBuffer; +import org.tensorflow.ndarray.impl.dense.ByteDenseNdArray; +import org.tensorflow.types.TUint8; + +/** + * Maps memory of {@link org.tensorflow.proto.framework.DataType#DT_UINT8} tensors + * to a n-dimensional data space. + */ +public final class TUint8Mapper extends TensorMapper { + + @Override + protected TUint8 mapDense(RawTensor tensor) { + ByteDataBuffer buffer = TensorBuffers.toBytes(nativeHandle(tensor)); + return new DenseTUint8(tensor, buffer); + } + + private static final class DenseTUint8 extends ByteDenseNdArray implements TUint8 { + + @Override + public Class type() { + return TUint8.class; + } + + @Override + public RawTensor asRawTensor() { + return rawTensor; + } + + final RawTensor rawTensor; + + DenseTUint8(RawTensor rawTensor, ByteDataBuffer buffer) { + super(buffer, rawTensor.shape()); + this.rawTensor = rawTensor; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/registry/TensorTypeInfo.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/registry/TensorTypeInfo.java new file mode 100644 index 00000000000..a4a89a71649 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/registry/TensorTypeInfo.java @@ -0,0 +1,76 @@ +/* + * Copyright 2020 The TensorFlow Authors. All Rights Reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ======================================================================= + */ +package org.tensorflow.internal.types.registry; + +import org.tensorflow.TensorMapper; +import org.tensorflow.proto.framework.DataType; +import org.tensorflow.types.family.TType; + +/** + * Registered information about a tensor type. + * + * @param the tensor type + */ +public final class TensorTypeInfo { + + /** + * Returns the class of this tensor type + */ + public Class type() { + return type; + } + + /** + * Returns the corresponding data type for this tensor type + */ + public DataType dataType() { + return dataType; + } + + /** + * Returns the number of bytes required to store one element of the corresponding data type, -1 if variable. + */ + public int byteSize() { + return byteSize; + } + + /** + * Returns true if elements of the corresponding data type are of variable length (undefined number of bytes) + */ + public boolean isVariableLength() { + return byteSize < 0; + } + + /** + * Returns an object used to map {@link org.tensorflow.RawTensor raw tensors} to a tensor of this type + */ + public TensorMapper mapper() { + return mapper; + } + + TensorTypeInfo(Class type, DataType dataType, int byteSize, TensorMapper mapper) { + this.type = type; + this.dataType = dataType; + this.byteSize = byteSize; + this.mapper = mapper; + } + + private final Class type; + private final DataType dataType; + private final int byteSize; + private final TensorMapper mapper; +} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/registry/TensorTypeRegistry.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/registry/TensorTypeRegistry.java new file mode 100644 index 00000000000..a30138e0386 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/registry/TensorTypeRegistry.java @@ -0,0 +1,104 @@ +/* + * Copyright 2020 The TensorFlow Authors. All Rights Reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ======================================================================= + */ +package org.tensorflow.internal.types.registry; + +import java.util.HashMap; +import java.util.Map; +import org.tensorflow.TensorMapper; +import org.tensorflow.proto.framework.DataType; +import org.tensorflow.types.TBfloat16; +import org.tensorflow.types.TBool; +import org.tensorflow.types.TFloat16; +import org.tensorflow.types.TFloat32; +import org.tensorflow.types.TFloat64; +import org.tensorflow.types.TInt32; +import org.tensorflow.types.TInt64; +import org.tensorflow.types.TString; +import org.tensorflow.types.TUint8; +import org.tensorflow.types.annotation.TensorType; +import org.tensorflow.types.family.TType; + +/** + * Repository of all registered tensor types. + */ +public final class TensorTypeRegistry { + + /** + * Find registered information about a tensor type from its equivalent data type + * + * @param dataType data type + * @return type registered information + * @throws IllegalArgumentException if no tensor type for this data type has been registered + */ + public static TensorTypeInfo find(DataType dataType) { + TensorTypeInfo typeInfo = TYPES_BY_CODE.get(dataType.getNumber()); + if (typeInfo == null) { + throw new IllegalArgumentException("No tensor type has been registered for data type " + dataType); + } + return (TensorTypeInfo)typeInfo; + } + + /** + * Find registered information about a tensor type from its class + * + * @param type class implementing {@link TType} + * @return type registered information + * @throws IllegalArgumentException if the provided class has not been registered as a tensor type + */ + public static TensorTypeInfo find(Class type) { + TensorTypeInfo typeInfo = TYPES_BY_CLASS.get(type); + if (typeInfo == null) { + throw new IllegalArgumentException("Class \"" + type.getName() + "\" is not registered as a tensor type"); + } + return (TensorTypeInfo)typeInfo; + } + + private static final Map> TYPES_BY_CODE = new HashMap<>(); + private static final Map, TensorTypeInfo> TYPES_BY_CLASS = new HashMap<>(); + + private static void register(Class type) { + TensorType typeAnnot = type.getDeclaredAnnotation(TensorType.class); + if (typeAnnot == null) { + throw new IllegalArgumentException("Class \"" + type.getName() + "\" must be annotated " + + "with @TensorType to be registered as a tensor type"); + } + TensorMapper mapper; + try { + mapper = (TensorMapper)typeAnnot.mapperClass().newInstance(); + } catch (ReflectiveOperationException e) { + throw new IllegalArgumentException("Class \"" + type.getName() + "\" must have a public " + + "parameter-less constructor to be used as a tensor mapper"); + } + TensorTypeInfo typeInfo = new TensorTypeInfo<>(type, typeAnnot.dataType(), typeAnnot.byteSize(), mapper); + TYPES_BY_CLASS.put(type, typeInfo); + TYPES_BY_CODE.put(typeInfo.dataType().getNumber(), typeInfo); + TYPES_BY_CODE.put(typeInfo.dataType().getNumber() + 100, typeInfo); + } + + static { + // TODO (karllessard) scan and registered automatically all annotated tensors types + register(TBool.class); + register(TFloat64.class); + register(TFloat32.class); + register(TFloat16.class); + register(TInt32.class); + register(TInt64.class); + register(TString.class); + register(TUint8.class); + register(TBfloat16.class); + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/Operands.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/Operands.java index ac48da80326..5706ff1f283 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/Operands.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/Operands.java @@ -16,10 +16,14 @@ package org.tensorflow.op; import java.util.ArrayList; +import java.util.Collection; import java.util.List; import org.tensorflow.Operand; import org.tensorflow.OperationBuilder; import org.tensorflow.Output; +import org.tensorflow.internal.types.registry.TensorTypeRegistry; +import org.tensorflow.proto.framework.DataType; +import org.tensorflow.types.family.TType; /** Utilities for manipulating operand related types and lists. */ public final class Operands { @@ -41,6 +45,31 @@ public static Output[] asOutputs(Iterable> inputs) { return outputList.toArray(new Output[outputList.size()]); } + /** + * Converts a tensor type class to a {@link DataType} attribute. + * + * @param type tensor type class + * @return data type + */ + public static DataType toDataType(Class type) { + return TensorTypeRegistry.find(type).dataType(); + } + + /** + * Converts a list of tensor type classes to an array of {@link DataType} attributes. + * + * @param types tensor type classes + * @return an array of data types + */ + public static DataType[] toDataTypes(Collection> types) { + DataType[] dataTypes = new DataType[types.size()]; + int i = 0; + for (Class type : types) { + dataTypes[i++] = toDataType(type); + } + return dataTypes; + } + // Disabled constructor private Operands() {} } diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/Scope.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/Scope.java index 3d39685c7a4..f0b739e074f 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/Scope.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/Scope.java @@ -16,6 +16,8 @@ package org.tensorflow.op; import java.util.ArrayList; + +import org.tensorflow.DeviceSpec; import org.tensorflow.ExecutionEnvironment; import org.tensorflow.OperationBuilder; @@ -83,7 +85,7 @@ public final class Scope { * @param env The execution environment used by the scope. */ public Scope(ExecutionEnvironment env) { - this(env, new NameScope(), new ArrayList<>()); + this(env, new NameScope(), new ArrayList<>(), DeviceSpec.newBuilder().build()); } /** Returns the execution environment used by this scope. */ @@ -105,7 +107,7 @@ public ExecutionEnvironment env() { * @throws IllegalArgumentException if the name is invalid */ public Scope withSubScope(String childScopeName) { - return new Scope(env, nameScope.withSubScope(childScopeName), controlDependencies); + return new Scope(env, nameScope.withSubScope(childScopeName), controlDependencies, deviceSpec); } /** @@ -121,7 +123,19 @@ public Scope withSubScope(String childScopeName) { * @throws IllegalArgumentException if the name is invalid */ public Scope withName(String opName) { - return new Scope(env, nameScope.withName(opName), controlDependencies); + return new Scope(env, nameScope.withName(opName), controlDependencies, deviceSpec); + } + + /** + * Return a new scope that uses the provided device specification for an op. + * + *

Operations created within this scope will place the created operations on the device(s) matching the provided spec. + * + * @param deviceSpec device specification for an operator in the returned scope + * @return a new Scope that uses opName for operations. + */ + public Scope withDevice(DeviceSpec deviceSpec) { + return new Scope(env, nameScope, controlDependencies, deviceSpec); } /** @@ -149,10 +163,11 @@ public String makeOpName(String defaultName) { } private Scope( - ExecutionEnvironment env, NameScope nameScope, Iterable controlDependencies) { + ExecutionEnvironment env, NameScope nameScope, Iterable controlDependencies, DeviceSpec deviceSpec) { this.env = env; this.nameScope = nameScope; this.controlDependencies = controlDependencies; + this.deviceSpec = deviceSpec; } /** @@ -165,7 +180,17 @@ private Scope( * @return a new scope with the provided control dependencies */ public Scope withControlDependencies(Iterable controls) { - return new Scope(env, nameScope, controls); + return new Scope(env, nameScope, controls, deviceSpec); + } + + /** + * Applies device specification and adds each Operand in controlDependencies as a control input to the provided builder. + * + * @param builder OperationBuilder to add control inputs and device specification to + */ + public OperationBuilder apply(OperationBuilder builder) { + builder.setDevice(deviceSpec.toString()); + return applyControlDependencies(builder); } /** @@ -183,4 +208,10 @@ public OperationBuilder applyControlDependencies(OperationBuilder builder) { private final ExecutionEnvironment env; private final Iterable controlDependencies; private final NameScope nameScope; + private final DeviceSpec deviceSpec; + + /** Returns device string from the scope. */ + public String getDeviceString() { + return deviceSpec.toString(); + } } diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Constant.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Constant.java index 6c214cc6819..1b6aee0284b 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Constant.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Constant.java @@ -16,7 +16,6 @@ package org.tensorflow.op.core; import java.nio.charset.Charset; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.Output; @@ -77,7 +76,7 @@ public final class Constant extends RawOp implements Operand */ @Endpoint public static Constant scalarOf(Scope scope, int data) { - try (Tensor value = TInt32.scalarOf(data)) { + try (TInt32 value = TInt32.scalarOf(data)) { return create(scope, value); } } @@ -92,7 +91,7 @@ public static Constant scalarOf(Scope scope, int data) { */ @Endpoint public static Constant vectorOf(Scope scope, int[] data) { - try (Tensor value = TInt32.vectorOf(data)) { + try (TInt32 value = TInt32.vectorOf(data)) { return create(scope, value); } } @@ -122,7 +121,7 @@ public static Constant arrayOf(Scope scope, int... data) { */ @Endpoint public static Constant tensorOf(Scope scope, int[][] data) { - try (Tensor value = TInt32.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, + try (TInt32 value = TInt32.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, t))) { return create(scope, value); } @@ -138,7 +137,7 @@ public static Constant tensorOf(Scope scope, int[][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, int[][][] data) { - try (Tensor value = TInt32.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, + try (TInt32 value = TInt32.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, t))) { return create(scope, value); } @@ -154,7 +153,7 @@ public static Constant tensorOf(Scope scope, int[][][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, int[][][][] data) { - try (Tensor value = TInt32.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, + try (TInt32 value = TInt32.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, t))) { return create(scope, value); } @@ -170,7 +169,7 @@ public static Constant tensorOf(Scope scope, int[][][][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, int[][][][][] data) { - try (Tensor value = TInt32.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, + try (TInt32 value = TInt32.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, t))) { return create(scope, value); } @@ -186,7 +185,7 @@ public static Constant tensorOf(Scope scope, int[][][][][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, int[][][][][][] data) { - try (Tensor value = TInt32.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, + try (TInt32 value = TInt32.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, t))) { return create(scope, value); } @@ -201,7 +200,10 @@ public static Constant tensorOf(Scope scope, int[][][][][][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, IntNdArray data) { - try (Tensor value = TInt32.tensorOf(data)) { + if (data instanceof TInt32) { + return create(scope, (TInt32) data); + } + try (TInt32 value = TInt32.tensorOf(data)) { return create(scope, value); } } @@ -217,7 +219,7 @@ public static Constant tensorOf(Scope scope, IntNdArray data) { */ @Endpoint public static Constant tensorOf(Scope scope, Shape shape, IntDataBuffer data) { - try (Tensor value = TInt32.tensorOf(shape, data)) { + try (TInt32 value = TInt32.tensorOf(shape, data)) { return create(scope, value); } } @@ -231,7 +233,7 @@ public static Constant tensorOf(Scope scope, Shape shape, IntDataBuffer */ @Endpoint public static Constant scalarOf(Scope scope, float data) { - try (Tensor value = TFloat32.scalarOf(data)) { + try (TFloat32 value = TFloat32.scalarOf(data)) { return create(scope, value); } } @@ -246,7 +248,7 @@ public static Constant scalarOf(Scope scope, float data) { */ @Endpoint public static Constant vectorOf(Scope scope, float[] data) { - try (Tensor value = TFloat32.vectorOf(data)) { + try (TFloat32 value = TFloat32.vectorOf(data)) { return create(scope, value); } } @@ -276,7 +278,7 @@ public static Constant arrayOf(Scope scope, float... data) { */ @Endpoint public static Constant tensorOf(Scope scope, float[][] data) { - try (Tensor value = TFloat32.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo( + try (TFloat32 value = TFloat32.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo( data, t))) { return create(scope, value); } @@ -292,7 +294,7 @@ public static Constant tensorOf(Scope scope, float[][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, float[][][] data) { - try (Tensor value = TFloat32.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo( + try (TFloat32 value = TFloat32.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo( data, t))) { return create(scope, value); } @@ -308,7 +310,7 @@ public static Constant tensorOf(Scope scope, float[][][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, float[][][][] data) { - try (Tensor value = TFloat32.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo( + try (TFloat32 value = TFloat32.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo( data, t))) { return create(scope, value); } @@ -324,7 +326,7 @@ public static Constant tensorOf(Scope scope, float[][][][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, float[][][][][] data) { - try (Tensor value = TFloat32.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo( + try (TFloat32 value = TFloat32.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo( data, t))) { return create(scope, value); } @@ -340,7 +342,7 @@ public static Constant tensorOf(Scope scope, float[][][][][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, float[][][][][][] data) { - try (Tensor value = TFloat32.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo( + try (TFloat32 value = TFloat32.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo( data, t))) { return create(scope, value); } @@ -355,7 +357,10 @@ public static Constant tensorOf(Scope scope, float[][][][][][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, FloatNdArray data) { - try (Tensor value = TFloat32.tensorOf(data)) { + if (data instanceof TFloat32) { + return create(scope, (TFloat32) data); + } + try (TFloat32 value = TFloat32.tensorOf(data)) { return create(scope, value); } } @@ -371,7 +376,7 @@ public static Constant tensorOf(Scope scope, FloatNdArray data) { */ @Endpoint public static Constant tensorOf(Scope scope, Shape shape, FloatDataBuffer data) { - try (Tensor value = TFloat32.tensorOf(shape, data)) { + try (TFloat32 value = TFloat32.tensorOf(shape, data)) { return create(scope, value); } } @@ -385,7 +390,7 @@ public static Constant tensorOf(Scope scope, Shape shape, FloatDataBuf */ @Endpoint public static Constant scalarOf(Scope scope, double data) { - try (Tensor value = TFloat64.scalarOf(data)) { + try (TFloat64 value = TFloat64.scalarOf(data)) { return create(scope, value); } } @@ -400,7 +405,7 @@ public static Constant scalarOf(Scope scope, double data) { */ @Endpoint public static Constant vectorOf(Scope scope, double[] data) { - try (Tensor value = TFloat64.vectorOf(data)) { + try (TFloat64 value = TFloat64.vectorOf(data)) { return create(scope, value); } } @@ -430,7 +435,7 @@ public static Constant arrayOf(Scope scope, double... data) { */ @Endpoint public static Constant tensorOf(Scope scope, double[][] data) { - try (Tensor value = TFloat64.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo( + try (TFloat64 value = TFloat64.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo( data, t))) { return create(scope, value); } @@ -446,7 +451,7 @@ public static Constant tensorOf(Scope scope, double[][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, double[][][] data) { - try (Tensor value = TFloat64.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo( + try (TFloat64 value = TFloat64.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo( data, t))) { return create(scope, value); } @@ -462,7 +467,7 @@ public static Constant tensorOf(Scope scope, double[][][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, double[][][][] data) { - try (Tensor value = TFloat64.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo( + try (TFloat64 value = TFloat64.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo( data, t))) { return create(scope, value); } @@ -478,7 +483,7 @@ public static Constant tensorOf(Scope scope, double[][][][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, double[][][][][] data) { - try (Tensor value = TFloat64.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo( + try (TFloat64 value = TFloat64.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo( data, t))) { return create(scope, value); } @@ -494,7 +499,7 @@ public static Constant tensorOf(Scope scope, double[][][][][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, double[][][][][][] data) { - try (Tensor value = TFloat64.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo( + try (TFloat64 value = TFloat64.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo( data, t))) { return create(scope, value); } @@ -509,7 +514,10 @@ public static Constant tensorOf(Scope scope, double[][][][][][] data) */ @Endpoint public static Constant tensorOf(Scope scope, DoubleNdArray data) { - try (Tensor value = TFloat64.tensorOf(data)) { + if (data instanceof TFloat64) { + return create(scope, (TFloat64) data); + } + try (TFloat64 value = TFloat64.tensorOf(data)) { return create(scope, value); } } @@ -525,7 +533,7 @@ public static Constant tensorOf(Scope scope, DoubleNdArray data) { */ @Endpoint public static Constant tensorOf(Scope scope, Shape shape, DoubleDataBuffer data) { - try (Tensor value = TFloat64.tensorOf(shape, data)) { + try (TFloat64 value = TFloat64.tensorOf(shape, data)) { return create(scope, value); } } @@ -539,7 +547,7 @@ public static Constant tensorOf(Scope scope, Shape shape, DoubleDataBu */ @Endpoint public static Constant scalarOf(Scope scope, long data) { - try (Tensor value = TInt64.scalarOf(data)) { + try (TInt64 value = TInt64.scalarOf(data)) { return create(scope, value); } } @@ -554,7 +562,7 @@ public static Constant scalarOf(Scope scope, long data) { */ @Endpoint public static Constant vectorOf(Scope scope, long[] data) { - try (Tensor value = TInt64.vectorOf(data)) { + try (TInt64 value = TInt64.vectorOf(data)) { return create(scope, value); } } @@ -569,7 +577,7 @@ public static Constant vectorOf(Scope scope, long[] data) { */ @Endpoint public static Constant tensorOf(Scope scope, long[][] data) { - try (Tensor value = TInt64.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, + try (TInt64 value = TInt64.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, t))) { return create(scope, value); } @@ -600,7 +608,7 @@ public static Constant arrayOf(Scope scope, long... data) { */ @Endpoint public static Constant tensorOf(Scope scope, long[][][] data) { - try (Tensor value = TInt64.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, + try (TInt64 value = TInt64.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, t))) { return create(scope, value); } @@ -616,7 +624,7 @@ public static Constant tensorOf(Scope scope, long[][][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, long[][][][] data) { - try (Tensor value = TInt64.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, + try (TInt64 value = TInt64.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, t))) { return create(scope, value); } @@ -632,7 +640,7 @@ public static Constant tensorOf(Scope scope, long[][][][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, long[][][][][] data) { - try (Tensor value = TInt64.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, + try (TInt64 value = TInt64.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, t))) { return create(scope, value); } @@ -648,7 +656,7 @@ public static Constant tensorOf(Scope scope, long[][][][][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, long[][][][][][] data) { - try (Tensor value = TInt64.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, + try (TInt64 value = TInt64.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, t))) { return create(scope, value); } @@ -663,7 +671,10 @@ public static Constant tensorOf(Scope scope, long[][][][][][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, LongNdArray data) { - try (Tensor value = TInt64.tensorOf(data)) { + if (data instanceof TInt64) { + return create(scope, (TInt64) data); + } + try (TInt64 value = TInt64.tensorOf(data)) { return create(scope, value); } } @@ -679,7 +690,7 @@ public static Constant tensorOf(Scope scope, LongNdArray data) { */ @Endpoint public static Constant tensorOf(Scope scope, Shape shape, LongDataBuffer data) { - try (Tensor value = TInt64.tensorOf(shape, data)) { + try (TInt64 value = TInt64.tensorOf(shape, data)) { return create(scope, value); } } @@ -693,7 +704,7 @@ public static Constant tensorOf(Scope scope, Shape shape, LongDataBuffer */ @Endpoint public static Constant scalarOf(Scope scope, boolean data) { - try (Tensor value = TBool.scalarOf(data)) { + try (TBool value = TBool.scalarOf(data)) { return create(scope, value); } } @@ -708,7 +719,7 @@ public static Constant scalarOf(Scope scope, boolean data) { */ @Endpoint public static Constant vectorOf(Scope scope, boolean[] data) { - try (Tensor value = TBool.vectorOf(data)) { + try (TBool value = TBool.vectorOf(data)) { return create(scope, value); } } @@ -738,7 +749,7 @@ public static Constant arrayOf(Scope scope, boolean... data) { */ @Endpoint public static Constant tensorOf(Scope scope, boolean[][] data) { - try (Tensor value = TBool.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, + try (TBool value = TBool.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, t))) { return create(scope, value); } @@ -754,7 +765,7 @@ public static Constant tensorOf(Scope scope, boolean[][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, boolean[][][] data) { - try (Tensor value = TBool.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, + try (TBool value = TBool.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, t))) { return create(scope, value); } @@ -770,7 +781,7 @@ public static Constant tensorOf(Scope scope, boolean[][][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, boolean[][][][] data) { - try (Tensor value = TBool.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, + try (TBool value = TBool.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, t))) { return create(scope, value); } @@ -786,7 +797,7 @@ public static Constant tensorOf(Scope scope, boolean[][][][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, boolean[][][][][] data) { - try (Tensor value = TBool.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, + try (TBool value = TBool.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, t))) { return create(scope, value); } @@ -802,7 +813,7 @@ public static Constant tensorOf(Scope scope, boolean[][][][][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, boolean[][][][][][] data) { - try (Tensor value = TBool.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, + try (TBool value = TBool.tensorOf(StdArrays.shapeOf(data), t -> StdArrays.copyTo(data, t))) { return create(scope, value); } @@ -817,7 +828,10 @@ public static Constant tensorOf(Scope scope, boolean[][][][][][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, BooleanNdArray data) { - try (Tensor value = TBool.tensorOf(data)) { + if (data instanceof TBool) { + return create(scope, (TBool) data); + } + try (TBool value = TBool.tensorOf(data)) { return create(scope, value); } } @@ -833,7 +847,7 @@ public static Constant tensorOf(Scope scope, BooleanNdArray data) { */ @Endpoint public static Constant tensorOf(Scope scope, Shape shape, BooleanDataBuffer data) { - try (Tensor value = TBool.tensorOf(shape, data)) { + try (TBool value = TBool.tensorOf(shape, data)) { return create(scope, value); } } @@ -847,7 +861,7 @@ public static Constant tensorOf(Scope scope, Shape shape, BooleanDataBuff */ @Endpoint public static Constant scalarOf(Scope scope, byte data) { - try (Tensor value = TUint8.scalarOf(data)) { + try (TUint8 value = TUint8.scalarOf(data)) { return create(scope, value); } } @@ -862,7 +876,7 @@ public static Constant scalarOf(Scope scope, byte data) { */ @Endpoint public static Constant vectorOf(Scope scope, byte[] data) { - try (Tensor value = TUint8.vectorOf(data)) { + try (TUint8 value = TUint8.vectorOf(data)) { return create(scope, value); } } @@ -892,7 +906,7 @@ public static Constant arrayOf(Scope scope, byte... data) { */ @Endpoint public static Constant tensorOf(Scope scope, byte[][] data) { - try (Tensor value = TUint8.tensorOf(StdArrays.shapeOf(data), d -> StdArrays.copyTo(data, + try (TUint8 value = TUint8.tensorOf(StdArrays.shapeOf(data), d -> StdArrays.copyTo(data, d))) { return create(scope, value); } @@ -908,7 +922,7 @@ public static Constant tensorOf(Scope scope, byte[][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, byte[][][] data) { - try (Tensor value = TUint8.tensorOf(StdArrays.shapeOf(data), d -> StdArrays.copyTo(data, + try (TUint8 value = TUint8.tensorOf(StdArrays.shapeOf(data), d -> StdArrays.copyTo(data, d))) { return create(scope, value); } @@ -924,7 +938,7 @@ public static Constant tensorOf(Scope scope, byte[][][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, byte[][][][] data) { - try (Tensor value = TUint8.tensorOf(StdArrays.shapeOf(data), d -> StdArrays.copyTo(data, + try (TUint8 value = TUint8.tensorOf(StdArrays.shapeOf(data), d -> StdArrays.copyTo(data, d))) { return create(scope, value); } @@ -940,7 +954,7 @@ public static Constant tensorOf(Scope scope, byte[][][][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, byte[][][][][] data) { - try (Tensor value = TUint8.tensorOf(StdArrays.shapeOf(data), d -> StdArrays.copyTo(data, + try (TUint8 value = TUint8.tensorOf(StdArrays.shapeOf(data), d -> StdArrays.copyTo(data, d))) { return create(scope, value); } @@ -956,7 +970,7 @@ public static Constant tensorOf(Scope scope, byte[][][][][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, byte[][][][][][] data) { - try (Tensor value = TUint8.tensorOf(StdArrays.shapeOf(data), d -> StdArrays.copyTo(data, + try (TUint8 value = TUint8.tensorOf(StdArrays.shapeOf(data), d -> StdArrays.copyTo(data, d))) { return create(scope, value); } @@ -971,7 +985,10 @@ public static Constant tensorOf(Scope scope, byte[][][][][][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, ByteNdArray data) { - try (Tensor value = TUint8.tensorOf(data)) { + if (data instanceof TUint8) { + return create(scope, (TUint8) data); + } + try (TUint8 value = TUint8.tensorOf(data)) { return create(scope, value); } } @@ -987,7 +1004,7 @@ public static Constant tensorOf(Scope scope, ByteNdArray data) { */ @Endpoint public static Constant tensorOf(Scope scope, Shape shape, ByteDataBuffer data) { - try (Tensor value = TUint8.tensorOf(shape, data)) { + try (TUint8 value = TUint8.tensorOf(shape, data)) { return create(scope, value); } } @@ -995,8 +1012,9 @@ public static Constant tensorOf(Scope scope, Shape shape, ByteDataBuffer /** * Create a constant with data from the given buffer. * + * @param the tensor type * @param scope is a scope used to add the underlying operation. - * @param type the tensor datatype. + * @param type the tensor type class * @param shape the tensor shape. * @param data a buffer containing the tensor data. * @return a constant of type `type` @@ -1004,9 +1022,9 @@ public static Constant tensorOf(Scope scope, Shape shape, ByteDataBuffer * buffer */ @Endpoint - public static Constant tensorOf(Scope scope, DataType type, Shape shape, + public static Constant tensorOf(Scope scope, Class type, Shape shape, ByteDataBuffer data) { - try (Tensor value = Tensor.of(type, shape, data)) { + try (T value = Tensor.of(type, shape, data)) { return create(scope, value); } } @@ -1020,7 +1038,7 @@ public static Constant tensorOf(Scope scope, DataType ty */ @Endpoint public static Constant scalarOf(Scope scope, String data) { - try (Tensor value = TString.scalarOf(data)) { + try (TString value = TString.scalarOf(data)) { return create(scope, value); } } @@ -1035,7 +1053,7 @@ public static Constant scalarOf(Scope scope, String data) { */ @Endpoint public static Constant scalarOf(Scope scope, Charset charset, String data) { - try (Tensor value = TString.tensorOf(charset, NdArrays.scalarOfObject(data))) { + try (TString value = TString.tensorOf(charset, NdArrays.scalarOfObject(data))) { return create(scope, value); } } @@ -1049,7 +1067,7 @@ public static Constant scalarOf(Scope scope, Charset charset, String da */ public static Constant vectorOf(Scope scope, String[] data) { NdArray src = NdArrays.vectorOfObjects(data); - try (Tensor value = TString.tensorOf(src)) { + try (TString value = TString.tensorOf(src)) { return create(scope, value); } } @@ -1065,7 +1083,7 @@ public static Constant vectorOf(Scope scope, String[] data) { */ @Endpoint public static Constant vectorOf(Scope scope, Charset charset, String[] data) { - try (Tensor value = TString.tensorOf(charset, NdArrays.vectorOfObjects(data))) { + try (TString value = TString.tensorOf(charset, NdArrays.vectorOfObjects(data))) { return Constant.create(scope, value); } } @@ -1112,7 +1130,7 @@ public static Constant arrayOf(Scope scope, Charset charset, String... public static Constant tensorOf(Scope scope, String[][] data) { NdArray src = NdArrays.ofObjects(String.class, StdArrays.shapeOf(data)); StdArrays.copyTo(data, src); - try (Tensor value = TString.tensorOf(src)) { + try (TString value = TString.tensorOf(src)) { return create(scope, value); } } @@ -1127,7 +1145,7 @@ public static Constant tensorOf(Scope scope, String[][] data) { public static Constant tensorOf(Scope scope, String[][][] data) { NdArray src = NdArrays.ofObjects(String.class, StdArrays.shapeOf(data)); StdArrays.copyTo(data, src); - try (Tensor value = TString.tensorOf(src)) { + try (TString value = TString.tensorOf(src)) { return create(scope, value); } } @@ -1142,7 +1160,7 @@ public static Constant tensorOf(Scope scope, String[][][] data) { public static Constant tensorOf(Scope scope, String[][][][] data) { NdArray src = NdArrays.ofObjects(String.class, StdArrays.shapeOf(data)); StdArrays.copyTo(data, src); - try (Tensor value = TString.tensorOf(src)) { + try (TString value = TString.tensorOf(src)) { return create(scope, value); } } @@ -1157,7 +1175,7 @@ public static Constant tensorOf(Scope scope, String[][][][] data) { public static Constant tensorOf(Scope scope, String[][][][][] data) { NdArray src = NdArrays.ofObjects(String.class, StdArrays.shapeOf(data)); StdArrays.copyTo(data, src); - try (Tensor value = TString.tensorOf(src)) { + try (TString value = TString.tensorOf(src)) { return create(scope, value); } } @@ -1172,7 +1190,7 @@ public static Constant tensorOf(Scope scope, String[][][][][] data) { public static Constant tensorOf(Scope scope, String[][][][][][] data) { NdArray src = NdArrays.ofObjects(String.class, StdArrays.shapeOf(data)); StdArrays.copyTo(data, src); - try (Tensor value = TString.tensorOf(src)) { + try (TString value = TString.tensorOf(src)) { return create(scope, value); } } @@ -1187,7 +1205,10 @@ public static Constant tensorOf(Scope scope, String[][][][][][] data) { */ @Endpoint public static Constant tensorOf(Scope scope, NdArray data) { - try (Tensor value = TString.tensorOf(data)) { + if (data instanceof TString) { + return create(scope, (TString) data); + } + try (TString value = TString.tensorOf(data)) { return create(scope, value); } } @@ -1203,7 +1224,7 @@ public static Constant tensorOf(Scope scope, NdArray data) { */ @Endpoint public static Constant tensorOf(Scope scope, Charset charset, NdArray data) { - try (Tensor value = TString.tensorOf(charset, data)) { + try (TString value = TString.tensorOf(charset, data)) { return create(scope, value); } } @@ -1220,7 +1241,7 @@ public static Constant tensorOf(Scope scope, Charset charset, NdArray tensorOf(Scope scope, Shape shape, DataBuffer data) { - try (Tensor value = TString.tensorOf(shape, data)) { + try (TString value = TString.tensorOf(shape, data)) { return create(scope, value); } } @@ -1238,7 +1259,7 @@ public static Constant tensorOf(Scope scope, Shape shape, DataBuffer tensorOf(Scope scope, Charset charset, Shape shape, DataBuffer data) { - try (Tensor value = TString.tensorOf(charset, shape, data)) { + try (TString value = TString.tensorOf(charset, shape, data)) { return create(scope, value); } } @@ -1257,14 +1278,17 @@ public static Constant tensorOf(Scope scope, Shape shape) { } /** - * Create a constant from a Tensor. + * Create a constant by making an immutable copy of {@code tensor}. + * + *

Note: this endpoint cannot be simply called {@code constant} since it will conflict with + * other endpoints accepting an NdArray in parameter {e.g. {@link #tensorOf(Scope, FloatNdArray)}}. * * @param scope is a scope used to add the underlying operation. * @param tensor a Tensor holding the constant value * @return a constant of the same data type as `tensor` */ - @Endpoint - public static Constant create(Scope scope, Tensor tensor) { + @Endpoint(name = "constantOf") + public static Constant create(Scope scope, T tensor) { return new Constant<>( scope .env() diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Gradients.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Gradients.java index 2827276c32c..82edab51d40 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Gradients.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Gradients.java @@ -22,7 +22,6 @@ import org.tensorflow.Graph; import org.tensorflow.Operand; import org.tensorflow.Output; -import org.tensorflow.op.Op; import org.tensorflow.op.Operands; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Helpers.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Helpers.java index f9ce837fe60..59682777966 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Helpers.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Helpers.java @@ -16,7 +16,6 @@ package org.tensorflow.op.core; import org.tensorflow.Operand; -import org.tensorflow.Output; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; @@ -46,8 +45,7 @@ private Helpers() {} */ @Endpoint(name = "variable") public static Variable createVariableWithInit(Scope scope, Operand init, Variable.Options... options) { - Output initOutput = init.asOutput(); - Variable newVar = Variable.create(scope,initOutput.shape(), initOutput.dataType(), options); + Variable newVar = Variable.create(scope, init.shape(), init.type(), options); Assign assignOp = Assign.create(scope, newVar, init); Init.add(scope, assignOp); return newVar; diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Init.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Init.java index e0f64b6b19a..b7b65a973c9 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Init.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Init.java @@ -35,7 +35,7 @@ public final class Init extends RawOp { * try (Session s = new Session(g)) { * s.run(tf.init()); // initialize all variables * - * try (Tensor t = s.runner().fetch(z).run().get(0).expect(TInt32.DTYPE)) { + * try (TInt32 t = (TInt32)s.runner().fetch(z).run().get(0)) { * assertEquals(30, t.data().getInt()); * } * } @@ -62,7 +62,7 @@ public final class Init extends RawOp { * try (SavedModelBundle model = SavedModelBundle.load("/path/to/model", "train")) { * model.session().run(Init.DEFAULT_NAME); * - * try (Tensor t = s.runner().fetch("z").run().get(0).expect(TInt32.DTYPE)) { + * try (TInt32 t = (TInt32)s.runner().fetch("z").run().get(0)) { * assertEquals(30, t.data().getInt()); * } * } diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Ones.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Ones.java new file mode 100644 index 00000000000..a57c05f1940 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Ones.java @@ -0,0 +1,76 @@ +/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ +package org.tensorflow.op.core; + +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.Output; +import org.tensorflow.op.Op; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.op.annotation.Operator; +import org.tensorflow.op.dtypes.Cast; +import org.tensorflow.types.TString; +import org.tensorflow.types.family.TNumber; +import org.tensorflow.types.family.TType; + +/** + * An operator creating a constant initialized with ones of the shape given by `dims`. + * + *

For example, the following expression + *

{@code tf.ones(tf.constant(shape), TFloat32.class)}
+ * is the equivalent of + *
{@code tf.fill(tf.constant(shape), tf.constant(1.0f))}
+ * + * @param constant type + */ +@Operator +public final class Ones implements Op, Operand { + + /** + * Creates a one valued tensor given its type and shape. + * + * @param scope is a scope used to add the underlying operation + * @param dims a 1-D operand that represents the shape of the output tensor + * @param type the output tensor type class. Can not be TString. + * @return a constant tensor initialized with ones + * @throws IllegalArgumentException if the tensor type or shape cannot be initialized with ones. + */ + @Endpoint + public static Ones create(Scope scope, Operand dims, Class type) { + Scope onesScope = scope.withSubScope("Ones"); + if (type == TString.class) { + throw new IllegalArgumentException("Can't create Ones of String DataType"); + } + Operand one = Cast.create(onesScope.withName("One"), Constant.scalarOf(onesScope, 1), type); + return new Ones<>(Fill.create(onesScope.withName("Fill"), dims, one)); + } + + @Override + public Operation op() { + return fill.op(); + } + + @Override + public Output asOutput() { + return fill.asOutput(); + } + + private final Fill fill; + + private Ones(Fill fill) { + this.fill = fill; + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Shapes.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Shapes.java index 613cb729341..2bf2eecc4cb 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Shapes.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Shapes.java @@ -15,16 +15,12 @@ package org.tensorflow.op.core; import java.util.Arrays; - -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.op.Scope; import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.Operator; - -import org.tensorflow.op.math.FloorMod; - import org.tensorflow.op.dtypes.Cast; +import org.tensorflow.op.math.FloorMod; import org.tensorflow.op.math.NotEqual; import org.tensorflow.op.math.Sub; import org.tensorflow.types.TBool; @@ -51,8 +47,8 @@ * Operand numPred = tf.shape.size(predShape, tf.constant(0)); * Operand predFlat = tf.shape.flatten(yPred); * - * Shape predShape64 = tf.shape(yPred, TInt64.DTYPE); - * Operand predSqueezed = tf.shape.squeeze(predShape64, TInt64.DTYPE); + * Shape predShape64 = tf.shape(yPred, TInt64.class); + * Operand predSqueezed = tf.shape.squeeze(predShape64, TInt64.class); * } */ @Operator(group = "shape") @@ -68,7 +64,7 @@ public abstract class Shapes { */ @Endpoint(name = "flatten") public static Operand flatten(Scope scope, Operand operand) { - return flatten(scope, operand, TInt32.DTYPE); + return flatten(scope, operand, TInt32.class); } /** @@ -78,13 +74,13 @@ public static Operand flatten(Scope scope, Operand opera * @param the shape datatype * @param scope current scope * @param operand the operand to flatten - * @param dType the shape datatype + * @param type the shape datatype * @return the reshaped operand */ @Endpoint(name = "flatten") public static Operand flatten( - Scope scope, Operand operand, DataType dType) { - Operand flatShape = flatten(scope, Shape.create(scope, operand, dType), dType); + Scope scope, Operand operand, Class type) { + Operand flatShape = flatten(scope, Shape.create(scope, operand, type), type); return Reshape.create(scope, operand, flatShape); } @@ -97,7 +93,7 @@ public static Operand flatten( */ @Endpoint(name = "flatten") public static Operand flatten(Scope scope, Shape shape) { - return flatten(scope, shape, TInt32.DTYPE); + return flatten(scope, shape, TInt32.class); } /** @@ -106,16 +102,16 @@ public static Operand flatten(Scope scope, Shape shape) { * @param the shape datatype * @param scope current scope * @param shape the TensorFlow shape - * @param dType the shape datatype + * @param type the shape datatype * @return the flattened shape */ @Endpoint(name = "flatten") public static Operand flatten( - Scope scope, Shape shape, DataType dType) { + Scope scope, Shape shape, Class type) { return ExpandDims.create( scope, - size(scope, shape, dType), - Cast.create(scope, Constant.scalarOf(scope, -1), TInt32.DTYPE)); + size(scope, shape, type), + Cast.create(scope, Constant.scalarOf(scope, -1), TInt32.class)); } /** @@ -127,7 +123,7 @@ public static Operand flatten( */ @Endpoint(name = "size") public static Operand size(Scope scope, Shape shape) { - return size(scope, shape, TInt32.DTYPE); + return size(scope, shape, TInt32.class); } /** @@ -136,20 +132,20 @@ public static Operand size(Scope scope, Shape shape) { * @param the type of the shape * @param scope current scope * @param shape the TensorFlow shape - * @param dType the shape datatype + * @param type the shape datatype * @return the size */ @Endpoint(name = "size") public static Operand size( - Scope scope, Shape shape, DataType dType) { + Scope scope, Shape shape, Class type) { Slice dims = Slice.create( scope, shape, - Cast.create(scope, Constant.arrayOf(scope, 0), dType), + Cast.create(scope, Constant.arrayOf(scope, 0), type), ExpandDims.create( scope, - Cast.create(scope, Constant.scalarOf(scope, -1), dType), + Cast.create(scope, Constant.scalarOf(scope, -1), type), Constant.scalarOf(scope, -1))); return ReduceProd.create(scope, dims, Constant.scalarOf(scope, 0)); } @@ -164,7 +160,7 @@ public static Operand size( */ @Endpoint(name = "size") public static Operand size(Scope scope, Shape shape, Operand dim) { - return size(scope, shape, dim, TInt32.DTYPE); + return size(scope, shape, dim, TInt32.class); } /** @@ -174,20 +170,20 @@ public static Operand size(Scope scope, Shape shape, Operand Operand size( - Scope scope, Shape shape, Operand dim, DataType dType) { + Scope scope, Shape shape, Operand dim, Class type) { return Slice.create( scope, shape, - ExpandDims.create(scope, dim, Cast.create(scope, Constant.scalarOf(scope, -1), dType)), + ExpandDims.create(scope, dim, Cast.create(scope, Constant.scalarOf(scope, -1), type)), ExpandDims.create( scope, - Cast.create(scope, Constant.scalarOf(scope, 1), dType), - Cast.create(scope, Constant.scalarOf(scope, -1), dType))); + Cast.create(scope, Constant.scalarOf(scope, 1), type), + Cast.create(scope, Constant.scalarOf(scope, -1), type))); } /** @@ -201,7 +197,7 @@ public static Operand size( @Endpoint(name = "size") public static Operand size( Scope scope, Operand input, Operand dim) { - return size(scope, input, dim, TInt32.DTYPE); + return size(scope, input, dim, TInt32.class); } /** @@ -211,13 +207,13 @@ public static Operand size( * @param scope current scope * @param input the operand * @param dim the dimension - * @param dType the shape datatype + * @param type the shape datatype * @return the size of the specified dimension */ @Endpoint(name = "size") public static Operand size( - Scope scope, Operand input, Operand dim, DataType dType) { - return size(scope, Shape.create(scope, input, dType), dim, dType); + Scope scope, Operand input, Operand dim, Class type) { + return size(scope, Shape.create(scope, input, type), dim, type); } /** @@ -229,7 +225,7 @@ public static Operand size( */ @Endpoint(name = "numDimensions") public static Operand numDimensions(Scope scope, Shape shape) { - return Size.create(scope, shape, TInt32.DTYPE); + return Size.create(scope, shape, TInt32.class); } /** @@ -238,13 +234,13 @@ public static Operand numDimensions(Scope scope, Shape shape) { * @param the shape datatype * @param scope the curren scope * @param shape the shape - * @param dType the shape datatype + * @param type the shape datatype * @return the number of dimensions */ @Endpoint(name = "numDimensions") public static Operand numDimensions( - Scope scope, Shape shape, DataType dType) { - return Size.create(scope, shape, dType); + Scope scope, Shape shape, Class type) { + return Size.create(scope, shape, type); } /** @@ -259,7 +255,7 @@ public static Operand numDimensions( @Endpoint(name = "reduceDims") public static Operand reduceDims( Scope scope, Operand operand, Operand axis) { - return reduceDims(scope, operand, axis, TInt32.DTYPE); + return reduceDims(scope, operand, axis, TInt32.class); } /** @@ -270,14 +266,14 @@ public static Operand reduceDims( * @param scope current scope * @param operand the operand * @param axis the axis - * @param dType the shape datatype + * @param type the shape datatype * @return the reshaped operand */ @Endpoint(name = "reduceDims") public static Operand reduceDims( - Scope scope, Operand operand, Operand axis, DataType dType) { - Shape newShape = Shape.create(scope, operand, dType); - return Reshape.create(scope, operand, reduceDims(scope, newShape, axis, dType)); + Scope scope, Operand operand, Operand axis, Class type) { + Shape newShape = Shape.create(scope, operand, type); + return Reshape.create(scope, operand, reduceDims(scope, newShape, axis, type)); } /** @@ -290,7 +286,7 @@ public static Operand reduceDims( */ @Endpoint(name = "reduceDims") public static Operand reduceDims(Scope scope, Shape shape, Operand axis) { - return reduceDims(scope, shape, axis, TInt32.DTYPE); + return reduceDims(scope, shape, axis, TInt32.class); } /** @@ -300,13 +296,13 @@ public static Operand reduceDims(Scope scope, Shape shape, Opera * @param scope current scope * @param shape the TensorFlow shape * @param axis the axis - * @param dType the shape datatype + * @param type the shape datatype * @return the reduced shape */ @Endpoint(name = "reduceDims") public static Operand reduceDims( - Scope scope, Shape shape, Operand axis, DataType dType) { - Size rank = Size.create(scope, shape, dType); + Scope scope, Shape shape, Operand axis, Class type) { + Size rank = Size.create(scope, shape, type); axis = FloorMod.create(scope, axis, rank); Sub remainder = Sub.create(scope, rank, axis); @@ -314,7 +310,7 @@ public static Operand reduceDims( Slice.create( scope, shape, - Cast.create(scope, Constant.arrayOf(scope, 0), dType), + Cast.create(scope, Constant.arrayOf(scope, 0), type), ExpandDims.create(scope, axis, Constant.scalarOf(scope, -1))); Operand dims2 = @@ -324,7 +320,7 @@ public static Operand reduceDims( ExpandDims.create(scope, axis, Constant.scalarOf(scope, -1)), ExpandDims.create( scope, - Cast.create(scope, Constant.scalarOf(scope, -1), dType), + Cast.create(scope, Constant.scalarOf(scope, -1), type), Constant.scalarOf(scope, -1))); Operand prod = @@ -343,7 +339,7 @@ public static Operand reduceDims( */ @Endpoint(name = "squeeze") public static Operand squeeze(Scope scope, Shape shape) { - return squeeze(scope, shape, TInt32.DTYPE); + return squeeze(scope, shape, TInt32.class); } /** @@ -352,14 +348,14 @@ public static Operand squeeze(Scope scope, Shape shape) { * @param the shape datatype. * @param scope current scope * @param shape the TensorFlow shape - * @param dType the shape datatype. + * @param type the shape datatype. * @return the squeezed shape */ @Endpoint(name = "squeeze") public static Operand squeeze( - Scope scope, Shape shape, DataType dType) { + Scope scope, Shape shape, Class type) { Operand mask = - NotEqual.create(scope, shape, Cast.create(scope, OnesLike.create(scope, shape), dType)); + NotEqual.create(scope, shape, Cast.create(scope, OnesLike.create(scope, shape), type)); return Gather.create(scope, shape, Where.create(scope, mask), Constant.scalarOf(scope, 0)); } @@ -373,7 +369,7 @@ public static Operand squeeze( */ @Endpoint(name = "head") public static Operand head(Scope scope, Shape shape) { - return head(scope, shape, TInt32.DTYPE); + return head(scope, shape, TInt32.class); } /** @@ -381,14 +377,14 @@ public static Operand head(Scope scope, Shape shape) { * * @param scope current scope * @param shape the TensorFlow shape - * @param dType the shape datatype. + * @param type the shape datatype. * @param the shape datatype. * @return a 1-dimensional Operand containing the Shape's first dimension */ @Endpoint(name = "head") public static Operand head( - Scope scope, Shape shape, DataType dType) { - return take(scope, shape, Cast.create(scope, Constant.scalarOf(scope, 1), dType), dType); + Scope scope, Shape shape, Class type) { + return take(scope, shape, Cast.create(scope, Constant.scalarOf(scope, 1), type), type); } /** @@ -403,7 +399,7 @@ public static Operand head( */ @Endpoint(name = "take") public static Operand take(Scope scope, Shape shape, Operand n) { - return take(scope, shape, n, TInt32.DTYPE); + return take(scope, shape, n, TInt32.class); } /** @@ -413,18 +409,18 @@ public static Operand take(Scope scope, Shape shape, Operand the shape datatype. * @return a 1-dimensional operand with the dimensions matching * the first n dimensions of the * shape */ @Endpoint(name = "take") public static Operand take( - Scope scope, Shape shape, Operand n, DataType dType) { + Scope scope, Shape shape, Operand n, Class type) { return Slice.create( scope, shape, - Cast.create(scope, Constant.arrayOf(scope, 0), dType), + Cast.create(scope, Constant.arrayOf(scope, 0), type), ExpandDims.create(scope, n, Constant.scalarOf(scope, -1))); } @@ -439,7 +435,7 @@ public static Operand take( */ @Endpoint(name = "tail") public static Operand tail(Scope scope, Shape shape) { - return tail(scope, shape, TInt32.DTYPE); + return tail(scope, shape, TInt32.class); } /** @@ -448,15 +444,15 @@ public static Operand tail(Scope scope, Shape shape) { * * @param scope current scope * @param shape the TensorFlow shape - * @param dType the shape datatype. + * @param type the shape datatype. * @param the shape datatype. * @return a 1-dimensional Operand that contains the dimension matching the last dimension of the * Shape */ @Endpoint(name = "tail") public static Operand tail( - Scope scope, Shape shape, DataType dType) { - return takeLast(scope, shape, Cast.create(scope, Constant.scalarOf(scope, 1), dType), dType); + Scope scope, Shape shape, Class type) { + return takeLast(scope, shape, Cast.create(scope, Constant.scalarOf(scope, 1), type), type); } /** @@ -472,7 +468,7 @@ public static Operand tail( @Endpoint(name = "takeLast") public static Operand takeLast( Scope scope, Shape shape, Operand n) { - return takeLast(scope, shape, n, TInt32.DTYPE); + return takeLast(scope, shape, n, TInt32.class); } /** @@ -482,16 +478,16 @@ public static Operand takeLast( * @param scope current scope * @param shape the TensorFlow shape * @param n the number of leading dimensions to get, must be <= than the shape's numDimensions() - * @param dType the shape datatype. + * @param type the shape datatype. * @param the shape datatype. * @return a 1-dimensional operand containing the dimensions matching the last n dimensions of the * shape */ @Endpoint(name = "takeLast") public static Operand takeLast( - Scope scope, Shape shape, Operand n, DataType dType) { + Scope scope, Shape shape, Operand n, Class type) { - Size rank = Size.create(scope, shape, dType); + Size rank = Size.create(scope, shape, type); Sub start = Sub.create(scope, rank, n); return Slice.create( scope, @@ -499,7 +495,7 @@ public static Operand takeLast( ExpandDims.create(scope, start, Constant.scalarOf(scope, -1)), ExpandDims.create( scope, - Cast.create(scope, Constant.scalarOf(scope, -1), dType), + Cast.create(scope, Constant.scalarOf(scope, -1), type), Constant.scalarOf(scope, -1))); } diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Zeros.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Zeros.java index 4aad417b117..a5b5bb137c2 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Zeros.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/core/Zeros.java @@ -14,7 +14,6 @@ ==============================================================================*/ package org.tensorflow.op.core; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.Output; @@ -31,7 +30,7 @@ * An operator creating a constant initialized with zeros of the shape given by `dims`. * *

For example, the following expression - *

{@code tf.zeros(tf.constant(shape), TFloat32.DTYPE)
+ *
{@code tf.zeros(tf.constant(shape), TFloat32.class)
* is the equivalent of *
{@code tf.fill(tf.constant(shape), tf.constant(0.0f))
* @@ -51,10 +50,10 @@ public final class Zeros implements Op, Operand { */ @Endpoint @SuppressWarnings("unchecked") - public static Zeros create(Scope scope, Operand dims, DataType type) { + public static Zeros create(Scope scope, Operand dims, Class type) { Scope zerosScope = scope.withSubScope("Zeros"); Operand zero; - if (type == TString.DTYPE) { + if (type == TString.class) { zero = (Operand)Constant.scalarOf(zerosScope.withName("Zero"), ""); } else { zero = Cast.create(zerosScope.withName("Zero"), Constant.scalarOf(zerosScope, 0), type); diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/nn/SigmoidCrossEntropyWithLogits.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/nn/SigmoidCrossEntropyWithLogits.java index 4f3e9569103..92c413f7e52 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/nn/SigmoidCrossEntropyWithLogits.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/nn/SigmoidCrossEntropyWithLogits.java @@ -63,16 +63,16 @@ public class SigmoidCrossEntropyWithLogits { @Endpoint(name = "sigmoidCrossEntropyWithLogits") public static Operand sigmoidCrossEntropyWithLogits( Scope scope, Operand labels, Operand logits) { - if (!isCompatible(labels.asOutput().shape(), logits.asOutput().shape())) { + if (!isCompatible(labels.shape(), logits.shape())) { throw new IllegalArgumentException( String.format( "logits and labels must have the same shape (%s vs %s)", - labels.asOutput().shape().toString(), logits.asOutput().shape())); + labels.shape(), logits.shape())); } scope = scope.withSubScope("SigmoidCrossEntropyWithLogits"); Operand zeros = - Cast.create(scope, ZerosLike.create(scope, logits), logits.asOutput().dataType()); + Cast.create(scope, ZerosLike.create(scope, logits), logits.asOutput().type()); Operand cond = GreaterEqual.create(scope, logits, zeros); Operand reluLogits = Select.create(scope, cond, logits, zeros); diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/nn/SoftmaxCrossEntropyWithLogits.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/nn/SoftmaxCrossEntropyWithLogits.java index 0c8bac697ed..ddeacbea4d4 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/nn/SoftmaxCrossEntropyWithLogits.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/nn/SoftmaxCrossEntropyWithLogits.java @@ -1,6 +1,5 @@ package org.tensorflow.op.nn; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.ndarray.Shape; import org.tensorflow.op.Scope; @@ -73,38 +72,36 @@ public class SoftmaxCrossEntropyWithLogits { public static Operand softmaxCrossEntropyWithLogits( Scope scope, Operand labels, Operand logits, int axis) { scope = scope.withSubScope("SoftmaxCrossEntropyWithLogits"); - axis = axis % logits.asOutput().shape().numDimensions(); + axis = axis % logits.shape().numDimensions(); if (axis < 0) { - axis += logits.asOutput().shape().numDimensions(); + axis += logits.shape().numDimensions(); } - - boolean convertToFloat32 = - logits.asOutput().dataType() == TFloat16.DTYPE - || logits.asOutput().dataType() == TBfloat16.DTYPE; - if (convertToFloat32) { + if (logits.asOutput().type() == TFloat16.class || logits.asOutput().type() == TBfloat16.class) { Operand result = softmaxCrossEntropyWithLogits(scope, - Cast.create(scope, labels, TFloat32.DTYPE), - Cast.create(scope, logits, TFloat32.DTYPE), + Cast.create(scope, labels, TFloat32.class), + Cast.create(scope, logits, TFloat32.class), axis); - return Cast.create(scope, result, logits.asOutput().dataType()); - } else if(!logits.asOutput().dataType().equals(labels.asOutput().dataType())) { + return Cast.create(scope, result, logits.asOutput().type()); + } + + if (logits.asOutput().type() != labels.asOutput().type()) { return softmaxCrossEntropyWithLogits(scope, - Cast.create(scope, labels, logits.asOutput().dataType()), + Cast.create(scope, labels, logits.asOutput().type()), logits, axis); } - Operand inputRank = Cast.create(scope, Rank.create(scope, logits), TInt64.DTYPE); - Shape shape = logits.asOutput().shape(); + Operand inputRank = Cast.create(scope, Rank.create(scope, logits), TInt64.class); + Shape shape = logits.shape(); // Move the dim to the end if dim is not the last dimension. - if (axis != -1 && axis != logits.asOutput().shape().numDimensions() - 1) { + if (axis != -1 && axis != logits.shape().numDimensions() - 1) { logits = moveDimToEnd(scope, logits, axis, inputRank); labels = moveDimToEnd(scope, labels, axis, inputRank); } - Shape inputShape = logits.asOutput().shape(); + Shape inputShape = logits.shape(); logits = flattenOuterDims(scope, logits); labels = flattenOuterDims(scope, labels); @@ -149,7 +146,7 @@ public static Operand softmaxCrossEntr private static Operand flattenOuterDims(Scope scope, Operand logits) { Operand one = Constant.scalarOf(scope, 1L); - Shape shape = logits.asOutput().shape(); + Shape shape = logits.shape(); int ndims = shape.numDimensions(); if (!shape.hasUnknownDimension()) { long product = 1L; @@ -167,13 +164,13 @@ private static Operand flattenOuterDims(Scope scope, Oper } } - Operand rank = Cast.create(scope, Rank.create(scope, logits), TInt64.DTYPE); + Operand rank = Cast.create(scope, Rank.create(scope, logits), TInt64.class); Operand rankMinusOne = Sub.create(scope, rank, one); Operand lastDimSize = Slice.create( scope, - org.tensorflow.op.core.Shape.create(scope, logits, TInt64.DTYPE), + org.tensorflow.op.core.Shape.create(scope, logits, TInt64.class), rankMinusOne, one); Operand concat = @@ -197,15 +194,15 @@ private static Operand flattenOuterDims(Scope scope, Oper */ private static Operand moveDimToEnd( Scope scope, Operand input, int dimIndex, Operand rank) { - DataType rankDType = rank.asOutput().dataType(); - Operand one = Cast.create(scope, Constant.scalarOf(scope, 1), rankDType); + Class rankType = rank.asOutput().type(); + Operand one = Cast.create(scope, Constant.scalarOf(scope, 1), rankType); List> concatList = Arrays.asList( Range.create( - scope, Cast.create(scope, Constant.scalarOf(scope, dimIndex), rankDType), one, one), + scope, Cast.create(scope, Constant.scalarOf(scope, dimIndex), rankType), one, one), Range.create( scope, - Cast.create(scope, Constant.scalarOf(scope, dimIndex + 1), rankDType), + Cast.create(scope, Constant.scalarOf(scope, dimIndex + 1), rankType), one, one)); return Transpose.create( diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/nn/SparseSoftmaxCrossEntropyWithLogits.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/nn/SparseSoftmaxCrossEntropyWithLogits.java index ebd6f74e7d8..54b32bb5c63 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/nn/SparseSoftmaxCrossEntropyWithLogits.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/op/nn/SparseSoftmaxCrossEntropyWithLogits.java @@ -74,16 +74,13 @@ public static Operand sparseSoftmaxCrossE scope = scope.withSubScope("SparseSoftmaxCrossEntropyWithLogits"); /** cannot use generics on preciseLogits as it may be recast later */ Operand preciseLogits = logits; - boolean convertToFloat32 = - logits.asOutput().dataType() == TFloat16.DTYPE - || logits.asOutput().dataType() == TBfloat16.DTYPE; - if (convertToFloat32) { - preciseLogits = Cast.create(scope, logits, TFloat32.DTYPE); + if (logits.asOutput().type() == TFloat16.class || logits.asOutput().type() == TBfloat16.class) { + preciseLogits = Cast.create(scope, logits, TFloat32.class); } - Shape labelsStaticShape = labels.asOutput().shape(); + Shape labelsStaticShape = labels.shape(); org.tensorflow.op.core.Shape labelsShape = org.tensorflow.op.core.Shape.create(scope, labels); - Shape logitsShape = logits.asOutput().shape(); + Shape logitsShape = logits.shape(); Shape logitsShortened = logitsShape.take(logitsShape.numDimensions() - 1); boolean staticShapesFullyDefined = @@ -98,7 +95,7 @@ public static Operand sparseSoftmaxCrossE throw new IllegalArgumentException( String.format( "Rank mismatch: Rank of labels (received %s) should equal rank of logits minus 1 (received %s).", - labelsStaticShape.toString(), logitsShape.toString())); + labelsStaticShape, logitsShape)); } if (staticShapesFullyDefined && !labelsStaticShape.equals(logitsShortened)) { @@ -107,7 +104,7 @@ public static Operand sparseSoftmaxCrossE "Shape mismatch: The shape of labels (received %s) " + "should equal the shape of logits except for the last " + "dimension (received %s).", - labelsStaticShape.toString(), logitsShape.toString())); + labelsStaticShape, logitsShape)); } // Check if no reshapes are required. if (logitsShape.numDimensions() == 2) { @@ -115,8 +112,8 @@ public static Operand sparseSoftmaxCrossE org.tensorflow.op.nn.raw.SparseSoftmaxCrossEntropyWithLogits.create( scope, preciseLogits, labels); Operand loss = smax.loss(); - if (logits.asOutput().dataType() == TFloat16.DTYPE) { - loss = Cast.create(scope, loss, TFloat16.DTYPE); + if (logits.asOutput().type() == TFloat16.class) { + loss = Cast.create(scope, loss, TFloat16.class); } return loss; } @@ -153,8 +150,8 @@ public static Operand sparseSoftmaxCrossE scope, preciseLogits, labels); Operand cost = smax.loss(); cost = Reshape.create(scope, cost, labelsShape); - if (logits.asOutput().dataType() == TFloat16.DTYPE) { - cost = Cast.create(scope, cost, TFloat16.DTYPE); + if (logits.asOutput().type() == TFloat16.class) { + cost = Cast.create(scope, cost, TFloat16.class); } return cost; } diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TBfloat16.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TBfloat16.java index 50f6ea49b06..ef20b5ec2b6 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TBfloat16.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TBfloat16.java @@ -18,18 +18,16 @@ package org.tensorflow.types; import java.util.function.Consumer; -import org.tensorflow.DataType; import org.tensorflow.Tensor; import org.tensorflow.exceptions.TensorFlowException; -import org.tensorflow.internal.buffer.TensorBuffers; -import org.tensorflow.internal.c_api.TF_Tensor; -import org.tensorflow.ndarray.Shape; -import org.tensorflow.ndarray.buffer.FloatDataBuffer; -import org.tensorflow.ndarray.buffer.layout.DataLayouts; +import org.tensorflow.internal.types.TBfloat16Mapper; import org.tensorflow.ndarray.FloatNdArray; import org.tensorflow.ndarray.NdArray; +import org.tensorflow.ndarray.Shape; import org.tensorflow.ndarray.StdArrays; -import org.tensorflow.ndarray.impl.dense.FloatDenseNdArray; +import org.tensorflow.ndarray.buffer.FloatDataBuffer; +import org.tensorflow.proto.framework.DataType; +import org.tensorflow.types.annotation.TensorType; import org.tensorflow.types.family.TFloating; /** @@ -48,12 +46,8 @@ *

Note that some CPUs support the bfloat16 format natively, which can result in faster * computation compared to {@link TFloat16} when GPUs are not used. */ +@TensorType(dataType = DataType.DT_BFLOAT16, byteSize = 2, mapperClass = TBfloat16Mapper.class) public interface TBfloat16 extends FloatNdArray, TFloating { - /** readable-name for the data type */ - static final String NAME = "BFLOAT16"; - - /** Type metadata */ - DataType DTYPE = DataType.create(NAME, 14, 2, TBfloat16Impl::mapTensor); /** * Allocates a new tensor for storing a single float value. @@ -61,8 +55,8 @@ public interface TBfloat16 extends FloatNdArray, TFloating { * @param value float to store in the new tensor * @return the new tensor */ - static Tensor scalarOf(float value) { - return Tensor.of(DTYPE, Shape.scalar(), data -> data.setFloat(value)); + static TBfloat16 scalarOf(float value) { + return Tensor.of(TBfloat16.class, Shape.scalar(), data -> data.setFloat(value)); } /** @@ -71,11 +65,11 @@ static Tensor scalarOf(float value) { * @param values floats to store in the new tensor * @return the new tensor */ - static Tensor vectorOf(float... values) { + static TBfloat16 vectorOf(float... values) { if (values == null) { throw new IllegalArgumentException(); } - return Tensor.of(DTYPE, Shape.of(values.length), data -> StdArrays.copyTo(values, data)); + return Tensor.of(TBfloat16.class, Shape.of(values.length), data -> StdArrays.copyTo(values, data)); } /** @@ -86,8 +80,8 @@ static Tensor vectorOf(float... values) { * @param src the source array giving the shape and data to the new tensor * @return the new tensor */ - static Tensor tensorOf(NdArray src) { - return Tensor.of(DTYPE, src.shape(), src::copyTo); + static TBfloat16 tensorOf(NdArray src) { + return Tensor.of(TBfloat16.class, src.shape(), src::copyTo); } /** @@ -96,8 +90,8 @@ static Tensor tensorOf(NdArray src) { * @param shape shape of the tensor to allocate * @return the new tensor */ - static Tensor tensorOf(Shape shape) { - return Tensor.of(DTYPE, shape); + static TBfloat16 tensorOf(Shape shape) { + return Tensor.of(TBfloat16.class, shape); } /** @@ -107,8 +101,8 @@ static Tensor tensorOf(Shape shape) { * @param data buffer of floats to initialize the tensor with * @return the new tensor */ - static Tensor tensorOf(Shape shape, FloatDataBuffer data) { - return Tensor.of(DTYPE, shape, d -> d.write(data)); + static TBfloat16 tensorOf(Shape shape, FloatDataBuffer data) { + return Tensor.of(TBfloat16.class, shape, d -> d.write(data)); } /** @@ -119,20 +113,8 @@ static Tensor tensorOf(Shape shape, FloatDataBuffer data) { * @return the new tensor * @throws TensorFlowException if the tensor cannot be allocated or initialized */ - static Tensor tensorOf(Shape shape, Consumer dataInit) { - return Tensor.of(DTYPE, shape, dataInit); + static TBfloat16 tensorOf(Shape shape, Consumer dataInit) { + return Tensor.of(TBfloat16.class, shape, dataInit); } } -/** Hidden implementation of a {@code TBfloat16} */ -class TBfloat16Impl extends FloatDenseNdArray implements TBfloat16 { - - static TBfloat16 mapTensor(TF_Tensor nativeTensor, Shape shape) { - return new TBfloat16Impl( - DataLayouts.BFLOAT16.applyTo(TensorBuffers.toShorts(nativeTensor)), shape); - } - - private TBfloat16Impl(FloatDataBuffer buffer, Shape shape) { - super(buffer, shape); - } -} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TBool.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TBool.java index 3cc72101893..0158c12b910 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TBool.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TBool.java @@ -17,22 +17,20 @@ package org.tensorflow.types; -import org.tensorflow.DataType; +import java.util.function.Consumer; import org.tensorflow.Tensor; import org.tensorflow.exceptions.TensorFlowException; -import org.tensorflow.internal.buffer.TensorBuffers; -import org.tensorflow.internal.c_api.TF_Tensor; +import org.tensorflow.internal.types.TBoolMapper; import org.tensorflow.ndarray.BooleanNdArray; import org.tensorflow.ndarray.NdArray; import org.tensorflow.ndarray.Shape; import org.tensorflow.ndarray.StdArrays; import org.tensorflow.ndarray.buffer.BooleanDataBuffer; import org.tensorflow.ndarray.buffer.layout.DataLayouts; -import org.tensorflow.ndarray.impl.dense.BooleanDenseNdArray; +import org.tensorflow.proto.framework.DataType; +import org.tensorflow.types.annotation.TensorType; import org.tensorflow.types.family.TType; -import java.util.function.Consumer; - /** * Boolean tensor type. * @@ -40,12 +38,8 @@ * explicit mapping between Java boolean values and byte buffers using the {@link DataLayouts#BOOL * BOOL} layout, which may impact I/O performances. */ +@TensorType(dataType = DataType.DT_BOOL, byteSize = 1, mapperClass = TBoolMapper.class) public interface TBool extends BooleanNdArray, TType { - /** readable-name for the data type */ - static final String NAME = "BOOL"; - - /** Type metadata */ - DataType DTYPE = DataType.create(NAME, 10, 1, TBoolImpl::mapTensor); /** * Allocates a new tensor for storing a single boolean value. @@ -53,8 +47,8 @@ public interface TBool extends BooleanNdArray, TType { * @param value boolean to store in the new tensor * @return the new tensor */ - static Tensor scalarOf(boolean value) { - return Tensor.of(DTYPE, Shape.scalar(), data -> data.setBoolean(value)); + static TBool scalarOf(boolean value) { + return Tensor.of(TBool.class, Shape.scalar(), data -> data.setBoolean(value)); } /** @@ -63,11 +57,11 @@ static Tensor scalarOf(boolean value) { * @param values booleans to store in the new tensor * @return the new tensor */ - static Tensor vectorOf(boolean... values) { + static TBool vectorOf(boolean... values) { if (values == null) { throw new IllegalArgumentException(); } - return Tensor.of(DTYPE, Shape.of(values.length), data -> StdArrays.copyTo(values, data)); + return Tensor.of(TBool.class, Shape.of(values.length), data -> StdArrays.copyTo(values, data)); } /** @@ -78,8 +72,8 @@ static Tensor vectorOf(boolean... values) { * @param src the source array giving the shape and data to the new tensor * @return the new tensor */ - static Tensor tensorOf(NdArray src) { - return Tensor.of(DTYPE, src.shape(), src::copyTo); + static TBool tensorOf(NdArray src) { + return Tensor.of(TBool.class, src.shape(), src::copyTo); } /** @@ -88,8 +82,8 @@ static Tensor tensorOf(NdArray src) { * @param shape shape of the tensor to allocate * @return the new tensor */ - static Tensor tensorOf(Shape shape) { - return Tensor.of(DTYPE, shape); + static TBool tensorOf(Shape shape) { + return Tensor.of(TBool.class, shape); } /** @@ -99,8 +93,8 @@ static Tensor tensorOf(Shape shape) { * @param data buffer of booleans to initialize the tensor with * @return the new tensor */ - static Tensor tensorOf(Shape shape, BooleanDataBuffer data) { - return Tensor.of(DTYPE, shape, d -> d.write(data)); + static TBool tensorOf(Shape shape, BooleanDataBuffer data) { + return Tensor.of(TBool.class, shape, d -> d.write(data)); } /** @@ -111,19 +105,7 @@ static Tensor tensorOf(Shape shape, BooleanDataBuffer data) { * @return the new tensor * @throws TensorFlowException if the tensor cannot be allocated or initialized */ - static Tensor tensorOf(Shape shape, Consumer dataInit) { - return Tensor.of(DTYPE, shape, dataInit); - } -} - -/** Hidden implementation of a {@code TBool} */ -class TBoolImpl extends BooleanDenseNdArray implements TBool { - - static TBool mapTensor(TF_Tensor nativeTensor, Shape shape) { - return new TBoolImpl(TensorBuffers.toBooleans(nativeTensor), shape); - } - - private TBoolImpl(BooleanDataBuffer buffer, Shape shape) { - super(buffer, shape); + static TBool tensorOf(Shape shape, Consumer dataInit) { + return Tensor.of(TBool.class, shape, dataInit); } } diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TFloat16.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TFloat16.java index 0cd441a1ff1..a43a0831f10 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TFloat16.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TFloat16.java @@ -18,18 +18,16 @@ package org.tensorflow.types; import java.util.function.Consumer; -import org.tensorflow.DataType; import org.tensorflow.Tensor; import org.tensorflow.exceptions.TensorFlowException; -import org.tensorflow.internal.buffer.TensorBuffers; -import org.tensorflow.internal.c_api.TF_Tensor; -import org.tensorflow.ndarray.Shape; -import org.tensorflow.ndarray.buffer.FloatDataBuffer; -import org.tensorflow.ndarray.buffer.layout.DataLayouts; +import org.tensorflow.internal.types.TFloat16Mapper; import org.tensorflow.ndarray.FloatNdArray; import org.tensorflow.ndarray.NdArray; +import org.tensorflow.ndarray.Shape; import org.tensorflow.ndarray.StdArrays; -import org.tensorflow.ndarray.impl.dense.FloatDenseNdArray; +import org.tensorflow.ndarray.buffer.FloatDataBuffer; +import org.tensorflow.proto.framework.DataType; +import org.tensorflow.types.annotation.TensorType; import org.tensorflow.types.family.TFloating; /** @@ -45,22 +43,17 @@ * most CPUs do not support this format natively. For CPU computation on 16-bit floats, the {@link * TBfloat16} tensor type might be a better option. */ +@TensorType(dataType = DataType.DT_HALF, byteSize = 2, mapperClass = TFloat16Mapper.class) public interface TFloat16 extends FloatNdArray, TFloating { - /** readable-name for the data type */ - static final String NAME = "FLOAT16"; - - /** Type metadata */ - DataType DTYPE = DataType.create(NAME, 19, 2, TFloat16Impl::mapTensor); - /** * Allocates a new tensor for storing a single float value. * * @param value float to store in the new tensor * @return the new tensor */ - static Tensor scalarOf(float value) { - return Tensor.of(DTYPE, Shape.scalar(), data -> data.setFloat(value)); + static TFloat16 scalarOf(float value) { + return Tensor.of(TFloat16.class, Shape.scalar(), data -> data.setFloat(value)); } /** @@ -69,11 +62,11 @@ static Tensor scalarOf(float value) { * @param values floats to store in the new tensor * @return the new tensor */ - static Tensor vectorOf(float... values) { + static TFloat16 vectorOf(float... values) { if (values == null) { throw new IllegalArgumentException(); } - return Tensor.of(DTYPE, Shape.of(values.length), data -> StdArrays.copyTo(values, data)); + return Tensor.of(TFloat16.class, Shape.of(values.length), data -> StdArrays.copyTo(values, data)); } /** @@ -84,8 +77,8 @@ static Tensor vectorOf(float... values) { * @param src the source array giving the shape and data to the new tensor * @return the new tensor */ - static Tensor tensorOf(NdArray src) { - return Tensor.of(DTYPE, src.shape(), src::copyTo); + static TFloat16 tensorOf(NdArray src) { + return Tensor.of(TFloat16.class, src.shape(), src::copyTo); } /** @@ -94,8 +87,8 @@ static Tensor tensorOf(NdArray src) { * @param shape shape of the tensor to allocate * @return the new tensor */ - static Tensor tensorOf(Shape shape) { - return Tensor.of(DTYPE, shape); + static TFloat16 tensorOf(Shape shape) { + return Tensor.of(TFloat16.class, shape); } /** @@ -105,8 +98,8 @@ static Tensor tensorOf(Shape shape) { * @param data buffer of floats to initialize the tensor with * @return the new tensor */ - static Tensor tensorOf(Shape shape, FloatDataBuffer data) { - return Tensor.of(DTYPE, shape, d -> d.write(data)); + static TFloat16 tensorOf(Shape shape, FloatDataBuffer data) { + return Tensor.of(TFloat16.class, shape, d -> d.write(data)); } /** @@ -117,20 +110,7 @@ static Tensor tensorOf(Shape shape, FloatDataBuffer data) { * @return the new tensor * @throws TensorFlowException if the tensor cannot be allocated or initialized */ - static Tensor tensorOf(Shape shape, Consumer dataInit) { - return Tensor.of(DTYPE, shape, dataInit); - } -} - -/** Hidden implementation of a {@code TFloat16} */ -class TFloat16Impl extends FloatDenseNdArray implements TFloat16 { - - static TFloat16 mapTensor(TF_Tensor nativeTensor, Shape shape) { - return new TFloat16Impl( - DataLayouts.FLOAT16.applyTo(TensorBuffers.toShorts(nativeTensor)), shape); - } - - private TFloat16Impl(FloatDataBuffer buffer, Shape shape) { - super(buffer, shape); + static TFloat16 tensorOf(Shape shape, Consumer dataInit) { + return Tensor.of(TFloat16.class, shape, dataInit); } } diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TFloat32.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TFloat32.java index 571ec118ddc..35208f7de43 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TFloat32.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TFloat32.java @@ -18,36 +18,30 @@ package org.tensorflow.types; import java.util.function.Consumer; -import org.tensorflow.DataType; import org.tensorflow.Tensor; import org.tensorflow.exceptions.TensorFlowException; -import org.tensorflow.internal.buffer.TensorBuffers; -import org.tensorflow.internal.c_api.TF_Tensor; -import org.tensorflow.ndarray.Shape; -import org.tensorflow.ndarray.buffer.FloatDataBuffer; +import org.tensorflow.internal.types.TFloat32Mapper; import org.tensorflow.ndarray.FloatNdArray; import org.tensorflow.ndarray.NdArray; +import org.tensorflow.ndarray.Shape; import org.tensorflow.ndarray.StdArrays; -import org.tensorflow.ndarray.impl.dense.FloatDenseNdArray; +import org.tensorflow.ndarray.buffer.FloatDataBuffer; +import org.tensorflow.proto.framework.DataType; +import org.tensorflow.types.annotation.TensorType; import org.tensorflow.types.family.TFloating; /** IEEE-754 single-precision 32-bit float tensor type. */ +@TensorType(dataType = DataType.DT_FLOAT, byteSize = 4, mapperClass = TFloat32Mapper.class) public interface TFloat32 extends FloatNdArray, TFloating { - /** readable-name for the data type */ - static final String NAME = "FLOAT"; - - /** Type metadata */ - DataType DTYPE = DataType.create(NAME, 1, 4, TFloat32Impl::mapTensor); - /** * Allocates a new tensor for storing a single float value. * * @param value float to store in the new tensor * @return the new tensor */ - static Tensor scalarOf(float value) { - return Tensor.of(DTYPE, Shape.scalar(), data -> data.setFloat(value)); + static TFloat32 scalarOf(float value) { + return Tensor.of(TFloat32.class, Shape.scalar(), data -> data.setFloat(value)); } /** @@ -56,11 +50,11 @@ static Tensor scalarOf(float value) { * @param values floats to store in the new tensor * @return the new tensor */ - static Tensor vectorOf(float... values) { + static TFloat32 vectorOf(float... values) { if (values == null) { throw new IllegalArgumentException(); } - return Tensor.of(DTYPE, Shape.of(values.length), data -> StdArrays.copyTo(values, data)); + return Tensor.of(TFloat32.class, Shape.of(values.length), data -> StdArrays.copyTo(values, data)); } /** @@ -71,8 +65,8 @@ static Tensor vectorOf(float... values) { * @param src the source array giving the shape and data to the new tensor * @return the new tensor */ - static Tensor tensorOf(NdArray src) { - return Tensor.of(DTYPE, src.shape(), src::copyTo); + static TFloat32 tensorOf(NdArray src) { + return Tensor.of(TFloat32.class, src.shape(), src::copyTo); } /** @@ -81,8 +75,8 @@ static Tensor tensorOf(NdArray src) { * @param shape shape of the tensor to allocate * @return the new tensor */ - static Tensor tensorOf(Shape shape) { - return Tensor.of(DTYPE, shape); + static TFloat32 tensorOf(Shape shape) { + return Tensor.of(TFloat32.class, shape); } /** @@ -92,8 +86,8 @@ static Tensor tensorOf(Shape shape) { * @param data buffer of floats to initialize the tensor with * @return the new tensor */ - static Tensor tensorOf(Shape shape, FloatDataBuffer data) { - return Tensor.of(DTYPE, shape, d -> d.write(data)); + static TFloat32 tensorOf(Shape shape, FloatDataBuffer data) { + return Tensor.of(TFloat32.class, shape, d -> d.write(data)); } /** @@ -104,19 +98,7 @@ static Tensor tensorOf(Shape shape, FloatDataBuffer data) { * @return the new tensor * @throws TensorFlowException if the tensor cannot be allocated or initialized */ - static Tensor tensorOf(Shape shape, Consumer dataInit) { - return Tensor.of(DTYPE, shape, dataInit); - } -} - -/** Hidden implementation of a {@code TFloat32} */ -class TFloat32Impl extends FloatDenseNdArray implements TFloat32 { - - static TFloat32 mapTensor(TF_Tensor nativeTensor, Shape shape) { - return new TFloat32Impl(TensorBuffers.toFloats(nativeTensor), shape); - } - - private TFloat32Impl(FloatDataBuffer buffer, Shape shape) { - super(buffer, shape); + static TFloat32 tensorOf(Shape shape, Consumer dataInit) { + return Tensor.of(TFloat32.class, shape, dataInit); } } diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TFloat64.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TFloat64.java index 5d2744c4b3c..957612691e5 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TFloat64.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TFloat64.java @@ -18,37 +18,31 @@ package org.tensorflow.types; import java.util.function.Consumer; -import org.tensorflow.DataType; import org.tensorflow.Tensor; import org.tensorflow.exceptions.TensorFlowException; -import org.tensorflow.internal.buffer.TensorBuffers; -import org.tensorflow.internal.c_api.TF_Tensor; -import org.tensorflow.ndarray.Shape; -import org.tensorflow.ndarray.buffer.DoubleDataBuffer; +import org.tensorflow.internal.types.TFloat64Mapper; import org.tensorflow.ndarray.DoubleNdArray; import org.tensorflow.ndarray.NdArray; +import org.tensorflow.ndarray.Shape; import org.tensorflow.ndarray.StdArrays; -import org.tensorflow.ndarray.impl.dense.DoubleDenseNdArray; +import org.tensorflow.ndarray.buffer.DoubleDataBuffer; +import org.tensorflow.proto.framework.DataType; +import org.tensorflow.types.annotation.TensorType; import org.tensorflow.types.family.TFloating; /** IEEE-754 double-precision 64-bit float tensor type. */ +@TensorType(dataType = DataType.DT_DOUBLE, byteSize = 8, mapperClass = TFloat64Mapper.class) public interface TFloat64 extends DoubleNdArray, TFloating { - /** readable-name for the data type */ - static final String NAME = "DOUBLE"; - - /** Type metadata */ - DataType DTYPE = DataType.create(NAME, 2, 8, TFloat64Impl::mapTensor); - /** * Allocates a new tensor for storing a single double value. * * @param value double to store in the new tensor * @return the new tensor */ - static Tensor scalarOf(double value) { - return Tensor.of(DTYPE, Shape.scalar(), data -> data.setDouble(value)); + static TFloat64 scalarOf(double value) { + return Tensor.of(TFloat64.class, Shape.scalar(), data -> data.setDouble(value)); } /** @@ -57,11 +51,11 @@ static Tensor scalarOf(double value) { * @param values doubles to store in the new tensor * @return the new tensor */ - static Tensor vectorOf(double... values) { + static TFloat64 vectorOf(double... values) { if (values == null) { throw new IllegalArgumentException(); } - return Tensor.of(DTYPE, Shape.of(values.length), data -> StdArrays.copyTo(values, data)); + return Tensor.of(TFloat64.class, Shape.of(values.length), data -> StdArrays.copyTo(values, data)); } /** @@ -72,8 +66,8 @@ static Tensor vectorOf(double... values) { * @param src the source array giving the shape and data to the new tensor * @return the new tensor */ - static Tensor tensorOf(NdArray src) { - return Tensor.of(DTYPE, src.shape(), src::copyTo); + static TFloat64 tensorOf(NdArray src) { + return Tensor.of(TFloat64.class, src.shape(), src::copyTo); } /** @@ -82,8 +76,8 @@ static Tensor tensorOf(NdArray src) { * @param shape shape of the tensor to allocate * @return the new tensor */ - static Tensor tensorOf(Shape shape) { - return Tensor.of(DTYPE, shape); + static TFloat64 tensorOf(Shape shape) { + return Tensor.of(TFloat64.class, shape); } /** @@ -93,8 +87,8 @@ static Tensor tensorOf(Shape shape) { * @param data buffer of doubles to initialize the tensor with * @return the new tensor */ - static Tensor tensorOf(Shape shape, DoubleDataBuffer data) { - return Tensor.of(DTYPE, shape, d -> d.write(data)); + static TFloat64 tensorOf(Shape shape, DoubleDataBuffer data) { + return Tensor.of(TFloat64.class, shape, d -> d.write(data)); } /** @@ -105,19 +99,7 @@ static Tensor tensorOf(Shape shape, DoubleDataBuffer data) { * @return the new tensor * @throws TensorFlowException if the tensor cannot be allocated or initialized */ - static Tensor tensorOf(Shape shape, Consumer dataInit) { - return Tensor.of(DTYPE, shape, dataInit); - } -} - -/** Hidden implementation of a {@code TFloat64} */ -class TFloat64Impl extends DoubleDenseNdArray implements TFloat64 { - - static TFloat64 mapTensor(TF_Tensor nativeTensor, Shape shape) { - return new TFloat64Impl(TensorBuffers.toDoubles(nativeTensor), shape); - } - - private TFloat64Impl(DoubleDataBuffer buffer, Shape shape) { - super(buffer, shape); + static TFloat64 tensorOf(Shape shape, Consumer dataInit) { + return Tensor.of(TFloat64.class, shape, dataInit); } } diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TInt32.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TInt32.java index 4a1139ddde2..8f6b587795b 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TInt32.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TInt32.java @@ -18,26 +18,20 @@ package org.tensorflow.types; import java.util.function.Consumer; -import org.tensorflow.DataType; import org.tensorflow.Tensor; -import org.tensorflow.internal.buffer.TensorBuffers; -import org.tensorflow.internal.c_api.TF_Tensor; -import org.tensorflow.ndarray.Shape; -import org.tensorflow.ndarray.buffer.IntDataBuffer; +import org.tensorflow.internal.types.TInt32Mapper; import org.tensorflow.ndarray.IntNdArray; import org.tensorflow.ndarray.NdArray; +import org.tensorflow.ndarray.Shape; import org.tensorflow.ndarray.StdArrays; -import org.tensorflow.ndarray.impl.dense.IntDenseNdArray; -import org.tensorflow.types.family.TNumber; +import org.tensorflow.ndarray.buffer.IntDataBuffer; +import org.tensorflow.proto.framework.DataType; +import org.tensorflow.types.annotation.TensorType; +import org.tensorflow.types.family.TIntegral; /** 32-bit signed integer tensor type. */ -public interface TInt32 extends IntNdArray, TNumber { - - /** readable-name for the data type */ - static final String NAME = "INT32"; - - /** Type metadata */ - DataType DTYPE = DataType.create(NAME, 3, 4, TInt32Impl::mapTensor); +@TensorType(dataType = DataType.DT_INT32, byteSize = 4, mapperClass = TInt32Mapper.class) +public interface TInt32 extends IntNdArray, TIntegral { /** * Allocates a new tensor for storing a single int value. @@ -45,8 +39,8 @@ public interface TInt32 extends IntNdArray, TNumber { * @param value int to store in the new tensor * @return the new tensor */ - static Tensor scalarOf(int value) { - return Tensor.of(DTYPE, Shape.scalar(), data -> data.setInt(value)); + static TInt32 scalarOf(int value) { + return Tensor.of(TInt32.class, Shape.scalar(), data -> data.setInt(value)); } /** @@ -56,11 +50,11 @@ static Tensor scalarOf(int value) { * @return the new tensor * @throws IllegalArgumentException if no values are provided */ - static Tensor vectorOf(int... values) { + static TInt32 vectorOf(int... values) { if (values == null) { throw new IllegalArgumentException(); } - return Tensor.of(DTYPE, Shape.of(values.length), data -> StdArrays.copyTo(values, data)); + return Tensor.of(TInt32.class, Shape.of(values.length), data -> StdArrays.copyTo(values, data)); } /** @@ -71,8 +65,8 @@ static Tensor vectorOf(int... values) { * @param src the source array giving the shape and data to the new tensor * @return the new tensor */ - static Tensor tensorOf(NdArray src) { - return Tensor.of(DTYPE, src.shape(), src::copyTo); + static TInt32 tensorOf(NdArray src) { + return Tensor.of(TInt32.class, src.shape(), src::copyTo); } /** @@ -81,8 +75,8 @@ static Tensor tensorOf(NdArray src) { * @param shape shape of the tensor to allocate * @return the new tensor */ - static Tensor tensorOf(Shape shape) { - return Tensor.of(DTYPE, shape); + static TInt32 tensorOf(Shape shape) { + return Tensor.of(TInt32.class, shape); } /** @@ -92,8 +86,8 @@ static Tensor tensorOf(Shape shape) { * @param data buffer of ints to initialize the tensor with * @return the new tensor */ - static Tensor tensorOf(Shape shape, IntDataBuffer data) { - return Tensor.of(DTYPE, shape, d -> d.write(data)); + static TInt32 tensorOf(Shape shape, IntDataBuffer data) { + return Tensor.of(TInt32.class, shape, d -> d.write(data)); } /** @@ -103,19 +97,8 @@ static Tensor tensorOf(Shape shape, IntDataBuffer data) { * @param dataInit tensor data initializer * @return the new tensor */ - static Tensor tensorOf(Shape shape, Consumer dataInit) { - return Tensor.of(DTYPE, shape, dataInit); + static TInt32 tensorOf(Shape shape, Consumer dataInit) { + return Tensor.of(TInt32.class, shape, dataInit); } } -/** Hidden implementation of a {@code TInt32} */ -class TInt32Impl extends IntDenseNdArray implements TInt32 { - - static TInt32 mapTensor(TF_Tensor nativeTensor, Shape shape) { - return new TInt32Impl(TensorBuffers.toInts(nativeTensor), shape); - } - - private TInt32Impl(IntDataBuffer buffer, Shape shape) { - super(buffer, shape); - } -} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TInt64.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TInt64.java index 04fd4fd7799..867248c5392 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TInt64.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TInt64.java @@ -18,27 +18,21 @@ package org.tensorflow.types; import java.util.function.Consumer; -import org.tensorflow.DataType; import org.tensorflow.Tensor; import org.tensorflow.exceptions.TensorFlowException; -import org.tensorflow.internal.buffer.TensorBuffers; -import org.tensorflow.internal.c_api.TF_Tensor; -import org.tensorflow.ndarray.Shape; -import org.tensorflow.ndarray.buffer.LongDataBuffer; +import org.tensorflow.internal.types.TInt64Mapper; import org.tensorflow.ndarray.LongNdArray; import org.tensorflow.ndarray.NdArray; +import org.tensorflow.ndarray.Shape; import org.tensorflow.ndarray.StdArrays; -import org.tensorflow.ndarray.impl.dense.LongDenseNdArray; -import org.tensorflow.types.family.TNumber; +import org.tensorflow.ndarray.buffer.LongDataBuffer; +import org.tensorflow.proto.framework.DataType; +import org.tensorflow.types.annotation.TensorType; +import org.tensorflow.types.family.TIntegral; /** 64-bit signed integer tensor type. */ -public interface TInt64 extends LongNdArray, TNumber { - - /** readable-name for the data type */ - static final String NAME = "INT64"; - - /** Type metadata */ - DataType DTYPE = DataType.create(NAME, 9, 8, TInt64Impl::mapTensor); +@TensorType(dataType = DataType.DT_INT64, byteSize = 8, mapperClass = TInt64Mapper.class) +public interface TInt64 extends LongNdArray, TIntegral { /** * Allocates a new tensor for storing a single long value. @@ -46,8 +40,8 @@ public interface TInt64 extends LongNdArray, TNumber { * @param value long to store in the new tensor * @return the new tensor */ - static Tensor scalarOf(long value) { - return Tensor.of(DTYPE, Shape.scalar(), data -> data.setLong(value)); + static TInt64 scalarOf(long value) { + return Tensor.of(TInt64.class, Shape.scalar(), data -> data.setLong(value)); } /** @@ -56,11 +50,11 @@ static Tensor scalarOf(long value) { * @param values longs to store in the new tensor * @return the new tensor */ - static Tensor vectorOf(long... values) { + static TInt64 vectorOf(long... values) { if (values == null) { throw new IllegalArgumentException(); } - return Tensor.of(DTYPE, Shape.of(values.length), data -> StdArrays.copyTo(values, data)); + return Tensor.of(TInt64.class, Shape.of(values.length), data -> StdArrays.copyTo(values, data)); } /** @@ -71,8 +65,8 @@ static Tensor vectorOf(long... values) { * @param src the source array giving the shape and data to the new tensor * @return the new tensor */ - static Tensor tensorOf(NdArray src) { - return Tensor.of(DTYPE, src.shape(), src::copyTo); + static TInt64 tensorOf(NdArray src) { + return Tensor.of(TInt64.class, src.shape(), src::copyTo); } /** @@ -81,8 +75,8 @@ static Tensor tensorOf(NdArray src) { * @param shape shape of the tensor to allocate * @return the new tensor */ - static Tensor tensorOf(Shape shape) { - return Tensor.of(DTYPE, shape); + static TInt64 tensorOf(Shape shape) { + return Tensor.of(TInt64.class, shape); } /** @@ -92,8 +86,8 @@ static Tensor tensorOf(Shape shape) { * @param data buffer of longs to initialize the tensor with * @return the new tensor */ - static Tensor tensorOf(Shape shape, LongDataBuffer data) { - return Tensor.of(DTYPE, shape, d -> d.write(data)); + static TInt64 tensorOf(Shape shape, LongDataBuffer data) { + return Tensor.of(TInt64.class, shape, d -> d.write(data)); } /** @@ -104,19 +98,7 @@ static Tensor tensorOf(Shape shape, LongDataBuffer data) { * @return the new tensor * @throws TensorFlowException if the tensor cannot be allocated or initialized */ - static Tensor tensorOf(Shape shape, Consumer dataInit) { - return Tensor.of(DTYPE, shape, dataInit); - } -} - -/** Hidden implementation of a {@code TInt64} */ -class TInt64Impl extends LongDenseNdArray implements TInt64 { - - static TInt64 mapTensor(TF_Tensor nativeTensor, Shape shape) { - return new TInt64Impl(TensorBuffers.toLongs(nativeTensor), shape); - } - - private TInt64Impl(LongDataBuffer buffer, Shape shape) { - super(buffer, shape); + static TInt64 tensorOf(Shape shape, Consumer dataInit) { + return Tensor.of(TInt64.class, shape, dataInit); } } diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TString.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TString.java index 57a121edcf1..b3000cc2f8a 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TString.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TString.java @@ -17,24 +17,20 @@ package org.tensorflow.types; -import org.tensorflow.DataType; +import java.nio.charset.Charset; +import java.nio.charset.StandardCharsets; +import java.util.function.Function; import org.tensorflow.Tensor; -import org.tensorflow.internal.buffer.StringTensorBuffer; -import org.tensorflow.internal.buffer.TensorBuffers; -import org.tensorflow.internal.c_api.TF_Tensor; +import org.tensorflow.internal.types.TStringInitializer; +import org.tensorflow.internal.types.TStringMapper; import org.tensorflow.ndarray.NdArray; import org.tensorflow.ndarray.NdArrays; import org.tensorflow.ndarray.Shape; import org.tensorflow.ndarray.buffer.DataBuffer; -import org.tensorflow.ndarray.buffer.layout.DataLayout; -import org.tensorflow.ndarray.buffer.layout.DataLayouts; -import org.tensorflow.ndarray.impl.dense.DenseNdArray; +import org.tensorflow.proto.framework.DataType; +import org.tensorflow.types.annotation.TensorType; import org.tensorflow.types.family.TType; -import java.nio.charset.Charset; -import java.nio.charset.StandardCharsets; -import java.util.function.Function; - /** * String type. * @@ -44,14 +40,9 @@ * its values initially, so TensorFlow can compute and allocate the right amount of memory. Then the * data in the tensor is initialized once and cannot be modified afterwards. */ +@TensorType(dataType = DataType.DT_STRING, byteSize = -1, mapperClass = TStringMapper.class) public interface TString extends NdArray, TType { - /** readable-name for the data type */ - static final String NAME = "STRING"; - - /** Type metadata */ - DataType DTYPE = DataType.create(NAME, 7, -1, TStringImpl::mapTensor); - /** * Allocates a new tensor for storing a string scalar. * @@ -60,7 +51,7 @@ public interface TString extends NdArray, TType { * @param value scalar value to store in the new tensor * @return the new tensor */ - static Tensor scalarOf(String value) { + static TString scalarOf(String value) { return tensorOf(NdArrays.scalarOfObject(value)); } @@ -72,7 +63,7 @@ static Tensor scalarOf(String value) { * @param values values to store in the new tensor * @return the new tensor */ - static Tensor vectorOf(String... values) { + static TString vectorOf(String... values) { if (values == null) { throw new IllegalArgumentException(); } @@ -88,7 +79,7 @@ static Tensor vectorOf(String... values) { * @param src the source array giving the shape and data to the new tensor * @return the new tensor */ - static Tensor tensorOf(NdArray src) { + static TString tensorOf(NdArray src) { return tensorOf(StandardCharsets.UTF_8, src); } @@ -103,7 +94,7 @@ static Tensor tensorOf(NdArray src) { * *

{@code
    * // Given `originalStrings` an initialized vector of strings
-   * Tensor tensor = TString.tensorOf(Charsets.UTF_16, originalStrings);
+   * TString tensor = TString.tensorOf(Charsets.UTF_16, originalStrings);
    * ...
    * TString tensorStrings = tensor.data().using(Charsets.UTF_16);
    * assertEquals(originalStrings.getObject(0), tensorStrings.getObject(0));
@@ -113,8 +104,9 @@ static Tensor tensorOf(NdArray src) {
    * @param src the source array giving the shape and data to the new tensor
    * @return the new tensor
    */
-  static Tensor tensorOf(Charset charset, NdArray src) {
-    return TStringImpl.createTensor(src, s -> s.getBytes(charset));
+  static TString tensorOf(Charset charset, NdArray src) {
+    TStringInitializer initializer = new TStringInitializer<>(src, s -> s.getBytes(charset));
+    return Tensor.of(TString.class, src.shape(), initializer.computeRequiredSize(), initializer);
   }
 
   /**
@@ -127,7 +119,7 @@ static Tensor tensorOf(Charset charset, NdArray src) {
    * @param data buffer of strings to initialize the tensor with
    * @return the new tensor
    */
-  static Tensor tensorOf(Shape shape, DataBuffer data) {
+  static TString tensorOf(Shape shape, DataBuffer data) {
     return tensorOf(NdArrays.wrap(shape, data));
   }
 
@@ -142,7 +134,7 @@ static Tensor tensorOf(Shape shape, DataBuffer data) {
    *
    * 
{@code
    * // Given `originalStrings` an initialized buffer of strings
-   * Tensor tensor =
+   * TString tensor =
    *    TString.tensorOf(Charsets.UTF_16, Shape.of(originalString.size()), originalStrings);
    * ...
    * TString tensorStrings = tensor.data().using(Charsets.UTF_16);
@@ -154,7 +146,7 @@ static Tensor tensorOf(Shape shape, DataBuffer data) {
    * @param data buffer of strings to initialize the tensor with
    * @return the new tensor
    */
-  static Tensor tensorOf(Charset charset, Shape shape, DataBuffer data) {
+  static TString tensorOf(Charset charset, Shape shape, DataBuffer data) {
     return tensorOf(charset, NdArrays.wrap(shape, data));
   }
 
@@ -173,8 +165,9 @@ static Tensor tensorOf(Charset charset, Shape shape, DataBuffer
    * @param src the source array giving the shape and data to the new tensor
    * @return the new tensor
    */
-  static Tensor tensorOfBytes(NdArray src) {
-    return TStringImpl.createTensor(src, Function.identity());
+  static TString tensorOfBytes(NdArray src) {
+    TStringInitializer initializer = new TStringInitializer<>(src, Function.identity());
+    return Tensor.of(TString.class, src.shape(), initializer.computeRequiredSize(), initializer);
   }
 
   /**
@@ -193,7 +186,7 @@ static Tensor tensorOfBytes(NdArray src) {
    * @param data the source array giving the shape and data to the new tensor
    * @return the new tensor
    */
-  static Tensor tensorOfBytes(Shape shape, DataBuffer data) {
+  static TString tensorOfBytes(Shape shape, DataBuffer data) {
     return tensorOfBytes(NdArrays.wrap(shape, data));
   }
 
@@ -204,7 +197,7 @@ static Tensor tensorOfBytes(Shape shape, DataBuffer data) {
    * created. For example:
    *
    * 
{@code
-   * Tensor tensor =
+   * TString tensor =
    *    TString.tensorOf(StandardCharsets.UTF_16, NdArrays.scalarOfObject("TensorFlow");
    *
    * assertEquals("TensorFlow", tensor.data().using(StandardCharsets.UTF_16).getObject());
@@ -218,42 +211,3 @@ static Tensor tensorOfBytes(Shape shape, DataBuffer data) {
   /** @return the tensor data as a n-dimensional array of raw byte sequences. */
   NdArray asBytes();
 }
-
-/** Hidden implementation of a {@code TString} */
-class TStringImpl extends DenseNdArray implements TString {
-
-  @Override
-  public TString using(Charset charset) {
-    return new TStringImpl(tensorBuffer, DataLayouts.ofStrings(charset), shape());
-  }
-
-  @Override
-  public NdArray asBytes() {
-    return NdArrays.wrap(shape(), tensorBuffer);
-  }
-
-  static  Tensor createTensor(NdArray src, Function getBytes) {
-    long size = StringTensorBuffer.computeSize(src, getBytes);
-    return Tensor.of(
-        TString.DTYPE,
-        src.shape(),
-        size,
-        data -> ((TStringImpl) data).tensorBuffer.init(src, getBytes));
-  }
-
-  static TString mapTensor(TF_Tensor nativeTensor, Shape shape) {
-    StringTensorBuffer buffer = TensorBuffers.toStrings(nativeTensor, shape.size());
-    return new TStringImpl(buffer, UTF_8_LAYOUT, shape);
-  }
-
-  private static DataLayout, String> UTF_8_LAYOUT =
-      DataLayouts.ofStrings(StandardCharsets.UTF_8);
-
-  private final StringTensorBuffer tensorBuffer;
-
-  private TStringImpl(
-      StringTensorBuffer buffer, DataLayout, String> layout, Shape shape) {
-    super(layout.applyTo(buffer), shape);
-    tensorBuffer = buffer;
-  }
-}
diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TUint8.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TUint8.java
index 365f41196fb..eae86414cb4 100644
--- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TUint8.java
+++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/TUint8.java
@@ -18,27 +18,21 @@
 package org.tensorflow.types;
 
 import java.util.function.Consumer;
-import org.tensorflow.DataType;
 import org.tensorflow.Tensor;
 import org.tensorflow.exceptions.TensorFlowException;
-import org.tensorflow.internal.buffer.TensorBuffers;
-import org.tensorflow.internal.c_api.TF_Tensor;
-import org.tensorflow.ndarray.Shape;
-import org.tensorflow.ndarray.buffer.ByteDataBuffer;
+import org.tensorflow.internal.types.TUint8Mapper;
 import org.tensorflow.ndarray.ByteNdArray;
 import org.tensorflow.ndarray.NdArray;
+import org.tensorflow.ndarray.Shape;
 import org.tensorflow.ndarray.StdArrays;
-import org.tensorflow.ndarray.impl.dense.ByteDenseNdArray;
-import org.tensorflow.types.family.TNumber;
+import org.tensorflow.ndarray.buffer.ByteDataBuffer;
+import org.tensorflow.proto.framework.DataType;
+import org.tensorflow.types.annotation.TensorType;
+import org.tensorflow.types.family.TIntegral;
 
 /** 8-bit unsigned integer tensor type. */
-public interface TUint8 extends ByteNdArray, TNumber {
-
-  /** readable-name for the data type */
-  static final String NAME = "UINT8";
-
-  /** Type metadata */
-  DataType DTYPE = DataType.create(NAME, 4, 1, TUint8Impl::mapTensor);
+@TensorType(dataType = DataType.DT_UINT8, byteSize = 1, mapperClass = TUint8Mapper.class)
+public interface TUint8 extends ByteNdArray, TIntegral {
 
   /**
    * Allocates a new tensor for storing a single byte value.
@@ -46,8 +40,8 @@ public interface TUint8 extends ByteNdArray, TNumber {
    * @param value byte to store in the new tensor
    * @return the new tensor
    */
-  static Tensor scalarOf(byte value) {
-    return Tensor.of(DTYPE, Shape.scalar(), data -> data.setByte(value));
+  static TUint8 scalarOf(byte value) {
+    return Tensor.of(TUint8.class, Shape.scalar(), data -> data.setByte(value));
   }
 
   /**
@@ -56,11 +50,11 @@ static Tensor scalarOf(byte value) {
    * @param values bytes to store in the new tensor
    * @return the new tensor
    */
-  static Tensor vectorOf(byte... values) {
+  static TUint8 vectorOf(byte... values) {
     if (values == null) {
       throw new IllegalArgumentException();
     }
-    return Tensor.of(DTYPE, Shape.of(values.length), data -> StdArrays.copyTo(values, data));
+    return Tensor.of(TUint8.class, Shape.of(values.length), data -> StdArrays.copyTo(values, data));
   }
 
   /**
@@ -71,8 +65,8 @@ static Tensor vectorOf(byte... values) {
    * @param src the source array giving the shape and data to the new tensor
    * @return the new tensor
    */
-  static Tensor tensorOf(NdArray src) {
-    return Tensor.of(DTYPE, src.shape(), src::copyTo);
+  static TUint8 tensorOf(NdArray src) {
+    return Tensor.of(TUint8.class, src.shape(), src::copyTo);
   }
 
   /**
@@ -81,8 +75,8 @@ static Tensor tensorOf(NdArray src) {
    * @param shape shape of the tensor to allocate
    * @return the new tensor
    */
-  static Tensor tensorOf(Shape shape) {
-    return Tensor.of(DTYPE, shape);
+  static TUint8 tensorOf(Shape shape) {
+    return Tensor.of(TUint8.class, shape);
   }
 
   /**
@@ -92,8 +86,8 @@ static Tensor tensorOf(Shape shape) {
    * @param data buffer of bytes to initialize the tensor with
    * @return the new tensor
    */
-  static Tensor tensorOf(Shape shape, ByteDataBuffer data) {
-    return Tensor.of(DTYPE, shape, d -> d.write(data));
+  static TUint8 tensorOf(Shape shape, ByteDataBuffer data) {
+    return Tensor.of(TUint8.class, shape, d -> d.write(data));
   }
 
   /**
@@ -104,19 +98,7 @@ static Tensor tensorOf(Shape shape, ByteDataBuffer data) {
    * @return the new tensor
    * @throws TensorFlowException if the tensor cannot be allocated or initialized
    */
-  static Tensor tensorOf(Shape shape, Consumer dataInit) {
-    return Tensor.of(DTYPE, shape, dataInit);
-  }
-}
-
-/** Hidden implementation of a {@code TUint8} */
-class TUint8Impl extends ByteDenseNdArray implements TUint8 {
-
-  static TUint8 mapTensor(TF_Tensor nativeTensor, Shape shape) {
-    return new TUint8Impl(TensorBuffers.toBytes(nativeTensor), shape);
-  }
-
-  private TUint8Impl(ByteDataBuffer buffer, Shape shape) {
-    super(buffer, shape);
+  static TUint8 tensorOf(Shape shape, Consumer dataInit) {
+    return Tensor.of(TUint8.class, shape, dataInit);
   }
 }
diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/annotation/TensorType.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/annotation/TensorType.java
new file mode 100644
index 00000000000..78ab5d7a8b6
--- /dev/null
+++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/annotation/TensorType.java
@@ -0,0 +1,53 @@
+/*
+ *  Copyright 2020 The TensorFlow Authors. All Rights Reserved.
+ *
+ *  Licensed under the Apache License, Version 2.0 (the "License");
+ *  you may not use this file except in compliance with the License.
+ *  You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ *  Unless required by applicable law or agreed to in writing, software
+ *  distributed under the License is distributed on an "AS IS" BASIS,
+ *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ *  See the License for the specific language governing permissions and
+ *  limitations under the License.
+ *  =======================================================================
+ */
+package org.tensorflow.types.annotation;
+
+import java.lang.annotation.Documented;
+import java.lang.annotation.ElementType;
+import java.lang.annotation.Retention;
+import java.lang.annotation.RetentionPolicy;
+import java.lang.annotation.Target;
+import org.tensorflow.TensorMapper;
+import org.tensorflow.proto.framework.DataType;
+
+/**
+ * Annotation for all tensor types.
+ *
+ * 

Any interface extending {@link org.tensorflow.types.family.TType TType} to be registered as a + * tensor type must be annotated with {@code @TensorType} to provide metadata required for allocating + * and mapping tensors of this type.

+ */ +@Documented +@Retention(RetentionPolicy.RUNTIME) +@Target(ElementType.TYPE) +public @interface TensorType { + + /** + * The data type of each elements in a tensor of this type + */ + DataType dataType(); + + /** + * The number of bytes required one element of a tensor of type, -1 for variable-length element tensors + */ + int byteSize(); + + /** + * The class of the {@link TensorMapper} to allocate and use for mapping tensors of this type + */ + Class> mapperClass(); +} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/family/TFloating.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/family/TFloating.java index 92deaffdc68..bba2e5983f5 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/family/TFloating.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/family/TFloating.java @@ -1,19 +1,36 @@ +/* + * Copyright 2020 The TensorFlow Authors. All Rights Reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ======================================================================= + */ package org.tensorflow.types.family; /** - * Marker interface for floating point tensor types. + * Common interface for all floating point tensors. * *

Operations that only accepts floating point values as some of their operands enforce that the tensor * types for these operands to be bound to this interface. For example: * *

{@code
- * TFloat32 tensor1 = TFloat32.vectorOf(1, 2, 3);
- * TBool tensor2 = TBool.vectorOf(true, false, true);
- *
  * Ops tf = Ops.create();
+ *
+ * Constant c1 = tf.array(1.0f, 2.0f, 3.0f);
+ * Constant c2 = tf.array(true, false, true);
+ *
  * Exponential exp = new Exponential<>(tf);
- * exp.call(tf.constant(tensor1));  // OK
- * exp.call(tf.constant(tensor2));  // Compilation failure
+ * exp.call(c1);  // OK
+ * exp.call(c2);  // Compilation failure
  * }
*/ public interface TFloating extends TNumber {} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/family/TIntegral.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/family/TIntegral.java new file mode 100644 index 00000000000..3652ea4613c --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/family/TIntegral.java @@ -0,0 +1,25 @@ +/* + * Copyright 2020 The TensorFlow Authors. All Rights Reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ======================================================================= + */ +package org.tensorflow.types.family; + +/** + * Common interface for all integral numeric tensors. + * + *

Operations that only accepts integral values as some of their operands enforce that the tensor + * types for these operands to be bound to this interface. + */ +public interface TIntegral extends TNumber {} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/family/TNumber.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/family/TNumber.java index 97ee59af095..1a1e094e9f5 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/family/TNumber.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/family/TNumber.java @@ -18,18 +18,19 @@ package org.tensorflow.types.family; /** - * Marker interface for numeric tensor types. + * Common interface for all numeric tensors. * *

Operations that only accepts numeric values as some of their operands enforce that the tensor * types for these operands to be bound to this interface. For example: * *

{@code
- * TFloat32 tensor1 = TFloat32.vectorOf(1, 2, 3);
- * TBool tensor2 = TBool.vectorOf(true, false, true);
- *
  * Ops tf = Ops.create();
- * tf.nn.softmax(tf.constant(tensor1));  // OK
- * tf.nn.softmax(tf.constant(tensor2));  // Compilation failure
+ *
+ * Constant c1 = tf.array(1.0f, 2.0f, 3.0f);
+ * Constant c2 = tf.array(true, false, true);
+ *
+ * tf.nn.softmax(c1);  // OK
+ * tf.nn.softmax(c2);  // Compilation failure
  * }
*/ public interface TNumber extends TType {} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/family/TType.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/family/TType.java index 8f3451b9a68..2fc423b914e 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/family/TType.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/family/TType.java @@ -17,21 +17,67 @@ package org.tensorflow.types.family; +import org.tensorflow.Tensor; +import org.tensorflow.proto.framework.DataType; + /** - * Marker interface for all tensor types. + * Common interface for all typed tensors. * - *

Tensor types are carried as a generic parameter of the {@link org.tensorflow.Tensor Tensor} - * class bound by the {@code TType} interface. This generic parameter ensure type-compatibility - * between operands of a computation at compile-time. For example: + *

Typed tensors wrap a {@link org.tensorflow.RawTensor RawTensor} by mapping their native memory + * to a n-dimensional data space allowing direct I/O access from the JVM.

* - *
{@code
- * Tensor tensor1 = TFloat32.ofShape(2, 3, 2);
- * Tensor tensor2 = TFloat32.ofShape(2, 3, 2);
- * Tensor tensor3 = TInt32.ofShape(2, 3, 2);
+ * 

Subinterfaces of {@code TType} are propagated as a generic parameter to various entities of + * TensorFlow to identify the type of the tensor they carry. For example, a + * {@link org.tensorflow.Operand Operand} is an operand which outputs a 32-bit floating + * point tensor. This parameter ensure type-compatibility between operands of a computation at + * compile-time. For example: * + *

{@code
  * Ops tf = Ops.create();
- * tf.math.add(tf.constant(tensor1), tf.constant(tensor2));  // OK
- * tf.math.add(tf.constant(tensor1), tf.constant(tensor3));  // Compilation failure
+ *
+ * Constant c1 = tf.array(2.0f, 3.0f, 2.0f);
+ * Constant c2 = tf.array(1.0f, 2.0f, 3.0f);
+ * Constant c3 = tf.array(2, 3, 2);
+ *
+ * tf.math.add(c1, c2);  // OK
+ * tf.math.add(c1, c3);  // Compilation failure
  * }
+ * + *

Even if all typed tensors implements somehow {@link org.tensorflow.ndarray.NdArray NdArray} + * to provide access to their data, {@code TType} deliberately does not extend directly from this + * interface, for the following reasons: + *

    + *
  • Implementing {@code NdArray} at this level could only expose boxed-type accessors, which + * are less performant than their primitive equivalent, only exposed by subinterfaces of + * {@code NdArray} (e.g. {@code FloatNdArray}). + *
  • + *
  • {@code TType} would need to carry a new generic parameter for typing the {@code NdArray}, + * which will increase the verbosity in the signature of any method accepting or returning + * an instance of this interface, which is very common. + *
  • + *
+ * Therefore, enforcing the user to cast a reference of {@code TType} in a concrete tensor type before + * accessing its data guarantees better performance and improves readability. */ -public interface TType {} +public interface TType extends Tensor { + + /** + * Returns the type of this tensor as a registered subclass of {@code TType} + */ + Class type(); + + @Override + default DataType dataType() { + return asRawTensor().dataType(); + } + + @Override + default long numBytes() { + return asRawTensor().numBytes(); + } + + @Override + default void close() { + asRawTensor().close(); + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/package-info.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/package-info.java index afbd69fabe5..746ae703694 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/package-info.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/types/package-info.java @@ -25,17 +25,14 @@ * bound to one of the marker interface found in {@link org.tensorflow.types.family}, according * to the nature of the data. * - *

Each tensor type must provide a static instance of {@link org.tensorflow.DataType} - * carrying type metadata that should be used for allocating a tensor of this type or to pass - * this type as an operation argument. For example, metadata about TensorFlow int32 type is - * found in {@link org.tensorflow.types.TInt32#DTYPE TInt32.DTYPE}. + *

Each tensor type must be annotated with {@link org.tensorflow.types.annotation.TensorType} to + * provide type metadata that should be used for allocating or mapping tensors of this type. * *

Instances of tensor types must also implement the {@link org.tensorflow.ndarray.NdArray NdArray} - * interface so a user can access directly the tensor data in a n-dimensional space by invoking - * {@link org.tensorflow.Tensor#data() Tensor.data()}. + * interface so a user can access directly the tensor data in a n-dimensional space. * *

Note that while it is always possible to allocate a tensor using the - * {@link org.tensorflow.Tensor#of(org.tensorflow.DataType, Shape) Tensor.of(...)} + * {@link org.tensorflow.Tensor#of(Class, Shape) Tensor.of(...)} * method, most tensor types expose factory methods that simplify the creation process, like * {@code scalarOf(...)}, {@code vectorOf(...)}, {@code tensorOf(...)}, etc. */ diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/ConcreteFunctionTest.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/ConcreteFunctionTest.java index 3ea20fcbb46..b2b2c34e223 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/ConcreteFunctionTest.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/ConcreteFunctionTest.java @@ -16,7 +16,6 @@ import static org.junit.jupiter.api.Assertions.assertEquals; import static org.junit.jupiter.api.Assertions.assertThrows; -import static org.junit.jupiter.api.Assertions.fail; import org.junit.jupiter.api.Test; import org.tensorflow.op.Ops; @@ -29,14 +28,14 @@ public class ConcreteFunctionTest { private static Signature plusFive(Ops tf) { - Placeholder input = tf.placeholder(TFloat32.DTYPE); + Placeholder input = tf.placeholder(TFloat32.class); Add output = tf.math.add(input, tf.constant(5.0f)); Init init = tf.init(); // for native resource management tests return Signature.builder().key("plusFive").input("x", input).output("y", output).build(); } private static Signature minusTwo(Ops tf) { - Placeholder input = tf.placeholder(TFloat32.DTYPE); + Placeholder input = tf.placeholder(TFloat32.class); Sub output = tf.math.sub(input, tf.constant(2.0f)); return Signature.builder().key("minusTwo").input("x", input).output("y", output).build(); } @@ -44,8 +43,8 @@ private static Signature minusTwo(Ops tf) { @Test public void createFunction() { try (ConcreteFunction f = ConcreteFunction.create(ConcreteFunctionTest::plusFive); - Tensor x = TFloat32.scalarOf(3.0f)) { - assertEquals(8.0f, f.call(x).expect(TFloat32.DTYPE).data().getFloat()); + TFloat32 x = TFloat32.scalarOf(3.0f)) { + assertEquals(8.0f, ((TFloat32)f.call(x)).getFloat()); } } @@ -54,8 +53,8 @@ public void createFunctionFromGraph() { try (Graph g = new Graph()) { Signature signature = plusFive(Ops.create(g)); try (ConcreteFunction f = ConcreteFunction.create(signature, g); - Tensor x = TFloat32.scalarOf(3.0f)) { - assertEquals(8.0f, f.call(x).expect(TFloat32.DTYPE).data().getFloat()); + TFloat32 x = TFloat32.scalarOf(3.0f)) { + assertEquals(8.0f, ((TFloat32)f.call(x)).getFloat()); } } } @@ -66,8 +65,8 @@ public void createFunctionFromSession() { Signature signature = plusFive(Ops.create(g)); try (Session s = new Session(g)) { try (ConcreteFunction f = ConcreteFunction.create(signature, s); - Tensor x = TFloat32.scalarOf(3.0f)) { - assertEquals(8.0f, f.call(x).expect(TFloat32.DTYPE).data().getFloat()); + TFloat32 x = TFloat32.scalarOf(3.0f)) { + assertEquals(8.0f, ((TFloat32)f.call(x)).getFloat()); } } } @@ -77,8 +76,8 @@ public void createFunctionFromSession() { public void chainFunctions() { try (ConcreteFunction f1 = ConcreteFunction.create(ConcreteFunctionTest::plusFive); ConcreteFunction f2 = ConcreteFunction.create(ConcreteFunctionTest::minusTwo); - Tensor x = TFloat32.scalarOf(3.0f)) { - assertEquals(6.0f, f2.call(f1.call(x)).expect(TFloat32.DTYPE).data().getFloat()); + TFloat32 x = TFloat32.scalarOf(3.0f)) { + assertEquals(6.0f, ((TFloat32)f2.call(f1.call(x))).getFloat()); } } diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/DeviceSpecTest.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/DeviceSpecTest.java index 314c3063422..e4340da3275 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/DeviceSpecTest.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/DeviceSpecTest.java @@ -15,12 +15,209 @@ package org.tensorflow; import org.junit.jupiter.api.Test; +import org.tensorflow.exceptions.TFInvalidArgumentException; +import org.tensorflow.op.Ops; +import org.tensorflow.op.core.Constant; +import org.tensorflow.proto.framework.ConfigProto; +import org.tensorflow.types.TInt32; import static com.google.common.truth.Truth.assertThat; +import static org.junit.jupiter.api.Assertions.assertEquals; +import static org.junit.jupiter.api.Assertions.fail; import static org.tensorflow.DeviceSpec.DeviceType; /** Tests for {@link DeviceSpec}. */ public class DeviceSpecTest { + @Test + public void withDeviceMethod() { + ConfigProto config = ConfigProto.newBuilder(ConfigProto.getDefaultInstance()) + .setLogDevicePlacement(true) + .build(); + + try (Graph g = new Graph(); Session session = new Session(g, config)) { + Ops tf = Ops.create(g).withSubScope("testScope"); + + Constant aOps = tf.constant(-1); + + DeviceSpec deviceSpec = DeviceSpec.newBuilder() + .job("localhost") + .replica(0) + .task(0) + .deviceType(DeviceSpec.DeviceType.CPU) + .build(); + + Output absOps = tf + .withName("absWithDevice") + .withDevice(deviceSpec) + .math + .abs(aOps) + .asOutput(); + + try (AutoCloseableList t = + new AutoCloseableList<>(session.runner().fetch(absOps).run())) { + assertEquals(1, ((TInt32)t.get(0)).getInt()); + } + } + } + + @Test + public void withEmptyDeviceSpec() { + ConfigProto config = ConfigProto.newBuilder(ConfigProto.getDefaultInstance()) + .setLogDevicePlacement(true) + .build(); + + try (Graph g = new Graph(); Session session = new Session(g, config)) { + Ops tf = Ops.create(g).withSubScope("testScope"); + + Constant aOps = tf.constant(-1); + + DeviceSpec deviceSpec = DeviceSpec.newBuilder() + .job("localhost") + .replica(0) + .task(0) + .deviceType(DeviceSpec.DeviceType.CPU) + .build(); + + Output absOps = tf + .withName("absWithDevice") + .withDevice(deviceSpec) + .math + .abs(aOps) + .asOutput(); + + try (AutoCloseableList t = + new AutoCloseableList<>(session.runner().fetch(absOps).run())) { + assertEquals(1, ((TInt32)t.get(0)).getInt()); + } + } + } + + @Test + public void withTwoScopes() { + ConfigProto config = ConfigProto.newBuilder(ConfigProto.getDefaultInstance()) + .setLogDevicePlacement(true) + .build(); + + try (Graph g = new Graph(); Session session = new Session(g, config)) { + DeviceSpec deviceSpec1 = DeviceSpec.newBuilder() + .job("localhost") + .replica(0) + .task(0) + .deviceType(DeviceSpec.DeviceType.CPU) + .build(); + + DeviceSpec deviceSpec2 = DeviceSpec.newBuilder() + .job("localhost") + .replica(0) + .task(0) + .deviceType(DeviceSpec.DeviceType.CPU) + .build(); + + Ops tf1 = Ops.create(g).withSubScope("testScope1").withDevice(deviceSpec1); + Ops tf2 = Ops.create(g).withSubScope("testScope2").withDevice(deviceSpec2); + + Constant aOps = tf1.constant(-1); + Constant bOps = tf2.constant(10); + + Output absOps = tf1 + .withName("absWithDevice") + .math + .abs(aOps) + .asOutput(); + + Output mulOps = tf2 + .withName("mulWithDevice") + .math + .mul(absOps, bOps) + .asOutput(); + + try (AutoCloseableList t = + new AutoCloseableList<>(session.runner().fetch(mulOps).run())) { + assertEquals(10, ((TInt32)t.get(0)).getInt()); + } + } + } + + @Test + public void withIncorrectDeviceSpec() { + ConfigProto config = ConfigProto.newBuilder(ConfigProto.getDefaultInstance()) + .setLogDevicePlacement(true) + .build(); + + try (Graph g = new Graph(); Session session = new Session(g, config)) { + DeviceSpec correctDeviceSpec = DeviceSpec.newBuilder() + .job("localhost") + .replica(0) + .task(0) + .deviceType(DeviceSpec.DeviceType.CPU) + .build(); + + // Incorrect device spec, it will never be executed + DeviceSpec incorrectDeviceSpec = DeviceSpec.newBuilder() + .job("UNKNOWN") + .replica(1) + .task(1000) + .deviceType(DeviceType.TPU) + .build(); + + Ops tf = Ops.create(g); + + Constant aOps = tf.constant(-1); + Constant bOps = tf.constant(10); + + Output absOps = tf + .withName("absWithDevice") + .withDevice(incorrectDeviceSpec) + .math + .abs(aOps) + .asOutput(); + + Output mulOps = tf + .withName("mulWithDevice") + .withDevice(correctDeviceSpec) + .math + .mul(absOps, bOps) + .asOutput(); + + try (AutoCloseableList t = + new AutoCloseableList<>(session.runner().fetch(mulOps).run())) { + fail(); + } catch (TFInvalidArgumentException e) { + // ok + } + } + } + + @Test + public void withDeviceSpecInScope() { + ConfigProto config = ConfigProto.newBuilder(ConfigProto.getDefaultInstance()) + .setLogDevicePlacement(true) + .build(); + + try (Graph g = new Graph(); Session session = new Session(g, config)) { + DeviceSpec deviceSpec = DeviceSpec.newBuilder() + .job("localhost") + .replica(0) + .task(0) + .deviceType(DeviceSpec.DeviceType.CPU) + .build(); + + Ops tf = Ops.create(g).withSubScope("testScope").withDevice(deviceSpec); + + Constant aOps = tf.constant(-1); + + Output absOps = tf + .withName("absWithDevice") + .math + .abs(aOps) + .asOutput(); + + try (AutoCloseableList t = + new AutoCloseableList<>(session.runner().fetch(absOps).run())) { + assertEquals(1, ((TInt32)t.get(0)).getInt()); + } + } + } @Test public void emptyDeviceSpec() { diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/EagerOperationBuilderTest.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/EagerOperationBuilderTest.java index 6802ead9592..b39ecec9881 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/EagerOperationBuilderTest.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/EagerOperationBuilderTest.java @@ -18,9 +18,9 @@ import static org.junit.jupiter.api.Assertions.fail; import org.junit.jupiter.api.Test; -import org.tensorflow.op.Ops; import org.tensorflow.ndarray.Shape; -import org.tensorflow.types.TFloat32; +import org.tensorflow.op.Ops; +import org.tensorflow.proto.framework.DataType; import org.tensorflow.types.TInt32; /** Unit tests for {@link EagerOperationBuilder} class. */ @@ -45,7 +45,7 @@ public void failToBuildOpIfSessionIsClosed() { opBuilder = new EagerOperationBuilder(session, "Empty", "empty"); } try { - opBuilder.setAttr("dtype", TFloat32.DTYPE); + opBuilder.setAttr("dtype", DataType.DT_FLOAT); fail(); } catch (IllegalStateException e) { // expected @@ -61,12 +61,7 @@ public void addInputs() { .addInput(tf.constant(true).asOutput()) .addInputList(new Output[] {tf.constant(-1).asOutput()}) .build(); - try { - opBuilder(session, "Const", "var").addControlInput(asrt); - fail(); - } catch (UnsupportedOperationException e) { - // expected - } + opBuilder(session, "Const", "var").addControlInput(asrt); } } @@ -93,9 +88,9 @@ public void setAttrs() { try (EagerSession session = EagerSession.create()) { Ops tf = Ops.create(session); // dtype, tensor attributes. - try (Tensor t = TInt32.scalarOf(1)) { + try (TInt32 t = TInt32.scalarOf(1)) { opBuilder(session, "Const", "DataTypeAndTensor") - .setAttr("dtype", TInt32.DTYPE) + .setAttr("dtype", t.dataType()) .setAttr("value", t) .build(); } @@ -103,7 +98,7 @@ public void setAttrs() { opBuilder(session, "RandomUniform", "DataTypeAndInt") .addInput(tf.array(1).asOutput()) .setAttr("seed", 10) - .setAttr("dtype", TFloat32.DTYPE) + .setAttr("dtype", DataType.DT_FLOAT) .build(); // list(int), string opBuilder(session, "MaxPool", "IntListAndString") @@ -124,7 +119,7 @@ public void setAttrs() { .build(); // list(shape) opBuilder(session, "FIFOQueue", "queue") - .setAttr("component_types", new DataType[] {TInt32.DTYPE, TInt32.DTYPE}) + .setAttr("component_types", new DataType[] {DataType.DT_INT32, DataType.DT_INT32}) .setAttr("shapes", new Shape[] {Shape.of(2, 2), Shape.of(2, 2, 2)}) .build(); // bool diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/EagerOperationTest.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/EagerOperationTest.java index 09d2214cc6a..2920fbdf59f 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/EagerOperationTest.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/EagerOperationTest.java @@ -19,10 +19,10 @@ import static org.junit.jupiter.api.Assertions.fail; import org.junit.jupiter.api.Test; -import org.tensorflow.exceptions.TFFailedPreconditionException; import org.tensorflow.exceptions.TFInvalidArgumentException; -import org.tensorflow.op.Ops; import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Ops; +import org.tensorflow.proto.framework.DataType; import org.tensorflow.types.TFloat32; import org.tensorflow.types.TInt32; @@ -46,13 +46,13 @@ public void failToCreateIfSessionIsClosed() { @Test public void outputDataTypeAndShape() { try (EagerSession session = EagerSession.create(); - Tensor t = TInt32.tensorOf(Shape.of(2, 3))) { + TInt32 t = TInt32.tensorOf(Shape.of(2, 3))) { EagerOperation op = opBuilder(session, "Const", "OutputAttrs") - .setAttr("dtype", TInt32.DTYPE) + .setAttr("dtype", t.dataType()) .setAttr("value", t) .build(); - assertEquals(TInt32.DTYPE, op.dtype(0)); + assertEquals(DataType.DT_INT32, op.dtype(0)); assertEquals(2, op.shape(0).size(0)); assertEquals(3, op.shape(0).size(1)); } @@ -67,12 +67,12 @@ public void outputTensor() { .addInput(tf.constant(2).asOutput()) .addInput(tf.constant(4).asOutput()) .build(); - assertEquals(6, add.tensor(0).expect(TInt32.DTYPE).data().getInt()); + assertEquals(6, ((TInt32)add.tensor(0)).getInt()); // Validate that we retrieve the right shape and datatype from the tensor // that has been resolved assertEquals(0, add.shape(0).numDimensions()); - assertEquals(TInt32.DTYPE, add.dtype(0)); + assertEquals(DataType.DT_INT32, add.dtype(0)); } } @@ -123,7 +123,7 @@ public void numOutputs() { opBuilder(session, "UniqueWithCountsV2", "unq") .addInput(tf.constant(new int[]{1, 2, 1}).asOutput()) .addInput(tf.constant(new int[]{0}).asOutput()) - .setAttr("out_idx", TInt32.DTYPE) + .setAttr("out_idx", DataType.DT_INT32) .build(); assertEquals(3, op.numOutputs()); } diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/GraphOperationBuilderTest.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/GraphOperationBuilderTest.java index 35bfa808238..bbb9e23ec90 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/GraphOperationBuilderTest.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/GraphOperationBuilderTest.java @@ -21,11 +21,11 @@ import org.junit.jupiter.api.Test; import org.tensorflow.exceptions.TFInvalidArgumentException; +import org.tensorflow.ndarray.Shape; import org.tensorflow.op.Ops; import org.tensorflow.op.core.Constant; -import org.tensorflow.ndarray.Shape; +import org.tensorflow.proto.framework.DataType; import org.tensorflow.types.TBool; -import org.tensorflow.types.TFloat32; import org.tensorflow.types.TInt32; /** Unit tests for {@link org.tensorflow.GraphOperationBuilder}. */ @@ -50,7 +50,7 @@ public void failWhenMixingOperationsOnDifferentGraphs() { @Test public void failOnUseAfterBuild() { try (Graph g = new Graph(); - Tensor t = TInt32.scalarOf(1)) { + TInt32 t = TInt32.scalarOf(1)) { OperationBuilder b = g.opBuilder("Const", "Const").setAttr("dtype", t.dataType()).setAttr("value", t); b.build(); @@ -66,7 +66,7 @@ public void failOnUseAfterBuild() { public void failOnUseAfterGraphClose() { OperationBuilder b = null; try (Graph g = new Graph(); - Tensor t = TInt32.scalarOf(1)) { + TInt32 t = TInt32.scalarOf(1)) { b = g.opBuilder("Const", "Const").setAttr("dtype", t.dataType()).setAttr("value", t); } try { @@ -88,9 +88,9 @@ public void setAttr() { try (Graph g = new Graph()) { Ops tf = Ops.create(g); // dtype, tensor attributes. - try (Tensor t = TInt32.scalarOf(1)) { + try (TInt32 t = TInt32.scalarOf(1)) { g.opBuilder("Const", "DataTypeAndTensor") - .setAttr("dtype", TInt32.DTYPE) + .setAttr("dtype", t.dataType()) .setAttr("value", t) .build() .output(0); @@ -106,7 +106,7 @@ public void setAttr() { g.opBuilder("RandomUniform", "Int") .addInput(tf.array(1).asOutput()) .setAttr("seed", 10) - .setAttr("dtype", TFloat32.DTYPE) + .setAttr("dtype", DataType.DT_FLOAT) .build(); assertTrue(hasNode(g, "Int")); // list(int) @@ -132,23 +132,23 @@ public void setAttrShape() { try (Graph g = new Graph()) { Output n = g.opBuilder("Placeholder", "unknown") - .setAttr("dtype", TFloat32.DTYPE) + .setAttr("dtype", DataType.DT_FLOAT) .setAttr("shape", Shape.unknown()) .build() .output(0); assertEquals(-1, n.shape().numDimensions()); - assertEquals(TFloat32.DTYPE, n.dataType()); + assertEquals(DataType.DT_FLOAT, n.dataType()); n = g.opBuilder("Placeholder", "batch_of_vectors") - .setAttr("dtype", TFloat32.DTYPE) + .setAttr("dtype", DataType.DT_FLOAT) .setAttr("shape", Shape.of(-1, 784)) .build() .output(0); assertEquals(2, n.shape().numDimensions()); assertEquals(-1, n.shape().size(0)); assertEquals(784, n.shape().size(1)); - assertEquals(TFloat32.DTYPE, n.dataType()); + assertEquals(DataType.DT_FLOAT, n.dataType()); } } @@ -169,10 +169,10 @@ public void setAttrShapeList() { public void addControlInput() { try (Graph g = new Graph(); Session s = new Session(g); - Tensor yes = TBool.scalarOf(true); - Tensor no = TBool.scalarOf(false)) { + TBool yes = TBool.scalarOf(true); + TBool no = TBool.scalarOf(false)) { Ops tf = Ops.create(g); - Output placeholder = tf.placeholder(TBool.DTYPE).asOutput(); + Output placeholder = tf.placeholder(TBool.class).asOutput(); GraphOperation check = g.opBuilder("Assert", "assert") .addInput(placeholder) @@ -200,7 +200,7 @@ private static void testSetAttrShapeList(Shape[] shapes) { int[][] matrix = new int[][] {{0, 0}, {0, 0}}; Output queue = g.opBuilder("FIFOQueue", "queue") - .setAttr("component_types", new DataType[] {TInt32.DTYPE, TInt32.DTYPE}) + .setAttr("component_types", new DataType[] {DataType.DT_INT32, DataType.DT_INT32}) .setAttr("shapes", shapes) .build() .output(0); diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/GraphOperationTest.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/GraphOperationTest.java index d6f5ab9a6d9..b164c129745 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/GraphOperationTest.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/GraphOperationTest.java @@ -183,7 +183,7 @@ public void outputTensorNotSupported() { Ops tf = Ops.create(g); Operation split = tf.split(tf.constant(0), tf.array(0, 1, 2), 3L).op(); try { - split.output(0).tensor(); + split.output(0).asTensor(); fail(); } catch (IllegalStateException e) { } diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/GraphTest.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/GraphTest.java index de376015e3f..d8ffc1a475b 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/GraphTest.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/GraphTest.java @@ -27,6 +27,7 @@ import org.tensorflow.exceptions.TFInvalidArgumentException; import org.tensorflow.op.Ops; import org.tensorflow.op.linalg.MatMul; +import org.tensorflow.proto.framework.DataType; import org.tensorflow.proto.framework.GraphDef; import org.tensorflow.types.TFloat32; import org.tensorflow.types.TInt32; @@ -42,7 +43,7 @@ public void graphDefRoundTrip() { Ops tf = Ops.create(g); tf.withName("Y").linalg.matMul( tf.withName("A").constant(new int[2][2]), - tf.withName("X").placeholder(TInt32.DTYPE), + tf.withName("X").placeholder(TInt32.class), MatMul.transposeA(true).transposeB(false) ); graphDef = g.toGraphDef(); @@ -140,8 +141,8 @@ public void addGradientsToGraph() { Session s = new Session(g)) { Ops tf = Ops.create(g); - Output x1 = tf.placeholder(TFloat32.DTYPE).output(); - Output x2 = tf.placeholder(TFloat32.DTYPE).output(); + Output x1 = tf.placeholder(TFloat32.class).output(); + Output x2 = tf.placeholder(TFloat32.class).output(); Output y0 = tf.math.square(x1).y(); Output y1 = tf.math.square(y0).y(); Output y2 = tf.math.addN(Arrays.asList(y0, x2)).sum(); @@ -149,17 +150,17 @@ public void addGradientsToGraph() { Output[] grads0 = g.addGradients(y1, toArray(x1)); assertNotNull(grads0); assertEquals(1, grads0.length); - assertEquals(TFloat32.DTYPE, grads0[0].dataType()); + assertEquals(DataType.DT_FLOAT, grads0[0].dataType()); Output[] grads1 = g.addGradients(y2, toArray(x1, x2)); assertNotNull(grads1); assertEquals(2, grads1.length); - assertEquals(TFloat32.DTYPE, grads1[0].dataType()); - assertEquals(TFloat32.DTYPE, grads1[1].dataType()); + assertEquals(DataType.DT_FLOAT, grads1[0].dataType()); + assertEquals(DataType.DT_FLOAT, grads1[1].dataType()); - try (Tensor c1 = TFloat32.scalarOf(3.0f); - Tensor c2 = TFloat32.scalarOf(2.0f); - AutoCloseableList> outputs = new AutoCloseableList<>( + try (TFloat32 c1 = TFloat32.scalarOf(3.0f); + TFloat32 c2 = TFloat32.scalarOf(2.0f); + AutoCloseableList outputs = new AutoCloseableList<>( s.runner() .feed(x1, c1) .feed(x2, c2) @@ -169,9 +170,9 @@ public void addGradientsToGraph() { .run())) { assertEquals(3, outputs.size()); - assertEquals(108.0f, outputs.get(0).expect(TFloat32.DTYPE).data().getFloat(), 0.0f); - assertEquals(6.0f, outputs.get(1).expect(TFloat32.DTYPE).data().getFloat(), 0.0f); - assertEquals(1.0f, outputs.get(2).expect(TFloat32.DTYPE).data().getFloat(), 0.0f); + assertEquals(108.0f, ((TFloat32)outputs.get(0)).getFloat(), 0.0f); + assertEquals(6.0f, ((TFloat32)outputs.get(1)).getFloat(), 0.0f); + assertEquals(1.0f, ((TFloat32)outputs.get(2)).getFloat(), 0.0f); } } } @@ -182,23 +183,22 @@ public void addGradientSumsToGraph() { Session s = new Session(g)) { Ops tf = Ops.create(g); - Output x = tf.placeholder(TFloat32.DTYPE).output(); + Output x = tf.placeholder(TFloat32.class).output(); Output y0 = tf.math.square(x).y(); Output y1 = tf.math.square(y0).y(); Output[] grad = g.addGradients(null, toArray(y0, y1), toArray(x), null); assertNotNull(grad); assertEquals(1, grad.length); - assertEquals(TFloat32.DTYPE, grad[0].dataType()); + assertEquals(DataType.DT_FLOAT, grad[0].dataType()); - try (Tensor c = TFloat32.scalarOf(3.0f); - Tensor output = s.runner() + try (TFloat32 c = TFloat32.scalarOf(3.0f); + TFloat32 output = (TFloat32)s.runner() .feed(x, c) .fetch(grad[0]) .run() - .get(0) - .expect(TFloat32.DTYPE)) { - assertEquals(114.0f, output.data().getFloat(), 0.0f); + .get(0)) { + assertEquals(114.0f, output.getFloat(), 0.0f); } } } @@ -209,28 +209,27 @@ public void addGradientsWithInitialValuesToGraph() { Session s = new Session(g)) { Ops tf = Ops.create(g); - Output x = tf.placeholder(TFloat32.DTYPE).output(); + Output x = tf.placeholder(TFloat32.class).output(); Output y0 = tf.math.square(x).y(); Output y1 = tf.math.square(y0).y(); Output[] grad0 = g.addGradients(y1, toArray(y0)); assertNotNull(grad0); assertEquals(1, grad0.length); - assertEquals(TFloat32.DTYPE, grad0[0].dataType()); + assertEquals(DataType.DT_FLOAT, grad0[0].dataType()); Output[] grad1 = g.addGradients(null, toArray(y0), toArray(x), toArray(grad0[0])); assertNotNull(grad1); assertEquals(1, grad1.length); - assertEquals(TFloat32.DTYPE, grad1[0].dataType()); + assertEquals(DataType.DT_FLOAT, grad1[0].dataType()); - try (Tensor c = TFloat32.scalarOf(3.0f); - Tensor output = s.runner() + try (TFloat32 c = TFloat32.scalarOf(3.0f); + TFloat32 output = (TFloat32)s.runner() .feed(x, c) .fetch(grad1[0]) .run() - .get(0) - .expect(TFloat32.DTYPE)) { - assertEquals(108.0f, output.data().getFloat(), 0.0f); + .get(0)) { + assertEquals(108.0f, output.getFloat(), 0.0f); } } } @@ -240,7 +239,7 @@ public void validateGradientsNames() { try (Graph g = new Graph()) { Ops tf = Ops.create(g); - Output x = tf.placeholder(TFloat32.DTYPE).output(); + Output x = tf.placeholder(TFloat32.class).output(); Output y0 = tf.math.square(x).y(); Output[] grad0 = g.addGradients(null, toArray(y0), toArray(x), null); @@ -269,7 +268,7 @@ public void buildWhileLoopSingleInput() { Session s = new Session(g)) { Ops tf = Ops.create(g); - Output input = tf.placeholder(TInt32.DTYPE).output(); + Output input = tf.placeholder(TInt32.class).output(); @SuppressWarnings("unchecked") Output[] loopOutputs = g.whileLoop( @@ -284,14 +283,13 @@ public void buildWhileLoopSingleInput() { }, "test_loop"); - try (Tensor c = TInt32.scalarOf(2); - Tensor output = s.runner() + try (TInt32 c = TInt32.scalarOf(2); + TInt32 output = (TInt32)s.runner() .feed(input, c) .fetch(loopOutputs[0]) .run() - .get(0) - .expect(TInt32.DTYPE)) { - assertEquals(16, output.data().getInt()); // ((2^2)^2) + .get(0)) { + assertEquals(16, output.getInt()); // ((2^2)^2) } } } @@ -302,8 +300,8 @@ public void buildWhileLoopMultipleInputs() { Session s = new Session(g)) { Ops tf = Ops.create(g); - Output input1 = tf.placeholder(TInt32.DTYPE).output(); - Output input2 = tf.placeholder(TInt32.DTYPE).output(); + Output input1 = tf.placeholder(TInt32.class).output(); + Output input2 = tf.placeholder(TInt32.class).output(); Output[] inputs = toArray(input1, input2); @SuppressWarnings("unchecked") @@ -320,9 +318,9 @@ public void buildWhileLoopMultipleInputs() { }, "test_loop"); - try (Tensor c1 = TInt32.scalarOf(2); - Tensor c2 = TInt32.scalarOf(5); - AutoCloseableList> outputs = + try (TInt32 c1 = TInt32.scalarOf(2); + TInt32 c2 = TInt32.scalarOf(5); + AutoCloseableList outputs = new AutoCloseableList<>( s.runner() .feed(input1, c1) @@ -331,8 +329,8 @@ public void buildWhileLoopMultipleInputs() { .fetch(loopOutputs[1]) .run())) { assertEquals(2, outputs.size()); - assertEquals(16, outputs.get(0).expect(TInt32.DTYPE).data().getInt()); // ((2^2)^2) - assertEquals(625, outputs.get(1).expect(TInt32.DTYPE).data().getInt()); // ((5^2)^2) + assertEquals(16, ((TInt32)outputs.get(0)).getInt()); // ((2^2)^2) + assertEquals(625, ((TInt32)outputs.get(1)).getInt()); // ((5^2)^2) } } } diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/RawTensorTest.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/RawTensorTest.java new file mode 100644 index 00000000000..0d2d8af8b1c --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/RawTensorTest.java @@ -0,0 +1,90 @@ +/* + * Copyright 2020 The TensorFlow Authors. All Rights Reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ======================================================================= + */ +package org.tensorflow; + +import static org.junit.jupiter.api.Assertions.assertEquals; +import static org.junit.jupiter.api.Assertions.assertSame; +import static org.junit.jupiter.api.Assertions.fail; + +import org.junit.jupiter.api.Test; +import org.tensorflow.ndarray.Shape; +import org.tensorflow.types.TFloat32; +import org.tensorflow.types.TInt32; +import org.tensorflow.types.TString; + +public class RawTensorTest { + + @Test + public void rawToTypedTensor() { + RawTensor rawTensor = RawTensor.allocate(TFloat32.class, Shape.of(2, 2), -1); + TFloat32 floatTensor = (TFloat32)rawTensor.asTypedTensor(); + assertSame(floatTensor.asRawTensor(), rawTensor); + try { + TInt32 intTensor = (TInt32)rawTensor.asTypedTensor(); + fail(); + } catch (ClassCastException e) { + // ok + } + } + + @Test + public void allocateTensorWithSize() { + try (RawTensor rawTensor = RawTensor.allocate(TFloat32.class, Shape.of(2, 2), 16)) { + assertEquals(16, rawTensor.numBytes()); + } + try (RawTensor rawTensor = RawTensor.allocate(TFloat32.class, Shape.of(2, 2), 100)) { + assertEquals(100, rawTensor.numBytes()); + } + try (RawTensor rawTensor = RawTensor.allocate(TFloat32.class, Shape.of(2, 2), 10)) { + fail(); + } catch (IllegalArgumentException e) { + // ok + } + try (RawTensor rawTensor = RawTensor.allocate(TString.class, Shape.of(2, 2), 100)) { + assertEquals(100, rawTensor.numBytes()); + } + } + + @Test + public void allocateTensorWithoutSize() { + try (RawTensor rawTensor = RawTensor.allocate(TFloat32.class, Shape.of(2, 2), -1)) { + assertEquals(16, rawTensor.numBytes()); + // ok + } + try (RawTensor rawTensor = RawTensor.allocate(TString.class, Shape.of(2, 2), -1)) { + fail(); + } catch (IllegalArgumentException e) { + // ok + } + } + + @Test + public void failToAllocateTensorFromUnknownShape() { + try { + RawTensor.allocate(TFloat32.class, Shape.of(3, -1, 3), -1); + fail(); + } catch (IllegalArgumentException e) { + // ok + } + try { + RawTensor.allocate(TString.class, Shape.unknown(), 100); + fail(); + } catch (IllegalArgumentException e) { + // ok + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/SavedModelBundleTest.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/SavedModelBundleTest.java index d807d13de00..cd8ac7e2ae4 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/SavedModelBundleTest.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/SavedModelBundleTest.java @@ -107,9 +107,9 @@ public void exportFunctionWithVariables() throws IOException { f.session().run(Init.DEFAULT_NAME); // Call the graph and remember the result of computation for later - try (Tensor xTensor = TFloat32.tensorOf(xValue); - Tensor zTensor = f.call(xTensor).expect(TFloat32.DTYPE)) { - reducedSum = zTensor.data().getFloat(); + try (TFloat32 xTensor = TFloat32.tensorOf(xValue); + TFloat32 zTensor = (TFloat32)f.call(xTensor)) { + reducedSum = zTensor.getFloat(); } // Save/export the model (which is a single function in this case) f.save(testFolder.toString()); @@ -153,15 +153,15 @@ public void exportFunctionWithVariables() throws IOException { assertNotNull(outputInfo); assertEquals(0, outputInfo.getTensorShape().getDimCount()); - try (Tensor xTensor = TFloat32.tensorOf(xValue)) { + try (TFloat32 xTensor = TFloat32.tensorOf(xValue)) { // Call the saved model function and make sure it returns the same result as before - try (Tensor zTensor = function.call(xTensor).expect(TFloat32.DTYPE)) { - assertEquals(reducedSum, zTensor.data().getFloat(), EPSILON); + try (TFloat32 zTensor = (TFloat32)function.call(xTensor)) { + assertEquals(reducedSum, zTensor.getFloat(), EPSILON); } // Now call the same function directly from the model - try (Tensor zTensor = - savedModel.call(Collections.singletonMap("input", xTensor)).get("reducedSum").expect(TFloat32.DTYPE)) { - assertEquals(reducedSum, zTensor.data().getFloat(), EPSILON); + try (TFloat32 zTensor = + (TFloat32)savedModel.call(Collections.singletonMap("input", xTensor)).get("reducedSum")) { + assertEquals(reducedSum, zTensor.getFloat(), EPSILON); } } } @@ -179,9 +179,9 @@ public void exportMultipleFunctions() throws IOException { ConcreteFunction f1 = ConcreteFunction.create(f1Signature, s); ConcreteFunction f2 = ConcreteFunction.create(f2Signature, s)) { f1.session().run(Init.DEFAULT_NAME); - try (Tensor x = TFloat32.tensorOf(StdArrays.ndCopyOf(new float[]{2, 2})); - Tensor t = f1.call(x).expect(TFloat32.DTYPE)) { - reducedSum = t.data().getFloat(); + try (TFloat32 x = TFloat32.tensorOf(StdArrays.ndCopyOf(new float[]{2, 2})); + TFloat32 t = (TFloat32)f1.call(x)) { + reducedSum = t.getFloat(); } SavedModelBundle.exporter(testFolder.toString()) .withFunction(f1) @@ -193,15 +193,15 @@ public void exportMultipleFunctions() throws IOException { assertEquals(2, model.signatures().size()); ConcreteFunction f1 = model.function(Signature.DEFAULT_KEY); assertNotNull(f1); - try (Tensor x = TFloat32.tensorOf(StdArrays.ndCopyOf(new float[]{2, 2})); - Tensor t = f1.call(x).expect(TFloat32.DTYPE)) { - assertEquals(reducedSum, t.data().getFloat(), EPSILON); + try (TFloat32 x = TFloat32.tensorOf(StdArrays.ndCopyOf(new float[]{2, 2})); + TFloat32 t = (TFloat32)f1.call(x)) { + assertEquals(reducedSum, t.getFloat(), EPSILON); } ConcreteFunction f2 = model.function("identity"); assertNotNull(f2); - try (Tensor x = TFloat32.scalarOf(10.0f); - Tensor t = f2.call(x).expect(TFloat32.DTYPE)) { - assertEquals(10.0f, t.data().getFloat(), 0.0f); + try (TFloat32 x = TFloat32.scalarOf(10.0f); + TFloat32 t = (TFloat32)f2.call(x)) { + assertEquals(10.0f, t.getFloat(), 0.0f); } try { model.function("NoSuchFunction"); @@ -290,31 +290,31 @@ public void pythonTfFunction() { * Signature name used for saving 'add', argument names 'a' and 'b' */ ConcreteFunction add = bundle.function("add"); - Map> args = new HashMap(); - try (Tensor a = TFloat32.scalarOf(10.0f); - Tensor b = TFloat32.scalarOf(15.5f)) { + Map args = new HashMap(); + try (TFloat32 a = TFloat32.scalarOf(10.0f); + TFloat32 b = TFloat32.scalarOf(15.5f)) { args.put("a", a); args.put("b", b); - Map> result = add.call(args); + Map result = add.call(args); assertEquals(result.size(), 1); - try (Tensor c = result.values().iterator().next().expect(TFloat32.DTYPE)) { - assertEquals(25.5f, c.data().getFloat()); + try (TFloat32 c = (TFloat32)result.values().iterator().next()) { + assertEquals(25.5f, c.getFloat()); } } } } private static Signature buildGraphWithVariables(Ops tf, Shape xShape) { - Placeholder x = tf.placeholder(TFloat32.DTYPE, Placeholder.shape(xShape)); + Placeholder x = tf.placeholder(TFloat32.class, Placeholder.shape(xShape)); Variable y = tf - .variable(tf.random.randomUniform(tf.constant(xShape), TFloat32.DTYPE)); + .variable(tf.random.randomUniform(tf.constant(xShape), TFloat32.class)); ReduceSum z = tf.reduceSum(tf.math.add(x, y), tf.array(0, 1)); Init init = tf.init(); return Signature.builder().input("input", x).output("reducedSum", z).build(); } private static Signature buildIdentityGraph(Ops tf, String signatureKey) { - Placeholder x = tf.placeholder(TFloat32.DTYPE, Placeholder.shape(Shape.scalar())); + Placeholder x = tf.placeholder(TFloat32.class, Placeholder.shape(Shape.scalar())); Identity xprime = tf.identity(x); return Signature.builder().key(signatureKey).input("x", x).output("x", xprime).build(); } diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/SessionTest.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/SessionTest.java index fa41af32a29..b1928bff51c 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/SessionTest.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/SessionTest.java @@ -48,11 +48,11 @@ public void runUsingOperationNames() { Session s = new Session(g)) { Ops tf = Ops.create(g); transpose_A_times_X(tf, new int[][] {{2}, {3}}); - try (Tensor x = TInt32.tensorOf(StdArrays.ndCopyOf(new int[][] {{5}, {7}})); - AutoCloseableList> outputs = + try (TInt32 x = TInt32.tensorOf(StdArrays.ndCopyOf(new int[][] {{5}, {7}})); + AutoCloseableList outputs = new AutoCloseableList<>(s.runner().feed("X", x).fetch("Y").run())) { assertEquals(1, outputs.size()); - assertEquals(31, outputs.get(0).expect(TInt32.DTYPE).data().getInt(0, 0)); + assertEquals(31, ((TInt32)outputs.get(0)).getInt(0, 0)); } } } @@ -65,11 +65,11 @@ public void runUsingOperationHandles() { transpose_A_times_X(tf, new int[][] {{2}, {3}}); Output feed = g.operation("X").output(0); Output fetch = g.operation("Y").output(0); - try (Tensor x = TInt32.tensorOf(StdArrays.ndCopyOf(new int[][] {{5}, {7}})); - AutoCloseableList> outputs = + try (TInt32 x = TInt32.tensorOf(StdArrays.ndCopyOf(new int[][] {{5}, {7}})); + AutoCloseableList outputs = new AutoCloseableList<>(s.runner().feed(feed, x).fetch(fetch).run())) { assertEquals(1, outputs.size()); - assertEquals(31, outputs.get(0).expect(TInt32.DTYPE).data().getInt(0, 0)); + assertEquals(31, ((TInt32)outputs.get(0)).getInt(0, 0)); } } } @@ -83,22 +83,19 @@ public void runUsingColonSeparatedNames() { tf.math.add(split.output().get(0), split.output().get(1)); // Fetch using colon separated names. - try (Tensor fetched = - s.runner().fetch("Split:1").run().get(0).expect(TInt32.DTYPE)) { - assertEquals(3, fetched.data().getInt(0)); - assertEquals(4, fetched.data().getInt(1)); + try (TInt32 fetched = (TInt32)s.runner().fetch("Split:1").run().get(0)) { + assertEquals(3, fetched.getInt(0)); + assertEquals(4, fetched.getInt(1)); } // Feed using colon separated names. - try (Tensor fed = TInt32.vectorOf(4, 3, 2, 1); - Tensor fetched = - s.runner() + try (TInt32 fed = TInt32.vectorOf(4, 3, 2, 1); + TInt32 fetched = (TInt32) s.runner() .feed("Split:0", fed) .feed("Split:1", fed) .fetch("Add") .run() - .get(0) - .expect(TInt32.DTYPE)) { - assertEquals(NdArrays.vectorOf(8, 6, 4, 2), fetched.data()); + .get(0)) { + assertEquals(NdArrays.vectorOf(8, 6, 4, 2), fetched); } } } @@ -109,17 +106,16 @@ public void runWithMetadata() { Session s = new Session(g)) { Ops tf = Ops.create(g); transpose_A_times_X(tf, new int[][] {{2}, {3}}); - try (Tensor x = TInt32.tensorOf(StdArrays.ndCopyOf(new int[][] {{5}, {7}}))) { - Session.Run result = - s.runner() + try (TInt32 x = TInt32.tensorOf(StdArrays.ndCopyOf(new int[][] {{5}, {7}}))) { + Session.Run result = s.runner() .feed("X", x) .fetch("Y") .setOptions(fullTraceRunOptions()) .runAndFetchMetadata(); // Sanity check on outputs. - AutoCloseableList> outputs = new AutoCloseableList<>(result.outputs); + AutoCloseableList outputs = new AutoCloseableList<>(result.outputs); assertEquals(1, outputs.size()); - assertEquals(31, outputs.get(0).expect(TInt32.DTYPE).data().getInt(0, 0)); + assertEquals(31, ((TInt32)outputs.get(0)).getInt(0, 0)); // Sanity check on metadata assertNotNull(result.metadata); assertTrue(result.metadata.hasStepStats(), result.metadata.toString()); @@ -135,11 +131,11 @@ public void runMultipleOutputs() { Ops tf = Ops.create(g); tf.withName("c1").constant(2718); tf.withName("c2").constant(31415); - AutoCloseableList> outputs = + AutoCloseableList outputs = new AutoCloseableList<>(s.runner().fetch("c2").fetch("c1").run()); assertEquals(2, outputs.size()); - assertEquals(31415, outputs.get(0).expect(TInt32.DTYPE).data().getInt()); - assertEquals(2718, outputs.get(1).expect(TInt32.DTYPE).data().getInt()); + assertEquals(31415, ((TInt32)outputs.get(0)).getInt()); + assertEquals(2718, ((TInt32)outputs.get(1)).getInt()); outputs.close(); } } @@ -169,7 +165,7 @@ public void runInit() { try (Graph g = new Graph()) { Ops tf = Ops.create(g); - Variable var1 = tf.variable(Shape.scalar(), TInt32.DTYPE); + Variable var1 = tf.variable(Shape.scalar(), TInt32.class); tf.initAdd(tf.assign(var1, tf.constant(10))); Variable var2 = tf.variable(tf.constant(20)); Add add = tf.math.add(var1, var2); @@ -177,8 +173,8 @@ public void runInit() { try (Session s = new Session(g)) { s.run(tf.init()); - try (Tensor t = s.runner().fetch(add).run().get(0).expect(TInt32.DTYPE)) { - assertEquals(30, t.data().getInt()); + try (TInt32 t = (TInt32) s.runner().fetch(add).run().get(0)) { + assertEquals(30, t.getInt()); } } } @@ -189,7 +185,7 @@ public void runInitByName() { try (Graph g = new Graph()) { Ops tf = Ops.create(g); - Variable var1 = tf.variable(Shape.scalar(), TInt32.DTYPE); + Variable var1 = tf.variable(Shape.scalar(), TInt32.class); tf.initAdd(tf.assign(var1, tf.constant(10))); Variable var2 = tf.variable(tf.constant(20)); Add add = tf.math.add(var1, var2); @@ -198,8 +194,8 @@ public void runInitByName() { try (Session s = new Session(g)) { s.run("init_test"); - try (Tensor t = s.runner().fetch(add).run().get(0).expect(TInt32.DTYPE)) { - assertEquals(30, t.data().getInt()); + try (TInt32 t = (TInt32) s.runner().fetch(add).run().get(0)) { + assertEquals(30, t.getInt()); } try { s.run("wrong_name"); @@ -216,8 +212,8 @@ public void save() throws IOException { Path testFolder = Files.createTempDirectory("tf-session-save-test"); try (Graph g = new Graph()) { Ops tf = Ops.create(g); - Variable x = tf.variable(tf.random.randomUniform(tf.constant(Shape.of(3, 3L)), TFloat32.DTYPE)); - Variable y = tf.variable(tf.random.randomUniform(tf.constant(Shape.of(3, 3L)), TFloat32.DTYPE)); + Variable x = tf.variable(tf.random.randomUniform(tf.constant(Shape.of(3, 3L)), TFloat32.class)); + Variable y = tf.variable(tf.random.randomUniform(tf.constant(Shape.of(3, 3L)), TFloat32.class)); Init init = tf.init(); try (Session s = new Session(g)) { @@ -245,7 +241,7 @@ private static ConfigProto singleThreadConfigProto() { private static void transpose_A_times_X(Ops tf, int[][] a) { tf.withName("Y").linalg.matMul( tf.withName("A").constant(a), - tf.withName("X").placeholder(TInt32.DTYPE), + tf.withName("X").placeholder(TInt32.class), MatMul.transposeA(true).transposeB(false) ); } diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/SignatureTest.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/SignatureTest.java index 8931ecbbde1..e1436358a68 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/SignatureTest.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/SignatureTest.java @@ -14,17 +14,11 @@ ==============================================================================*/ package org.tensorflow; -import static org.junit.jupiter.api.Assertions.assertEquals; import static org.junit.jupiter.api.Assertions.assertNull; import static org.junit.jupiter.api.Assertions.assertThrows; import org.junit.jupiter.api.Test; import org.tensorflow.op.Ops; -import org.tensorflow.op.core.Init; -import org.tensorflow.op.core.Placeholder; -import org.tensorflow.op.math.Add; -import org.tensorflow.op.math.Sub; -import org.tensorflow.types.TFloat32; public class SignatureTest { diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/TensorTest.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/TensorTest.java index 01ef11efedd..9415a986222 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/TensorTest.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/TensorTest.java @@ -30,9 +30,6 @@ import java.nio.IntBuffer; import java.nio.LongBuffer; import org.junit.jupiter.api.Test; -import org.tensorflow.op.Ops; -import org.tensorflow.ndarray.Shape; -import org.tensorflow.ndarray.buffer.DataBuffers; import org.tensorflow.ndarray.BooleanNdArray; import org.tensorflow.ndarray.DoubleNdArray; import org.tensorflow.ndarray.FloatNdArray; @@ -40,7 +37,11 @@ import org.tensorflow.ndarray.LongNdArray; import org.tensorflow.ndarray.NdArray; import org.tensorflow.ndarray.NdArrays; +import org.tensorflow.ndarray.Shape; import org.tensorflow.ndarray.StdArrays; +import org.tensorflow.ndarray.buffer.DataBuffers; +import org.tensorflow.op.Ops; +import org.tensorflow.proto.framework.DataType; import org.tensorflow.types.TBool; import org.tensorflow.types.TFloat32; import org.tensorflow.types.TFloat64; @@ -64,22 +65,22 @@ public void createWithRawData() { String strings = "test"; Shape strings_shape = Shape.scalar(); byte[] strings_; // raw TF_STRING - try (Tensor t = TString.tensorOf(NdArrays.scalarOfObject(strings))) { + try (TString t = TString.tensorOf(NdArrays.scalarOfObject(strings))) { strings_ = new byte[(int)t.numBytes()]; - t.rawData().read(strings_); + t.asRawTensor().data().read(strings_); } // validate creating a tensor using a raw data byte buffers { - try (Tensor t = Tensor.of(TBool.DTYPE, bools_shape, DataBuffers.of(bools_))) { + try (TBool t = Tensor.of(TBool.class, bools_shape, DataBuffers.of(bools_))) { boolean[] actual = new boolean[bools_.length]; - t.data().read(DataBuffers.of(actual)); + t.read(DataBuffers.of(actual)); assertArrayEquals(bools, actual); } // note: the buffer is expected to contain raw TF_STRING (as per C API) - try (Tensor t = Tensor.of(TString.DTYPE, strings_shape, DataBuffers.of(strings_))) { - assertEquals(strings, t.data().getObject()); + try (TString t = Tensor.of(TString.class, strings_shape, DataBuffers.of(strings_))) { + assertEquals(strings, t.getObject()); } } @@ -87,15 +88,15 @@ public void createWithRawData() { { DoubleBuffer buf = ByteBuffer.allocateDirect(8 * doubles.length).order(ByteOrder.nativeOrder()) .asDoubleBuffer().put(doubles); - try (Tensor t = TFloat64.tensorOf(doubles_shape, d -> d.write(DataBuffers.of(buf)))) { + try (TFloat64 t = TFloat64.tensorOf(doubles_shape, d -> d.write(DataBuffers.of(buf)))) { double[] actual = new double[doubles.length]; - t.data().read(DataBuffers.of(actual)); + t.read(DataBuffers.of(actual)); assertArrayEquals(doubles, actual, EPSILON); } } // validate shape checking - try (Tensor t = Tensor.of(TBool.DTYPE, Shape.of(bools_.length * 2), DataBuffers.of(bools_))) { + try (TBool t = Tensor.of(TBool.class, Shape.of(bools_.length * 2), DataBuffers.of(bools_))) { fail("should have failed on incompatible buffer"); } catch (IllegalArgumentException e) { // expected @@ -111,9 +112,9 @@ public void createFromBufferWithNativeByteOrder() { .asDoubleBuffer() .put(doubles); flipBuffer(buf); - try (Tensor t = TFloat64.tensorOf(Shape.of(4), DataBuffers.of(buf))) { + try (TFloat64 t = TFloat64.tensorOf(Shape.of(4), DataBuffers.of(buf))) { double[] actual = new double[doubles.length]; - t.data().read(DataBuffers.of(actual)); + t.read(DataBuffers.of(actual)); assertArrayEquals(doubles, actual, EPSILON); } } @@ -130,9 +131,9 @@ public void createFromBufferWithNonNativeByteOrder() { .asDoubleBuffer() .put(doubles); flipBuffer(buf); - try (Tensor t = TFloat64.tensorOf(Shape.of(4), DataBuffers.of(buf))) { + try (TFloat64 t = TFloat64.tensorOf(Shape.of(4), DataBuffers.of(buf))) { double[] actual = new double[doubles.length]; - t.data().read(DataBuffers.of(actual)); + t.read(DataBuffers.of(actual)); assertArrayEquals(doubles, actual, EPSILON); } } @@ -147,24 +148,24 @@ public void createWithTypedBuffer() { // validate creating a tensor using a typed buffer { Shape shape = Shape.of(4); - try (Tensor t = TFloat64.tensorOf(shape, DataBuffers.of(doubles))) { + try (TFloat64 t = TFloat64.tensorOf(shape, DataBuffers.of(doubles))) { DoubleBuffer actual = DoubleBuffer.allocate(doubles.capacity()); - t.data().read(DataBuffers.of(actual)); + t.read(DataBuffers.of(actual)); assertEquals(doubles, actual); } - try (Tensor t = TFloat32.tensorOf(shape, DataBuffers.of(floats))) { + try (TFloat32 t = TFloat32.tensorOf(shape, DataBuffers.of(floats))) { FloatBuffer actual = FloatBuffer.allocate(floats.capacity()); - t.data().read(DataBuffers.of(actual)); + t.read(DataBuffers.of(actual)); assertEquals(floats, actual); } - try (Tensor t = TInt32.tensorOf(shape, DataBuffers.of(ints))) { + try (TInt32 t = TInt32.tensorOf(shape, DataBuffers.of(ints))) { IntBuffer actual = IntBuffer.allocate(ints.capacity()); - t.data().read(DataBuffers.of(actual)); + t.read(DataBuffers.of(actual)); assertEquals(ints, actual); } - try (Tensor t = TInt64.tensorOf(shape, DataBuffers.of(longs))) { + try (TInt64 t = TInt64.tensorOf(shape, DataBuffers.of(longs))) { LongBuffer actual = LongBuffer.allocate(longs.capacity()); - t.data().read(DataBuffers.of(actual)); + t.read(DataBuffers.of(actual)); assertEquals(longs, actual); } } @@ -172,22 +173,22 @@ public void createWithTypedBuffer() { // validate shape-checking { Shape shape = Shape.of(5); - try (Tensor t = TFloat64.tensorOf(shape, DataBuffers.of(doubles))) { + try (TFloat64 t = TFloat64.tensorOf(shape, DataBuffers.of(doubles))) { fail("should have failed on incompatible buffer"); } catch (BufferUnderflowException e) { // expected } - try (Tensor t = TFloat32.tensorOf(shape, DataBuffers.of(floats))) { + try (TFloat32 t = TFloat32.tensorOf(shape, DataBuffers.of(floats))) { fail("should have failed on incompatible buffer"); } catch (BufferUnderflowException e) { // expected } - try (Tensor t = TInt32.tensorOf(shape, DataBuffers.of(ints))) { + try (TInt32 t = TInt32.tensorOf(shape, DataBuffers.of(ints))) { fail("should have failed on incompatible buffer"); } catch (BufferUnderflowException e) { // expected } - try (Tensor t = TInt64.tensorOf(shape, DataBuffers.of(longs))) { + try (TInt64 t = TInt64.tensorOf(shape, DataBuffers.of(longs))) { fail("should have failed on incompatible buffer"); } catch (BufferUnderflowException e) { // expected @@ -203,39 +204,39 @@ public void readFromRawData() { long[] longs = {1L, 2L, 3L}; boolean[] bools = {true, false, true}; - try (Tensor tints = TInt32.vectorOf(ints); - Tensor tfloats = TFloat32.vectorOf(floats); - Tensor tdoubles = TFloat64.vectorOf(doubles); - Tensor tlongs = TInt64.vectorOf(longs); - Tensor tbools = TBool.vectorOf(bools)) { + try (TInt32 tints = TInt32.vectorOf(ints); + TFloat32 tfloats = TFloat32.vectorOf(floats); + TFloat64 tdoubles = TFloat64.vectorOf(doubles); + TInt64 tlongs = TInt64.vectorOf(longs); + TBool tbools = TBool.vectorOf(bools)) { // validate that any datatype is readable with ByteBuffer (content, position) { ByteBuffer bbuf = ByteBuffer.allocate(1024).order(ByteOrder.nativeOrder()); clearBuffer(bbuf); // FLOAT - assertEquals(tfloats.numBytes(), tfloats.rawData().size()); - tfloats.rawData().copyTo(DataBuffers.of(bbuf), tfloats.numBytes()); + assertEquals(tfloats.numBytes(), tfloats.asRawTensor().data().size()); + tfloats.asRawTensor().data().copyTo(DataBuffers.of(bbuf), tfloats.numBytes()); assertEquals(floats[0], bbuf.asFloatBuffer().get(0), EPSILON); clearBuffer(bbuf); // DOUBLE - assertEquals(tdoubles.numBytes(), tdoubles.rawData().size()); - tdoubles.rawData().copyTo(DataBuffers.of(bbuf), tdoubles.numBytes()); + assertEquals(tdoubles.numBytes(), tdoubles.asRawTensor().data().size()); + tdoubles.asRawTensor().data().copyTo(DataBuffers.of(bbuf), tdoubles.numBytes()); assertEquals(doubles[0], bbuf.asDoubleBuffer().get(0), EPSILON); - clearBuffer(bbuf); // INT32 - assertEquals(tints.numBytes(), tints.rawData().size()); - tints.rawData().copyTo(DataBuffers.of(bbuf), tints.numBytes()); + clearBuffer(bbuf); // INT3 + assertEquals(tints.numBytes(), tints.asRawTensor().data().size()); + tints.asRawTensor().data().copyTo(DataBuffers.of(bbuf), tints.numBytes()); assertEquals(ints[0], bbuf.asIntBuffer().get(0)); clearBuffer(bbuf); // INT64 - assertEquals(tlongs.numBytes(), tlongs.rawData().size()); - tlongs.rawData().copyTo(DataBuffers.of(bbuf), tlongs.numBytes()); + assertEquals(tlongs.numBytes(), tlongs.asRawTensor().data().size()); + tlongs.asRawTensor().data().copyTo(DataBuffers.of(bbuf), tlongs.numBytes()); assertEquals(longs[0], bbuf.asLongBuffer().get(0)); clearBuffer(bbuf); // BOOL - assertEquals(tbools.numBytes(), tbools.rawData().size()); - tbools.rawData().copyTo(DataBuffers.of(bbuf), tbools.numBytes()); + assertEquals(tbools.numBytes(), tbools.asRawTensor().data().size()); + tbools.asRawTensor().data().copyTo(DataBuffers.of(bbuf), tbools.numBytes()); assertEquals(bools[0], bbuf.get(0) != 0); } @@ -243,7 +244,7 @@ public void readFromRawData() { { ByteBuffer bbuf = ByteBuffer.allocateDirect((int)tdoubles.numBytes()).order(ByteOrder.nativeOrder()); - tdoubles.rawData().copyTo(DataBuffers.of(bbuf), tdoubles.numBytes()); + tdoubles.asRawTensor().data().copyTo(DataBuffers.of(bbuf), tdoubles.numBytes()); assertEquals(doubles[0], bbuf.asDoubleBuffer().get(0), EPSILON); } @@ -256,7 +257,7 @@ public void readFromRawData() { ? ByteOrder.BIG_ENDIAN : ByteOrder.LITTLE_ENDIAN) .asDoubleBuffer(); - tdoubles.rawData().asDoubles().copyTo(DataBuffers.of(foreignBuf), foreignBuf.capacity()); + tdoubles.asRawTensor().data().asDoubles().copyTo(DataBuffers.of(foreignBuf), foreignBuf.capacity()); double[] actual = new double[foreignBuf.remaining()]; foreignBuf.get(actual); assertArrayEquals(doubles, actual, EPSILON); @@ -266,79 +267,89 @@ public void readFromRawData() { @Test public void scalars() { - try (Tensor t = TFloat32.scalarOf(2.718f)) { - assertEquals(TFloat32.DTYPE, t.dataType()); + try (TFloat32 t = TFloat32.scalarOf(2.718f)) { + assertEquals(TFloat32.class, t.type()); + assertEquals(DataType.DT_FLOAT, t.dataType()); assertEquals(0, t.shape().numDimensions()); - assertEquals(2.718f, t.data().getFloat(), EPSILON_F); + assertEquals(2.718f, t.getFloat(), EPSILON_F); } - try (Tensor t = TFloat64.scalarOf(3.1415)) { - assertEquals(TFloat64.DTYPE, t.dataType()); + try (TFloat64 t = TFloat64.scalarOf(3.1415)) { + assertEquals(TFloat64.class, t.type()); + assertEquals(DataType.DT_DOUBLE, t.dataType()); assertEquals(0, t.shape().numDimensions()); - assertEquals(3.1415, t.data().getDouble(), EPSILON); + assertEquals(3.1415, t.getDouble(), EPSILON); } - try (Tensor t = TInt32.scalarOf(-33)) { - assertEquals(TInt32.DTYPE, t.dataType()); + try (TInt32 t = TInt32.scalarOf(-33)) { + assertEquals(TInt32.class, t.type()); + assertEquals(DataType.DT_INT32, t.dataType()); assertEquals(0, t.shape().numDimensions()); - assertEquals(-33, t.data().getInt()); + assertEquals(-33, t.getInt()); } - try (Tensor t = TInt64.scalarOf(8589934592L)) { - assertEquals(TInt64.DTYPE, t.dataType()); + try (TInt64 t = TInt64.scalarOf(8589934592L)) { + assertEquals(TInt64.class, t.type()); + assertEquals(DataType.DT_INT64, t.dataType()); assertEquals(0, t.shape().numDimensions()); - assertEquals(8589934592L, t.data().getLong()); + assertEquals(8589934592L, t.getLong()); } - try (Tensor t = TBool.scalarOf(true)) { - assertEquals(TBool.DTYPE, t.dataType()); + try (TBool t = TBool.scalarOf(true)) { + assertEquals(TBool.class, t.type()); + assertEquals(DataType.DT_BOOL, t.dataType()); assertEquals(0, t.shape().numDimensions()); - assertTrue(t.data().getBoolean()); + assertTrue(t.getBoolean()); } - try (Tensor t = TString.scalarOf("sombrero")) { - assertEquals(TString.DTYPE, t.dataType()); + try (TString t = TString.scalarOf("sombrero")) { + assertEquals(TString.class, t.type()); + assertEquals(DataType.DT_STRING, t.dataType()); assertEquals(0, t.shape().numDimensions()); - assertEquals("sombrero", t.data().getObject()); + assertEquals("sombrero", t.getObject()); } final byte[] bytes = {1, 2, 3, 4}; - try (Tensor t = TString.tensorOfBytes(NdArrays.scalarOfObject(bytes))) { - assertEquals(TString.DTYPE, t.dataType()); + try (TString t = TString.tensorOfBytes(NdArrays.scalarOfObject(bytes))) { + assertEquals(TString.class, t.type()); + assertEquals(DataType.DT_STRING, t.dataType()); assertEquals(0, t.shape().numDimensions()); - assertArrayEquals(bytes, t.data().asBytes().getObject()); + assertArrayEquals(bytes, t.asBytes().getObject()); } } @Test public void nDimensional() { DoubleNdArray vector = StdArrays.ndCopyOf(new double[]{1.414, 2.718, 3.1415}); - try (Tensor t = TFloat64.tensorOf(vector)) { - assertEquals(TFloat64.DTYPE, t.dataType()); + try (TFloat64 t = TFloat64.tensorOf(vector)) { + assertEquals(TFloat64.class, t.type()); + assertEquals(DataType.DT_DOUBLE, t.dataType()); assertEquals(1, t.shape().numDimensions()); assertEquals(3, t.shape().size(0)); - assertEquals(vector, t.data()); + assertEquals(vector, t); } IntNdArray matrix = StdArrays.ndCopyOf(new int[][]{{1, 2, 3}, {4, 5, 6}}); - try (Tensor t = TInt32.tensorOf(matrix)) { - assertEquals(TInt32.DTYPE, t.dataType()); + try (TInt32 t = TInt32.tensorOf(matrix)) { + assertEquals(TInt32.class, t.type()); + assertEquals(DataType.DT_INT32, t.dataType()); assertEquals(2, t.shape().numDimensions()); assertEquals(2, t.shape().size(0)); assertEquals(3, t.shape().size(1)); - assertEquals(matrix, t.data()); + assertEquals(matrix, t); } LongNdArray threeD = StdArrays.ndCopyOf(new long[][][]{ {{1}, {3}, {5}, {7}, {9}}, {{2}, {4}, {6}, {8}, {0}}, }); - try (Tensor t = TInt64.tensorOf(threeD)) { - assertEquals(TInt64.DTYPE, t.dataType()); + try (TInt64 t = TInt64.tensorOf(threeD)) { + assertEquals(TInt64.class, t.type()); + assertEquals(DataType.DT_INT64, t.dataType()); assertEquals(3, t.shape().numDimensions()); assertEquals(2, t.shape().size(0)); assertEquals(5, t.shape().size(1)); assertEquals(1, t.shape().size(2)); - assertEquals(threeD, t.data()); + assertEquals(threeD, t); } BooleanNdArray fourD = StdArrays.ndCopyOf(new boolean[][][][]{ @@ -346,14 +357,15 @@ public void nDimensional() { {{{false, false, true, true}, {false, true, false, false}}}, {{{false, true, false, true}, {false, true, true, false}}}, }); - try (Tensor t = TBool.tensorOf(fourD)) { - assertEquals(TBool.DTYPE, t.dataType()); + try (TBool t = TBool.tensorOf(fourD)) { + assertEquals(TBool.class, t.type()); + assertEquals(DataType.DT_BOOL, t.dataType()); assertEquals(4, t.shape().numDimensions()); assertEquals(3, t.shape().size(0)); assertEquals(1, t.shape().size(1)); assertEquals(2, t.shape().size(2)); assertEquals(4, t.shape().size(3)); - assertEquals(fourD, t.data()); + assertEquals(fourD, t); } } @@ -365,36 +377,39 @@ public void testNDimensionalStringTensor() { matrix.setObject(String.format("(%d, %d) = %d", i, j, i << j), i, j); } } - try (Tensor t = TString.tensorOf(matrix)) { - assertEquals(TString.DTYPE, t.dataType()); + try (TString t = TString.tensorOf(matrix)) { + assertEquals(TString.class, t.type()); + assertEquals(DataType.DT_STRING, t.dataType()); assertEquals(2, t.shape().numDimensions()); assertEquals(4, t.shape().size(0)); assertEquals(3, t.shape().size(1)); - assertEquals(matrix, t.data()); + assertEquals(matrix, t); } NdArray byteMatrix = NdArrays.ofObjects(byte[].class, matrix.shape()); matrix.scalars().forEachIndexed((i, s) -> byteMatrix.setObject(s.getObject().getBytes(UTF_8), i)); - try (Tensor t = TString.tensorOfBytes(byteMatrix)) { - assertEquals(TString.DTYPE, t.dataType()); + try (TString t = TString.tensorOfBytes(byteMatrix)) { + assertEquals(TString.class, t.type()); + assertEquals(DataType.DT_STRING, t.dataType()); assertEquals(2, t.shape().numDimensions()); assertEquals(4, t.shape().size(0)); assertEquals(3, t.shape().size(1)); - assertEquals(byteMatrix, t.data().asBytes()); - assertEquals(matrix, t.data()); + assertEquals(byteMatrix, t.asBytes()); + assertEquals(matrix, t); } } @Test public void testUint8TensorFromArray() { byte[] vector = new byte[] {1, 2, 3, 4}; - try (Tensor t = TUint8.vectorOf(vector)) { - assertEquals(TUint8.DTYPE, t.dataType()); + try (TUint8 t = TUint8.vectorOf(vector)) { + assertEquals(TUint8.class, t.type()); + assertEquals(DataType.DT_UINT8, t.dataType()); assertEquals(1, t.shape().numDimensions()); assertEquals(4, t.shape().size(0)); byte[] got = new byte[4]; - t.data().read(DataBuffers.of(got)); + t.read(DataBuffers.of(got)); assertArrayEquals(vector, got); } } @@ -402,13 +417,14 @@ public void testUint8TensorFromArray() { @Test public void testCreateFromArrayOfBoxed() { Integer[] vector = new Integer[] {1, 2, 3, 4}; - try (Tensor t = TInt32.tensorOf(Shape.of(4), d -> d.write(DataBuffers.ofObjects(vector)))) { - assertEquals(TInt32.DTYPE, t.dataType()); + try (TInt32 t = TInt32.tensorOf(Shape.of(4), d -> d.write(DataBuffers.ofObjects(vector)))) { + assertEquals(TInt32.class, t.type()); + assertEquals(DataType.DT_INT32, t.dataType()); assertEquals(1, t.shape().numDimensions()); assertEquals(4, t.shape().size(0)); Integer[] got = new Integer[4]; - t.data().read(DataBuffers.ofObjects(got)); + t.read(DataBuffers.ofObjects(got)); assertArrayEquals(vector, got); } } @@ -421,7 +437,7 @@ public void failCreateOnMismatchedDimensions() { invalid[x][y] = new int[x + y + 1]; } } - try (Tensor t = TInt32.tensorOf(StdArrays.ndCopyOf(invalid))) { + try (TInt32 t = TInt32.tensorOf(StdArrays.ndCopyOf(invalid))) { fail("Tensor.create() should fail because of differing sizes in the 3rd dimension"); } catch (IllegalArgumentException e) { // The expected exception. @@ -433,11 +449,11 @@ public void tensorWithZeroDimension() { // Note: Historically, TF Java failed on purpose when trying to allocate a tensor with a shape // that has one or more dimensions set to 0 elements. But Python API allows it, so we should do // the same. - try (Tensor t = TInt32.tensorOf(Shape.of(3, 0, 1))) { + try (TInt32 t = TInt32.tensorOf(Shape.of(3, 0, 1))) { assertEquals(0, t.numBytes()); assertEquals(0, t.shape().size()); } - try (Tensor t = TInt32.tensorOf(StdArrays.ndCopyOf(new int[3][0][1]))) { + try (TInt32 t = TInt32.tensorOf(StdArrays.ndCopyOf(new int[3][0][1]))) { assertEquals(0, t.numBytes()); assertEquals(0, t.shape().size()); } @@ -445,14 +461,14 @@ public void tensorWithZeroDimension() { @Test public void allocateTensorWithSize() { - try (Tensor t = Tensor.of(TInt32.DTYPE, Shape.of(2, 2, 2), 8 * TInt32.DTYPE.byteSize())) { + try (TInt32 t = Tensor.of(TInt32.class, Shape.of(2, 2, 2), 8 * 4)) { // ok } - try (Tensor t = Tensor.of(TInt32.DTYPE, Shape.of(2, 2, 2), 9 * TInt32.DTYPE.byteSize())) { + try (TInt32 t = Tensor.of(TInt32.class, Shape.of(2, 2, 2), 9 * 4)) { // ok (size requested is larger that minimum space required) } try { - Tensor.of(TInt32.DTYPE, Shape.of(2, 2, 2), 8 * TInt32.DTYPE.byteSize() - 1); + Tensor.of(TInt32.class, Shape.of(2, 2, 2), 8 * 4 - 1); fail(); } catch (IllegalArgumentException e) { // as expected @@ -462,10 +478,10 @@ public void allocateTensorWithSize() { @Test public void useAfterClose() { int n = 4; - Tensor t = TInt32.scalarOf(n); + TInt32 t = TInt32.scalarOf(n); t.close(); try { - t.data(); + t.numBytes(); } catch (IllegalStateException e) { // The expected exception. } @@ -473,25 +489,19 @@ public void useAfterClose() { @Test public void eagerTensorIsReleasedAfterSessionIsClosed() { - Tensor sum; + TInt32 sum; try (EagerSession session = EagerSession.create()) { Ops tf = Ops.create(session); sum = tf.math.add(tf.constant(10), tf.constant(20)).asTensor(); - sum.nativeHandle(); // does not throw - assertEquals(30, sum.data().getInt()); + sum.asRawTensor().nativeHandle(); // does not throw + assertEquals(30, sum.getInt()); } try { - sum.nativeHandle(); + sum.asRawTensor().nativeHandle(); fail("Tensor native handle should have been closed by ending eager session"); } catch (IllegalStateException e) { // as expected } - try { - sum.data().getInt(); - fail("Tensor data should not be accessible after tensor is closed"); - } catch (IllegalStateException e) { - // as expected - } } @Test @@ -503,12 +513,13 @@ public void fromHandle() { // An exception is made for this test, where the pitfalls of this is avoided by not calling // close() on both Tensors. final FloatNdArray matrix = StdArrays.ndCopyOf(new float[][]{{1, 2, 3}, {4, 5, 6}}); - try (Tensor src = TFloat32.tensorOf(matrix)) { - Tensor cpy = Tensor.fromHandle(src.nativeHandle()).expect(TFloat32.DTYPE); + try (TFloat32 src = TFloat32.tensorOf(matrix)) { + TFloat32 cpy = (TFloat32)RawTensor.fromHandle(src.asRawTensor().nativeHandle()).asTypedTensor(); + assertEquals(src.type(), cpy.type()); assertEquals(src.dataType(), cpy.dataType()); assertEquals(src.shape().numDimensions(), cpy.shape().numDimensions()); assertEquals(src.shape(), cpy.shape()); - assertEquals(matrix, cpy.data()); + assertEquals(matrix, cpy); } } diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/op/ScopeTest.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/op/ScopeTest.java index bbebfd5f454..62881dcee8c 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/op/ScopeTest.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/op/ScopeTest.java @@ -23,7 +23,6 @@ import org.tensorflow.Graph; import org.tensorflow.Output; import org.tensorflow.Session; -import org.tensorflow.Tensor; import org.tensorflow.types.TInt32; import org.tensorflow.types.family.TType; @@ -169,11 +168,10 @@ public void composite() { // assertNotNull(g.operation("variance/zero")); // Verify correct results as well. - Tensor result = - sess.runner().fetch(var1.output()).run().get(0).expect(TInt32.DTYPE); - assertEquals(21704, result.data().getInt()); - result = sess.runner().fetch(var2.output()).run().get(0).expect(TInt32.DTYPE); - assertEquals(21704, result.data().getInt()); + TInt32 result = (TInt32)sess.runner().fetch(var1.output()).run().get(0); + assertEquals(21704, result.getInt()); + result = (TInt32)sess.runner().fetch(var2.output()).run().get(0); + assertEquals(21704, result.getInt()); } } @@ -189,7 +187,7 @@ static Const create(Scope s, int[] v) { return create(s, TInt32.vectorOf(v)); } - static Const create(Scope s, Tensor value) { + static Const create(Scope s, T value) { return new Const<>( s.env() .opBuilder("Const", s.makeOpName("Const")) diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/op/core/ConstantTest.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/op/core/ConstantTest.java index 266a62bd1ed..5dd6903d913 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/op/core/ConstantTest.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/op/core/ConstantTest.java @@ -18,16 +18,14 @@ import static org.junit.jupiter.api.Assertions.assertEquals; import java.io.IOException; -import java.nio.ByteBuffer; -import java.nio.DoubleBuffer; -import java.nio.FloatBuffer; -import java.nio.IntBuffer; -import java.nio.LongBuffer; + import org.junit.jupiter.api.Test; import org.tensorflow.AutoCloseableList; +import org.tensorflow.EagerSession; import org.tensorflow.Graph; import org.tensorflow.Session; import org.tensorflow.Tensor; +import org.tensorflow.op.Ops; import org.tensorflow.op.Scope; import org.tensorflow.ndarray.Shape; import org.tensorflow.ndarray.buffer.DataBuffer; @@ -58,14 +56,14 @@ public void createInts() { IntNdArray array = NdArrays.wrap(shape, buffer); try (Graph g = new Graph(); - Session sess = new Session(g)) { + Session sess = new Session(g)) { Scope scope = new Scope(g); Constant op1 = Constant.tensorOf(scope, shape, buffer); Constant op2 = Constant.tensorOf(scope, array); - try (AutoCloseableList> t = + try (AutoCloseableList t = new AutoCloseableList<>(sess.runner().fetch(op1).fetch(op2).run())) { - assertEquals(array, t.get(0).expect(TInt32.DTYPE).data()); - assertEquals(array, t.get(1).expect(TInt32.DTYPE).data()); + assertEquals(array, t.get(0)); + assertEquals(array, t.get(1)); } } } @@ -81,10 +79,10 @@ public void createFloats() { Scope scope = new Scope(g); Constant op1 = Constant.tensorOf(scope, shape, buffer); Constant op2 = Constant.tensorOf(scope, array); - try (AutoCloseableList> t = + try (AutoCloseableList t = new AutoCloseableList<>(sess.runner().fetch(op1).fetch(op2).run())) { - assertEquals(array, t.get(0).expect(TFloat32.DTYPE).data()); - assertEquals(array, t.get(1).expect(TFloat32.DTYPE).data()); + assertEquals(array, t.get(0)); + assertEquals(array, t.get(1)); } } } @@ -100,10 +98,10 @@ public void createDoubles() { Scope scope = new Scope(g); Constant op1 = Constant.tensorOf(scope, shape, buffer); Constant op2 = Constant.tensorOf(scope, array); - try (AutoCloseableList> t = + try (AutoCloseableList t = new AutoCloseableList<>(sess.runner().fetch(op1).fetch(op2).run())) { - assertEquals(array, t.get(0).expect(TFloat64.DTYPE).data()); - assertEquals(array, t.get(1).expect(TFloat64.DTYPE).data()); + assertEquals(array, t.get(0)); + assertEquals(array, t.get(1)); } } } @@ -119,10 +117,10 @@ public void createLongs() { Scope scope = new Scope(g); Constant op1 = Constant.tensorOf(scope, shape, buffer); Constant op2 = Constant.tensorOf(scope, array); - try (AutoCloseableList> t = + try (AutoCloseableList t = new AutoCloseableList<>(sess.runner().fetch(op1).fetch(op2).run())) { - assertEquals(array, t.get(0).expect(TInt64.DTYPE).data()); - assertEquals(array, t.get(1).expect(TInt64.DTYPE).data()); + assertEquals(array, t.get(0)); + assertEquals(array, t.get(1)); } } } @@ -138,11 +136,32 @@ public void createStrings() throws IOException { Scope scope = new Scope(g); Constant op1 = Constant.tensorOf(scope, shape, buffer); Constant op2 = Constant.tensorOf(scope, array); - try (AutoCloseableList> t = + try (AutoCloseableList t = new AutoCloseableList<>(sess.runner().fetch(op1).fetch(op2).run())) { - assertEquals(array, t.get(0).expect(TString.DTYPE).data()); - assertEquals(array, t.get(1).expect(TString.DTYPE).data()); + assertEquals(array, t.get(0)); + assertEquals(array, t.get(1)); } } } + + @Test + public void createFromTensorsInEagerMode() throws IOException { + try (EagerSession s = EagerSession.create(); + TInt32 t = TInt32.vectorOf(1, 2, 3, 4)) { + Ops tf = Ops.create(s); + + Constant c1 = tf.constant(t); + assertEquals(c1.asTensor(), t); + + // A different endpoint for capturing a tensor as a constant, which supports all data types + Constant c2 = tf.constantOf(t); + assertEquals(c2.asTensor(), t); + assertEquals(c1.asTensor(), c2.asTensor()); + + // Permute data in the tensor to make sure that constant copies are independent + t.setInt(10); + assertEquals(NdArrays.vectorOf(10, 2, 3, 4), t); + assertEquals(NdArrays.vectorOf(1, 2, 3, 4), c1.asTensor()); + } + } } diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/op/core/GeneratedOperationsTest.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/op/core/GeneratedOperationsTest.java index a337bd73098..b1ebd469eb3 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/op/core/GeneratedOperationsTest.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/op/core/GeneratedOperationsTest.java @@ -22,10 +22,9 @@ import org.tensorflow.Graph; import org.tensorflow.Operand; import org.tensorflow.Session; -import org.tensorflow.Tensor; +import org.tensorflow.ndarray.Shape; import org.tensorflow.op.Op; import org.tensorflow.op.Ops; -import org.tensorflow.ndarray.Shape; import org.tensorflow.types.TInt32; public final class GeneratedOperationsTest { @@ -36,8 +35,8 @@ public void tensorInputTensorOutput() { Session sess = new Session(g)) { Ops ops = Ops.create(g); Operand x = ops.math.add(ops.constant(1), ops.constant(2)); - try (Tensor result = sess.runner().fetch(x).run().get(0).expect(TInt32.DTYPE)) { - assertEquals(3, result.data().getInt()); + try (TInt32 result = (TInt32)sess.runner().fetch(x).run().get(0)) { + assertEquals(3, result.getInt()); } } } @@ -52,8 +51,8 @@ public void testListInputTensorOutput() { inputs.add(ops.constant(2)); inputs.add(ops.constant(3)); Operand x = ops.math.addN(inputs); - try (Tensor result = sess.runner().fetch(x).run().get(0).expect(TInt32.DTYPE)) { - assertEquals(6, result.data().getInt()); + try (TInt32 result = (TInt32)sess.runner().fetch(x).run().get(0)) { + assertEquals(6, result.getInt()); } } } @@ -70,15 +69,15 @@ public void testControlDependencies() { try (Graph g = new Graph(); Session sess = new Session(g)) { Ops ops = Ops.create(g); - Operand variable = ops.variable(Shape.scalar(), TInt32.DTYPE); + Operand variable = ops.variable(Shape.scalar(), TInt32.class); Operand initVariable = ops.assign(variable, ops.constant(0)); ArrayList controls = new ArrayList<>(); controls.add(ops.assign(variable, ops.constant(3))); Operand x = ops.withControlDependencies(controls).math.add(variable, ops.constant(0)); sess.runner().addTarget(initVariable).run(); - try (Tensor result = sess.runner().fetch(x).run().get(0).expect(TInt32.DTYPE)) { - assertEquals(3, result.data().getInt()); + try (TInt32 result = (TInt32)sess.runner().fetch(x).run().get(0)) { + assertEquals(3, result.getInt()); } } } diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/op/core/GradientsTest.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/op/core/GradientsTest.java index fe1503d415f..80150b64bb6 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/op/core/GradientsTest.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/op/core/GradientsTest.java @@ -37,7 +37,7 @@ public void createGradients() { Session sess = new Session(g)) { Ops tf = Ops.create(g); - Output x = tf.placeholder(TFloat32.DTYPE).output(); + Output x = tf.placeholder(TFloat32.class).output(); Output y0 = tf.math.square(x).y(); Output y1 = tf.math.square(y0).y(); @@ -47,13 +47,13 @@ public void createGradients() { assertNotNull(grads.dy()); assertEquals(2, grads.dy().size()); - try (Tensor c = TFloat32.scalarOf(3.0f); - AutoCloseableList> outputs = + try (TFloat32 c = TFloat32.scalarOf(3.0f); + AutoCloseableList outputs = new AutoCloseableList<>( sess.runner().feed(x, c).fetch(grads.dy(0)).fetch(grads.dy(1)).run())) { - assertEquals(108.0f, outputs.get(0).expect(TFloat32.DTYPE).data().getFloat(), 0.0f); - assertEquals(18.0f, outputs.get(1).expect(TFloat32.DTYPE).data().getFloat(), 0.0f); + assertEquals(108.0f, ((TFloat32)outputs.get(0)).getFloat(), 0.0f); + assertEquals(18.0f, ((TFloat32)outputs.get(1)).getFloat(), 0.0f); } } } @@ -64,7 +64,7 @@ public void createGradientsWithSum() { Session sess = new Session(g)) { Ops tf = Ops.create(g); - Output x = tf.placeholder(TFloat32.DTYPE).output(); + Output x = tf.placeholder(TFloat32.class).output(); Output y0 = tf.math.square(x).y(); Output y1 = tf.math.square(y0).y(); @@ -74,11 +74,11 @@ public void createGradientsWithSum() { assertNotNull(grads.dy()); assertEquals(1, grads.dy().size()); - try (Tensor c = TFloat32.scalarOf(3.0f); - AutoCloseableList> outputs = + try (TFloat32 c = TFloat32.scalarOf(3.0f); + AutoCloseableList outputs = new AutoCloseableList<>(sess.runner().feed(x, c).fetch(grads.dy(0)).run())) { - assertEquals(114.0f, outputs.get(0).expect(TFloat32.DTYPE).data().getFloat(), 0.0f); + assertEquals(114.0f, ((TFloat32)outputs.get(0)).getFloat(), 0.0f); } } } @@ -89,7 +89,7 @@ public void createGradientsWithInitialValues() { Session sess = new Session(g)) { Ops tf = Ops.create(g); - Output x = tf.placeholder(TFloat32.DTYPE).output(); + Output x = tf.placeholder(TFloat32.class).output(); Output y0 = tf.math.square(x).y(); Output y1 = tf.math.square(y0).y(); @@ -100,12 +100,12 @@ public void createGradientsWithInitialValues() { assertNotNull(grads1.dy()); assertEquals(1, grads1.dy().size()); - try (Tensor c = TFloat32.scalarOf(3.0f); - AutoCloseableList> outputs = + try (TFloat32 c = TFloat32.scalarOf(3.0f); + AutoCloseableList outputs = new AutoCloseableList<>( sess.runner().feed(x, c).fetch(grads1.dy(0)).run())) { - assertEquals(108.0f, outputs.get(0).expect(TFloat32.DTYPE).data().getFloat(), 0.0f); + assertEquals(108.0f, ((TFloat32)outputs.get(0)).getFloat(), 0.0f); } } } @@ -115,7 +115,7 @@ public void validateGradientsNames() { try (Graph g = new Graph()) { Ops tf = Ops.create(g).withSubScope("sub"); - Output x = tf.placeholder(TFloat32.DTYPE).output(); + Output x = tf.placeholder(TFloat32.class).output(); Output y = tf.math.square(x).y(); Gradients grad0 = Gradients.create(tf.scope(), y, Arrays.asList(x)); diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/op/core/ShapesTest.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/op/core/ShapesTest.java index d5eb7412ea3..39c04c942af 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/op/core/ShapesTest.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/op/core/ShapesTest.java @@ -14,18 +14,14 @@ ==============================================================================*/ package org.tensorflow.op.core; -import java.util.concurrent.atomic.AtomicInteger; - import static org.junit.jupiter.api.Assertions.assertEquals; +import java.util.concurrent.atomic.AtomicInteger; import org.junit.jupiter.api.Test; - -import org.junit.jupiter.api.TestTemplate; -import org.tensorflow.Graph; import org.tensorflow.EagerSession; +import org.tensorflow.Graph; import org.tensorflow.Operand; import org.tensorflow.Session; -import org.tensorflow.Tensor; import org.tensorflow.op.Scope; import org.tensorflow.types.TFloat32; import org.tensorflow.types.TInt32; @@ -40,22 +36,19 @@ public void testFlatten_Operand() { Session session = new Session(g)) { Scope scope = new Scope(g); Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); - Shape expResult = Shape.create(scope, operand, TInt64.DTYPE); + Shape expResult = Shape.create(scope, operand, TInt64.class); Operand reshaped = Reshape.create(scope, operand, Constant.vectorOf(scope, new long[] {4, 2, 1})); - Operand actual = Shapes.flatten(scope, reshaped); - Shape tfshape = Shape.create(scope, actual, TInt64.DTYPE); + Operand actual = Shapes.flatten(scope, reshaped); + Shape tfshape = Shape.create(scope, actual, TInt64.class); AtomicInteger index = new AtomicInteger(); - try (Tensor result1 = - session.runner().fetch(tfshape.asOutput()).run().get(0).expect(TInt64.DTYPE); - Tensor result2 = - session.runner().fetch(expResult.asOutput()).run().get(0).expect(TInt64.DTYPE)) { + try (TInt64 result1 = (TInt64)session.runner().fetch(tfshape.asOutput()).run().get(0); + TInt64 result2 = (TInt64)session.runner().fetch(expResult.asOutput()).run().get(0)) { result1 - .data() .scalars() .forEach( - s -> assertEquals(result2.data().getLong(index.getAndIncrement()), s.getLong())); + s -> assertEquals(result2.getLong(index.getAndIncrement()), s.getLong())); } } } @@ -65,22 +58,21 @@ public void testFlatten_Operand() { public void testFlatten_Shape() { try (EagerSession session = EagerSession.create()) { Scope scope = new Scope(session); - Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); - Shape expShape = Shape.create(scope, operand, TInt64.DTYPE); - Operand actual = + Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); + Shape expShape = Shape.create(scope, operand, TInt64.class); + Operand actual = Reshape.create(scope, operand, Constant.vectorOf(scope, new long[] {4, 2, 1})); - Shape tfshape = Shape.create(scope, actual, TInt64.DTYPE); - Operand flattened = Shapes.flatten(scope, tfshape, TInt64.DTYPE); + Shape tfshape = Shape.create(scope, actual, TInt64.class); + Operand flattened = Shapes.flatten(scope, tfshape, TInt64.class); AtomicInteger index = new AtomicInteger(); flattened - .asOutput() - .data() + .asTensor() .scalars() .forEach( s -> assertEquals( - expShape.asOutput().data().getLong(index.getAndIncrement()), s.getLong())); + expShape.asTensor().getLong(index.getAndIncrement()), s.getLong())); } } @@ -90,16 +82,15 @@ public void testSize_Shape() { try (Graph g = new Graph(); Session session = new Session(g)) { Scope scope = new Scope(g); - Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); - Operand actual = + Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); + Operand actual = Reshape.create(scope, operand, Constant.vectorOf(scope, new long[] {4, 2, 1})); - Shape tfshape = Shape.create(scope, actual, TInt64.DTYPE); - Operand size = Shapes.size(scope, tfshape, TInt64.DTYPE); + Shape tfshape = Shape.create(scope, actual, TInt64.class); + Operand size = Shapes.size(scope, tfshape, TInt64.class); AtomicInteger index = new AtomicInteger(); - try (Tensor result1 = - session.runner().fetch(size.asOutput()).run().get(0).expect(TInt64.DTYPE)) { - result1.data().scalars().forEach(s -> assertEquals(8, s.getLong())); + try (TInt64 result1 = (TInt64)session.runner().fetch(size.asOutput()).run().get(0)) { + result1.scalars().forEach(s -> assertEquals(8, s.getLong())); } } } @@ -110,27 +101,24 @@ public void testSize_Shape_Operand() { try (Graph g = new Graph(); Session session = new Session(g)) { Scope scope = new Scope(g); - Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); - Operand actual = + Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); + Operand actual = Reshape.create(scope, operand, Constant.vectorOf(scope, new long[] {4, 2, 1})); Shape tfshape = Shape.create(scope, actual); Operand size = Shapes.size(scope, tfshape, Constant.scalarOf(scope, 0)); - try (Tensor result = - session.runner().fetch(size.asOutput()).run().get(0).expect(TInt32.DTYPE)) { - result.data().scalars().forEach(s -> assertEquals(4, s.getInt())); + try (TInt32 result = (TInt32)session.runner().fetch(size.asOutput()).run().get(0)) { + result.scalars().forEach(s -> assertEquals(4, s.getInt())); } size = Shapes.size(scope, tfshape, Constant.scalarOf(scope, 1)); - try (Tensor result = - session.runner().fetch(size.asOutput()).run().get(0).expect(TInt32.DTYPE)) { - result.data().scalars().forEach(s -> assertEquals(2, s.getInt())); + try (TInt32 result = (TInt32)session.runner().fetch(size.asOutput()).run().get(0)) { + result.scalars().forEach(s -> assertEquals(2, s.getInt())); } size = Shapes.size(scope, tfshape, Constant.scalarOf(scope, 2)); - try (Tensor result = - session.runner().fetch(size.asOutput()).run().get(0).expect(TInt32.DTYPE)) { - result.data().scalars().forEach(s -> assertEquals(1, s.getInt())); + try (TInt32 result = (TInt32)session.runner().fetch(size.asOutput()).run().get(0)) { + result.scalars().forEach(s -> assertEquals(1, s.getInt())); } } } @@ -141,26 +129,23 @@ public void testSize_Operand_Operand() { try (Graph g = new Graph(); Session session = new Session(g)) { Scope scope = new Scope(g); - Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); - Operand actual = + Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); + Operand actual = Reshape.create(scope, operand, Constant.vectorOf(scope, new long[] {4, 2, 1})); Operand size = Shapes.size(scope, actual, Constant.scalarOf(scope, 0)); - try (Tensor result = - session.runner().fetch(size.asOutput()).run().get(0).expect(TInt32.DTYPE)) { - result.data().scalars().forEach(s -> assertEquals(4, s.getInt())); + try (TInt32 result = (TInt32)session.runner().fetch(size.asOutput()).run().get(0)) { + result.scalars().forEach(s -> assertEquals(4, s.getInt())); } size = Shapes.size(scope, actual, Constant.scalarOf(scope, 1)); - try (Tensor result = - session.runner().fetch(size.asOutput()).run().get(0).expect(TInt32.DTYPE)) { - result.data().scalars().forEach(s -> assertEquals(2, s.getInt())); + try (TInt32 result = (TInt32)session.runner().fetch(size.asOutput()).run().get(0)) { + result.scalars().forEach(s -> assertEquals(2, s.getInt())); } size = Shapes.size(scope, actual, Constant.scalarOf(scope, 2)); - try (Tensor result = - session.runner().fetch(size.asOutput()).run().get(0).expect(TInt32.DTYPE)) { - result.data().scalars().forEach(s -> assertEquals(1, s.getInt())); + try (TInt32 result = (TInt32)session.runner().fetch(size.asOutput()).run().get(0)) { + result.scalars().forEach(s -> assertEquals(1, s.getInt())); } } } @@ -171,15 +156,14 @@ public void testNumDimensions() { try (Graph g = new Graph(); Session session = new Session(g)) { Scope scope = new Scope(g); - Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); - Operand actual = + Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); + Operand actual = Reshape.create(scope, operand, Constant.vectorOf(scope, new long[] {4, 2, 1})); Shape tfshape = Shape.create(scope, actual); Operand nDims = Shapes.numDimensions(scope, tfshape); - try (Tensor result = - session.runner().fetch(nDims.asOutput()).run().get(0).expect(TInt32.DTYPE)) { - result.data().scalars().forEach(s -> assertEquals(3, s.getInt())); + try (TInt32 result = (TInt32)session.runner().fetch(nDims.asOutput()).run().get(0)) { + result.scalars().forEach(s -> assertEquals(3, s.getInt())); } } } @@ -199,7 +183,7 @@ public void testReduceDims_Operand_Operand() { AtomicInteger index = new AtomicInteger(); int[] expected = {8}; reducedShape - .data() + .asTensor() .scalars() .forEach( s -> { @@ -219,12 +203,12 @@ public void testReduceDims_Shape_Operand() { Reshape.create(scope, operand, Constant.vectorOf(scope, new long[] {2, 2, 2})); Shape tfshape = Shape.create(scope, actual); - Operand reduced = Shapes.reduceDims(scope, actual, Constant.scalarOf(scope, 0)); + Operand reduced = Shapes.reduceDims(scope, actual, Constant.scalarOf(scope, 0)); Shape reducedShape = Shape.create(scope, reduced); AtomicInteger index = new AtomicInteger(); int[] expected1 = {8}; reducedShape - .data() + .asTensor() .scalars() .forEach( s -> { @@ -237,7 +221,7 @@ public void testReduceDims_Shape_Operand() { index.set(0); int[] expected2 = {2, 4}; reducedShape - .data() + .asTensor() .scalars() .forEach( s -> { @@ -250,7 +234,7 @@ public void testReduceDims_Shape_Operand() { index.set(0); int[] expected3 = {2, 2, 2}; reducedShape - .data() + .asTensor() .scalars() .forEach( s -> { @@ -266,18 +250,16 @@ public void testSqueeze() { try (Graph g = new Graph(); Session session = new Session(g)) { Scope scope = new Scope(g); - Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); - Operand actual = + Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); + Operand actual = Reshape.create(scope, operand, Constant.vectorOf(scope, new long[] {4, 1, 2, 1})); Shape tfshape = Shape.create(scope, actual); Operand squeezed = Shapes.squeeze(scope, tfshape); AtomicInteger index = new AtomicInteger(); int[] expected = {4, 2}; - try (Tensor result = - session.runner().fetch(squeezed.asOutput()).run().get(0).expect(TInt32.DTYPE)) { + try (TInt32 result = (TInt32)session.runner().fetch(squeezed.asOutput()).run().get(0)) { result - .data() .scalars() .forEach( s -> { @@ -293,18 +275,16 @@ public void testHead() { try (Graph g = new Graph(); Session session = new Session(g)) { Scope scope = new Scope(g); - Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); - Operand actual = + Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); + Operand actual = Reshape.create(scope, operand, Constant.vectorOf(scope, new long[] {4, 1, 2, 1})); Shape tfshape = Shape.create(scope, actual); Operand head = Shapes.head(scope, tfshape); AtomicInteger index = new AtomicInteger(); int[] expected = {4}; - try (Tensor result = - session.runner().fetch(head.asOutput()).run().get(0).expect(TInt32.DTYPE)) { + try (TInt32 result = (TInt32)session.runner().fetch(head.asOutput()).run().get(0)) { result - .data() .scalars() .forEach( s -> { @@ -320,18 +300,16 @@ public void testTake() { try (Graph g = new Graph(); Session session = new Session(g)) { Scope scope = new Scope(g); - Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); - Operand actual = + Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); + Operand actual = Reshape.create(scope, operand, Constant.vectorOf(scope, new long[] {4, 1, 2, 1})); Shape tfshape = Shape.create(scope, actual); Operand take = Shapes.take(scope, tfshape, Constant.scalarOf(scope, 2)); AtomicInteger index = new AtomicInteger(); int[] expected = {4, 1}; - try (Tensor result = - session.runner().fetch(take.asOutput()).run().get(0).expect(TInt32.DTYPE)) { + try (TInt32 result = (TInt32)session.runner().fetch(take.asOutput()).run().get(0)) { result - .data() .scalars() .forEach( s -> { @@ -347,18 +325,16 @@ public void testTail() { try (Graph g = new Graph(); Session session = new Session(g)) { Scope scope = new Scope(g); - Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); - Operand actual = + Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); + Operand actual = Reshape.create(scope, operand, Constant.vectorOf(scope, new long[] {4, 1, 2, 1})); Shape tfshape = Shape.create(scope, actual); Operand tail = Shapes.tail(scope, tfshape); AtomicInteger index = new AtomicInteger(); int[] expected = {1}; - try (Tensor result = - session.runner().fetch(tail.asOutput()).run().get(0).expect(TInt32.DTYPE)) { + try (TInt32 result = (TInt32)session.runner().fetch(tail.asOutput()).run().get(0)) { result - .data() .scalars() .forEach( s -> { @@ -374,18 +350,16 @@ public void testTakeLast() { try (Graph g = new Graph(); Session session = new Session(g)) { Scope scope = new Scope(g); - Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); - Operand actual = + Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); + Operand actual = Reshape.create(scope, operand, Constant.vectorOf(scope, new long[] {4, 1, 2, 1})); Shape tfshape = Shape.create(scope, actual); Operand takeLast = Shapes.takeLast(scope, tfshape, Constant.scalarOf(scope, 3)); AtomicInteger index = new AtomicInteger(); int[] expected = {1, 2, 1}; - try (Tensor result = - session.runner().fetch(takeLast.asOutput()).run().get(0).expect(TInt32.DTYPE)) { + try (TInt32 result = (TInt32)session.runner().fetch(takeLast.asOutput()).run().get(0)) { result - .data() .scalars() .forEach( s -> { @@ -401,17 +375,15 @@ public void testPrependInt() { try (Graph g = new Graph(); Session session = new Session(g)) { Scope scope = new Scope(g); - Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); - Operand actual = Reshape.create(scope, operand, Constant.vectorOf(scope, new long[] {4, 2})); + Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); + Operand actual = Reshape.create(scope, operand, Constant.vectorOf(scope, new long[] {4, 2})); Shape tfshape = Shape.create(scope, actual); Operand prepend = Shapes.prepend(scope, tfshape, 3); AtomicInteger index = new AtomicInteger(); int[] expected = {3, 4, 2}; - try (Tensor result = - session.runner().fetch(prepend.asOutput()).run().get(0).expect(TInt32.DTYPE)) { + try (TInt32 result = (TInt32)session.runner().fetch(prepend.asOutput()).run().get(0)) { result - .data() .scalars() .forEach( s -> { @@ -427,17 +399,15 @@ public void testPrependLong() { try (Graph g = new Graph(); Session session = new Session(g)) { Scope scope = new Scope(g); - Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); - Operand actual = Reshape.create(scope, operand, Constant.vectorOf(scope, new long[] {4, 2})); - Shape tfshape = Shape.create(scope, actual, TInt64.DTYPE); + Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); + Operand actual = Reshape.create(scope, operand, Constant.vectorOf(scope, new long[] {4, 2})); + Shape tfshape = Shape.create(scope, actual, TInt64.class); Operand prepend = Shapes.prepend(scope, tfshape, 1L); AtomicInteger index = new AtomicInteger(); long[] expected = {1, 4, 2}; - try (Tensor result = - session.runner().fetch(prepend.asOutput()).run().get(0).expect(TInt64.DTYPE)) { + try (TInt64 result = (TInt64)session.runner().fetch(prepend.asOutput()).run().get(0)) { result - .data() .scalars() .forEach( s -> { @@ -453,11 +423,11 @@ public void testPrependShapeTInt32() { try (Graph g = new Graph(); Session session = new Session(g)) { Scope scope = new Scope(g); - Operand operand1 = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); - Operand actual1 = + Operand operand1 = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); + Operand actual1 = Reshape.create(scope, operand1, Constant.vectorOf(scope, new long[] {4, 2})); - Operand operand2 = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); - Operand actual2 = + Operand operand2 = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); + Operand actual2 = Reshape.create(scope, operand2, Constant.vectorOf(scope, new long[] {2, 4})); Shape tfshape1 = Shape.create(scope, actual1); Shape tfshape2 = Shape.create(scope, actual2); @@ -465,10 +435,8 @@ public void testPrependShapeTInt32() { Operand prepend = Shapes.prepend(scope, tfshape1, tfshape2); AtomicInteger index = new AtomicInteger(); int[] expected = {2, 4, 4, 2}; - try (Tensor result = - session.runner().fetch(prepend.asOutput()).run().get(0).expect(TInt32.DTYPE)) { + try (TInt32 result = (TInt32)session.runner().fetch(prepend.asOutput()).run().get(0)) { result - .data() .scalars() .forEach( s -> { @@ -484,22 +452,20 @@ public void testPrependShapeTInt64() { try (Graph g = new Graph(); Session session = new Session(g)) { Scope scope = new Scope(g); - Operand operand1 = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); - Operand actual1 = + Operand operand1 = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); + Operand actual1 = Reshape.create(scope, operand1, Constant.vectorOf(scope, new long[] {4, 2})); - Operand operand2 = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); - Operand actual2 = + Operand operand2 = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); + Operand actual2 = Reshape.create(scope, operand2, Constant.vectorOf(scope, new long[] {2, 4})); - Shape tfshape1 = Shape.create(scope, actual1, TInt64.DTYPE); - Shape tfshape2 = Shape.create(scope, actual2, TInt64.DTYPE); + Shape tfshape1 = Shape.create(scope, actual1, TInt64.class); + Shape tfshape2 = Shape.create(scope, actual2, TInt64.class); Operand prepend = Shapes.prepend(scope, tfshape1, tfshape2); AtomicInteger index = new AtomicInteger(); long[] expected = {2, 4, 4, 2}; - try (Tensor result = - session.runner().fetch(prepend.asOutput()).run().get(0).expect(TInt64.DTYPE)) { + try (TInt64 result = (TInt64)session.runner().fetch(prepend.asOutput()).run().get(0)) { result - .data() .scalars() .forEach( s -> { @@ -515,17 +481,15 @@ public void testAppendLong() { try (Graph g = new Graph(); Session session = new Session(g)) { Scope scope = new Scope(g); - Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); - Operand actual = Reshape.create(scope, operand, Constant.vectorOf(scope, new long[] {4, 2})); - Shape tfshape = Shape.create(scope, actual, TInt64.DTYPE); + Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); + Operand actual = Reshape.create(scope, operand, Constant.vectorOf(scope, new long[] {4, 2})); + Shape tfshape = Shape.create(scope, actual, TInt64.class); Operand append = Shapes.append(scope, tfshape, 2L); AtomicInteger index = new AtomicInteger(); long[] expected = {4L, 2L, 2L}; - try (Tensor result = - session.runner().fetch(append.asOutput()).run().get(0).expect(TInt64.DTYPE)) { + try (TInt64 result = (TInt64)session.runner().fetch(append.asOutput()).run().get(0)) { result - .data() .scalars() .forEach( s -> { @@ -541,17 +505,15 @@ public void testAppendInt() { try (Graph g = new Graph(); Session session = new Session(g)) { Scope scope = new Scope(g); - Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); - Operand actual = Reshape.create(scope, operand, Constant.vectorOf(scope, new long[] {4, 2})); + Operand operand = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); + Operand actual = Reshape.create(scope, operand, Constant.vectorOf(scope, new long[] {4, 2})); Shape tfshape = Shape.create(scope, actual); Operand append = Shapes.append(scope, tfshape, 2); AtomicInteger index = new AtomicInteger(); int[] expected = {4, 2, 2}; - try (Tensor result = - session.runner().fetch(append.asOutput()).run().get(0).expect(TInt32.DTYPE)) { + try (TInt32 result = (TInt32)session.runner().fetch(append.asOutput()).run().get(0)) { result - .data() .scalars() .forEach( s -> { @@ -567,11 +529,11 @@ public void testAppendShapeTInt32() { try (Graph g = new Graph(); Session session = new Session(g)) { Scope scope = new Scope(g); - Operand operand1 = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); - Operand actual1 = + Operand operand1 = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); + Operand actual1 = Reshape.create(scope, operand1, Constant.vectorOf(scope, new long[] {4, 2})); - Operand operand2 = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); - Operand actual2 = + Operand operand2 = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); + Operand actual2 = Reshape.create(scope, operand2, Constant.vectorOf(scope, new long[] {2, 4})); Shape tfshape1 = Shape.create(scope, actual1); Shape tfshape2 = Shape.create(scope, actual2); @@ -579,10 +541,8 @@ public void testAppendShapeTInt32() { Operand append = Shapes.append(scope, tfshape1, tfshape2); AtomicInteger index = new AtomicInteger(); int[] expected = {4, 2, 2, 4}; - try (Tensor result = - session.runner().fetch(append.asOutput()).run().get(0).expect(TInt32.DTYPE)) { + try (TInt32 result = (TInt32)session.runner().fetch(append.asOutput()).run().get(0)) { result - .data() .scalars() .forEach( s -> { @@ -598,22 +558,20 @@ public void testAppendShapeTInt64() { try (Graph g = new Graph(); Session session = new Session(g)) { Scope scope = new Scope(g); - Operand operand1 = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); - Operand actual1 = + Operand operand1 = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); + Operand actual1 = Reshape.create(scope, operand1, Constant.vectorOf(scope, new long[] {4, 2})); - Operand operand2 = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); - Operand actual2 = + Operand operand2 = Constant.arrayOf(scope, new float[] {1, 2, 3, 4, 5, 6, 7, 8}); + Operand actual2 = Reshape.create(scope, operand2, Constant.vectorOf(scope, new long[] {2, 4})); - Shape tfshape1 = Shape.create(scope, actual1, TInt64.DTYPE); - Shape tfshape2 = Shape.create(scope, actual2, TInt64.DTYPE); + Shape tfshape1 = Shape.create(scope, actual1, TInt64.class); + Shape tfshape2 = Shape.create(scope, actual2, TInt64.class); Operand append = Shapes.append(scope, tfshape1, tfshape2); AtomicInteger index = new AtomicInteger(); long[] expected = {4, 2, 2, 4}; - try (Tensor result = - session.runner().fetch(append.asOutput()).run().get(0).expect(TInt64.DTYPE)) { + try (TInt64 result = (TInt64)session.runner().fetch(append.asOutput()).run().get(0)) { result - .data() .scalars() .forEach( s -> { diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/op/core/ZerosTest.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/op/core/ZerosTest.java index 9600f8b38fc..4121baf3af1 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/op/core/ZerosTest.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/op/core/ZerosTest.java @@ -23,7 +23,6 @@ import org.junit.jupiter.api.Test; import org.tensorflow.Graph; import org.tensorflow.Session; -import org.tensorflow.Tensor; import org.tensorflow.op.Scope; import org.tensorflow.types.TBool; import org.tensorflow.types.TFloat32; @@ -41,9 +40,9 @@ public void createIntZeros() { Session sess = new Session(g)) { Scope scope = new Scope(g); long[] shape = {2, 2}; - Zeros op = Zeros.create(scope, Constant.vectorOf(scope, shape), TInt32.DTYPE); - try (Tensor result = sess.runner().fetch(op).run().get(0).expect(TInt32.DTYPE)) { - result.data().scalars().forEach(s -> assertEquals(0, s.getInt())); + Zeros op = Zeros.create(scope, Constant.vectorOf(scope, shape), TInt32.class); + try (TInt32 result = (TInt32)sess.runner().fetch(op).run().get(0)) { + result.scalars().forEach(s -> assertEquals(0, s.getInt())); } } } @@ -54,9 +53,9 @@ public void createFloatZeros() { Session sess = new Session(g)) { Scope scope = new Scope(g); long[] shape = {2, 2}; - Zeros op = Zeros.create(scope, Constant.vectorOf(scope, shape), TFloat32.DTYPE); - try (Tensor result = sess.runner().fetch(op.asOutput()).run().get(0).expect(TFloat32.DTYPE)) { - result.data().scalars().forEach(s -> assertEquals(0.0f, s.getFloat(), 0)); + Zeros op = Zeros.create(scope, Constant.vectorOf(scope, shape), TFloat32.class); + try (TFloat32 result = (TFloat32)sess.runner().fetch(op.asOutput()).run().get(0)) { + result.scalars().forEach(s -> assertEquals(0.0f, s.getFloat(), 0)); } } } @@ -67,9 +66,9 @@ public void createDoubleZeros() { Session sess = new Session(g)) { Scope scope = new Scope(g); long[] shape = {2, 2}; - Zeros op = Zeros.create(scope, Constant.vectorOf(scope, shape), TFloat64.DTYPE); - try (Tensor result = sess.runner().fetch(op.asOutput()).run().get(0).expect(TFloat64.DTYPE)) { - result.data().scalars().forEach(s -> assertEquals(0.0f, s.getDouble(), 0)); + Zeros op = Zeros.create(scope, Constant.vectorOf(scope, shape), TFloat64.class); + try (TFloat64 result = (TFloat64)sess.runner().fetch(op.asOutput()).run().get(0)) { + result.scalars().forEach(s -> assertEquals(0.0f, s.getDouble(), 0)); } } } @@ -80,9 +79,9 @@ public void createLongZeros() { Session sess = new Session(g)) { Scope scope = new Scope(g); long[] shape = {2, 2}; - Zeros op = Zeros.create(scope, Constant.vectorOf(scope, shape), TInt64.DTYPE); - try (Tensor result = sess.runner().fetch(op.asOutput()).run().get(0).expect(TInt64.DTYPE)) { - result.data().scalars().forEach(s -> assertEquals(0L, s.getLong())); + Zeros op = Zeros.create(scope, Constant.vectorOf(scope, shape), TInt64.class); + try (TInt64 result = (TInt64)sess.runner().fetch(op.asOutput()).run().get(0)) { + result.scalars().forEach(s -> assertEquals(0L, s.getLong())); } } } @@ -93,9 +92,9 @@ public void createBooleanZeros() { Session sess = new Session(g)) { Scope scope = new Scope(g); long[] shape = {2, 2}; - Zeros op = Zeros.create(scope, Constant.vectorOf(scope, shape), TBool.DTYPE); - try (Tensor result = sess.runner().fetch(op.asOutput()).run().get(0).expect(TBool.DTYPE)) { - result.data().scalars().forEach(s -> assertFalse(s.getBoolean())); + Zeros op = Zeros.create(scope, Constant.vectorOf(scope, shape), TBool.class); + try (TBool result = (TBool)sess.runner().fetch(op.asOutput()).run().get(0)) { + result.scalars().forEach(s -> assertFalse(s.getBoolean())); } } } @@ -106,9 +105,9 @@ public void createUint8Zeros() { Session sess = new Session(g)) { Scope scope = new Scope(g); long[] shape = {2, 2}; - Zeros op = Zeros.create(scope, Constant.vectorOf(scope, shape), TUint8.DTYPE); - try (Tensor result = sess.runner().fetch(op.asOutput()).run().get(0).expect(TUint8.DTYPE)) { - result.data().scalars().forEach(s -> assertEquals(0, s.getByte())); + Zeros op = Zeros.create(scope, Constant.vectorOf(scope, shape), TUint8.class); + try (TUint8 result = (TUint8)sess.runner().fetch(op.asOutput()).run().get(0)) { + result.scalars().forEach(s -> assertEquals(0, s.getByte())); } } } @@ -119,9 +118,9 @@ public void createStringZeros() { Session sess = new Session(g)) { Scope scope = new Scope(g); long[] shape = {2, 2}; - Zeros op = Zeros.create(scope, Constant.vectorOf(scope, shape), TString.DTYPE); - try (Tensor result = sess.runner().fetch(op.asOutput()).run().get(0).expect(TString.DTYPE)) { - result.data().scalars().forEach(s -> assertTrue(s.getObject().isEmpty())); + Zeros op = Zeros.create(scope, Constant.vectorOf(scope, shape), TString.class); + try (TString result = (TString)sess.runner().fetch(op.asOutput()).run().get(0)) { + result.scalars().forEach(s -> assertTrue(s.getObject().isEmpty())); } } } @@ -132,8 +131,8 @@ public void operationsComposingZerosAreCorrectlyNamed() { Session sess = new Session(g)) { Scope scope = new Scope(g); long[] shape = {2, 2}; - Zeros zeros = Zeros.create(scope.withSubScope("test"), Constant.vectorOf(scope, shape), TFloat32.DTYPE); - List> results = sess.runner().addTarget("test/Zeros/Zero").addTarget("test/Zeros/Fill").run(); + Zeros zeros = Zeros.create(scope.withSubScope("test"), Constant.vectorOf(scope, shape), TFloat32.class); + List results = sess.runner().addTarget("test/Zeros/Zero").addTarget("test/Zeros/Fill").run(); } } } diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/NumericTypesTestBase.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/NumericTypesTestBase.java index 87b24b0da2a..faddc7c5826 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/NumericTypesTestBase.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/NumericTypesTestBase.java @@ -21,90 +21,93 @@ import org.junit.jupiter.api.Test; import org.tensorflow.EagerSession; -import org.tensorflow.Tensor; +import org.tensorflow.ndarray.NdArray; +import org.tensorflow.ndarray.Shape; +import org.tensorflow.ndarray.index.Indices; import org.tensorflow.op.Ops; import org.tensorflow.op.core.Constant; +import org.tensorflow.op.math.Add; import org.tensorflow.op.math.Sub; -import org.tensorflow.ndarray.Shape; -import org.tensorflow.ndarray.IntNdArray; -import org.tensorflow.ndarray.NdArray; -import org.tensorflow.ndarray.NdArrays; -import org.tensorflow.ndarray.index.Indices; import org.tensorflow.types.family.TNumber; -abstract class NumericTypesTestBase, U> { +abstract class NumericTypesTestBase { @Test public void initializeTensorsWithZeros() { // Allocate a tensor of 32-bits integer of the shape (2, 3, 2) - Tensor tensor = allocateTensor(Shape.of(2, 3, 2)); - NdArray tensorData = tensor.data(); + T tensor = allocateTensor(Shape.of(2, 3, 2)); - assertEquals(3, tensorData.rank()); - assertEquals(12, tensorData.size()); + assertEquals(3, tensor.rank()); + assertEquals(12, tensor.size()); + NdArray data = (NdArray)tensor; try (EagerSession session = EagerSession.create()) { Ops tf = Ops.create(session); // Initialize tensor memory with zeros and take a snapshot - tensorData.scalars().forEach(scalar -> scalar.setObject(valueOf(0))); - Constant x = tf.constant(tensor); + data.scalars().forEach(scalar -> ((NdArray)scalar).setObject(valueOf(0))); + Constant x = tf.constantOf(tensor); // Initialize the same tensor memory with ones and take a snapshot - tensorData.scalars().forEach(scalar -> scalar.setObject(valueOf(1))); - Constant y = tf.constant(tensor); + data.scalars().forEach(scalar -> ((NdArray)scalar).setObject(valueOf(1))); + Constant y = tf.constantOf(tensor); // Subtract y from x and validate the result Sub sub = tf.math.sub(x, y); - sub.data().scalars().forEach(scalar -> + ((NdArray)sub.asTensor()).scalars().forEach(scalar -> assertEquals(valueOf(-1), scalar.getObject()) ); } } @Test - public void genericTest() { - IntNdArray heapData = NdArrays.vectorOf(0, 1, 2, 3); + public void setAndCompute() { + NdArray heapData = allocateNdArray(Shape.of(4)) + .setObject(valueOf(0), 0) + .setObject(valueOf(1), 1) + .setObject(valueOf(2), 2) + .setObject(valueOf(3), 3); // Creates a 2x2 matrix - try (Tensor tensor = TInt32.tensorOf(Shape.of(2, 2))) { - IntNdArray tensorData = tensor.data(); + try (T tensor = allocateTensor(Shape.of(2, 2))) { + NdArray data = (NdArray)tensor; // Copy first 2 values of the vector to the first row of the matrix - tensorData.set(heapData.slice(Indices.range(0, 2)), 0); + data.set(heapData.slice(Indices.range(0, 2)), 0); // Copy values at an odd position in the vector as the second row of the matrix - tensorData.set(heapData.slice(Indices.odd()), 1); + data.set(heapData.slice(Indices.odd()), 1); - assertEquals(0, tensorData.getInt(0, 0)); - assertEquals(1, tensorData.getInt(0, 1)); - assertEquals(1, tensorData.getInt(1, 0)); - assertEquals(3, tensorData.getInt(1, 1)); + assertEquals(valueOf(0), data.getObject(0, 0)); + assertEquals(valueOf(1), data.getObject(0, 1)); + assertEquals(valueOf(1), data.getObject(1, 0)); + assertEquals(valueOf(3), data.getObject(1, 1)); // Read rows of the tensor in reverse order - IntNdArray reversedTensorData = tensorData.slice(Indices.all(), Indices.flip()); + NdArray flippedData = data.slice(Indices.flip(), Indices.flip()); - assertEquals(1, reversedTensorData.getInt(0, 0)); - assertEquals(0, reversedTensorData.getInt(0, 1)); - assertEquals(3, reversedTensorData.getInt(1, 0)); - assertEquals(1, reversedTensorData.getInt(1, 1)); + assertEquals(valueOf(3), flippedData.getObject(0, 0)); + assertEquals(valueOf(1), flippedData.getObject(0, 1)); + assertEquals(valueOf(1), flippedData.getObject(1, 0)); + assertEquals(valueOf(0), flippedData.getObject(1, 1)); try (EagerSession session = EagerSession.create()) { Ops tf = Ops.create(session); - // Compute the power of the tensor by itself - Constant x = tf.constant(tensor); - IntNdArray result = tf.math.pow(x, x).data(); + Add add = tf.math.add(tf.constantOf(tensor), tf.constantOf(tensor)); + NdArray result = (NdArray)add.asTensor(); - // Validate result by computing the same operation in Java - tensorData.scalars().forEachIndexed((coords, s) -> - assertEquals(Math.pow(s.getInt(), s.getInt()), result.getInt(coords), 1e-7f) - ); + assertEquals(valueOf(0), result.getObject(0, 0)); + assertEquals(valueOf(2), result.getObject(0, 1)); + assertEquals(valueOf(2), result.getObject(1, 0)); + assertEquals(valueOf(6), result.getObject(1, 1)); } } } - abstract Tensor allocateTensor(Shape shape); + abstract T allocateTensor(Shape shape); + + abstract NdArray allocateNdArray(Shape shape); abstract U valueOf(Integer value); } diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TBfloat16Test.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TBfloat16Test.java index 8681e805e3d..17a6e0dd2b5 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TBfloat16Test.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TBfloat16Test.java @@ -17,16 +17,22 @@ package org.tensorflow.types; -import org.tensorflow.Tensor; +import org.tensorflow.ndarray.NdArray; +import org.tensorflow.ndarray.NdArrays; import org.tensorflow.ndarray.Shape; public class TBfloat16Test extends NumericTypesTestBase { @Override - Tensor allocateTensor(Shape shape) { + TBfloat16 allocateTensor(Shape shape) { return TBfloat16.tensorOf(shape); } + @Override + NdArray allocateNdArray(Shape shape) { + return NdArrays.ofFloats(shape); + } + @Override Float valueOf(Integer value) { return value.floatValue(); diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TFloat16Test.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TFloat16Test.java index b72fe6fc01c..c1ae8ad3b6d 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TFloat16Test.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TFloat16Test.java @@ -17,16 +17,22 @@ package org.tensorflow.types; -import org.tensorflow.Tensor; +import org.tensorflow.ndarray.NdArray; +import org.tensorflow.ndarray.NdArrays; import org.tensorflow.ndarray.Shape; public class TFloat16Test extends NumericTypesTestBase { @Override - Tensor allocateTensor(Shape shape) { + TFloat16 allocateTensor(Shape shape) { return TFloat16.tensorOf(shape); } + @Override + NdArray allocateNdArray(Shape shape) { + return NdArrays.ofFloats(shape); + } + @Override Float valueOf(Integer value) { return value.floatValue(); diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TFloat32Test.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TFloat32Test.java index c4b1f6023f3..8df96f2871a 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TFloat32Test.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TFloat32Test.java @@ -17,16 +17,22 @@ package org.tensorflow.types; -import org.tensorflow.Tensor; +import org.tensorflow.ndarray.NdArray; +import org.tensorflow.ndarray.NdArrays; import org.tensorflow.ndarray.Shape; public class TFloat32Test extends NumericTypesTestBase { @Override - Tensor allocateTensor(Shape shape) { + TFloat32 allocateTensor(Shape shape) { return TFloat32.tensorOf(shape); } + @Override + NdArray allocateNdArray(Shape shape) { + return NdArrays.ofFloats(shape); + } + @Override Float valueOf(Integer value) { return value.floatValue(); diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TFloat64Test.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TFloat64Test.java index 0e9c8947d0f..47b4b6d936a 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TFloat64Test.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TFloat64Test.java @@ -17,16 +17,22 @@ package org.tensorflow.types; -import org.tensorflow.Tensor; +import org.tensorflow.ndarray.NdArray; +import org.tensorflow.ndarray.NdArrays; import org.tensorflow.ndarray.Shape; public class TFloat64Test extends NumericTypesTestBase { @Override - Tensor allocateTensor(Shape shape) { + TFloat64 allocateTensor(Shape shape) { return TFloat64.tensorOf(shape); } + @Override + NdArray allocateNdArray(Shape shape) { + return NdArrays.ofDoubles(shape); + } + @Override Double valueOf(Integer value) { return value.doubleValue(); diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TInt32Test.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TInt32Test.java index c52394bf210..a2ab28b6219 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TInt32Test.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TInt32Test.java @@ -17,16 +17,22 @@ package org.tensorflow.types; -import org.tensorflow.Tensor; +import org.tensorflow.ndarray.NdArray; +import org.tensorflow.ndarray.NdArrays; import org.tensorflow.ndarray.Shape; public class TInt32Test extends NumericTypesTestBase { @Override - Tensor allocateTensor(Shape shape) { + TInt32 allocateTensor(Shape shape) { return TInt32.tensorOf(shape); } + @Override + NdArray allocateNdArray(Shape shape) { + return NdArrays.ofInts(shape); + } + @Override Integer valueOf(Integer value) { return value; diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TInt64Test.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TInt64Test.java index 261ac546fc5..a88f3fb4d6d 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TInt64Test.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TInt64Test.java @@ -17,16 +17,22 @@ package org.tensorflow.types; -import org.tensorflow.Tensor; +import org.tensorflow.ndarray.NdArray; +import org.tensorflow.ndarray.NdArrays; import org.tensorflow.ndarray.Shape; public class TInt64Test extends NumericTypesTestBase { @Override - Tensor allocateTensor(Shape shape) { + TInt64 allocateTensor(Shape shape) { return TInt64.tensorOf(shape); } + @Override + NdArray allocateNdArray(Shape shape) { + return NdArrays.ofLongs(shape); + } + @Override Long valueOf(Integer value) { return value.longValue(); diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TStringTest.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TStringTest.java index a4700aa652f..015f93b70e7 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TStringTest.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TStringTest.java @@ -23,46 +23,36 @@ import java.nio.charset.StandardCharsets; import org.junit.jupiter.api.Test; -import org.tensorflow.Tensor; -import org.tensorflow.ndarray.Shape; import org.tensorflow.ndarray.NdArray; import org.tensorflow.ndarray.NdArrays; +import org.tensorflow.ndarray.Shape; public class TStringTest { @Test public void createScalar() { - Tensor tensor = TString.scalarOf("Pretty vacant"); + TString tensor = TString.scalarOf("Pretty vacant"); assertNotNull(tensor); - - TString data = tensor.data(); - assertNotNull(data); - assertEquals(Shape.scalar(), data.shape()); - assertEquals("Pretty vacant", data.getObject()); + assertEquals(Shape.scalar(), tensor.shape()); + assertEquals("Pretty vacant", tensor.getObject()); } @Test public void createrScalarLongerThan127() { - Tensor tensor = TString.scalarOf("Long String 1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890 !"); + TString tensor = TString.scalarOf("Long String 1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890 !"); assertNotNull(tensor); - - TString data = tensor.data(); - assertNotNull(data); - assertEquals(Shape.scalar(), data.shape()); - assertEquals("Long String 1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890 !", data.getObject()); + assertEquals(Shape.scalar(), tensor.shape()); + assertEquals("Long String 1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890 !", tensor.getObject()); } @Test public void createVector() { - Tensor tensor = TString.vectorOf("Pretty", "vacant"); + TString tensor = TString.vectorOf("Pretty", "vacant"); assertNotNull(tensor); - - TString data = tensor.data(); - assertNotNull(data); - assertEquals(Shape.of(2), data.shape()); - assertEquals("Pretty", data.getObject(0)); - assertEquals("vacant", data.getObject(1)); + assertEquals(Shape.of(2), tensor.shape()); + assertEquals("Pretty", tensor.getObject(0)); + assertEquals("vacant", tensor.getObject(1)); } @Test @@ -73,30 +63,27 @@ public void createCopy() { .setObject("New", 1, 0) .setObject("York", 1, 1); - Tensor tensor = TString.tensorOf(strings); + TString tensor = TString.tensorOf(strings); assertNotNull(tensor); - - TString data = tensor.data(); - assertNotNull(data); strings.scalars().forEachIndexed((idx, s) -> - assertEquals(s.getObject(), data.getObject(idx)) + assertEquals(s.getObject(), tensor.getObject(idx)) ); } @Test public void defaultCharsetIsUtf8() { - Tensor tensor = TString.tensorOf(NdArrays.scalarOfObject(BABY_CHICK)); - byte[] bytes = tensor.data().asBytes().getObject(); + TString tensor = TString.tensorOf(NdArrays.scalarOfObject(BABY_CHICK)); + byte[] bytes = tensor.asBytes().getObject(); assertArrayEquals(new byte[] { (byte)0xF0, (byte)0x9F, (byte)0x90, (byte)0xA5 }, bytes); - assertEquals(BABY_CHICK, tensor.data().getObject()); + assertEquals(BABY_CHICK, tensor.getObject()); } @Test public void usingDifferentCharset() { - Tensor tensor = TString.tensorOf(StandardCharsets.UTF_16LE, NdArrays.scalarOfObject(BABY_CHICK)); - byte[] bytes = tensor.data().asBytes().getObject(); + TString tensor = TString.tensorOf(StandardCharsets.UTF_16LE, NdArrays.scalarOfObject(BABY_CHICK)); + byte[] bytes = tensor.asBytes().getObject(); assertArrayEquals(new byte[] { (byte)0x3D, (byte)0xD8, (byte)0x25, (byte)0xDC }, bytes); - assertEquals(BABY_CHICK, tensor.data().using(StandardCharsets.UTF_16LE).getObject()); + assertEquals(BABY_CHICK, tensor.using(StandardCharsets.UTF_16LE).getObject()); } @Test @@ -106,11 +93,11 @@ public void initializingTensorWithRawBytes() { for (int i = 0; i < strings.length; ++i) { bytes.setObject(strings[i].getBytes(), i); } - Tensor tensor = TString.tensorOfBytes(bytes); + TString tensor = TString.tensorOfBytes(bytes); assertNotNull(tensor); assertEquals(bytes.shape(), tensor.shape()); - NdArray tensorBytes = tensor.data().asBytes(); + NdArray tensorBytes = tensor.asBytes(); for (int i = 0; i < strings.length; ++i) { assertArrayEquals(bytes.getObject(i), tensorBytes.getObject(i)); } diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TUint8Test.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TUint8Test.java index cc83087e018..ce7397d5878 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TUint8Test.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TUint8Test.java @@ -17,16 +17,22 @@ package org.tensorflow.types; -import org.tensorflow.Tensor; +import org.tensorflow.ndarray.NdArray; +import org.tensorflow.ndarray.NdArrays; import org.tensorflow.ndarray.Shape; public class TUint8Test extends NumericTypesTestBase { @Override - Tensor allocateTensor(Shape shape) { + TUint8 allocateTensor(Shape shape) { return TUint8.tensorOf(shape); } + @Override + NdArray allocateNdArray(Shape shape) { + return NdArrays.ofBytes(shape); + } + @Override Byte valueOf(Integer value) { return value.byteValue(); diff --git a/tensorflow-core/tensorflow-core-generator/src/main/java/org/tensorflow/processor/operator/OperatorProcessor.java b/tensorflow-core/tensorflow-core-generator/src/main/java/org/tensorflow/processor/operator/OperatorProcessor.java index d668c5e46d5..fa60f4e5a9f 100644 --- a/tensorflow-core/tensorflow-core-generator/src/main/java/org/tensorflow/processor/operator/OperatorProcessor.java +++ b/tensorflow-core/tensorflow-core-generator/src/main/java/org/tensorflow/processor/operator/OperatorProcessor.java @@ -207,6 +207,7 @@ private static class OpsSpec { ClassName.get("org.tensorflow", "ExecutionEnvironment"); private static final TypeName T_EAGER_SESSION = ClassName.get("org.tensorflow", "EagerSession"); private static final TypeName T_STRING = ClassName.get(String.class); + private static final TypeName T_DEVICE_SPEC = ClassName.get("org.tensorflow", "DeviceSpec"); private static final String LICENSE = "Copyright 2020 The TensorFlow Authors. All Rights Reserved.\n" @@ -428,8 +429,9 @@ private static TypeSpec buildGroupClass(OpsSpec spec) { MethodSpec.Builder ctorBuilder = MethodSpec.constructorBuilder() - .addParameter(T_SCOPE, "scope") - .addStatement("this.scope = scope"); + .addParameter(T_OPS, "ops") + .addStatement("this.scope = ops.scope()") + .addStatement("this.ops = ops"); TypeSpec.Builder builder = TypeSpec.classBuilder(spec.className) @@ -442,13 +444,24 @@ private static TypeSpec buildGroupClass(OpsSpec spec) { T_OPS) .addMethods(spec.methods); - addGroupFields(builder, ctorBuilder, spec.subGroups); + MethodSpec.Builder opsBuilder = MethodSpec.methodBuilder("ops") + .addModifiers(Modifier.PUBLIC, Modifier.FINAL) + .returns(T_OPS) + .addJavadoc("Get the parent {@link " + T_OPS.simpleName() + "} object.") + .addStatement("return ops"); + + builder.addMethod(opsBuilder.build()); + + addGroupFields(builder, ctorBuilder, spec.subGroups, false); builder.addMethod(ctorBuilder.build()); builder.addField( FieldSpec.builder(T_SCOPE, "scope").addModifiers(Modifier.PRIVATE, Modifier.FINAL).build()); + builder.addField( + FieldSpec.builder(T_OPS, "ops").addModifiers(Modifier.PRIVATE, Modifier.FINAL).build()); + return builder.build(); } @@ -497,7 +510,7 @@ private static TypeSpec buildTopClass(OpsSpec spec) { T_OPERATOR) .addMethods(spec.methods); - addGroupFields(opsBuilder, ctorBuilder, spec.subGroups); + addGroupFields(opsBuilder, ctorBuilder, spec.subGroups, true); opsBuilder.addMethod(ctorBuilder.build()); @@ -525,6 +538,18 @@ private static TypeSpec buildTopClass(OpsSpec spec) { T_SCOPE) .build()); + opsBuilder.addMethod( + MethodSpec.methodBuilder("withDevice") + .addModifiers(Modifier.PUBLIC) + .addParameter(T_DEVICE_SPEC, "deviceSpec") + .returns(T_OPS) + .addStatement("return new Ops(scope.withDevice(deviceSpec))") + .addJavadoc( + "Returns an API that places the created operations on the device(s) matching the provided spec.\n\n" + + "@see {@link $T#withDevice(DeviceSpec)}\n", + T_SCOPE) + .build()); + opsBuilder.addMethod( MethodSpec.methodBuilder("withControlDependencies") .addModifiers(Modifier.PUBLIC) @@ -571,14 +596,14 @@ private static TypeSpec buildTopClass(OpsSpec spec) { return opsBuilder.build(); } - private static void addGroupFields(TypeSpec.Builder classBuilder, MethodSpec.Builder ctorBuilder, List groups) { + private static void addGroupFields(TypeSpec.Builder classBuilder, MethodSpec.Builder ctorBuilder, List groups, boolean isTopClass) { groups.forEach(group -> { classBuilder.addField( FieldSpec.builder(group.className, group.fieldName) .addModifiers(Modifier.PUBLIC, Modifier.FINAL) .build() ); - ctorBuilder.addStatement("$L = new $T(scope)", group.fieldName, group.className).build(); + ctorBuilder.addStatement("$L = new $T(" + (isTopClass ? "this" : "ops") + ")", group.fieldName, group.className).build(); }); } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/activations/ELU.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/activations/ELU.java index ae3d7e8c896..2f2f16f2752 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/activations/ELU.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/activations/ELU.java @@ -14,7 +14,6 @@ =======================================================================*/ package org.tensorflow.framework.activations; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.op.Ops; import org.tensorflow.types.TBool; @@ -89,9 +88,9 @@ public Operand call(Operand input) { Operand result = tf.nn.elu(input); if (alpha == 1.0) return result; else { - DataType dataType = input.asOutput().dataType(); - Operand y = tf.math.mul(result, tf.dtypes.cast(tf.constant(alpha), dataType)); - Operand cond = tf.math.greater(result, tf.dtypes.cast(tf.constant(0), dataType)); + Class inputType = input.type(); + Operand y = tf.math.mul(result, tf.dtypes.cast(tf.constant(alpha), inputType)); + Operand cond = tf.math.greater(result, tf.dtypes.cast(tf.constant(0), inputType)); return tf.select(cond, result, y); } } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/activations/HardSigmoid.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/activations/HardSigmoid.java index a486cbdc601..0b7cf573b8e 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/activations/HardSigmoid.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/activations/HardSigmoid.java @@ -14,7 +14,6 @@ =======================================================================*/ package org.tensorflow.framework.activations; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.op.Ops; import org.tensorflow.types.family.TFloating; @@ -63,12 +62,12 @@ public HardSigmoid(Ops tf) { */ @Override public Operand call(Operand input) { - DataType dataType = input.asOutput().dataType(); - Operand point2 = tf.dtypes.cast(tf.constant(0.2), dataType); - Operand point5 = tf.dtypes.cast(tf.constant(0.5), dataType); + Class inputType = input.type(); + Operand point2 = tf.dtypes.cast(tf.constant(0.2), inputType); + Operand point5 = tf.dtypes.cast(tf.constant(0.5), inputType); Operand x = tf.math.add(tf.math.mul(input, point2), point5); return tf.clipByValue( - x, tf.dtypes.cast(tf.constant(0), dataType), tf.dtypes.cast(tf.constant(1), dataType)); + x, tf.dtypes.cast(tf.constant(0), inputType), tf.dtypes.cast(tf.constant(1), inputType)); } } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/activations/ReLU.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/activations/ReLU.java index c24cf71077d..aef6ebf2992 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/activations/ReLU.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/activations/ReLU.java @@ -14,7 +14,6 @@ =======================================================================*/ package org.tensorflow.framework.activations; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.op.Ops; import org.tensorflow.op.math.Greater; @@ -98,8 +97,7 @@ public ReLU(Ops tf, float alpha, float maxValue, float threshold) { /** {@inheritDoc} */ @Override public Operand call(Operand input) { - - DataType dataType = input.asOutput().dataType(); + Class inputType = input.type(); boolean clipMax = !Float.isNaN(maxValue); Operand negativePart = null; @@ -110,7 +108,7 @@ public Operand call(Operand input) { if (threshold != 0) { negativePart = tf.nn.relu( - tf.math.add(tf.math.neg(input), tf.dtypes.cast(tf.constant(threshold), dataType))); + tf.math.add(tf.math.neg(input), tf.dtypes.cast(tf.constant(threshold), inputType))); } else { negativePart = tf.nn.relu(tf.math.neg(input)); } @@ -119,8 +117,8 @@ public Operand call(Operand input) { Operand lInput; if (threshold != 0) { // computes input for input > threshold else 0 - Greater greater = tf.math.greater(input, tf.dtypes.cast(tf.constant(threshold), dataType)); - lInput = tf.math.mul(input, tf.dtypes.cast(greater, dataType)); + Greater greater = tf.math.greater(input, tf.dtypes.cast(tf.constant(threshold), inputType)); + lInput = tf.math.mul(input, tf.dtypes.cast(greater, inputType)); } else if (maxValue == 6) { // if no threshold, then can use nn.relu6 native TF op for performance lInput = tf.nn.relu6(input); @@ -129,15 +127,15 @@ public Operand call(Operand input) { lInput = tf.nn.relu(input); } if (clipMax) { - Operand lmaxValue = tf.dtypes.cast(tf.constant(maxValue), dataType); - Operand zero = tf.dtypes.cast(tf.constant(0), dataType); + Operand lmaxValue = tf.dtypes.cast(tf.constant(maxValue), inputType); + Operand zero = tf.dtypes.cast(tf.constant(0), inputType); lInput = tf.clipByValue(lInput, zero, lmaxValue); } if (alpha != 0.) { lInput = tf.math.sub( - lInput, tf.math.mul(tf.dtypes.cast(tf.constant(alpha), dataType), negativePart)); + lInput, tf.math.mul(tf.dtypes.cast(tf.constant(alpha), inputType), negativePart)); } return lInput; } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/activations/Softmax.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/activations/Softmax.java index d31eebd9007..154e1ecc84a 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/activations/Softmax.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/activations/Softmax.java @@ -73,7 +73,7 @@ public Softmax(Ops tf, int axis) { */ @Override public Operand call(Operand input) { - Shape shape = input.asOutput().shape(); + Shape shape = input.shape(); int numDimensions = shape.numDimensions(); if (numDimensions == 2) { return tf.nn.softmax(input); diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/data/Dataset.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/data/Dataset.java index 007bcb01a40..7ac73f616e2 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/data/Dataset.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/data/Dataset.java @@ -15,7 +15,6 @@ */ package org.tensorflow.framework.data; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.framework.data.impl.BatchDataset; import org.tensorflow.framework.data.impl.MapDataset; @@ -33,6 +32,7 @@ import java.util.Iterator; import java.util.List; import java.util.function.Function; +import org.tensorflow.types.family.TType; /** * Represents a potentially large list of independent elements (samples), and allows iteration and @@ -41,11 +41,11 @@ public abstract class Dataset implements Iterable>> { protected Ops tf; private Operand variant; - private List> outputTypes; + private List> outputTypes; private List outputShapes; public Dataset( - Ops tf, Operand variant, List> outputTypes, List outputShapes) { + Ops tf, Operand variant, List> outputTypes, List outputShapes) { if (tf == null) { throw new IllegalArgumentException("Ops accessor cannot be null."); } @@ -261,12 +261,12 @@ public DatasetIterator makeOneShotIterator() { * @param tf Ops Accessor * @param tensors A list of {@code Operand} representing components of this dataset (e.g. * features, labels) - * @param outputTypes A list of `DataType` objects representing the data type of each component of + * @param outputTypes A list of tensor type classes representing the data type of each component of * this dataset. * @return A new `Dataset` */ public static Dataset fromTensorSlices( - Ops tf, List> tensors, List> outputTypes) { + Ops tf, List> tensors, List> outputTypes) { return new TensorSliceDataset(tf, tensors, outputTypes); } @@ -288,7 +288,7 @@ public Operand getVariant() { } /** Get a list of output types for each component of this dataset. */ - public List> getOutputTypes() { + public List> getOutputTypes() { return this.outputTypes; } @@ -305,7 +305,7 @@ public Ops getOpsInstance() { public String toString() { return "Dataset{" + "outputTypes=" - + Arrays.toString(getOutputTypes().stream().map(DataType::name).toArray()) + + Arrays.toString(getOutputTypes().stream().map(Class::getSimpleName).toArray()) + ", outputShapes=" + Arrays.toString(getOutputShapes().stream().map(Shape::toString).toArray()) + "}"; diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/data/DatasetIterator.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/data/DatasetIterator.java index f4c4b681715..a3aa290a8c8 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/data/DatasetIterator.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/data/DatasetIterator.java @@ -15,7 +15,6 @@ */ package org.tensorflow.framework.data; -import org.tensorflow.DataType; import org.tensorflow.Graph; import org.tensorflow.Operand; import org.tensorflow.op.Op; @@ -25,6 +24,7 @@ import java.util.ArrayList; import java.util.Iterator; import java.util.List; +import org.tensorflow.types.family.TType; /** * Represents the state of an iteration through a tf.data Datset. DatasetIterator is not a @@ -106,7 +106,7 @@ public class DatasetIterator implements Iterable>> { private Operand iteratorResource; private Op initializer; - protected List> outputTypes; + protected List> outputTypes; protected List outputShapes; /** @@ -115,7 +115,7 @@ public class DatasetIterator implements Iterable>> { * @param iteratorResource An Operand representing the iterator (e.g. constructed from * `tf.data.iterator` or `tf.data.anonymousIterator`) * @param initializer An `Op` that should be run to initialize this iterator - * @param outputTypes A list of `DataType` objects corresponding to the types of each component of + * @param outputTypes A list of classes corresponding to the tensor type of each component of * a dataset element. * @param outputShapes A list of `Shape` objects corresponding to the shapes of each component of * a dataset element. @@ -124,7 +124,7 @@ public DatasetIterator( Ops tf, Operand iteratorResource, Op initializer, - List> outputTypes, + List> outputTypes, List outputShapes) { this.tf = tf; @@ -137,7 +137,7 @@ public DatasetIterator( public DatasetIterator( Ops tf, Operand iteratorResource, - List> outputTypes, + List> outputTypes, List outputShapes) { this.tf = tf; this.iteratorResource = iteratorResource; @@ -229,14 +229,14 @@ public Op makeInitializer(Dataset dataset) { * Creates a new iterator from a "structure" defined by `outputShapes` and `outputTypes`. * * @param tf Ops accessor - * @param outputTypes A list of `DataType` objects repesenting the types of each component of a + * @param outputTypes A list of classes repesenting the tensor type of each component of a * dataset element. * @param outputShapes A list of Shape objects representing the shape of each component of a * dataset element. * @return A new DatasetIterator */ public static DatasetIterator fromStructure( - Ops tf, List> outputTypes, List outputShapes) { + Ops tf, List> outputTypes, List outputShapes) { Operand iteratorResource = tf.scope().env() instanceof Graph ? tf.data.iterator(EMPTY_SHARED_NAME, "", outputTypes, outputShapes) @@ -272,7 +272,7 @@ public Iterator>> iterator() { @Override public boolean hasNext() { - return nextOptional.hasValue().data().getBoolean(); + return nextOptional.hasValue().asTensor().getBoolean(); } @Override diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/data/DatasetOptional.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/data/DatasetOptional.java index 925252c7298..6617c33eaf7 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/data/DatasetOptional.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/data/DatasetOptional.java @@ -15,7 +15,6 @@ */ package org.tensorflow.framework.data; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.op.Ops; import org.tensorflow.ndarray.Shape; @@ -23,6 +22,7 @@ import java.util.ArrayList; import java.util.List; +import org.tensorflow.types.family.TType; /** * An optional represents the result of a dataset getNext operation that may fail, when the end of @@ -36,11 +36,11 @@ public Operand getOptionalVariant() { } private Operand optionalVariant; - private List> outputTypes; + private List> outputTypes; private List outputShapes; public DatasetOptional( - Ops tf, Operand optionalVariant, List> outputTypes, List outputShapes) { + Ops tf, Operand optionalVariant, List> outputTypes, List outputShapes) { this.tf = tf; this.optionalVariant = optionalVariant; this.outputTypes = outputTypes; @@ -75,7 +75,7 @@ public List> getValue() { public static DatasetOptional fromComponents( Ops tf, List> components, - List> outputTypes, + List> outputTypes, List outputShapes) { Operand optionalVariant = tf.data.optionalFromValue(components); return new DatasetOptional(tf, optionalVariant, outputTypes, outputShapes); diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/data/impl/BatchDataset.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/data/impl/BatchDataset.java index 277b049cf6f..f0561b2e61e 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/data/impl/BatchDataset.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/data/impl/BatchDataset.java @@ -15,7 +15,6 @@ */ package org.tensorflow.framework.data.impl; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.framework.data.Dataset; import org.tensorflow.op.Ops; @@ -25,6 +24,7 @@ import org.tensorflow.types.TInt64; import java.util.List; +import org.tensorflow.types.family.TType; public class BatchDataset extends Dataset { public BatchDataset( @@ -32,7 +32,7 @@ public BatchDataset( Operand variant, Constant batchSize, Constant dropRemainder, - List> outputTypes, + List> outputTypes, List outputShapes) { super( tf, diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/data/impl/SkipDataset.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/data/impl/SkipDataset.java index 6731bac60b3..63b4208480b 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/data/impl/SkipDataset.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/data/impl/SkipDataset.java @@ -15,7 +15,6 @@ */ package org.tensorflow.framework.data.impl; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.framework.data.Dataset; import org.tensorflow.op.Ops; @@ -24,6 +23,7 @@ import org.tensorflow.types.TInt64; import java.util.List; +import org.tensorflow.types.family.TType; public class SkipDataset extends Dataset { @@ -31,7 +31,7 @@ public SkipDataset( Ops tf, Operand variant, Constant count, - List> outputTypes, + List> outputTypes, List outputShapes) { super( tf, diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/data/impl/TFRecordDataset.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/data/impl/TFRecordDataset.java index ed721b13ebf..00297152e90 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/data/impl/TFRecordDataset.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/data/impl/TFRecordDataset.java @@ -34,7 +34,7 @@ public TFRecordDataset( super( tf, tf.data.tfRecordDataset(filenames, compressionType, bufferSize), - Collections.singletonList(TString.DTYPE), + Collections.singletonList(TString.class), Collections.singletonList(Shape.scalar())); } } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/data/impl/TakeDataset.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/data/impl/TakeDataset.java index 08c57d44a73..39ca9759e74 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/data/impl/TakeDataset.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/data/impl/TakeDataset.java @@ -15,7 +15,6 @@ */ package org.tensorflow.framework.data.impl; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.framework.data.Dataset; import org.tensorflow.op.Ops; @@ -24,6 +23,7 @@ import org.tensorflow.types.TInt64; import java.util.List; +import org.tensorflow.types.family.TType; public class TakeDataset extends Dataset { @@ -31,7 +31,7 @@ public TakeDataset( Ops tf, Operand variant, Constant count, - List> outputTypes, + List> outputTypes, List outputShapes) { super( tf, diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/data/impl/TensorSliceDataset.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/data/impl/TensorSliceDataset.java index 14405ebdaf5..46639ea2aad 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/data/impl/TensorSliceDataset.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/data/impl/TensorSliceDataset.java @@ -15,7 +15,6 @@ */ package org.tensorflow.framework.data.impl; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.framework.data.Dataset; import org.tensorflow.op.Ops; @@ -23,19 +22,20 @@ import java.util.List; import java.util.stream.Collectors; +import org.tensorflow.types.family.TType; public class TensorSliceDataset extends Dataset { - public TensorSliceDataset(Ops tf, List> components, List> outputTypes) { + public TensorSliceDataset(Ops tf, List> components, List> outputTypes) { super(tf, makeVariant(tf, components, outputTypes), outputTypes, outputShapes(components)); } private static List outputShapes(List> components) { - return components.stream().map(c -> c.asOutput().shape().tail()).collect(Collectors.toList()); + return components.stream().map(c -> c.shape().tail()).collect(Collectors.toList()); } private static Operand makeVariant( - Ops tf, List> components, List> outputTypes) { + Ops tf, List> components, List> outputTypes) { if (!(components.size() == outputTypes.size())) { throw new IllegalArgumentException( "Lists `tensors` and `dtypes` must have the same number of elements."); diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/data/impl/TextLineDataset.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/data/impl/TextLineDataset.java index 4ef47825211..c9a26304778 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/data/impl/TextLineDataset.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/data/impl/TextLineDataset.java @@ -34,7 +34,7 @@ public TextLineDataset( super( tf, tf.data.textLineDataset(filenames, compressionType, bufferSize), - Collections.singletonList(TString.DTYPE), + Collections.singletonList(TString.class), Collections.singletonList(Shape.scalar())); } } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Constant.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Constant.java index b4544de9bd0..4a2df86d74b 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Constant.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Constant.java @@ -14,10 +14,11 @@ =======================================================================*/ package org.tensorflow.framework.initializers; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.op.Ops; +import org.tensorflow.types.TBool; import org.tensorflow.types.TInt64; +import org.tensorflow.types.family.TNumber; import org.tensorflow.types.family.TType; /** @@ -29,7 +30,7 @@ * Constant<TFloat32> initializer = * new org.tensorflow.framework.initializers.Constant<>(tf, 3f); * Operand<TFloat32> values = - * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.DTYPE); + * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.class); *

* * @param The Type for the call operation @@ -85,17 +86,17 @@ public Constant(Ops tf, boolean value) { /** {@inheritDoc} */ @Override - public Operand call(Operand dims, DataType dtype) { - if (!(dtype.isNumeric() || dtype.isBoolean())) { - throw new IllegalArgumentException("DataType must be numeric or boolean: " + dtype.name()); + public Operand call(Operand dims, Class type) { + if (!TNumber.class.isAssignableFrom(type) && type != TBool.class) { + throw new IllegalArgumentException("Tensor type must be numeric or boolean: " + type.getSimpleName()); } switch (valueType) { case LONG: - return tf.fill(dims, tf.dtypes.cast(tf.constant(longValue), dtype)); + return tf.fill(dims, tf.dtypes.cast(tf.constant(longValue), type)); case DOUBLE: - return tf.fill(dims, tf.dtypes.cast(tf.constant(doubleValue), dtype)); + return tf.fill(dims, tf.dtypes.cast(tf.constant(doubleValue), type)); default: - return tf.fill(dims, tf.dtypes.cast(tf.constant(booleanValue), dtype)); + return tf.fill(dims, tf.dtypes.cast(tf.constant(booleanValue), type)); } } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Glorot.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Glorot.java index 3d5d37b91d3..290e4e80b57 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Glorot.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Glorot.java @@ -16,8 +16,7 @@ package org.tensorflow.framework.initializers; import org.tensorflow.op.Ops; -import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; +import org.tensorflow.types.family.TFloating; /** * The Glorot initializer, also called Xavier initializer. @@ -44,7 +43,7 @@ * new org.tensorflow.framework.initializers.Glorot<>(tf, * Distribution.TRUNCATED_NORMAL, seed); * Operand<TFloat32> values = - * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.DTYPE); + * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.class); *
* *

Glorot Uniform: @@ -55,7 +54,7 @@ * new org.tensorflow.framework.initializers.Glorot<>(tf, * Distribution.UNIFORM, seed); * Operand<TFloat32> values = - * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.DTYPE); + * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.class); *

* *

NOTE: @@ -66,11 +65,10 @@ *

* * @param The TType for the call operation - * @param The TNumber for the call operation * @see VarianceScaling.Distribution * @see Glorot et al., 2010 */ -public class Glorot extends VarianceScaling { +public class Glorot extends VarianceScaling { public static final double SCALE = 1.0; diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/He.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/He.java index ce99da80bf7..9b1a0887af0 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/He.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/He.java @@ -15,8 +15,7 @@ package org.tensorflow.framework.initializers; import org.tensorflow.op.Ops; -import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; +import org.tensorflow.types.family.TFloating; /** * He initializer. @@ -39,7 +38,7 @@ * new org.tensorflow.framework.initializers.He<>(tf, * Distribution.TRUNCATED_NORMAL, seed);); * Operand<TFloat32> values = - * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.DTYPE); + * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.class); *
* *

He Uniform: @@ -50,7 +49,7 @@ * new org.tensorflow.framework.initializers.He<>(tf, * Distribution.UNIFORM, seed);); * Operand<TFloat32> values = - * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.DTYPE); + * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.class); * * *

NOTE: @@ -61,12 +60,11 @@ *

* * @param The TType for the call operation - * @param The TNumber for the call operation * @see He * et al., 2015 */ -public class He extends VarianceScaling { +public class He extends VarianceScaling { public static final double SCALE = 2.0; diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Identity.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Identity.java index 34e6cd790f4..f672c9f1e85 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Identity.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Identity.java @@ -14,13 +14,12 @@ =======================================================================*/ package org.tensorflow.framework.initializers; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.framework.utils.ShapeUtils; import org.tensorflow.ndarray.Shape; import org.tensorflow.op.Ops; import org.tensorflow.types.TInt64; -import org.tensorflow.types.family.TType; +import org.tensorflow.types.family.TFloating; /** * Initializer that generates the identity matrix. @@ -33,12 +32,12 @@ * Identity<TFloat32> initializer = * new org.tensorflow.framework.initializers.Identity<>(tf); * Operand<TFloat32> values = - * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.DTYPE); + * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.class); * * * @param The TType for the call operation */ -public class Identity extends BaseInitializer { +public class Identity extends BaseInitializer { public static final double GAIN_DEFAULT = 1.0; private final double gain; @@ -66,10 +65,7 @@ public Identity(Ops tf, double gain) { /** {@inheritDoc} */ @Override - public Operand call(Operand dims, DataType dtype) { - if (!dtype.isFloating()) { - throw new IllegalArgumentException("DataType must be a float type: " + dtype.name()); - } + public Operand call(Operand dims, Class type) { Shape shape = ShapeUtils.toShape(tf.scope(), dims); if (shape.numDimensions() != 2) { throw new IllegalArgumentException("2D matrix required, got " + shape.numDimensions()); @@ -79,9 +75,9 @@ public Operand call(Operand dims, DataType dtype) { Shape diagShape = Shape.of(diagSize); Operand op; - Operand zero = tf.dtypes.cast(tf.constant(0), dtype); + Operand zero = tf.dtypes.cast(tf.constant(0), type); Operand diagOnes = - tf.fill(tf.constant(diagShape.asArray()), tf.dtypes.cast(tf.constant(1.0), dtype)); + tf.fill(tf.constant(diagShape.asArray()), tf.dtypes.cast(tf.constant(1.0), type)); if (isSquare) { op = tf.linalg.matrixDiag( @@ -91,10 +87,10 @@ public Operand call(Operand dims, DataType dtype) { tf.constant((int) shape.size(1)), zero); } else { - Operand zeroMatrix = tf.zeros(dims, dtype); + Operand zeroMatrix = tf.zeros(dims, type); op = tf.linalg.matrixSetDiag(zeroMatrix, diagOnes, tf.constant(0)); } - return tf.math.mul(op, tf.dtypes.cast(tf.constant(gain), dtype)); + return tf.math.mul(op, tf.dtypes.cast(tf.constant(gain), type)); } } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Initializer.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Initializer.java index 59dce1fc02e..4beb218783b 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Initializer.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Initializer.java @@ -14,7 +14,6 @@ =======================================================================*/ package org.tensorflow.framework.initializers; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.types.TInt64; import org.tensorflow.types.family.TType; @@ -30,8 +29,8 @@ public interface Initializer { * Generates the operation used to perform the initialization. * * @param dims the shape dimensions - * @param dtype the data type + * @param type the type of tensor * @return An operand for the initialization. */ - Operand call(Operand dims, DataType dtype); + Operand call(Operand dims, Class type); } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/LeCun.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/LeCun.java index e2268412fc3..38e68ef688b 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/LeCun.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/LeCun.java @@ -15,8 +15,7 @@ package org.tensorflow.framework.initializers; import org.tensorflow.op.Ops; -import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; +import org.tensorflow.types.family.TFloating; /** * LeCun normal initializer. @@ -42,7 +41,7 @@ * new org.tensorflow.framework.initializers.LeCunNormal<>(tf, * Distribution.TRUNCATED_NORMAL, seed); * Operand<TFloat32> values = - * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.DTYPE); + * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.class); * * *

LeCun Uniform: @@ -53,7 +52,7 @@ * new org.tensorflow.framework.initializers.LeCunNormal<>(tf, * Distribution.UNIFORM, seed); * Operand<TFloat32> values = - * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.DTYPE); + * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.class); * * * * @@ -68,7 +67,6 @@ *

* * @param The TType for the call operation - * @param The TNumber for the call operation * @see Self-Normalizing * Neural Networks, Klambauer et al., 2017 @@ -76,7 +74,7 @@ * al., 1998 * @see VarianceScaling.Distribution */ -public class LeCun extends VarianceScaling { +public class LeCun extends VarianceScaling { /** * Creates a LeCunNormal Initializer diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Ones.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Ones.java index b78f34e3d35..b8eb0c418e9 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Ones.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Ones.java @@ -14,10 +14,11 @@ =======================================================================*/ package org.tensorflow.framework.initializers; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.op.Ops; +import org.tensorflow.types.TBool; import org.tensorflow.types.TInt64; +import org.tensorflow.types.family.TNumber; import org.tensorflow.types.family.TType; /** @@ -29,7 +30,7 @@ * Ones<TFloat32> initializer = * new org.tensorflow.framework.initializers.Ones<>(tf); * Operand<TFloat32> values = - * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.DTYPE); + * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.class); * * * @param The TType for the call operation @@ -45,7 +46,7 @@ public class Ones extends BaseInitializer { * Ones<TFloat32> initializer = * new org.tensorflow.framework.initializers.Ones<>(tf); * Operand<TFloat32> values = - * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.DTYPE); + * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.class); * * * @param tf the TensorFlow Ops @@ -56,10 +57,10 @@ public Ones(Ops tf) { /** {@inheritDoc} */ @Override - public Operand call(Operand dims, DataType dtype) { - if (!(dtype.isNumeric() || dtype.isBoolean())) { - throw new IllegalArgumentException("DataType must be numeric or boolean: " + dtype.name()); + public Operand call(Operand dims, Class type) { + if (!TNumber.class.isAssignableFrom(type) && type != TBool.class) { + throw new IllegalArgumentException("Tensor type must be numeric or boolean: " + type.getSimpleName()); } - return tf.fill(dims, tf.dtypes.cast(tf.constant(1.0), dtype)); + return tf.fill(dims, tf.dtypes.cast(tf.constant(1.0), type)); } } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Orthogonal.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Orthogonal.java index 48e2c56d5be..a5b466e118e 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Orthogonal.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Orthogonal.java @@ -14,7 +14,6 @@ =======================================================================*/ package org.tensorflow.framework.initializers; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.Output; import org.tensorflow.framework.utils.ShapeUtils; @@ -22,8 +21,7 @@ import org.tensorflow.op.Ops; import org.tensorflow.op.linalg.Qr; import org.tensorflow.types.TInt64; -import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; +import org.tensorflow.types.family.TFloating; /** * Initializer that generates an orthogonal matrix. @@ -44,13 +42,12 @@ * Orthogonal<TFloat32, TFloat32> initializer = * new org.tensorflow.framework.initializers.Orthogonal<>(tf); * Operand<TFloat32> values = - * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.DTYPE); + * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.class); * * * @param The TType for the call operation - * @param The TNumber for the call operation */ -public class Orthogonal extends BaseInitializer { +public class Orthogonal extends BaseInitializer { public static final double GAIN_DEFAULT = 1.0; @@ -84,10 +81,7 @@ public Orthogonal(Ops tf, double gain, long seed) { /** {@inheritDoc} */ @Override - public Operand call(Operand dims, DataType dtype) { - if (!dtype.isFloating()) { - throw new IllegalArgumentException("Expected floating point type, got " + dtype.name()); - } + public Operand call(Operand dims, Class type) { Shape dimsShape = ShapeUtils.toShape(tf.scope(), dims); if (dimsShape.numDimensions() < 2) { throw new IllegalArgumentException( @@ -100,22 +94,17 @@ public Operand call(Operand dims, DataType dtype) { long numCols = dimsShape.size(i); Shape flatShape = Shape.of(Math.max(numRows, numCols), Math.min(numRows, numCols)); long[] seeds = {seed, 0}; - @SuppressWarnings("unchecked") - DataType numdType = (DataType) dtype; - @SuppressWarnings("unchecked") Operand op = - (Operand) - tf.random.statelessRandomNormal(tf.constant(flatShape), tf.constant(seeds), numdType); - + tf.random.statelessRandomNormal(tf.constant(flatShape), tf.constant(seeds), type); Qr.Options qrOptions = Qr.fullMatrices(false); Qr qrOp = tf.linalg.qr(op, qrOptions); Output qo = qrOp.q(); Output ro = qrOp.r(); Operand diagOp = - tf.linalg.matrixDiagPart(ro, tf.constant(0), tf.dtypes.cast(tf.constant(0), dtype)); + tf.linalg.matrixDiagPart(ro, tf.constant(0), tf.dtypes.cast(tf.constant(0), type)); Operand qop = tf.math.mul(qo, tf.math.sign(diagOp)); if (numRows < numCols) qop = tf.linalg.transpose(qop, null); - return tf.math.mul(qop, tf.dtypes.cast(tf.constant(this.gain), dtype)); + return tf.math.mul(qop, tf.dtypes.cast(tf.constant(this.gain), type)); } } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/RandomNormal.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/RandomNormal.java index f2d8a0d8e6e..38ab194a56b 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/RandomNormal.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/RandomNormal.java @@ -14,12 +14,10 @@ =======================================================================*/ package org.tensorflow.framework.initializers; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.op.Ops; import org.tensorflow.types.TInt64; -import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; +import org.tensorflow.types.family.TFloating; /** * Initializer that generates tensors with a normal distribution. @@ -31,13 +29,13 @@ * RandomNormal<TFloat32, TFloat32> initializer = * new org.tensorflow.framework.initializers.RandomNormal<>(tf, seed); * Operand<TFloat32> values = - * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.DTYPE); + * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.class); * * * @param The TType for the call operation - * @param The TNumber for the call operation */ -public class RandomNormal extends BaseInitializer { +public class RandomNormal extends BaseInitializer { + public static final double MEAN_DEFAULT = 0.0; public static final double STDDEV_DEFAULT = 1.0; @@ -87,16 +85,10 @@ public RandomNormal(Ops tf, double mean, double stddev, long seed) { /** {@inheritDoc} */ @Override - public Operand call(Operand dims, DataType dtype) { - if (!dtype.isNumeric()) - throw new IllegalArgumentException("The data type must be numeric. Found : " + dtype.name()); + public Operand call(Operand dims, Class type) { long[] seeds = {seed, 0}; - @SuppressWarnings("unchecked") - DataType numdType = (DataType) dtype; - @SuppressWarnings("unchecked") - Operand distOp = - (Operand) tf.random.statelessRandomNormal(dims, tf.constant(seeds), numdType); - Operand op = tf.math.mul(distOp, tf.dtypes.cast(tf.constant(this.stddev), dtype)); - return tf.math.add(op, tf.dtypes.cast(tf.constant(mean), dtype)); + Operand distOp = tf.random.statelessRandomNormal(dims, tf.constant(seeds), type); + Operand op = tf.math.mul(distOp, tf.dtypes.cast(tf.constant(this.stddev), type)); + return tf.math.add(op, tf.dtypes.cast(tf.constant(mean), type)); } } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/RandomUniform.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/RandomUniform.java index b665729675d..787af15f709 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/RandomUniform.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/RandomUniform.java @@ -14,13 +14,12 @@ =======================================================================*/ package org.tensorflow.framework.initializers; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.op.Ops; import org.tensorflow.op.random.RandomUniformInt; import org.tensorflow.types.TInt64; +import org.tensorflow.types.family.TIntegral; import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; /** * Initializer that generates tensors with a uniform distribution. @@ -32,13 +31,12 @@ * RandomUniform<TFloat32, TFloat32> initializer = * new org.tensorflow.framework.initializers.RandomUniform<>(tf, seed); * Operand<TFloat32> values = - * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.DTYPE); + * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.class); * * * @param The TType for the call operation - * @param The TNumber for the call operation */ -public class RandomUniform extends BaseInitializer { +public class RandomUniform extends BaseInitializer { public static final double MINVAL_DEFAULT = -0.05; public static final double MAXVAL_DEFAULT = 0.05; @@ -77,39 +75,28 @@ public RandomUniform(Ops tf, double minval, double maxval, long seed) { /** {@inheritDoc} */ @Override - public Operand call(Operand dims, DataType dtype) { - if (!dtype.isNumeric()) - throw new IllegalArgumentException("The data type must be numeric. Found : " + dtype.name()); - @SuppressWarnings("unchecked") - DataType numdType = (DataType) dtype; - Operand distOp; - - if (dtype.isInteger()) { + public Operand call(Operand dims, Class type) { + Operand distOp; + if (TIntegral.class.isAssignableFrom(type)) { RandomUniformInt.Options options = RandomUniformInt.seed(this.seed); distOp = tf.random.randomUniformInt( dims, - tf.dtypes.cast(tf.constant(this.minval), numdType), - tf.dtypes.cast(tf.constant(this.maxval), numdType), + tf.dtypes.cast(tf.constant(this.minval), type), + tf.dtypes.cast(tf.constant(this.maxval), type), options); - @SuppressWarnings("unchecked") - Operand distOpT = (Operand) distOp; - return distOpT; } else { long[] seeds = {seed, 0}; - distOp = tf.random.statelessRandomUniform(dims, tf.constant(seeds), numdType); - @SuppressWarnings("unchecked") - Operand distOpT = (Operand) distOp; + distOp = tf.random.statelessRandomUniform(dims, tf.constant(seeds), type); if (this.minval == 0) { if (this.maxval != 1.0) { - distOpT = tf.math.mul(distOpT, tf.dtypes.cast(tf.constant(this.maxval), dtype)); + distOp = tf.math.mul(distOp, tf.dtypes.cast(tf.constant(this.maxval), type)); } } else { - distOpT = - tf.math.mul(distOpT, tf.dtypes.cast(tf.constant(this.maxval - this.minval), dtype)); - distOpT = tf.math.add(distOpT, tf.dtypes.cast(tf.constant(this.minval), dtype)); + distOp = tf.math.mul(distOp, tf.dtypes.cast(tf.constant(this.maxval - this.minval), type)); + distOp = tf.math.add(distOp, tf.dtypes.cast(tf.constant(this.minval), type)); } - return distOpT; } + return distOp; } } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/TruncatedNormal.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/TruncatedNormal.java index c71cf9a630e..d3cfec26338 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/TruncatedNormal.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/TruncatedNormal.java @@ -14,12 +14,10 @@ =======================================================================*/ package org.tensorflow.framework.initializers; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.op.Ops; import org.tensorflow.types.TInt64; -import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; +import org.tensorflow.types.family.TFloating; /** * Initializer that generates a truncated normal distribution. @@ -31,13 +29,12 @@ * TruncatedNormal<TFloat32, TFloat32> initializer = * new org.tensorflow.framework.initializers.TruncatedNormal<>(tf, seed); * Operand<TFloat32> values = - * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.DTYPE); + * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.class); * * * @param The TType for the call operation - * @param The TNumber for the call operation */ -public class TruncatedNormal extends BaseInitializer { +public class TruncatedNormal extends BaseInitializer { public static final double MEAN_DEFAULT = 0.0; public static final double STDDEV_DEFAULT = 0.05; @@ -76,17 +73,11 @@ public TruncatedNormal(Ops tf, double mean, double stddev, long seed) { /** {@inheritDoc} */ @Override - public Operand call(Operand dims, DataType dtype) { - if (!dtype.isNumeric()) - throw new IllegalArgumentException("The data type must be numeric. Found : " + dtype.name()); + public Operand call(Operand dims, Class type) { long[] seeds = {seed,0}; - @SuppressWarnings("unchecked") - DataType numdType = (DataType) dtype; - Operand distOp = tf.random.statelessTruncatedNormal(dims, tf.constant(seeds), numdType); - @SuppressWarnings("unchecked") - Operand distOpT = (Operand) distOp; + Operand distOp = tf.random.statelessTruncatedNormal(dims, tf.constant(seeds), type); return tf.math.add( - tf.math.mul(distOpT, tf.dtypes.cast(tf.constant(stddev), dtype)), - tf.dtypes.cast(tf.constant(mean), dtype)); + tf.math.mul(distOp, tf.dtypes.cast(tf.constant(stddev), type)), + tf.dtypes.cast(tf.constant(mean), type)); } } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/VarianceScaling.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/VarianceScaling.java index fd33adadd5c..5d951450505 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/VarianceScaling.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/VarianceScaling.java @@ -14,20 +14,16 @@ =======================================================================*/ package org.tensorflow.framework.initializers; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.framework.utils.ShapeUtils; import org.tensorflow.ndarray.Shape; import org.tensorflow.op.Ops; import org.tensorflow.types.TInt64; -import org.tensorflow.types.family.TNumber; -import org.tensorflow.types.family.TType; +import org.tensorflow.types.family.TFloating; /** * Initializer capable of adapting its scale to the shape of weights tensors. * - *

- * *

With distribution=TRUNCATED_NORMAL or NORMAL, samples are drawn from * a truncated/untruncated normal distribution with a mean of zero and a standard deviation (after * truncation, if used) stddev = Math.sqrt(scale / n), where n is: @@ -50,15 +46,14 @@ * new org.tensorflow.framework.initializers.VarianceScaling<>( * tf, scale, Mode.FAN_IN, Distribution.UNIFORM, seed); * Operand<TFloat32> values = - * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.DTYPE); + * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.class); * * * @param The TType for the call operation - * @param The TNumber for the call operation * @see VarianceScaling.Mode * @see VarianceScaling.Distribution */ -public class VarianceScaling extends BaseInitializer { +public class VarianceScaling extends BaseInitializer { public static final double SCALE_DEFAULT = 1.0; public static final Mode MODE_DEFAULT = Mode.FAN_IN; @@ -102,10 +97,7 @@ public VarianceScaling(Ops tf, double scale, Mode mode, Distribution distributio /** {@inheritDoc} */ @Override - public Operand call(Operand dims, DataType dtype) { - if (!dtype.isFloating()) { - throw new IllegalArgumentException("Expected floating point type, got " + dtype.name()); - } + public Operand call(Operand dims, Class type) { Shape shape = ShapeUtils.toShape(this.tf.scope(), dims); double lscale = this.scale; double[] fans /* fanIn, fanOut */ = computeFans(shape); @@ -120,32 +112,28 @@ public Operand call(Operand dims, DataType dtype) { lscale /= Math.max(1., (fans[0] + fans[1]) / 2.); break; } - Operand distOp; - Operand mulOp = null; - @SuppressWarnings("unchecked") - DataType numdType = (DataType) dtype; + Operand distOp; + Operand mulOp = null; double stddev; long[] seeds = {seed, 0}; switch (distribution) { case TRUNCATED_NORMAL: - distOp = tf.random.statelessTruncatedNormal(dims, tf.constant(seeds), numdType); + distOp = tf.random.statelessTruncatedNormal(dims, tf.constant(seeds), type); stddev = Math.sqrt(lscale) / .87962566103423978; - mulOp = tf.math.mul(distOp, tf.dtypes.cast(tf.constant(stddev), numdType)); + mulOp = tf.math.mul(distOp, tf.dtypes.cast(tf.constant(stddev), type)); break; case NORMAL: - distOp = tf.random.statelessRandomNormal(dims, tf.constant(seeds), numdType); + distOp = tf.random.statelessRandomNormal(dims, tf.constant(seeds), type); stddev = Math.sqrt(lscale); - mulOp = tf.math.mul(distOp, tf.dtypes.cast(tf.constant(stddev), numdType)); + mulOp = tf.math.mul(distOp, tf.dtypes.cast(tf.constant(stddev), type)); break; case UNIFORM: - distOp = tf.random.statelessRandomUniform(dims, tf.constant(seeds), numdType); + distOp = tf.random.statelessRandomUniform(dims, tf.constant(seeds), type); stddev = Math.sqrt(3.0 * lscale); - mulOp = tf.math.mul(distOp, tf.dtypes.cast(tf.constant(stddev), numdType)); + mulOp = tf.math.mul(distOp, tf.dtypes.cast(tf.constant(stddev), type)); break; } - - // Need to cast TNumber to TType - return (Operand) mulOp; + return mulOp; } /** diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Zeros.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Zeros.java index 09dd512ffaa..4298493ac44 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Zeros.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/initializers/Zeros.java @@ -14,7 +14,6 @@ =======================================================================*/ package org.tensorflow.framework.initializers; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.op.Ops; import org.tensorflow.types.TInt64; @@ -29,7 +28,7 @@ * Zeros<TFloat32> initializer = * new org.tensorflow.framework.initializers.Zeros<>(tf); * Operand<TFloat32> values = - * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.DTYPE); + * initializer.call(tf.constant(Shape.of(2,2)), TFloat32.class); * * * @param The TType for the call operation @@ -46,7 +45,7 @@ public Zeros(Ops tf) { } @Override - public Operand call(Operand dims, DataType dtype) { + public Operand call(Operand dims, Class dtype) { return tf.zeros(dims, dtype); } } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/BinaryCrossentropy.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/BinaryCrossentropy.java index effdf990f71..c7edfcca24e 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/BinaryCrossentropy.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/BinaryCrossentropy.java @@ -217,8 +217,8 @@ public Operand call( getTF(), "predictions range check [0-1]", predictions, - cast(getTF(), getTF().constant(0), predictions.asOutput().dataType()), - cast(getTF(), getTF().constant(1), predictions.asOutput().dataType())); + cast(getTF(), getTF().constant(0), predictions.type()), + cast(getTF(), getTF().constant(1), predictions.type())); } else { lPredictions = predictions; diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/CategoricalCrossentropy.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/CategoricalCrossentropy.java index 6c03fa81b31..77c6ab2bf87 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/CategoricalCrossentropy.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/CategoricalCrossentropy.java @@ -256,8 +256,8 @@ public Operand call( getTF(), "predictions range check [0-1]", predictions, - cast(getTF(), getTF().constant(0), predictions.asOutput().dataType()), - cast(getTF(), getTF().constant(1), predictions.asOutput().dataType())); + cast(getTF(), getTF().constant(0), predictions.type()), + cast(getTF(), getTF().constant(1), predictions.type())); } else { lPredictions = predictions; diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/Hinge.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/Hinge.java index 1e497783841..88b4a7aa056 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/Hinge.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/Hinge.java @@ -124,16 +124,13 @@ public Hinge(Ops tf, String name, Reduction reduction) { public Operand call( Operand labels, Operand predictions, Operand sampleWeights) { @SuppressWarnings("unchecked") - Operand tLabels = predictions.asOutput().dataType() == labels.asOutput().dataType() ? - (Operand)labels : - cast(tf, labels, predictions.asOutput().dataType()); + Operand tLabels = predictions.type() == labels.type() ? + (Operand)labels : cast(tf, labels, predictions.type()); tLabels = LossesHelper.valueCheck( getTF(), "labels value check [-1, 0, 1]", tLabels, - cast(getTF(), getTF().constant(new int[] { -1, 0, 1}), - predictions.asOutput().dataType())); - + cast(getTF(), getTF().constant(new int[] { -1, 0, 1}), predictions.type())); Operand losses = Losses.hinge(getTF(), tLabels, predictions); return LossesHelper.computeWeightedLoss(getTF(), losses, getReduction(), sampleWeights); } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/Losses.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/Losses.java index db34aa1c6a0..81d9e13c8a9 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/Losses.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/Losses.java @@ -14,7 +14,6 @@ =======================================================================*/ package org.tensorflow.framework.losses; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.framework.losses.impl.LossTuple; import org.tensorflow.framework.losses.impl.LossesHelper; @@ -51,7 +50,7 @@ public class Losses { */ public static Operand meanAbsoluteError( Ops tf, Operand labels, Operand predictions) { - Operand tLabels = cast(tf, labels, predictions.asOutput().dataType()); + Operand tLabels = cast(tf, labels, predictions.type()); LossTuple ops = LossesHelper.squeezeOrExpandDimensions(tf, tLabels, predictions, null); predictions = ops.getTarget(); tLabels = ops.getLabels(); @@ -73,7 +72,7 @@ public static Operand meanAbsoluteErro */ public static Operand meanSquaredError( Ops tf, Operand labels, Operand predictions) { - Operand tLabels = cast(tf, labels, predictions.asOutput().dataType()); + Operand tLabels = cast(tf, labels, predictions.type()); LossTuple ops = LossesHelper.squeezeOrExpandDimensions(tf, tLabels, predictions, null); predictions = ops.getTarget(); tLabels = ops.getLabels(); @@ -94,8 +93,8 @@ public static Operand meanSquaredError */ public static Operand meanAbsolutePercentageError( Ops tf, Operand labels, Operand predictions) { - DataType dataType = predictions.asOutput().dataType(); - Operand tLabels = cast(tf, labels, dataType); + Class predictionType = predictions.type(); + Operand tLabels = cast(tf, labels, predictionType); LossTuple ops = LossesHelper.squeezeOrExpandDimensions(tf, tLabels, predictions, null); predictions = ops.getTarget(); tLabels = ops.getLabels(); @@ -103,8 +102,8 @@ public static Operand meanAbsolutePerc tf.math.abs( tf.math.div( tf.math.sub(tLabels, predictions), - tf.math.maximum(tf.math.abs(tLabels), cast(tf, tf.constant(EPSILON), dataType)))); - return tf.math.mul(cast(tf, tf.constant(100), dataType), tf.math.mean(diff, tf.constant(-1))); + tf.math.maximum(tf.math.abs(tLabels), cast(tf, tf.constant(EPSILON), predictionType)))); + return tf.math.mul(cast(tf, tf.constant(100), predictionType), tf.math.mean(diff, tf.constant(-1))); } /** @@ -121,14 +120,14 @@ public static Operand meanAbsolutePerc */ public static Operand meanSquaredLogarithmicError( Ops tf, Operand labels, Operand predictions) { - DataType dataType = predictions.asOutput().dataType(); - Operand tLabels = cast(tf, labels, dataType); + Class predictionType = predictions.type(); + Operand tLabels = cast(tf, labels, predictionType); LossTuple ops = LossesHelper.squeezeOrExpandDimensions(tf, tLabels, predictions, null); predictions = ops.getTarget(); tLabels = ops.getLabels(); - Operand epsilonConst = cast(tf, tf.constant(EPSILON), dataType); - Operand one = cast(tf, tf.constant(1), dataType); + Operand epsilonConst = cast(tf, tf.constant(EPSILON), predictionType); + Operand one = cast(tf, tf.constant(1), predictionType); Operand firstLog = tf.math.log(tf.math.add(tf.math.maximum(predictions, epsilonConst), one)); Operand secondLog = tf.math.log(tf.math.add(tf.math.maximum(tLabels, epsilonConst), one)); @@ -152,8 +151,7 @@ public static Operand meanSquaredLogar */ public static Operand binaryCrossentropy( Ops tf, Operand labels, Operand predictions, boolean fromLogits, float labelSmoothing) { - DataType dataType = predictions.asOutput().dataType(); - Operand tLabels = cast(tf, labels, dataType); + Operand tLabels = cast(tf, labels, predictions.type()); LossTuple ops = LossesHelper.squeezeOrExpandDimensions(tf, tLabels, predictions, null); predictions = ops.getTarget(); tLabels = ops.getLabels(); @@ -193,9 +191,9 @@ private static Operand binaryCrossentropyHelper( } */ - DataType dataType = output.asOutput().dataType(); - Operand one = cast(tf, tf.constant(1), dataType); - Operand epsilonConst = cast(tf, tf.constant(EPSILON), dataType); + Class outputType = output.type(); + Operand one = cast(tf, tf.constant(1), outputType); + Operand epsilonConst = cast(tf, tf.constant(EPSILON), outputType); Operand oneMinusEpsilonConst = tf.math.sub(one, epsilonConst); output = tf.clipByValue(output, epsilonConst, oneMinusEpsilonConst); @@ -231,8 +229,8 @@ public static Operand categoricalCross boolean fromLogits, float labelSmoothing, int axis) { - DataType dataType = predictions.asOutput().dataType(); - Operand tLabels = cast(tf, labels, dataType); + Class predictionType = predictions.type(); + Operand tLabels = cast(tf, labels, predictionType); LossTuple ops = LossesHelper.squeezeOrExpandDimensions(tf, tLabels, predictions, null); predictions = ops.getTarget(); tLabels = ops.getLabels(); @@ -256,8 +254,8 @@ public static Operand categoricalCross } */ - Operand one = cast(tf, tf.constant(1), dataType); - Operand epsilonConst = cast(tf, tf.constant(EPSILON), dataType); + Operand one = cast(tf, tf.constant(1), predictionType); + Operand epsilonConst = cast(tf, tf.constant(EPSILON), predictionType); Operand oneMinusEpsilonConst = tf.math.sub(one, epsilonConst); predictions = tf.math.div( @@ -284,13 +282,13 @@ public static Operand categoricalCross */ public static Operand categoricalHinge( Ops tf, Operand labels, Operand predictions) { - DataType dataType = predictions.asOutput().dataType(); - Operand tLabels = cast(tf, labels, dataType); + Class predictionType = predictions.type(); + Operand tLabels = cast(tf, labels, predictionType); LossTuple lossTuple = LossesHelper.squeezeOrExpandDimensions(tf, tLabels, predictions, null); predictions = lossTuple.getTarget(); tLabels = lossTuple.getLabels(); - Operand one = cast(tf, tf.constant(1), dataType); - Operand zero = cast(tf, tf.constant(0), dataType); + Operand one = cast(tf, tf.constant(1), predictionType); + Operand zero = cast(tf, tf.constant(0), predictionType); Operand pos = tf.reduceSum( @@ -330,8 +328,7 @@ public static Operand categoricalHinge */ public static Operand cosineSimilarity( Ops tf, Operand labels, Operand predictions, int axis) { - DataType dataType = predictions.asOutput().dataType(); - Operand tLabels = cast(tf, labels, dataType); + Operand tLabels = cast(tf, labels, predictions.type()); LossTuple lossTuple = LossesHelper.squeezeOrExpandDimensions(tf, tLabels, predictions, null); predictions = lossTuple.getTarget(); tLabels = lossTuple.getLabels(); @@ -357,13 +354,13 @@ public static Operand cosineSimilarity */ public static Operand hinge( Ops tf, Operand labels, Operand predictions) { - DataType dataType = predictions.asOutput().dataType(); - Operand tLabels = cast(tf, labels, dataType); + Class predictionType = predictions.type(); + Operand tLabels = cast(tf, labels, predictionType); LossTuple lossTuple = LossesHelper.squeezeOrExpandDimensions(tf, tLabels, predictions, null); predictions = lossTuple.getTarget(); tLabels = lossTuple.getLabels(); - Operand one = cast(tf, tf.constant(1), dataType); - Operand zero = cast(tf, tf.constant(0), dataType); + Operand one = cast(tf, tf.constant(1), predictionType); + Operand zero = cast(tf, tf.constant(0), predictionType); tLabels = maybeConvertLabels(tf, tLabels); @@ -393,15 +390,15 @@ public static Operand hinge( */ public static Operand huber( Ops tf, Operand labels, Operand predictions, float delta) { - DataType dataType = predictions.asOutput().dataType(); - Operand tLabels = cast(tf, labels, dataType); + Class predictionType = predictions.type(); + Operand tLabels = cast(tf, labels, predictionType); LossTuple lossTuple = LossesHelper.squeezeOrExpandDimensions(tf, tLabels, predictions, null); predictions = lossTuple.getTarget(); tLabels = lossTuple.getLabels(); Operand error = tf.math.sub(predictions, tLabels); - Operand deltaConst = cast(tf, tf.constant(delta), dataType); - Operand point5 = cast(tf, tf.constant(0.5), dataType); + Operand deltaConst = cast(tf, tf.constant(delta), predictionType); + Operand point5 = cast(tf, tf.constant(0.5), predictionType); Operand absError = tf.math.abs(error); Operand quadratic = tf.math.minimum(absError, deltaConst); Operand linear = tf.math.sub(absError, quadratic); @@ -424,13 +421,13 @@ public static Operand huber( */ public static Operand kullbackLeiblerDivergence( Ops tf, Operand labels, Operand predictions) { - DataType dataType = predictions.asOutput().dataType(); - Operand tLabels = cast(tf, labels, dataType); + Class predictionType = predictions.type(); + Operand tLabels = cast(tf, labels, predictionType); LossTuple lossTuple = LossesHelper.squeezeOrExpandDimensions(tf, tLabels, predictions, null); predictions = lossTuple.getTarget(); tLabels = lossTuple.getLabels(); - Operand one = cast(tf, tf.constant(1), dataType); - Operand epsilonConst = cast(tf, tf.constant(EPSILON), dataType); + Operand one = cast(tf, tf.constant(1), predictionType); + Operand epsilonConst = cast(tf, tf.constant(EPSILON), predictionType); tLabels = tf.clipByValue(tLabels, epsilonConst, one); predictions = tf.clipByValue(predictions, epsilonConst, one); @@ -454,13 +451,13 @@ public static Operand kullbackLeiblerD */ public static Operand logCosh( Ops tf, Operand labels, Operand predictions) { - DataType dataType = predictions.asOutput().dataType(); - Operand tLabels = cast(tf, labels, dataType); + Class predictionType = predictions.type(); + Operand tLabels = cast(tf, labels, predictionType); LossTuple lossTuple = LossesHelper.squeezeOrExpandDimensions(tf, tLabels, predictions, null); predictions = lossTuple.getTarget(); tLabels = lossTuple.getLabels(); - Operand minusTwo = cast(tf, tf.constant(-2), dataType); - Operand two = cast(tf, tf.constant(2), dataType); + Operand minusTwo = cast(tf, tf.constant(-2), predictionType); + Operand two = cast(tf, tf.constant(2), predictionType); Operand diff = tf.math.sub(predictions, tLabels); Softplus softplus = tf.math.softplus(tf.math.mul(minusTwo, diff)); @@ -482,12 +479,12 @@ public static Operand logCosh( */ public static Operand poisson( Ops tf, Operand labels, Operand predictions) { - DataType dataType = predictions.asOutput().dataType(); - Operand tLabels = cast(tf, labels, dataType); + Class predictionType = predictions.type(); + Operand tLabels = cast(tf, labels, predictionType); LossTuple lossTuple = LossesHelper.squeezeOrExpandDimensions(tf, tLabels, predictions, null); predictions = lossTuple.getTarget(); tLabels = lossTuple.getLabels(); - Operand epsilonConst = cast(tf, tf.constant(EPSILON), dataType); + Operand epsilonConst = cast(tf, tf.constant(EPSILON), predictionType); return tf.math.mean( tf.math.sub( @@ -509,9 +506,9 @@ public static Operand poisson( */ public static Operand sparseCategoricalCrossentropy( Ops tf, Operand labels, Operand predictions, boolean fromLogits, int axis) { - DataType dataType = predictions.asOutput().dataType(); - Operand epsilonConst = cast(tf, tf.constant(EPSILON), dataType); - Operand one = cast(tf, tf.constant(1), dataType); + Class predictionType = predictions.type(); + Operand epsilonConst = cast(tf, tf.constant(EPSILON), predictionType); + Operand one = cast(tf, tf.constant(1), predictionType); Operand oneMinusEpsilonConst = tf.math.sub(one, epsilonConst); /* TODO need ability to walk back inputs @@ -535,7 +532,7 @@ public static Operand sparseCategorica predictions = tf.clipByValue(predictions, epsilonConst, oneMinusEpsilonConst); predictions = tf.math.log(predictions); } - Shape predictionsShape = predictions.asOutput().shape(); + Shape predictionsShape = predictions.shape(); int predictionsRank = predictionsShape.numDimensions(); axis %= predictionsRank; if (axis < 0) { @@ -546,10 +543,10 @@ public static Operand sparseCategorica predictions = tf.linalg.transpose(predictions, tf.constant(axisNew)); } - Operand iLabels = cast(tf, labels, TInt64.DTYPE); + Operand iLabels = cast(tf, labels, TInt64.class); // Try to adjust the shape so that rank of labels = rank of logits - 1. - Shape labelsShape = labels.asOutput().shape(); + Shape labelsShape = labels.shape(); int labelsRank = labelsShape.numDimensions(); boolean updateShape = labelsRank != predictionsRank - 1; @@ -586,13 +583,13 @@ public static Operand sparseCategorica */ public static Operand squaredHinge( Ops tf, Operand labels, Operand predictions) { - DataType dataType = predictions.asOutput().dataType(); - Operand tLabels = cast(tf, labels, dataType); + Class predictionType = predictions.type(); + Operand tLabels = cast(tf, labels, predictionType); LossTuple lossTuple = LossesHelper.squeezeOrExpandDimensions(tf, tLabels, predictions, null); predictions = lossTuple.getTarget(); tLabels = lossTuple.getLabels(); - Operand one = cast(tf, tf.constant(1), dataType); - Operand zero = cast(tf, tf.constant(0), dataType); + Operand one = cast(tf, tf.constant(1), predictionType); + Operand zero = cast(tf, tf.constant(0), predictionType); tLabels = maybeConvertLabels(tf, tLabels); return tf.math.mean( @@ -614,9 +611,9 @@ public static Operand squaredHinge( */ private static Operand smoothBinaryLabels( Ops tf, Operand labels, float labelSmoothing) { - DataType dataType = labels.asOutput().dataType(); - Operand oneMinusSmoothing = cast(tf, tf.constant(1.f - labelSmoothing), dataType); - Operand halfSmoothing = cast(tf, tf.constant(0.5F * labelSmoothing), dataType); + Class labelType = labels.type(); + Operand oneMinusSmoothing = cast(tf, tf.constant(1.f - labelSmoothing), labelType); + Operand halfSmoothing = cast(tf, tf.constant(0.5F * labelSmoothing), labelType); return tf.math.add(tf.math.mul(labels, oneMinusSmoothing), halfSmoothing); } @@ -633,12 +630,12 @@ private static Operand smoothBinaryLabels( */ private static Operand smoothCategoricalLabels( Ops tf, Operand labels, float labelSmoothing) { - DataType dataType = labels.asOutput().dataType(); - Operand smoothing = cast(tf, tf.constant(labelSmoothing), dataType); - Shape labelsShape = labels.asOutput().shape(); + Class labelType = labels.type(); + Operand smoothing = cast(tf, tf.constant(labelSmoothing), labelType); + Shape labelsShape = labels.shape(); int numDims = labelsShape.numDimensions(); - Operand numClasses = cast(tf, tf.constant(labelsShape.size(numDims - 1)), dataType); - Operand oneMinusSmoothing = cast(tf, tf.constant(1.f - labelSmoothing), dataType); + Operand numClasses = cast(tf, tf.constant(labelsShape.size(numDims - 1)), labelType); + Operand oneMinusSmoothing = cast(tf, tf.constant(1.f - labelSmoothing), labelType); return tf.math.add(tf.math.mul(labels, oneMinusSmoothing), tf.math.div(smoothing, numClasses)); } @@ -656,7 +653,7 @@ public static Operand l2Normalize(Ops tf, Operand x, i tf.reduceSum(tf.math.square(x), tf.constant(axis), ReduceSum.keepDims(Boolean.TRUE)); Operand invNorm = tf.math.rsqrt( - tf.math.maximum(squareSum, cast(tf, tf.constant(1e-12F), x.asOutput().dataType()))); + tf.math.maximum(squareSum, cast(tf, tf.constant(1e-12F), x.type()))); return tf.math.mul(x, invNorm); } @@ -669,11 +666,11 @@ public static Operand l2Normalize(Ops tf, Operand x, i * @return the labels, possibly converted into -1/1. */ private static Operand maybeConvertLabels(Ops tf, Operand labels) { - DataType dataType = labels.asOutput().dataType(); + Class labelType = labels.type(); - Operand one = cast(tf, tf.constant(1), dataType); - Operand zero = cast(tf, tf.constant(0), dataType); - Operand two = cast(tf, tf.constant(2), dataType); + Operand one = cast(tf, tf.constant(1), labelType); + Operand zero = cast(tf, tf.constant(0), labelType); + Operand two = cast(tf, tf.constant(2), labelType); Operand areZeros = tf.math.equal(labels, zero); Operand areOnes = tf.math.equal(labels, one); Operand isBinary = diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/SparseCategoricalCrossentropy.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/SparseCategoricalCrossentropy.java index 5586a4da889..ea765e6f8fd 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/SparseCategoricalCrossentropy.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/SparseCategoricalCrossentropy.java @@ -205,8 +205,8 @@ public Operand call( getTF(), "predictions range check [0-1]", predictions, - cast(getTF(), getTF().constant(0), predictions.asOutput().dataType()), - cast(getTF(), getTF().constant(1), predictions.asOutput().dataType())); + cast(getTF(), getTF().constant(0), predictions.type()), + cast(getTF(), getTF().constant(1), predictions.type())); } else { lPredictions = predictions; diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/SquaredHinge.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/SquaredHinge.java index 182ce592e55..4ad4c1c726c 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/SquaredHinge.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/SquaredHinge.java @@ -125,15 +125,13 @@ public SquaredHinge(Ops tf, String name, Reduction reduction) { public Operand call( Operand labels, Operand predictions, Operand sampleWeights) { @SuppressWarnings("unchecked") - Operand tLabels = predictions.asOutput().dataType() == labels.asOutput().dataType() ? - (Operand)labels : - cast(tf, labels, predictions.asOutput().dataType()); + Operand tLabels = predictions.type() == labels.type() ? + (Operand)labels : cast(tf, labels, predictions.type()); tLabels = LossesHelper.valueCheck( getTF(), "labels value check [-1, 0, 1]", tLabels, - cast(getTF(), getTF().constant(new int[] { -1, 0, 1}), - predictions.asOutput().dataType())); + cast(getTF(), getTF().constant(new int[] { -1, 0, 1}), predictions.type())); Operand losses = Losses.squaredHinge(getTF(), tLabels, predictions); return LossesHelper.computeWeightedLoss(getTF(), losses, getReduction(), sampleWeights); } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/impl/LossesHelper.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/impl/LossesHelper.java index 453e3ae7deb..10067db91ba 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/impl/LossesHelper.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/losses/impl/LossesHelper.java @@ -14,7 +14,6 @@ =======================================================================*/ package org.tensorflow.framework.losses.impl; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.framework.losses.Reduction; import org.tensorflow.ndarray.Shape; @@ -88,13 +87,13 @@ public static LossTuple squeezeOrExpandDimensions( public static LossTuple squeezeOrExpandDimensions( Ops tf, Operand labels, Operand predictions, Operand sampleWeights) { - Shape predictionsShape = predictions.asOutput().shape(); + Shape predictionsShape = predictions.shape(); long predictionsRank = predictionsShape.numDimensions(); // Default case when no modifications are made. LossTuple lossTuple = new LossTuple<>(labels, predictions, sampleWeights); if (labels != null) { - Shape labelsShape = labels.asOutput().shape(); + Shape labelsShape = labels.shape(); long labelsRank = labelsShape.numDimensions(); if (labelsRank != Shape.UNKNOWN_SIZE && predictionsRank != Shape.UNKNOWN_SIZE) { // Use static rank for 'label' and 'prediction'. @@ -108,7 +107,7 @@ public static LossTuple squeezeOrExpandDimensions( if (sampleWeights == null) { // nothing more to do. return lossTuple; } - Shape weightsShape = sampleWeights.asOutput().shape(); + Shape weightsShape = sampleWeights.shape(); long weightsRank = weightsShape.numDimensions(); if (weightsRank == 0) { // scalar return new LossTuple<>(lossTuple.getLabels(), lossTuple.getTarget(), sampleWeights); @@ -200,9 +199,9 @@ public static LossTuple removeSqueezableDimensions( Ops tf, Operand labels, Operand predictions, int expectedRankDiff) { tf = tf.withSubScope("removeSqueezableDimensions"); - Shape predictionsShape = predictions.asOutput().shape(); + Shape predictionsShape = predictions.shape(); int predictionsRank = predictionsShape.numDimensions(); - Shape labelsShape = labels.asOutput().shape(); + Shape labelsShape = labels.shape(); int labelsRank = labelsShape.numDimensions(); if (predictionsRank != Shape.UNKNOWN_SIZE || labelsRank != Shape.UNKNOWN_SIZE) { @@ -249,17 +248,17 @@ public static LossTuple removeSqueezableDimensions( */ public static Operand computeWeightedLoss( Ops tf, Operand loss, Reduction reduction, Operand sampleWeight) { - DataType dataType = loss.asOutput().dataType(); + Class inputType = loss.type(); if (sampleWeight == null) { - sampleWeight = cast(tf, tf.constant(1), dataType); + sampleWeight = cast(tf, tf.constant(1), inputType); } LossTuple result = squeezeOrExpandDimensions(tf, null, loss, sampleWeight); loss = result.getTarget(); sampleWeight = result.getSampleWeights(); - Operand weightedLosses = tf.math.mul(loss, cast(tf, sampleWeight, dataType)); + Operand weightedLosses = tf.math.mul(loss, cast(tf, sampleWeight, inputType)); loss = reduceWeightedLoss(tf, weightedLosses, reduction); - return cast(tf, loss, dataType); + return cast(tf, loss, inputType); } /** @@ -280,7 +279,7 @@ private static Operand reduceWeightedLoss( loss = tf.reduceSum(weightedLoss, allAxes(tf, weightedLoss), ReduceSum.keepDims(Boolean.FALSE)); if (reduction == Reduction.AUTO || reduction == Reduction.SUM_OVER_BATCH_SIZE) { - loss = safeMean(tf, loss, weightedLoss.asOutput().shape().size()); + loss = safeMean(tf, loss, weightedLoss.shape().size()); } } return loss; @@ -300,7 +299,7 @@ public static Operand safeMean( Ops tf, Operand losses, long numElements) { Operand totalLoss = tf.reduceSum(losses, allAxes(tf, losses)); return tf.math.divNoNan( - totalLoss, cast(tf, tf.constant(numElements), losses.asOutput().dataType())); + totalLoss, cast(tf, tf.constant(numElements), losses.type())); } /** @@ -312,7 +311,7 @@ public static Operand safeMean( * @return a Constant that represents all the axes of the operand. */ public static Operand allAxes(Ops tf, Operand op) { - int rank = op.asOutput().shape().numDimensions(); + int rank = op.shape().numDimensions(); if (rank != Shape.UNKNOWN_SIZE) { int[] axes = new int[rank]; for (int i = 0; i < rank; i++) { @@ -361,7 +360,7 @@ public static Operand rangeCheck( tf.withSubScope("rangeCheck") .withControlDependencies(Collections.singletonList(assertThat)); return ltf.identity(values); - } else if (!cond.asOutput().data().getBoolean()) + } else if (!cond.asTensor().getBoolean()) throw new IllegalArgumentException(String.format("%s : values out of range", prefix)); else return values; } @@ -385,9 +384,9 @@ public static Operand rangeCheck( public static Operand valueCheck( Ops tf, String prefix, Operand values, Operand allowedValues) { Operand flatValues = - tf.reshape(values, tf.constant(Shape.of(values.asOutput().shape().size()))); - SetDiff1d diff = tf.setDiff1d(flatValues, allowedValues, TInt32.DTYPE); - long diffSize = diff.out().asOutput().shape().size(); + tf.reshape(values, tf.constant(Shape.of(values.shape().size()))); + SetDiff1d diff = tf.setDiff1d(flatValues, allowedValues, TInt32.class); + long diffSize = diff.out().shape().size(); if (diffSize != Shape.UNKNOWN_SIZE) { if (diffSize != 0) { // at least 1 value in the diff did not match the allowed values. @@ -409,7 +408,7 @@ public static Operand valueCheck( tf.withSubScope("valueCheck") .withControlDependencies(Collections.singletonList(assertThat)); return ltf.identity(values); - } else if (!cond.asOutput().data().getBoolean()) + } else if (!cond.asTensor().getBoolean()) throw new IllegalArgumentException(String.format("%s : values not in value set", prefix)); else return values; } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/AdaDelta.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/AdaDelta.java index 0adf5f58910..822eb490f22 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/AdaDelta.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/AdaDelta.java @@ -141,10 +141,10 @@ protected void createSlots(List> variables) { */ private void createAdaDeltaSlot(Output v) { Operand accumulatorInitializer = - tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.dataType())); + tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.type())); createSlot(v.asOutput(), ACCUMULATOR, accumulatorInitializer); Operand updateInitializer = - tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.dataType())); + tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.type())); createSlot(v.asOutput(), ACCUMULATOR_UPDATE, updateInitializer); } @@ -157,9 +157,9 @@ protected Op applyDense(Output gradient, Output variable variable, accumSlot, accumUpdateSlot, - tf.dtypes.cast(tf.constant(learningRate), gradient.dataType()), - tf.dtypes.cast(tf.constant(rho), gradient.dataType()), - tf.dtypes.cast(tf.constant(epsilon), gradient.dataType()), + tf.dtypes.cast(tf.constant(learningRate), gradient.type()), + tf.dtypes.cast(tf.constant(rho), gradient.type()), + tf.dtypes.cast(tf.constant(epsilon), gradient.type()), gradient); } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/AdaGrad.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/AdaGrad.java index 1a7f4675662..08f5f18a9cd 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/AdaGrad.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/AdaGrad.java @@ -131,7 +131,7 @@ protected void createSlots(List> variables) { */ private void createAdaGradSlot(Output v) { Operand initializer = - tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(initialAccumulatorValue), v.dataType())); + tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(initialAccumulatorValue), v.type())); createSlot(v.asOutput(), ACCUMULATOR, initializer); } @@ -140,7 +140,7 @@ private void createAdaGradSlot(Output v) { protected Op applyDense(Output gradient, Output variable) { Variable slot = getSlot(variable, ACCUMULATOR).get(); return tf.train.applyAdagrad( - variable, slot, tf.dtypes.cast(tf.constant(learningRate), gradient.dataType()), gradient); + variable, slot, tf.dtypes.cast(tf.constant(learningRate), gradient.type()), gradient); } /** {@inheritDoc} */ diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/AdaGradDA.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/AdaGradDA.java index f76217fda85..df624e41c4e 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/AdaGradDA.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/AdaGradDA.java @@ -187,7 +187,7 @@ protected void createSlots(List> variables) { for (Output v : variables) { createAdaGradDASlot(v); } - globalStep = tf.withName("adagrad-da-global-step").variable(Shape.scalar(), TInt64.DTYPE); + globalStep = tf.withName("adagrad-da-global-step").variable(Shape.scalar(), TInt64.class); Assign globalStepInitializer = tf.assign(globalStep, tf.constant(0L)); graph.addInitializer(globalStepInitializer); } @@ -199,10 +199,10 @@ protected void createSlots(List> variables) { * @param the datatype of the variable. */ private void createAdaGradDASlot(Output v) { - Operand initializer = tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.dataType())); + Operand initializer = tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.type())); createSlot(v.asOutput(), ACCUMULATOR, initializer); Operand sqInitializer = - tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(initialAccumulatorValue), v.dataType())); + tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(initialAccumulatorValue), v.type())); createSlot(v.asOutput(), SQUARED_ACCUMULATOR, sqInitializer); } @@ -216,9 +216,9 @@ protected Op applyDense(Output gradient, Output variable gradSlot, gradSquaredSlot, gradient, - tf.dtypes.cast(tf.constant(learningRate), gradient.dataType()), - tf.dtypes.cast(tf.constant(l1Strength), gradient.dataType()), - tf.dtypes.cast(tf.constant(l2Strength), gradient.dataType()), + tf.dtypes.cast(tf.constant(learningRate), gradient.type()), + tf.dtypes.cast(tf.constant(l1Strength), gradient.type()), + tf.dtypes.cast(tf.constant(l2Strength), gradient.type()), globalStep); } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/Adam.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/Adam.java index 8f620678781..72598d12543 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/Adam.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/Adam.java @@ -189,10 +189,10 @@ protected void createSlots(List> variables) { for (Output v : variables) { createAdamSlot(v.asOutput()); } - betaOnePower = tf.withName("beta1_power").variable(Shape.scalar(), TFloat32.DTYPE); + betaOnePower = tf.withName("beta1_power").variable(Shape.scalar(), TFloat32.class); Assign betaOnePowerInit = tf.assign(betaOnePower, tf.constant(betaOne)); graph.addInitializer(betaOnePowerInit); - betaTwoPower = tf.withName("beta2_power").variable(Shape.scalar(), TFloat32.DTYPE); + betaTwoPower = tf.withName("beta2_power").variable(Shape.scalar(), TFloat32.class); Assign betaTwoPowerInit = tf.assign(betaTwoPower, tf.constant(betaTwo)); graph.addInitializer(betaTwoPowerInit); } @@ -215,10 +215,10 @@ protected Optional prepare(String scopeName) { */ private void createAdamSlot(Output v) { Operand firstMomentInitializer = - tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.dataType())); + tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.type())); createSlot(v.asOutput(), FIRST_MOMENT, firstMomentInitializer); Operand secondMomentInitializer = - tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.dataType())); + tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.type())); createSlot(v.asOutput(), SECOND_MOMENT, secondMomentInitializer); } @@ -231,12 +231,12 @@ protected Op applyDense(Output gradient, Output variable variable, firstMomentSlot, secondMomentSlot, - tf.dtypes.cast(betaOnePower, gradient.dataType()), - tf.dtypes.cast(betaTwoPower, gradient.dataType()), - tf.dtypes.cast(learningRateConst, gradient.dataType()), - tf.dtypes.cast(betaOneConst, gradient.dataType()), - tf.dtypes.cast(betaTwoConst, gradient.dataType()), - tf.dtypes.cast(epsilonConst, gradient.dataType()), + tf.dtypes.cast(betaOnePower, gradient.type()), + tf.dtypes.cast(betaTwoPower, gradient.type()), + tf.dtypes.cast(learningRateConst, gradient.type()), + tf.dtypes.cast(betaOneConst, gradient.type()), + tf.dtypes.cast(betaTwoConst, gradient.type()), + tf.dtypes.cast(epsilonConst, gradient.type()), gradient); } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/Adamax.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/Adamax.java index 335d83cedfa..cd95bb3bd07 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/Adamax.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/Adamax.java @@ -137,7 +137,7 @@ protected void createSlots(List> variables) { for (Output v : variables) { createAdamaxSlot(v.asOutput()); } - betaOnePower = tf.withName("beta1_power").variable(Shape.scalar(), TFloat32.DTYPE); + betaOnePower = tf.withName("beta1_power").variable(Shape.scalar(), TFloat32.class); Assign betaOnePowerInit = tf.assign(betaOnePower, tf.constant(betaOne)); ((Graph) tf.scope().env()).addInitializer(betaOnePowerInit); } @@ -150,10 +150,10 @@ protected void createSlots(List> variables) { */ private void createAdamaxSlot(Output v) { Operand firstMomentInitializer = - tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.dataType())); + tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.type())); createSlot(v.asOutput(), FIRST_MOMENT, firstMomentInitializer); Operand secondMomentInitializer = - tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.dataType())); + tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.type())); createSlot(v.asOutput(), SECOND_MOMENT, secondMomentInitializer); } @@ -167,11 +167,11 @@ protected Op applyDense(Output gradient, Output variable variable, firstMomentSlot, secondMomentSlot, - tf.dtypes.cast(betaOnePower, gradient.dataType()), - tf.dtypes.cast(learningRateConst, gradient.dataType()), - tf.dtypes.cast(betaOneConst, gradient.dataType()), - tf.dtypes.cast(betaTwoConst, gradient.dataType()), - tf.dtypes.cast(epsilonConst, gradient.dataType()), + tf.dtypes.cast(betaOnePower, gradient.type()), + tf.dtypes.cast(learningRateConst, gradient.type()), + tf.dtypes.cast(betaOneConst, gradient.type()), + tf.dtypes.cast(betaTwoConst, gradient.type()), + tf.dtypes.cast(epsilonConst, gradient.type()), gradient); } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/Ftrl.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/Ftrl.java index 04c34a2535e..66314d2ffe0 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/Ftrl.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/Ftrl.java @@ -230,10 +230,10 @@ protected void createSlots(List> variables) { */ private void createFtrlSlot(Output v) { Operand initializer = - tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(initialAccumulatorValue), v.dataType())); + tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(initialAccumulatorValue), v.type())); createSlot(v.asOutput(), ACCUMULATOR, initializer); Operand linearInitializer = - tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.dataType())); + tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.type())); createSlot(v.asOutput(), LINEAR_ACCUMULATOR, linearInitializer); } @@ -248,12 +248,12 @@ protected Op applyDense(Output gradient, Output variable accumSlot, // accum linearSlot, // linear gradient, // gradient - tf.dtypes.cast(tf.constant(learningRate), gradient.dataType()), // lr - tf.dtypes.cast(tf.constant(l1RegularizationStrength), gradient.dataType()), // l1 - tf.dtypes.cast(tf.constant(l2RegularizationStrength), gradient.dataType()), // l2 + tf.dtypes.cast(tf.constant(learningRate), gradient.type()), // lr + tf.dtypes.cast(tf.constant(l1RegularizationStrength), gradient.type()), // l1 + tf.dtypes.cast(tf.constant(l2RegularizationStrength), gradient.type()), // l2 tf.dtypes.cast( - tf.constant(l2ShrinkageRegularizationStrength), gradient.dataType()), // l2Shrinkage - tf.dtypes.cast(tf.constant(learningRatePower), gradient.dataType()), // lrPower + tf.constant(l2ShrinkageRegularizationStrength), gradient.type()), // l2Shrinkage + tf.dtypes.cast(tf.constant(learningRatePower), gradient.type()), // lrPower options); } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/GradientDescent.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/GradientDescent.java index e307855e636..a373b2e5b55 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/GradientDescent.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/GradientDescent.java @@ -66,7 +66,7 @@ public GradientDescent(Graph graph, String name, float learningRate) { @Override protected Op applyDense(Output gradient, Output variable) { return tf.train.applyGradientDescent( - variable, tf.dtypes.cast(tf.constant(learningRate), gradient.dataType()), gradient); + variable, tf.dtypes.cast(tf.constant(learningRate), gradient.type()), gradient); } /** {@inheritDoc} */ diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/Momentum.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/Momentum.java index 111727d26fa..f6640409d60 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/Momentum.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/Momentum.java @@ -125,7 +125,7 @@ protected void createSlots(List> variables) { * @param the data type of the variable */ private void createMomentumSlot(Output v) { - Operand initializer = tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.dataType())); + Operand initializer = tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.type())); createSlot(v.asOutput(), MOMENTUM, initializer); } @@ -136,9 +136,9 @@ protected Op applyDense(Output gradient, Output variable return tf.train.applyMomentum( variable, slot, - tf.dtypes.cast(tf.constant(learningRate), gradient.dataType()), + tf.dtypes.cast(tf.constant(learningRate), gradient.type()), gradient, - tf.dtypes.cast(tf.constant(momentum), gradient.dataType()), + tf.dtypes.cast(tf.constant(momentum), gradient.type()), ApplyMomentum.useNesterov(useNesterov)); } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/Nadam.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/Nadam.java index 48e5135c952..f9900a8ee78 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/Nadam.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/Nadam.java @@ -1,6 +1,5 @@ package org.tensorflow.framework.optimizers; -import org.tensorflow.DataType; import org.tensorflow.Graph; import org.tensorflow.Operand; import org.tensorflow.Output; @@ -142,15 +141,15 @@ protected void createSlots(List> variables) { for (Output v : variables) { createNadamSlot(v.asOutput()); } - betaOnePower = tf.withName("beta1_power").variable(Shape.scalar(), TFloat32.DTYPE); + betaOnePower = tf.withName("beta1_power").variable(Shape.scalar(), TFloat32.class); Assign betaOnePowerInit = tf.assign(betaOnePower, tf.constant(betaOne)); ((Graph) tf.scope().env()).addInitializer(betaOnePowerInit); - betaTwoPower = tf.withName("beta2_power").variable(Shape.scalar(), TFloat32.DTYPE); + betaTwoPower = tf.withName("beta2_power").variable(Shape.scalar(), TFloat32.class); Assign betaTwoPowerInit = tf.assign(betaTwoPower, tf.constant(betaTwo)); ((Graph) tf.scope().env()).addInitializer(betaTwoPowerInit); - momentum = tf.withName("momentum").variable(Shape.scalar(), TFloat32.DTYPE); + momentum = tf.withName("momentum").variable(Shape.scalar(), TFloat32.class); Assign momentumInit = tf.assign(momentum, tf.constant(1.0F)); ((Graph) tf.scope().env()).addInitializer(momentumInit); } @@ -163,14 +162,14 @@ protected void createSlots(List> variables) { */ private void createNadamSlot(Output v) { Operand firstMomentInitializer = - tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.dataType())); + tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.type())); createSlot(v.asOutput(), FIRST_MOMENT, firstMomentInitializer); Operand secondMomentInitializer = - tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.dataType())); + tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.type())); createSlot(v.asOutput(), SECOND_MOMENT, secondMomentInitializer); Operand momentumInitializer = - tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(1.0f), v.dataType())); + tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(1.0f), v.type())); createSlot(v.asOutput(), MOMENTUM, momentumInitializer); } @@ -198,7 +197,7 @@ protected Optional prepare(String scopeName) { point5, tf.math.pow( decayBaseConst, - tf.math.mul(decayConst, tf.dtypes.cast(localStepConst, TFloat32.DTYPE)))))); + tf.math.mul(decayConst, tf.dtypes.cast(localStepConst, TFloat32.class)))))); mT1 = tf.math.mul( @@ -209,7 +208,7 @@ protected Optional prepare(String scopeName) { point5, tf.math.pow( decayBaseConst, - tf.math.mul(decayConst, tf.dtypes.cast(nextStepConst, TFloat32.DTYPE)))))); + tf.math.mul(decayConst, tf.dtypes.cast(nextStepConst, TFloat32.class)))))); Operand mScheduleNew = tf.math.mul(momentum, mT); @@ -222,57 +221,57 @@ protected Optional prepare(String scopeName) { oneMinusMScheduleNew = tf.math.sub(one, mScheduleNew); oneMinusMScheduleNext = tf.math.sub(one, mScheduleNext); vTPrimeDenominator = - tf.math.sub(one, tf.math.pow(betaTwoConst, tf.dtypes.cast(localStepConst, TFloat32.DTYPE))); + tf.math.sub(one, tf.math.pow(betaTwoConst, tf.dtypes.cast(localStepConst, TFloat32.class))); return Optional.empty(); } /** {@inheritDoc} */ @Override protected Op applyDense(Output gradient, Output variable) { - DataType dType = gradient.dataType(); + Class type = gradient.type(); Variable m = getSlot(variable, FIRST_MOMENT).get(); // first Moment Variable v = getSlot(variable, SECOND_MOMENT).get(); // Second Moment // gPrime = grad / coefficients['oneMinusMScheduleNew'] - Operand gPrime = tf.math.div(gradient, tf.dtypes.cast(oneMinusMScheduleNew, dType)); + Operand gPrime = tf.math.div(gradient, tf.dtypes.cast(oneMinusMScheduleNew, type)); // mT = (coefficients['beta_1_t'] * m + coefficients['one_minus_beta_1_t'] * grad) Operand mT = tf.math.add( - tf.math.mul(tf.dtypes.cast(betaOneConst, dType), m), - tf.math.mul(tf.dtypes.cast(oneMinusBeta1, dType), gradient)); + tf.math.mul(tf.dtypes.cast(betaOneConst, type), m), + tf.math.mul(tf.dtypes.cast(oneMinusBeta1, type), gradient)); // mT = state_ops.assign(m, mT, use_locking=self._use_locking) // update m mT = tf.assign(m, mT, Assign.useLocking(true)); // mTPrime = mT / coefficients['oneMinusMScheduleNext'] - Operand mTPrime = tf.math.div(mT, tf.dtypes.cast(oneMinusMScheduleNext, dType)); + Operand mTPrime = tf.math.div(mT, tf.dtypes.cast(oneMinusMScheduleNext, type)); // vT = (coefficients['beta_2_t'] * v + coefficients['one_minus_beta_2_t'] * // math_ops.square(grad)) Operand vT = tf.math.add( - tf.math.mul(tf.dtypes.cast(betaTwoConst, dType), v), - tf.math.mul(tf.dtypes.cast(oneMinusBeta2, dType), tf.math.square(gradient))); + tf.math.mul(tf.dtypes.cast(betaTwoConst, type), v), + tf.math.mul(tf.dtypes.cast(oneMinusBeta2, type), tf.math.square(gradient))); // vT = state_ops.assign(v, vT, use_locking=self._use_locking) // update v vT = tf.assign(v, vT, Assign.useLocking(true)); // vTPrime = vT / coefficients['vTPrimeDenominator'] - Operand vTPrime = tf.math.div(vT, tf.dtypes.cast(vTPrimeDenominator, dType)); + Operand vTPrime = tf.math.div(vT, tf.dtypes.cast(vTPrimeDenominator, type)); // m_t_bar = (coefficients['oneMinusMT'] * gPrime + coefficients['mT1'] * mTPrime) Operand m_t_bar = tf.math.add( - tf.math.mul(tf.dtypes.cast(oneMinusMT, dType), gPrime), - tf.math.mul(tf.dtypes.cast(mT1, dType), mTPrime)); + tf.math.mul(tf.dtypes.cast(oneMinusMT, type), gPrime), + tf.math.mul(tf.dtypes.cast(mT1, type), mTPrime)); // varT = var - coefficients['lr_t'] * m_t_bar / (math_ops.sqrt(vTPrime) + // coefficients['epsilon']) Operand varT = tf.math.sub( variable, tf.math.div( - tf.math.mul(tf.dtypes.cast(learningRateConst, dType), m_t_bar), - tf.math.add(tf.math.sqrt(vTPrime), tf.dtypes.cast(epsilonConst, dType)))); + tf.math.mul(tf.dtypes.cast(learningRateConst, type), m_t_bar), + tf.math.add(tf.math.sqrt(vTPrime), tf.dtypes.cast(epsilonConst, type)))); return tf.assign(variable, varT, Assign.useLocking(true)); } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/Optimizer.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/Optimizer.java index 70f065814f7..fdf56da4a67 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/Optimizer.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/Optimizer.java @@ -220,7 +220,7 @@ private Optional> getSlot(String varName, String s protected void createSlot( Output variable, String slotName, Operand initializer) { Variable slot = - tf.withName(createName(variable, slotName)).variable(variable.shape(), variable.dataType()); + tf.withName(createName(variable, slotName)).variable(variable.shape(), variable.type()); Assign slotInit = tf.assign(slot, initializer); graph.addInitializer(slotInit); String varName = variable.op().name(); diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/RMSProp.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/RMSProp.java index 9a48a9b8a7a..b3729dc367f 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/RMSProp.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/optimizers/RMSProp.java @@ -175,14 +175,14 @@ protected void createSlots(List> variables) { */ private void createRMSPropSlot(Output v) { Operand rmsInitializer = - tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(1.0f), v.dataType())); + tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(1.0f), v.type())); createSlot(v.asOutput(), RMS, rmsInitializer); Operand momentumInitializer = - tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.dataType())); + tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.type())); createSlot(v.asOutput(), MOMENTUM, momentumInitializer); if (centered) { Operand mgInitializer = - tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.dataType())); + tf.fill(tf.shape(v), tf.dtypes.cast(tf.constant(0.0f), v.type())); createSlot(v.asOutput(), MG, mgInitializer); } } @@ -199,20 +199,20 @@ protected Op applyDense(Output gradient, Output variable mgSlot, rmsSlot, momentumSlot, - tf.dtypes.cast(tf.constant(learningRate), gradient.dataType()), - tf.dtypes.cast(tf.constant(decay), gradient.dataType()), - tf.dtypes.cast(tf.constant(momentum), gradient.dataType()), - tf.dtypes.cast(tf.constant(epsilon), gradient.dataType()), + tf.dtypes.cast(tf.constant(learningRate), gradient.type()), + tf.dtypes.cast(tf.constant(decay), gradient.type()), + tf.dtypes.cast(tf.constant(momentum), gradient.type()), + tf.dtypes.cast(tf.constant(epsilon), gradient.type()), gradient); } return tf.train.applyRmsProp( variable, rmsSlot, momentumSlot, - tf.dtypes.cast(tf.constant(learningRate), gradient.dataType()), - tf.dtypes.cast(tf.constant(decay), gradient.dataType()), - tf.dtypes.cast(tf.constant(momentum), gradient.dataType()), - tf.dtypes.cast(tf.constant(epsilon), gradient.dataType()), + tf.dtypes.cast(tf.constant(learningRate), gradient.type()), + tf.dtypes.cast(tf.constant(decay), gradient.type()), + tf.dtypes.cast(tf.constant(momentum), gradient.type()), + tf.dtypes.cast(tf.constant(epsilon), gradient.type()), gradient); } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/utils/CastHelper.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/utils/CastHelper.java index aec75e6078a..b0fe48967dd 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/utils/CastHelper.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/utils/CastHelper.java @@ -15,7 +15,6 @@ */ package org.tensorflow.framework.utils; -import org.tensorflow.DataType; import org.tensorflow.Operand; import org.tensorflow.op.Ops; import org.tensorflow.types.family.TType; @@ -35,8 +34,8 @@ public class CastHelper { */ @SuppressWarnings("unchecked") public static Operand cast( - Ops tf, Operand value, DataType requiredType) { - return (value.asOutput().dataType() == requiredType) + Ops tf, Operand value, Class requiredType) { + return (value.type() == requiredType) ? (Operand) value : tf.dtypes.cast(value, requiredType); } diff --git a/tensorflow-framework/src/main/java/org/tensorflow/framework/utils/ShapeUtils.java b/tensorflow-framework/src/main/java/org/tensorflow/framework/utils/ShapeUtils.java index 122de9f21ae..4ca2c789f28 100644 --- a/tensorflow-framework/src/main/java/org/tensorflow/framework/utils/ShapeUtils.java +++ b/tensorflow-framework/src/main/java/org/tensorflow/framework/utils/ShapeUtils.java @@ -21,7 +21,7 @@ import org.tensorflow.types.TInt32; import org.tensorflow.types.TInt64; import org.tensorflow.types.TUint8; -import org.tensorflow.types.family.TNumber; +import org.tensorflow.types.family.TIntegral; import java.util.ArrayList; import java.util.Arrays; @@ -36,7 +36,7 @@ public class ShapeUtils { * @param dims the Operand containing the shape values * @return a new Shape based on an Operand that contains dimensions */ - public static Shape toShape(Scope scope, Operand dims) { + public static Shape toShape(Scope scope, Operand dims) { long[] longDims = getLongArray(scope, dims); return Shape.of(longDims); } @@ -62,65 +62,35 @@ public static int[] getIntArray(Scope scope, Operand dims) { * @return the long array * @throws java.lang.IllegalArgumentException if the dims type is not an integer */ - public static long[] getLongArray(Scope scope, Operand dims) { - DataType dType = dims.asOutput().dataType(); - if (!dType.isInteger()) { - throw new IllegalArgumentException("the data type must be an integer type"); - } - List result = new ArrayList<>(); - + public static long[] getLongArray(Scope scope, Operand dims) { if (scope.env().isEager()) { - if (dType.equals(TInt32.DTYPE)) { - @SuppressWarnings("unchecked") - Operand idims = (Operand) dims; - - idims.asOutput().data().scalars().forEach(s -> result.add((long) s.getInt())); - } else if (dType.equals(TInt64.DTYPE)) { - @SuppressWarnings("unchecked") - Operand ldims = (Operand) dims; - ldims.asOutput().data().scalars().forEach(s -> result.add(s.getLong())); - } else if (dType.equals(TUint8.DTYPE)) { - @SuppressWarnings("unchecked") - Operand udims = (Operand) dims; - udims.asOutput().data().scalars().forEach(s -> result.add(s.getObject().longValue())); - } else { // shouldn't happen - throw new IllegalArgumentException("the data type must be an integer type"); - } - - } else { - try (Session session = new Session((Graph) scope.env())) { - if (dType.equals(TInt32.DTYPE)) { - try (Tensor tensorResult = - session.runner().fetch(dims).run().get(0).expect(TInt32.DTYPE)) { - tensorResult.data().scalars().forEach(s -> result.add((long) s.getInt())); - } - } else if (dType.equals(TInt64.DTYPE)) { - try (Tensor tensorResult = - session.runner().fetch(dims).run().get(0).expect(TInt64.DTYPE)) { - tensorResult.data().scalars().forEach(s -> result.add(s.getLong())); - } - } else if (dType.equals(TUint8.DTYPE)) { - try (Tensor tensorResult = - session.runner().fetch(dims).run().get(0).expect(TUint8.DTYPE)) { - tensorResult.data().scalars().forEach(s -> result.add(s.getObject().longValue())); - } - } else { // shouldn't happen - throw new IllegalArgumentException("the data type must be an integer type"); - } - } + return getLongArray(dims.asTensor()); + } + try (Session session = new Session((Graph)scope.env()); + TIntegral tensor = (TIntegral)session.runner().fetch(dims).run().get(0)) { + return getLongArray(tensor); } - return result.stream().mapToLong(i -> i).toArray(); } /** - * Gets the shape for the data within a Tensor + * Converts a TInt32 or TInt64 to a java long array * - * @param tensor the tensor - * @return the Shape of the tensor's data; + * @param dims the dimension tensor + * @return the long array + * @throws java.lang.IllegalArgumentException if the dims type is not an integer */ - public static Shape getShape(Tensor tensor) { - NdArray data = (NdArray) tensor.data(); - return data.shape(); + public static long[] getLongArray(T dims) { + List result = new ArrayList<>(); + if (dims instanceof TInt32) { + ((TInt32)dims).scalars().forEach(s -> result.add((long) s.getInt())); + } else if (dims instanceof TInt64) { + ((TInt64)dims).scalars().forEach(s -> result.add(s.getLong())); + } else if (dims instanceof TUint8) { + ((TUint8)dims).scalars().forEach(s -> result.add(s.getObject().longValue())); + } else { // shouldn't happen + throw new IllegalArgumentException("the data type must be an integer type"); + } + return result.stream().mapToLong(i -> i).toArray(); } /** diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/ELUTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/ELUTest.java index e608224a50d..914b94dfada 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/ELUTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/ELUTest.java @@ -20,7 +20,6 @@ import org.tensorflow.op.Ops; import org.tensorflow.types.TFloat32; import org.tensorflow.types.TFloat64; -import org.tensorflow.types.TInt32; import static org.junit.jupiter.api.Assertions.assertThrows; diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/ExponentialTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/ExponentialTest.java index a0fd1f60b47..1157c582168 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/ExponentialTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/ExponentialTest.java @@ -20,7 +20,6 @@ import org.tensorflow.op.Ops; import org.tensorflow.types.TFloat32; import org.tensorflow.types.TFloat64; -import org.tensorflow.types.TInt32; import static org.junit.jupiter.api.Assertions.assertThrows; diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/HardSigmoidTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/HardSigmoidTest.java index b1eaab8de22..35f57c47f66 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/HardSigmoidTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/HardSigmoidTest.java @@ -20,7 +20,6 @@ import org.tensorflow.op.Ops; import org.tensorflow.types.TFloat32; import org.tensorflow.types.TFloat64; -import org.tensorflow.types.TInt32; import static org.junit.jupiter.api.Assertions.assertThrows; diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/ReLUTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/ReLUTest.java index f54401515ab..a0aa2c4b453 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/ReLUTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/ReLUTest.java @@ -90,8 +90,8 @@ public void testCallFloat16() { Ops tf = session.getTF(); ReLU instance = new ReLU<>(tf); Operand result = - instance.call(tf.dtypes.cast(tf.constant(input), TFloat16.DTYPE)); - session.evaluate(tf.dtypes.cast(tf.constant(expected), TFloat16.DTYPE), result); + instance.call(tf.dtypes.cast(tf.constant(input), TFloat16.class)); + session.evaluate(tf.dtypes.cast(tf.constant(expected), TFloat16.class), result); } } diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/SELUTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/SELUTest.java index caba5c43ba8..8bad6f1f066 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/SELUTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/SELUTest.java @@ -20,7 +20,6 @@ import org.tensorflow.op.Ops; import org.tensorflow.types.TFloat32; import org.tensorflow.types.TFloat64; -import org.tensorflow.types.TInt32; import static org.junit.jupiter.api.Assertions.assertThrows; diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/SigmoidTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/SigmoidTest.java index ffb16cf077a..9dca622c3ec 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/SigmoidTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/SigmoidTest.java @@ -20,7 +20,6 @@ import org.tensorflow.op.Ops; import org.tensorflow.types.TFloat32; import org.tensorflow.types.TFloat64; -import org.tensorflow.types.TInt32; import static org.junit.jupiter.api.Assertions.assertThrows; diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/SoftmaxTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/SoftmaxTest.java index a3ff89cc407..05ec3a4f716 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/SoftmaxTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/SoftmaxTest.java @@ -18,11 +18,8 @@ import org.tensorflow.Operand; import org.tensorflow.framework.utils.TestSession; import org.tensorflow.op.Ops; -import org.tensorflow.op.core.ReduceMax; -import org.tensorflow.op.core.ReduceSum; import org.tensorflow.types.TFloat32; import org.tensorflow.types.TFloat64; -import org.tensorflow.types.TInt32; import static org.junit.jupiter.api.Assertions.assertThrows; diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/SwishTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/SwishTest.java index 5739bccd3d5..7576789320b 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/SwishTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/activations/SwishTest.java @@ -20,7 +20,6 @@ import org.tensorflow.op.Ops; import org.tensorflow.types.TFloat32; import org.tensorflow.types.TFloat64; -import org.tensorflow.types.TInt32; import static org.junit.jupiter.api.Assertions.assertThrows; diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/data/BatchDatasetTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/data/BatchDatasetTest.java index 6a54cb08de6..2d282e5dcf7 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/data/BatchDatasetTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/data/BatchDatasetTest.java @@ -17,7 +17,6 @@ import org.junit.jupiter.api.Test; import org.tensorflow.Operand; -import org.tensorflow.Tensor; import org.tensorflow.op.Ops; import org.tensorflow.types.TInt32; @@ -40,18 +39,16 @@ public void testEagerBatchDataset() { Arrays.asList( tf.constant(testMatrix1), tf.constant(testMatrix2)), - Arrays.asList(TInt32.DTYPE, TInt32.DTYPE)) + Arrays.asList(TInt32.class, TInt32.class)) .batch(2); int count = 0; for (List> components : dataset) { - try (Tensor batch1 = - components.get(0).asTensor().expect(TInt32.DTYPE); - Tensor batch2 = - components.get(1).asTensor().expect(TInt32.DTYPE);) { - - assertEquals(testMatrix1.slice(range(count, count + 2)), batch1.data()); - assertEquals(testMatrix2.slice(range(count, count + 2)), batch2.data()); + try (TInt32 batch1 = + (TInt32)components.get(0).asTensor(); + TInt32 batch2 = (TInt32)components.get(1).asTensor()) { + assertEquals(testMatrix1.slice(range(count, count + 2)), batch1); + assertEquals(testMatrix2.slice(range(count, count + 2)), batch2); count += 2; } @@ -66,19 +63,17 @@ public void testDropLastBatch() { Arrays.asList( tf.constant(testMatrix1), tf.constant(testMatrix2)), - Arrays.asList(TInt32.DTYPE, TInt32.DTYPE)) + Arrays.asList(TInt32.class, TInt32.class)) .batch(3, true); int count = 0; for (List> components : dataset) { - try (Tensor batch1 = - components.get(0).asTensor().expect(TInt32.DTYPE); - Tensor batch2 = - components.get(1).asTensor().expect(TInt32.DTYPE);) { - - assertEquals(testMatrix1.slice(range(count, count + 3)), batch1.data()); - assertEquals(testMatrix2.slice(range(count, count + 3)), batch2.data()); + try (TInt32 batch1 = + (TInt32)components.get(0).asTensor(); + TInt32 batch2 = (TInt32)components.get(1).asTensor()) { + assertEquals(testMatrix1.slice(range(count, count + 3)), batch1); + assertEquals(testMatrix2.slice(range(count, count + 3)), batch2); count += 3; } @@ -93,28 +88,28 @@ public void testKeepLastBatch() { Arrays.asList( tf.constant(testMatrix1), tf.constant(testMatrix2)), - Arrays.asList(TInt32.DTYPE, TInt32.DTYPE)) + Arrays.asList(TInt32.class, TInt32.class)) .batch(3, false); int count = 0; boolean foundLastBatch = false; for (List> components : dataset) { - try (Tensor batch1 = - components.get(0).asTensor().expect(TInt32.DTYPE); - Tensor batch2 = - components.get(1).asTensor().expect(TInt32.DTYPE);) { + try (TInt32 batch1 = + (TInt32)components.get(0).asTensor(); + TInt32 batch2 = + (TInt32)components.get(1).asTensor();) { if (count == 0) { assertEquals(testMatrix1.slice(range(count, count + 3)), - batch1.data()); + batch1); assertEquals(testMatrix2.slice(range(count, count + 3)), - batch2.data()); + batch2); count += 3; } else { assertEquals(testMatrix1.slice(range(count, count + 1)), - batch1.data()); + batch1); assertEquals(testMatrix2.slice(range(count, count + 1)), - batch2.data()); + batch2); foundLastBatch = true; } } diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/data/DatasetIteratorTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/data/DatasetIteratorTest.java index 6bb6e21f330..882a64ba54d 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/data/DatasetIteratorTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/data/DatasetIteratorTest.java @@ -16,11 +16,10 @@ package org.tensorflow.framework.data; import org.junit.jupiter.api.Test; -import org.tensorflow.DataType; import org.tensorflow.Graph; import org.tensorflow.Operand; import org.tensorflow.Session; -import org.tensorflow.Tensor; +import org.tensorflow.types.family.TType; import org.tensorflow.exceptions.TFOutOfRangeException; import org.tensorflow.op.Ops; import org.tensorflow.types.TInt32; @@ -39,7 +38,7 @@ public void testGraphIteration() { List> tensors = Arrays.asList(tf.constant(testMatrix1), tf.constant(testMatrix2)); - List> dataTypes = Arrays.asList(TInt32.DTYPE, TInt32.DTYPE); + List> dataTypes = Arrays.asList(TInt32.class, TInt32.class); Dataset dataset = Dataset.fromTensorSlices(tf, tensors, dataTypes); DatasetIterator iterator = dataset.makeOneShotIterator(); @@ -54,12 +53,12 @@ public void testGraphIteration() { int batches = 0; while (true) { try { - List> outputs = session.runner().fetch(x).fetch(y).run(); + List outputs = session.runner().fetch(x).fetch(y).run(); - try (Tensor xBatch = outputs.get(0).expect(TInt32.DTYPE); - Tensor yBatch = outputs.get(1).expect(TInt32.DTYPE)) { - assertEquals(testMatrix1.get(batches), xBatch.data()); - assertEquals(testMatrix2.get(batches), yBatch.data()); + try (TInt32 xBatch = (TInt32)outputs.get(0); + TInt32 yBatch = (TInt32)outputs.get(1)) { + assertEquals(testMatrix1.get(batches), xBatch); + assertEquals(testMatrix2.get(batches), yBatch); batches++; } } catch (TFOutOfRangeException e) { @@ -77,16 +76,15 @@ public void testEagerIteration() { List> tensors = Arrays.asList(tf.constant(testMatrix1), tf.constant(testMatrix2)); - List> dataTypes = Arrays.asList(TInt32.DTYPE, TInt32.DTYPE); + List> dataTypes = Arrays.asList(TInt32.class, TInt32.class); Dataset dataset = Dataset.fromTensorSlices(tf, tensors, dataTypes); int count = 0; for (List> outputs : dataset) { - try (Tensor batch1 = outputs.get(0).asTensor().expect(TInt32.DTYPE); - Tensor batch2 = outputs.get(1).asTensor().expect(TInt32.DTYPE); ) { - - assertEquals(testMatrix1.get(count), batch1.data()); - assertEquals(testMatrix2.get(count), batch2.data()); + try (TInt32 batch1 = (TInt32)outputs.get(0).asTensor(); + TInt32 batch2 = (TInt32)outputs.get(1).asTensor()) { + assertEquals(testMatrix1.get(count), batch1); + assertEquals(testMatrix2.get(count), batch2); count++; } diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/data/MapDatasetTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/data/MapDatasetTest.java index 5960442ff70..5f203427563 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/data/MapDatasetTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/data/MapDatasetTest.java @@ -17,11 +17,10 @@ import org.junit.jupiter.api.BeforeEach; import org.junit.jupiter.api.Test; -import org.tensorflow.DataType; import org.tensorflow.Graph; import org.tensorflow.Operand; import org.tensorflow.Session; -import org.tensorflow.Tensor; +import org.tensorflow.types.family.TType; import org.tensorflow.exceptions.TFOutOfRangeException; import org.tensorflow.op.Ops; import org.tensorflow.ndarray.IntNdArray; @@ -60,13 +59,13 @@ public void testGraphIteration() { List> tensors = Arrays.asList(tf.constant(testMatrix1), tf.constant(testMatrix2)); - List> dataTypes = Arrays.asList(TInt32.DTYPE, TInt32.DTYPE); + List> dataTypes = Arrays.asList(TInt32.class, TInt32.class); Dataset dataset = Dataset.fromTensorSlices(tf, tensors, dataTypes) .mapAllComponents( component -> - tf.math.mul(component.asOutput().expect(TInt32.DTYPE), tf.constant(2))); + tf.math.mul(component.asOutput().expect(TInt32.class), tf.constant(2))); DatasetIterator iterator = dataset.makeOneShotIterator(); List> components = iterator.getNext(); @@ -79,13 +78,13 @@ public void testGraphIteration() { int batches = 0; while (true) { try { - List> outputs = session.runner().fetch(X).fetch(y).run(); + List outputs = session.runner().fetch(X).fetch(y).run(); - try (Tensor XBatch = outputs.get(0).expect(TInt32.DTYPE); - Tensor yBatch = outputs.get(1).expect(TInt32.DTYPE)) { + try (TInt32 XBatch = (TInt32)outputs.get(0); + TInt32 yBatch = (TInt32)outputs.get(1)) { - assertEquals(mapped1.get(batches), XBatch.data()); - assertEquals(mapped2.get(batches), yBatch.data()); + assertEquals(mapped1.get(batches), XBatch); + assertEquals(mapped2.get(batches), yBatch); batches++; } @@ -105,20 +104,19 @@ public void testEagerIteration() { List> tensors = Arrays.asList(tf.constant(testMatrix1), tf.constant(testMatrix2)); - List> dataTypes = Arrays.asList(TInt32.DTYPE, TInt32.DTYPE); + List> dataTypes = Arrays.asList(TInt32.class, TInt32.class); Dataset dataset = Dataset.fromTensorSlices(tf, tensors, dataTypes) .mapAllComponents( - op -> tf.math.mul(op.asOutput().expect(TInt32.DTYPE), tf.constant(2))); + op -> tf.math.mul(op.asOutput().expect(TInt32.class), tf.constant(2))); int count = 0; for (List> outputs : dataset) { - try (Tensor XBatch = outputs.get(0).asTensor().expect(TInt32.DTYPE); - Tensor yBatch = outputs.get(1).asTensor().expect(TInt32.DTYPE); ) { - - assertEquals(mapped1.get(count), XBatch.data()); - assertEquals(mapped2.get(count), yBatch.data()); + try (TInt32 XBatch = (TInt32)outputs.get(0).asTensor(); + TInt32 yBatch = (TInt32)outputs.get(1).asTensor()) { + assertEquals(mapped1.get(count), XBatch); + assertEquals(mapped2.get(count), yBatch); count++; } diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/data/SkipDatasetTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/data/SkipDatasetTest.java index 9ff8080034d..d0cdb4527a5 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/data/SkipDatasetTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/data/SkipDatasetTest.java @@ -17,7 +17,6 @@ import org.junit.jupiter.api.Test; import org.tensorflow.Operand; -import org.tensorflow.Tensor; import org.tensorflow.op.Ops; import org.tensorflow.types.TInt32; @@ -35,16 +34,15 @@ public void testEagerSkipDataset() { Dataset.fromTensorSlices( tf, Arrays.asList(tf.constant(testMatrix1), tf.constant(testMatrix2)), - Arrays.asList(TInt32.DTYPE, TInt32.DTYPE)) + Arrays.asList(TInt32.class, TInt32.class)) .skip(2); int count = 2; for (List> components : dataset) { - try (Tensor batch1 = components.get(0).asTensor().expect(TInt32.DTYPE); - Tensor batch2 = - components.get(1).asTensor().expect(TInt32.DTYPE); ) { - assertEquals(testMatrix1.get(count), batch1.data()); - assertEquals(testMatrix2.get(count), batch2.data()); + try (TInt32 batch1 = (TInt32)components.get(0).asTensor(); + TInt32 batch2 = (TInt32)components.get(1).asTensor()) { + assertEquals(testMatrix1.get(count), batch1); + assertEquals(testMatrix2.get(count), batch2); count++; } } diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/data/TakeDatasetTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/data/TakeDatasetTest.java index 4419f4660db..79a2e79c72e 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/data/TakeDatasetTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/data/TakeDatasetTest.java @@ -17,7 +17,6 @@ import org.junit.jupiter.api.Test; import org.tensorflow.Operand; -import org.tensorflow.Tensor; import org.tensorflow.op.Ops; import org.tensorflow.types.TInt32; @@ -36,16 +35,15 @@ public void testEagerTakeDataset() { Dataset.fromTensorSlices( tf, Arrays.asList(tf.constant(testMatrix1), tf.constant(testMatrix2)), - Arrays.asList(TInt32.DTYPE, TInt32.DTYPE)) + Arrays.asList(TInt32.class, TInt32.class)) .take(4); int count = 0; for (List> components : dataset) { - try (Tensor batch1 = components.get(0).asTensor().expect(TInt32.DTYPE); - Tensor batch2 = components.get(1).asTensor().expect(TInt32.DTYPE); ) { - - assertEquals(testMatrix1.get(count), batch1.data()); - assertEquals(testMatrix2.get(count), batch2.data()); + try (TInt32 batch1 = (TInt32)components.get(0).asTensor(); + TInt32 batch2 = (TInt32)components.get(1).asTensor()) { + assertEquals(testMatrix1.get(count), batch1); + assertEquals(testMatrix2.get(count), batch2); count++; } } diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/ConstantTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/ConstantTest.java index 46e4232d5ae..4e81e0620e6 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/ConstantTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/ConstantTest.java @@ -52,7 +52,7 @@ public void testCallUInt() { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); Constant instance = new Constant<>(tf, 0xf); - Operand operand = instance.call(tf.constant(shape), TUint8.DTYPE); + Operand operand = instance.call(tf.constant(shape), TUint8.class); session.evaluate(expected, operand); } } @@ -68,7 +68,7 @@ public void testCallInt() { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); Constant instance = new Constant<>(tf, 0xf); - Operand operand = instance.call(tf.constant(shape), TInt32.DTYPE); + Operand operand = instance.call(tf.constant(shape), TInt32.class); session.evaluate(expected, operand); } } @@ -84,7 +84,7 @@ public void testCallLong() { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); Constant instance = new Constant<>(tf, 0xffL); - Operand operand = instance.call(tf.constant(shape), TInt64.DTYPE); + Operand operand = instance.call(tf.constant(shape), TInt64.class); session.evaluate(expected, operand); } } @@ -98,7 +98,7 @@ public void testCallFloat() { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); Constant instance = new Constant<>(tf, 12.F); - Operand operand = instance.call(tf.constant(shape), TFloat32.DTYPE); + Operand operand = instance.call(tf.constant(shape), TFloat32.class); session.evaluate(expected, operand); } } @@ -113,7 +113,7 @@ public void testCallDouble() { Shape shape = Shape.of(2, 2); Constant instance = new Constant<>(tf, 11.); - Operand operand = instance.call(tf.constant(shape), TFloat64.DTYPE); + Operand operand = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(expected, operand); } } @@ -130,7 +130,7 @@ public void testCallString() { Shape shape = Shape.of(2, 2); Constant instance = new Constant<>(tf, 22); - instance.call(tf.constant(shape), TString.DTYPE); + instance.call(tf.constant(shape), TString.class); fail("IllegalArgumentException should have been thrown for TString"); } }); @@ -146,7 +146,7 @@ public void testCallBool() { Boolean[] expected = {true, true, true, true}; Constant instance = new Constant<>(tf, true); - Operand operand = instance.call(tf.constant(shape), TBool.DTYPE); + Operand operand = instance.call(tf.constant(shape), TBool.class); session.evaluate(expected, operand); } } @@ -159,8 +159,8 @@ public void testReproducible() { Shape shape = Shape.of(2, 2); Constant instance = new Constant<>(tf, 11.); - Operand operand1 = instance.call(tf.constant(shape), TFloat64.DTYPE); - Operand operand2 = instance.call(tf.constant(shape), TFloat64.DTYPE); + Operand operand1 = instance.call(tf.constant(shape), TFloat64.class); + Operand operand2 = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(operand1, operand2); } } diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/GlorotTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/GlorotTest.java index a68bf2a0a98..e9769806928 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/GlorotTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/GlorotTest.java @@ -51,9 +51,9 @@ public void testCallNormalFloat() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - Glorot instance = new Glorot<>(tf, Distribution.TRUNCATED_NORMAL, SEED); + Glorot instance = new Glorot<>(tf, Distribution.TRUNCATED_NORMAL, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat32.DTYPE); + Operand operand = instance.call(tf.constant(shape), TFloat32.class); session.evaluate(expected, operand); } } @@ -68,8 +68,8 @@ public void testCallNormalDouble() { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - Glorot instance = new Glorot<>(tf, Distribution.TRUNCATED_NORMAL, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat64.DTYPE); + Glorot instance = new Glorot<>(tf, Distribution.TRUNCATED_NORMAL, SEED); + Operand operand = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(expected, operand); } } @@ -82,8 +82,8 @@ public void testCallUniformFloat() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - Glorot instance = new Glorot<>(tf, Distribution.UNIFORM, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat32.DTYPE); + Glorot instance = new Glorot<>(tf, Distribution.UNIFORM, SEED); + Operand operand = instance.call(tf.constant(shape), TFloat32.class); session.evaluate(expected, operand); } } @@ -97,8 +97,8 @@ public void testCallUniformDouble() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - Glorot instance = new Glorot<>(tf, Distribution.UNIFORM, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat64.DTYPE); + Glorot instance = new Glorot<>(tf, Distribution.UNIFORM, SEED); + Operand operand = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(expected, operand); } } @@ -109,9 +109,9 @@ public void testCallNormalReproducible() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - Glorot instance = new Glorot<>(tf, Distribution.TRUNCATED_NORMAL, SEED); - Operand operand1 = instance.call(tf.constant(shape), TFloat64.DTYPE); - Operand operand2 = instance.call(tf.constant(shape), TFloat64.DTYPE); + Glorot instance = new Glorot<>(tf, Distribution.TRUNCATED_NORMAL, SEED); + Operand operand1 = instance.call(tf.constant(shape), TFloat64.class); + Operand operand2 = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(operand1, operand2); } } @@ -122,9 +122,9 @@ public void testCallUniformReproducible() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - Glorot instance = new Glorot<>(tf, Distribution.UNIFORM, SEED); - Operand operand1 = instance.call(tf.constant(shape), TFloat64.DTYPE); - Operand operand2 = instance.call(tf.constant(shape), TFloat64.DTYPE); + Glorot instance = new Glorot<>(tf, Distribution.UNIFORM, SEED); + Operand operand1 = instance.call(tf.constant(shape), TFloat64.class); + Operand operand2 = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(operand1, operand2); } } @@ -135,10 +135,10 @@ public void testCallNORMALReproducible() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - Glorot instance = + Glorot instance = new Glorot<>(tf, Distribution.NORMAL, SEED); - Operand operand1 = instance.call(tf.constant(shape), TFloat64.DTYPE); - Operand operand2 = instance.call(tf.constant(shape), TFloat64.DTYPE); + Operand operand1 = instance.call(tf.constant(shape), TFloat64.class); + Operand operand2 = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(operand1, operand2); } } diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/HeTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/HeTest.java index 468759d347f..8953fa3005e 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/HeTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/HeTest.java @@ -51,8 +51,8 @@ public void testCallNormalFloat() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - He instance = new He<>(tf, Distribution.TRUNCATED_NORMAL, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat32.DTYPE); + He instance = new He<>(tf, Distribution.TRUNCATED_NORMAL, SEED); + Operand operand = instance.call(tf.constant(shape), TFloat32.class); session.evaluate(expected, operand); } } @@ -66,8 +66,8 @@ public void testCallNormalDouble() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - He instance = new He<>(tf, Distribution.TRUNCATED_NORMAL, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat64.DTYPE); + He instance = new He<>(tf, Distribution.TRUNCATED_NORMAL, SEED); + Operand operand = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(expected, operand); } } @@ -80,8 +80,8 @@ public void testCallFloat() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - He instance = new He<>(tf, Distribution.UNIFORM, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat32.DTYPE); + He instance = new He<>(tf, Distribution.UNIFORM, SEED); + Operand operand = instance.call(tf.constant(shape), TFloat32.class); session.evaluate(expected, operand); } } @@ -95,8 +95,8 @@ public void testCallDouble() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - He instance = new He<>(tf, Distribution.UNIFORM, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat64.DTYPE); + He instance = new He<>(tf, Distribution.UNIFORM, SEED); + Operand operand = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(expected, operand); } } @@ -107,9 +107,9 @@ public void testCallNormalReproducible() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - He instance = new He<>(tf, Distribution.TRUNCATED_NORMAL, SEED); - Operand operand1 = instance.call(tf.constant(shape), TFloat64.DTYPE); - Operand operand2 = instance.call(tf.constant(shape), TFloat64.DTYPE); + He instance = new He<>(tf, Distribution.TRUNCATED_NORMAL, SEED); + Operand operand1 = instance.call(tf.constant(shape), TFloat64.class); + Operand operand2 = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(operand1, operand2); } } @@ -120,9 +120,9 @@ public void testCallUniformReproducible() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - He instance = new He<>(tf, Distribution.UNIFORM, SEED); - Operand operand1 = instance.call(tf.constant(shape), TFloat64.DTYPE); - Operand operand2 = instance.call(tf.constant(shape), TFloat64.DTYPE); + He instance = new He<>(tf, Distribution.UNIFORM, SEED); + Operand operand1 = instance.call(tf.constant(shape), TFloat64.class); + Operand operand2 = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(operand1, operand2); } } @@ -133,9 +133,9 @@ public void testCallNORMALReproducible() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - He instance = new He<>(tf, Distribution.NORMAL, SEED); - Operand operand1 = instance.call(tf.constant(shape), TFloat64.DTYPE); - Operand operand2 = instance.call(tf.constant(shape), TFloat64.DTYPE); + He instance = new He<>(tf, Distribution.NORMAL, SEED); + Operand operand1 = instance.call(tf.constant(shape), TFloat64.class); + Operand operand2 = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(operand1, operand2); } } diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/IdentityTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/IdentityTest.java index adb6c0c118a..6eee5473937 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/IdentityTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/IdentityTest.java @@ -45,23 +45,6 @@ public void setUp() {} @AfterEach public void tearDown() {} - /** Test of call method, of class Orthogonal. */ - @Test - public void testCallInt() { - for (TestSession.Mode tfMode : tfModes) - assertThrows( - java.lang.IllegalArgumentException.class, - () -> { - try (TestSession session = TestSession.createTestSession(tfMode)) { - Ops tf = session.getTF(); - Shape shape = Shape.of(10, 10); - Identity instance = new Identity<>(tf, 2.); - instance.call(tf.constant(shape), TInt32.DTYPE); - fail("Should have thrown IllegalArgumentException on Integer type"); - } - }); - } - /** Test of call method, of class Constant. */ @Test public void testCallFloat() { @@ -82,7 +65,7 @@ public void testCallFloat() { Ops tf = session.getTF(); Shape shape = Shape.of(10, 10); Identity instance = new Identity<>(tf, 2.); - Operand operand = instance.call(tf.constant(shape), TFloat32.DTYPE); + Operand operand = instance.call(tf.constant(shape), TFloat32.class); session.evaluate(expected, operand); } } @@ -108,7 +91,7 @@ public void testCallDouble() { Ops tf = session.getTF(); Shape shape = Shape.of(10, 10); Identity instance = new Identity<>(tf, 2.); - Operand operand = instance.call(tf.constant(shape), TFloat64.DTYPE); + Operand operand = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(expected, operand); } } @@ -121,8 +104,8 @@ public void testReproducible() { Shape shape = Shape.of(2, 2); Identity instance = new Identity<>(tf, 2.); - Operand operand1 = instance.call(tf.constant(shape), TFloat64.DTYPE); - Operand operand2 = instance.call(tf.constant(shape), TFloat64.DTYPE); + Operand operand1 = instance.call(tf.constant(shape), TFloat64.class); + Operand operand2 = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(operand1, operand2); } } diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/LeCunTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/LeCunTest.java index 6033f9e12a5..336850a5549 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/LeCunTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/LeCunTest.java @@ -51,8 +51,8 @@ public void testCallNormalFloat() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - LeCun instance = new LeCun<>(tf, Distribution.TRUNCATED_NORMAL, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat32.DTYPE); + LeCun instance = new LeCun<>(tf, Distribution.TRUNCATED_NORMAL, SEED); + Operand operand = instance.call(tf.constant(shape), TFloat32.class); session.evaluate(expected, operand); } } @@ -66,8 +66,8 @@ public void testCallNormalDouble() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - LeCun instance = new LeCun<>(tf, Distribution.TRUNCATED_NORMAL, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat64.DTYPE); + LeCun instance = new LeCun<>(tf, Distribution.TRUNCATED_NORMAL, SEED); + Operand operand = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(expected, operand); } } @@ -80,8 +80,8 @@ public void testCallUniformFloat() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - LeCun instance = new LeCun<>(tf, Distribution.UNIFORM, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat32.DTYPE); + LeCun instance = new LeCun<>(tf, Distribution.UNIFORM, SEED); + Operand operand = instance.call(tf.constant(shape), TFloat32.class); session.evaluate(expected, operand); } } @@ -95,8 +95,8 @@ public void testCallUniformDouble() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - LeCun instance = new LeCun<>(tf, Distribution.UNIFORM, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat64.DTYPE); + LeCun instance = new LeCun<>(tf, Distribution.UNIFORM, SEED); + Operand operand = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(expected, operand); } } @@ -107,9 +107,9 @@ public void testCallNormalReproducible() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - LeCun instance = new LeCun<>(tf, Distribution.TRUNCATED_NORMAL, SEED); - Operand operand1 = instance.call(tf.constant(shape), TFloat64.DTYPE); - Operand operand2 = instance.call(tf.constant(shape), TFloat64.DTYPE); + LeCun instance = new LeCun<>(tf, Distribution.TRUNCATED_NORMAL, SEED); + Operand operand1 = instance.call(tf.constant(shape), TFloat64.class); + Operand operand2 = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(operand1, operand2); } } @@ -120,9 +120,9 @@ public void testCallUniformReproducible() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - LeCun instance = new LeCun<>(tf, Distribution.UNIFORM, SEED); - Operand operand1 = instance.call(tf.constant(shape), TFloat64.DTYPE); - Operand operand2 = instance.call(tf.constant(shape), TFloat64.DTYPE); + LeCun instance = new LeCun<>(tf, Distribution.UNIFORM, SEED); + Operand operand1 = instance.call(tf.constant(shape), TFloat64.class); + Operand operand2 = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(operand1, operand2); } } @@ -133,9 +133,9 @@ public void testCallNORMALReproducible() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - LeCun instance = new LeCun<>(tf, Distribution.NORMAL, SEED); - Operand operand1 = instance.call(tf.constant(shape), TFloat64.DTYPE); - Operand operand2 = instance.call(tf.constant(shape), TFloat64.DTYPE); + LeCun instance = new LeCun<>(tf, Distribution.NORMAL, SEED); + Operand operand1 = instance.call(tf.constant(shape), TFloat64.class); + Operand operand2 = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(operand1, operand2); } } diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/OnesTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/OnesTest.java index bbd2ba3d384..053ba5dd7ff 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/OnesTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/OnesTest.java @@ -52,7 +52,7 @@ public void testCallUInt() { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); Ones instance = new Ones<>(tf); - Operand operand = instance.call(tf.constant(shape), TUint8.DTYPE); + Operand operand = instance.call(tf.constant(shape), TUint8.class); session.evaluate(expected, operand); } } @@ -66,7 +66,7 @@ public void testCallInt() { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); Ones instance = new Ones<>(tf); - Operand operand = instance.call(tf.constant(shape), TInt32.DTYPE); + Operand operand = instance.call(tf.constant(shape), TInt32.class); session.evaluate(expected, operand); } } @@ -80,7 +80,7 @@ public void testCallLong() { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); Ones instance = new Ones<>(tf); - Operand operand = instance.call(tf.constant(shape), TInt64.DTYPE); + Operand operand = instance.call(tf.constant(shape), TInt64.class); session.evaluate(expected, operand); } } @@ -94,7 +94,7 @@ public void testCallFloat() { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); Ones instance = new Ones<>(tf); - Operand operand = instance.call(tf.constant(shape), TFloat32.DTYPE); + Operand operand = instance.call(tf.constant(shape), TFloat32.class); session.evaluate(expected, operand); } } @@ -109,7 +109,7 @@ public void testCallDouble() { Shape shape = Shape.of(2, 2); Ones instance = new Ones<>(tf); - Operand operand = instance.call(tf.constant(shape), TFloat64.DTYPE); + Operand operand = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(expected, operand); } } @@ -126,7 +126,7 @@ public void testCallString() { Shape shape = Shape.of(2, 2); Ones instance = new Ones<>(tf); - instance.call(tf.constant(shape), TString.DTYPE); + instance.call(tf.constant(shape), TString.class); fail("IllegalArgumentException should have been thrown for TString"); } }); @@ -141,7 +141,7 @@ public void testCallBool() { Shape shape = Shape.of(2, 2); Ones instance = new Ones<>(tf); - Operand operand = instance.call(tf.constant(shape), TBool.DTYPE); + Operand operand = instance.call(tf.constant(shape), TBool.class); session.evaluate(expected, operand); } } @@ -154,8 +154,8 @@ public void testReproducible() { Shape shape = Shape.of(2, 2); Ones instance = new Ones<>(tf); - Operand operand1 = instance.call(tf.constant(shape), TFloat64.DTYPE); - Operand operand2 = instance.call(tf.constant(shape), TFloat64.DTYPE); + Operand operand1 = instance.call(tf.constant(shape), TFloat64.class); + Operand operand2 = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(operand1, operand2); } } diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/OrthogonalTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/OrthogonalTest.java index a4fff5fd19c..22b89d9177c 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/OrthogonalTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/OrthogonalTest.java @@ -47,23 +47,6 @@ public void setUp() {} @AfterEach public void tearDown() {} - /** Test of call method, of class Orthogonal. */ - @Test - public void testCallInt() { - for (TestSession.Mode tfMode : tfModes) - assertThrows( - java.lang.IllegalArgumentException.class, - () -> { - try (TestSession session = TestSession.createTestSession(tfMode)) { - Ops tf = session.getTF(); - Shape shape = Shape.of(10, 10); - Orthogonal instance = new Orthogonal<>(tf, GAIN_VALUE, SEED); - instance.call(tf.constant(shape), TInt32.DTYPE); - fail("Should have thrown IllegalArgumentException on Integer type"); - } - }); - } - /** Test of call method, of class Orthogonal. */ @Test public void testCallFloat() { @@ -173,8 +156,8 @@ public void testCallFloat() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(10, 10); - Orthogonal instance = new Orthogonal<>(tf, GAIN_VALUE, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat32.DTYPE); + Orthogonal instance = new Orthogonal<>(tf, GAIN_VALUE, SEED); + Operand operand = instance.call(tf.constant(shape), TFloat32.class); session.evaluate(expected, operand); } } @@ -288,8 +271,8 @@ public void testCallDouble() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(10, 10); - Orthogonal instance = new Orthogonal<>(tf, GAIN_VALUE, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat64.DTYPE); + Orthogonal instance = new Orthogonal<>(tf, GAIN_VALUE, SEED); + Operand operand = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(expected, operand); } } @@ -301,9 +284,9 @@ public void testReproducible() { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - Orthogonal instance = new Orthogonal<>(tf, GAIN_VALUE, SEED); - Operand operand1 = instance.call(tf.constant(shape), TFloat64.DTYPE); - Operand operand2 = instance.call(tf.constant(shape), TFloat64.DTYPE); + Orthogonal instance = new Orthogonal<>(tf, GAIN_VALUE, SEED); + Operand operand1 = instance.call(tf.constant(shape), TFloat64.class); + Operand operand2 = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(operand1, operand2); } } diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/RandomNormalTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/RandomNormalTest.java index 50aec670503..3b2b3bdb243 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/RandomNormalTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/RandomNormalTest.java @@ -52,9 +52,9 @@ public void testCalltestSoftmaxFloat() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - RandomNormal instance = + RandomNormal instance = new RandomNormal<>(tf, MEAN_VALUE, STDDEV_VALUE, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat32.DTYPE); + Operand operand = instance.call(tf.constant(shape), TFloat32.class); session.evaluate(expected, operand); } } @@ -68,9 +68,9 @@ public void testCalltestSoftmaxDouble() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - RandomNormal instance = + RandomNormal instance = new RandomNormal<>(tf, MEAN_VALUE, STDDEV_VALUE, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat64.DTYPE); + Operand operand = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(expected, operand); } } @@ -82,10 +82,10 @@ public void testReproducible() { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - RandomNormal instance = + RandomNormal instance = new RandomNormal<>(tf, MEAN_VALUE, STDDEV_VALUE, SEED); - Operand operand1 = instance.call(tf.constant(shape), TFloat64.DTYPE); - Operand operand2 = instance.call(tf.constant(shape), TFloat64.DTYPE); + Operand operand1 = instance.call(tf.constant(shape), TFloat64.class); + Operand operand2 = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(operand1, operand2); } } diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/RandomUniformTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/RandomUniformTest.java index d3f9af74209..23e26083a9b 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/RandomUniformTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/RandomUniformTest.java @@ -53,9 +53,9 @@ public void testCallInt() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - RandomUniform instance = + RandomUniform instance = new RandomUniform<>(tf, MIN_VALUE, MAX_VALUE, SEED); - Operand operand = instance.call(tf.constant(shape), TInt32.DTYPE); + Operand operand = instance.call(tf.constant(shape), TInt32.class); session.evaluate(expected, operand); } } @@ -68,9 +68,9 @@ public void testCallFloat() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - RandomUniform instance = + RandomUniform instance = new RandomUniform<>(tf, MIN_VALUE, MAX_VALUE, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat32.DTYPE); + Operand operand = instance.call(tf.constant(shape), TFloat32.class); session.evaluate(expected, operand); } } @@ -84,9 +84,9 @@ public void testCallDouble() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - RandomUniform instance = + RandomUniform instance = new RandomUniform<>(tf, MIN_VALUE, MAX_VALUE, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat64.DTYPE); + Operand operand = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(expected, operand); } } @@ -98,10 +98,10 @@ public void testReproducible() { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - RandomUniform instance = + RandomUniform instance = new RandomUniform<>(tf, MIN_VALUE, MAX_VALUE, SEED); - Operand operand1 = instance.call(tf.constant(shape), TFloat64.DTYPE); - Operand operand2 = instance.call(tf.constant(shape), TFloat64.DTYPE); + Operand operand1 = instance.call(tf.constant(shape), TFloat64.class); + Operand operand2 = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(operand1, operand2); } } diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/TruncatedNormalTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/TruncatedNormalTest.java index 0a551df2f38..96bf915e199 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/TruncatedNormalTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/TruncatedNormalTest.java @@ -52,9 +52,9 @@ public void testCallFloat() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - TruncatedNormal instance = + TruncatedNormal instance = new TruncatedNormal<>(tf, MEAN_VALUE, STDDEV_VALUE, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat32.DTYPE); + Operand operand = instance.call(tf.constant(shape), TFloat32.class); session.evaluate(expected, operand); } } @@ -68,9 +68,9 @@ public void testCallDouble() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - TruncatedNormal instance = + TruncatedNormal instance = new TruncatedNormal<>(tf, MEAN_VALUE, STDDEV_VALUE, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat64.DTYPE); + Operand operand = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(expected, operand); } } @@ -82,10 +82,10 @@ public void testReproducible() { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - TruncatedNormal instance = + TruncatedNormal instance = new TruncatedNormal<>(tf, MEAN_VALUE, STDDEV_VALUE, SEED); - Operand operand1 = instance.call(tf.constant(shape), TFloat64.DTYPE); - Operand operand2 = instance.call(tf.constant(shape), TFloat64.DTYPE); + Operand operand1 = instance.call(tf.constant(shape), TFloat64.class); + Operand operand2 = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(operand1, operand2); } } diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/VarianceScalingTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/VarianceScalingTest.java index 77e0dd7afc7..159affb07e2 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/VarianceScalingTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/VarianceScalingTest.java @@ -50,14 +50,14 @@ public void testCallFloat1FanInTruncatedNormal() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - VarianceScaling instance = + VarianceScaling instance = new VarianceScaling<>( tf, 1.0, VarianceScaling.Mode.FAN_IN, VarianceScaling.Distribution.TRUNCATED_NORMAL, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat32.DTYPE); + Operand operand = instance.call(tf.constant(shape), TFloat32.class); session.evaluate(expected, operand); } } @@ -71,14 +71,14 @@ public void testCallDouble1FanInTruncatedNormal() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - VarianceScaling instance = + VarianceScaling instance = new VarianceScaling<>( tf, 1.0, VarianceScaling.Mode.FAN_IN, VarianceScaling.Distribution.TRUNCATED_NORMAL, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat64.DTYPE); + Operand operand = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(expected, operand); } } @@ -91,14 +91,14 @@ public void testCallFloat1FanInNormal() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - VarianceScaling instance = + VarianceScaling instance = new VarianceScaling<>( tf, 1.0, VarianceScaling.Mode.FAN_IN, VarianceScaling.Distribution.NORMAL, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat32.DTYPE); + Operand operand = instance.call(tf.constant(shape), TFloat32.class); session.evaluate(expected, operand); } } @@ -112,14 +112,14 @@ public void testCalltestSoftmaxDouble1FanInNormal() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - VarianceScaling instance = + VarianceScaling instance = new VarianceScaling<>( tf, 1.0, VarianceScaling.Mode.FAN_IN, VarianceScaling.Distribution.NORMAL, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat64.DTYPE); + Operand operand = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(expected, operand); } } @@ -132,10 +132,10 @@ public void testCalltestSoftmaxFloat1FanInUNIFORM() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - VarianceScaling instance = + VarianceScaling instance = new VarianceScaling<>( tf, 1.0, VarianceScaling.Mode.FAN_IN, VarianceScaling.Distribution.UNIFORM, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat32.DTYPE); + Operand operand = instance.call(tf.constant(shape), TFloat32.class); session.evaluate(expected, operand); } } @@ -149,10 +149,10 @@ public void testCalltestSoftmaxDouble1FanInUNIFORM() { try (TestSession session = TestSession.createTestSession(tfMode)) { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - VarianceScaling instance = + VarianceScaling instance = new VarianceScaling<>( tf, 1.0, VarianceScaling.Mode.FAN_IN, VarianceScaling.Distribution.UNIFORM, SEED); - Operand operand = instance.call(tf.constant(shape), TFloat64.DTYPE); + Operand operand = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(expected, operand); } } @@ -164,11 +164,11 @@ public void testReproducible1() { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - VarianceScaling instance = + VarianceScaling instance = new VarianceScaling<>( tf, 1.0, VarianceScaling.Mode.FAN_IN, VarianceScaling.Distribution.UNIFORM, SEED); - Operand operand1 = instance.call(tf.constant(shape), TFloat64.DTYPE); - Operand operand2 = instance.call(tf.constant(shape), TFloat64.DTYPE); + Operand operand1 = instance.call(tf.constant(shape), TFloat64.class); + Operand operand2 = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(operand1, operand2); } } @@ -180,15 +180,15 @@ public void testReproducible2() { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - VarianceScaling instance = + VarianceScaling instance = new VarianceScaling<>( tf, 1.0, VarianceScaling.Mode.FAN_IN, VarianceScaling.Distribution.NORMAL, SEED); - Operand operand1 = instance.call(tf.constant(shape), TFloat64.DTYPE); - Operand operand2 = instance.call(tf.constant(shape), TFloat64.DTYPE); + Operand operand1 = instance.call(tf.constant(shape), TFloat64.class); + Operand operand2 = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(operand1, operand2); } } @@ -200,15 +200,15 @@ public void testReproducible3() { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - VarianceScaling instance = + VarianceScaling instance = new VarianceScaling<>( tf, 1.0, VarianceScaling.Mode.FAN_OUT, VarianceScaling.Distribution.TRUNCATED_NORMAL, SEED); - Operand operand1 = instance.call(tf.constant(shape), TFloat64.DTYPE); - Operand operand2 = instance.call(tf.constant(shape), TFloat64.DTYPE); + Operand operand1 = instance.call(tf.constant(shape), TFloat64.class); + Operand operand2 = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(operand1, operand2); } } @@ -220,11 +220,11 @@ public void testReproducible4() { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); - VarianceScaling instance = + VarianceScaling instance = new VarianceScaling<>( tf, 1.0, VarianceScaling.Mode.FAN_AVG, VarianceScaling.Distribution.UNIFORM, SEED); - Operand operand1 = instance.call(tf.constant(shape), TFloat64.DTYPE); - Operand operand2 = instance.call(tf.constant(shape), TFloat64.DTYPE); + Operand operand1 = instance.call(tf.constant(shape), TFloat64.class); + Operand operand2 = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(operand1, operand2); } } diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/ZerosTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/ZerosTest.java index 975678add19..21bad6ff360 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/ZerosTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/initializers/ZerosTest.java @@ -49,7 +49,7 @@ public void testCallUInt() { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); Zeros instance = new Zeros<>(tf); - Operand operand = instance.call(tf.constant(shape), TUint8.DTYPE); + Operand operand = instance.call(tf.constant(shape), TUint8.class); session.evaluate(expected, operand); } } @@ -63,7 +63,7 @@ public void testCallInt() { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); Zeros instance = new Zeros<>(tf); - Operand operand = instance.call(tf.constant(shape), TInt32.DTYPE); + Operand operand = instance.call(tf.constant(shape), TInt32.class); session.evaluate(expected, operand); } } @@ -77,7 +77,7 @@ public void testCallLong() { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); Zeros instance = new Zeros<>(tf); - Operand operand = instance.call(tf.constant(shape), TInt64.DTYPE); + Operand operand = instance.call(tf.constant(shape), TInt64.class); session.evaluate(expected, operand); } } @@ -91,7 +91,7 @@ public void testCallFloat() { Ops tf = session.getTF(); Shape shape = Shape.of(2, 2); Zeros instance = new Zeros<>(tf); - Operand operand = instance.call(tf.constant(shape), TFloat32.DTYPE); + Operand operand = instance.call(tf.constant(shape), TFloat32.class); session.evaluate(expected, operand); } } @@ -106,7 +106,7 @@ public void testCallDouble() { Shape shape = Shape.of(2, 2); Zeros instance = new Zeros<>(tf); - Operand operand = instance.call(tf.constant(shape), TFloat64.DTYPE); + Operand operand = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(expected, operand); } } @@ -120,7 +120,7 @@ public void testCallString() { Shape shape = Shape.of(2, 2); Zeros instance = new Zeros<>(tf); - Operand operand = instance.call(tf.constant(shape), TString.DTYPE); + Operand operand = instance.call(tf.constant(shape), TString.class); session.evaluateString(operand, String::isEmpty); } } @@ -135,7 +135,7 @@ public void testCallBool() { Shape shape = Shape.of(2, 2); Zeros instance = new Zeros<>(tf); - Operand operand = instance.call(tf.constant(shape), TBool.DTYPE); + Operand operand = instance.call(tf.constant(shape), TBool.class); session.evaluate(expected, operand); } } @@ -148,8 +148,8 @@ public void testReproducible() { Shape shape = Shape.of(2, 2); Zeros instance = new Zeros<>(tf); - Operand operand1 = instance.call(tf.constant(shape), TFloat64.DTYPE); - Operand operand2 = instance.call(tf.constant(shape), TFloat64.DTYPE); + Operand operand1 = instance.call(tf.constant(shape), TFloat64.class); + Operand operand2 = instance.call(tf.constant(shape), TFloat64.class); session.evaluate(operand1, operand2); } } diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/AdaDeltaTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/AdaDeltaTest.java index 5c4ce542c65..86a3200ac81 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/AdaDeltaTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/AdaDeltaTest.java @@ -89,8 +89,8 @@ public void testBasic() { float[] var1Init = {3.0F, 4.0F}; float[] fgrads = {grad, grad}; Shape shape = Shape.of(var0Init.length); - Variable var0 = tf.withName("var0").variable(shape, TFloat32.DTYPE); - Variable var1 = tf.withName("var1").variable(shape, TFloat32.DTYPE); + Variable var0 = tf.withName("var0").variable(shape, TFloat32.class); + Variable var1 = tf.withName("var1").variable(shape, TFloat32.class); Assign var0Initializer = tf.assign(var0, tf.constant(var0Init)); Assign var1Initializer = tf.assign(var1, tf.constant(var1Init)); @@ -118,16 +118,16 @@ public void testBasic() { Variable[] slotUpdates = new Variable[2]; slots[0] = adaDelta.getSlot(var0.asOutput(), ACCUMULATOR).get(); - assertEquals(slots[0].asOutput().shape(), var0.asOutput().shape()); + assertEquals(slots[0].shape(), var0.shape()); slotUpdates[0] = adaDelta.getSlot(var0.asOutput(), ACCUMULATOR_UPDATE).get(); - assertEquals(slotUpdates[0].asOutput().shape(), var0.asOutput().shape()); + assertEquals(slotUpdates[0].shape(), var0.shape()); slots[1] = adaDelta.getSlot(var1.asOutput(), ACCUMULATOR).get(); - assertEquals(slots[1].asOutput().shape(), var1.asOutput().shape()); + assertEquals(slots[1].shape(), var1.shape()); slotUpdates[1] = adaDelta.getSlot(var1.asOutput(), ACCUMULATOR_UPDATE).get(); - assertEquals(slotUpdates[1].asOutput().shape(), var1.asOutput().shape()); + assertEquals(slotUpdates[1].shape(), var1.shape()); /* initialize the local variables */ session.run(var0Initializer); diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/AdaGradDATest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/AdaGradDATest.java index ef9053ff1eb..d5b2657a4fc 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/AdaGradDATest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/AdaGradDATest.java @@ -64,8 +64,8 @@ public void testBasic() { Shape shape0 = Shape.of(var0Init.length); Shape shape1 = Shape.of(var1Init.length); - Variable var0 = tf.withName("var0").variable(shape0, TFloat32.DTYPE); - Variable var1 = tf.withName("var1").variable(shape1, TFloat32.DTYPE); + Variable var0 = tf.withName("var0").variable(shape0, TFloat32.class); + Variable var1 = tf.withName("var1").variable(shape1, TFloat32.class); Assign var0Initializer = tf.assign(var0, tf.constant(var0Init)); Assign var1Initializer = tf.assign(var1, tf.constant(var1Init)); diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/AdaGradTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/AdaGradTest.java index c5ae178b84c..8182dc5b00d 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/AdaGradTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/AdaGradTest.java @@ -79,8 +79,8 @@ public void testBasic() { Shape shape0 = Shape.of(var0Init.length); Shape shape1 = Shape.of(var1Init.length); - Variable var0 = tf.withName("var0").variable(shape0, TFloat32.DTYPE); - Variable var1 = tf.withName("var1").variable(shape1, TFloat32.DTYPE); + Variable var0 = tf.withName("var0").variable(shape0, TFloat32.class); + Variable var1 = tf.withName("var1").variable(shape1, TFloat32.class); Assign var0Initializer = tf.assign(var0, tf.constant(var0Init)); Assign var1Initializer = tf.assign(var1, tf.constant(var1Init)); @@ -99,10 +99,10 @@ public void testBasic() { Variable[] accumulatorSlots = new Variable[2]; accumulatorSlots[0] = instance.getSlot(var0.asOutput(), ACCUMULATOR).get(); - assertEquals(accumulatorSlots[0].asOutput().shape(), var0.asOutput().shape()); + assertEquals(accumulatorSlots[0].shape(), var0.shape()); accumulatorSlots[1] = instance.getSlot(var1.asOutput(), ACCUMULATOR).get(); - assertEquals(accumulatorSlots[1].asOutput().shape(), var1.asOutput().shape()); + assertEquals(accumulatorSlots[1].shape(), var1.shape()); /* initialize the local variables */ session.run(var0Initializer); diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/AdamTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/AdamTest.java index 461fa75397f..49154882a0f 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/AdamTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/AdamTest.java @@ -16,7 +16,6 @@ import org.junit.jupiter.api.*; import org.tensorflow.Graph; -import org.tensorflow.Tensor; import org.tensorflow.framework.utils.ND; import org.tensorflow.framework.utils.TestSession; import org.tensorflow.ndarray.FloatNdArray; @@ -80,8 +79,8 @@ public void testBasic() { Ops tf = instance.getTF(); Shape shape0 = Shape.of(var0Init.length); Shape shape1 = Shape.of(var1Init.length); - Variable var0 = tf.withName("var0").variable(shape0, TFloat32.DTYPE); - Variable var1 = tf.withName("var1").variable(shape1, TFloat32.DTYPE); + Variable var0 = tf.withName("var0").variable(shape0, TFloat32.class); + Variable var1 = tf.withName("var1").variable(shape1, TFloat32.class); Assign var0Initializer = tf.assign(var0, tf.constant(var0Init)); Assign var1Initializer = tf.assign(var1, tf.constant(var1Init)); @@ -111,16 +110,16 @@ public void testBasic() { Variable[] secondMomentSlots = new Variable[2]; firstMomentSlots[0] = instance.getSlot(var0.asOutput(), FIRST_MOMENT).get(); - assertEquals(firstMomentSlots[0].asOutput().shape(), var0.asOutput().shape()); + assertEquals(firstMomentSlots[0].shape(), var0.shape()); secondMomentSlots[0] = instance.getSlot(var0.asOutput(), SECOND_MOMENT).get(); - assertEquals(secondMomentSlots[0].asOutput().shape(), var0.asOutput().shape()); + assertEquals(secondMomentSlots[0].shape(), var0.shape()); firstMomentSlots[1] = instance.getSlot(var1.asOutput(), FIRST_MOMENT).get(); - assertEquals(firstMomentSlots[1].asOutput().shape(), var1.asOutput().shape()); + assertEquals(firstMomentSlots[1].shape(), var1.shape()); secondMomentSlots[1] = instance.getSlot(var1.asOutput(), SECOND_MOMENT).get(); - assertEquals(secondMomentSlots[1].asOutput().shape(), var1.asOutput().shape()); + assertEquals(secondMomentSlots[1].shape(), var1.shape()); /* initialize the accumulators */ session.run(tf.init()); @@ -140,25 +139,23 @@ public void testBasic() { (float) Math.pow(beta1, step + 1), (float) Math.pow(beta2, step + 1) }; - try (Tensor result = - session + try (TFloat32 result = + (TFloat32)session .getGraphSession() .runner() .fetch("beta1_power") .run() - .get(0) - .expect(TFloat32.DTYPE)) { - result.data().scalars().forEach(f -> assertEquals(powers[0], f.getFloat(), epsilon1)); + .get(0)) { + result.scalars().forEach(f -> assertEquals(powers[0], f.getFloat(), epsilon1)); } - try (Tensor result = - session + try (TFloat32 result = + (TFloat32)session .getGraphSession() .runner() .fetch("beta2_power") .run() - .get(0) - .expect(TFloat32.DTYPE)) { - result.data().scalars().forEach(f -> assertEquals(powers[1], f.getFloat(), epsilon1)); + .get(0)) { + result.scalars().forEach(f -> assertEquals(powers[1], f.getFloat(), epsilon1)); } session.run(update); diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/AdamaxTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/AdamaxTest.java index de17395f76a..60c17674dfe 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/AdamaxTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/AdamaxTest.java @@ -16,7 +16,6 @@ import org.junit.jupiter.api.*; import org.tensorflow.Graph; -import org.tensorflow.Tensor; import org.tensorflow.framework.utils.ND; import org.tensorflow.framework.utils.TestSession; import org.tensorflow.ndarray.FloatNdArray; @@ -101,8 +100,8 @@ public void testBasic() { Shape shape0 = Shape.of(var0Init.length); Shape shape1 = Shape.of(var1Init.length); - Variable var0 = tf.withName("var0").variable(shape0, TFloat32.DTYPE); - Variable var1 = tf.withName("var1").variable(shape1, TFloat32.DTYPE); + Variable var0 = tf.withName("var0").variable(shape0, TFloat32.class); + Variable var1 = tf.withName("var1").variable(shape1, TFloat32.class); Assign var0Initializer = tf.assign(var0, tf.constant(var0Init)); Assign var1Initializer = tf.assign(var1, tf.constant(var1Init)); @@ -127,16 +126,16 @@ public void testBasic() { Variable[] secondMomentSlots = new Variable[2]; firstMomentSlots[0] = instance.getSlot(var0.asOutput(), FIRST_MOMENT).get(); - assertEquals(firstMomentSlots[0].asOutput().shape(), var0.asOutput().shape()); + assertEquals(firstMomentSlots[0].shape(), var0.shape()); secondMomentSlots[0] = instance.getSlot(var0.asOutput(), SECOND_MOMENT).get(); - assertEquals(secondMomentSlots[0].asOutput().shape(), var0.asOutput().shape()); + assertEquals(secondMomentSlots[0].shape(), var0.shape()); firstMomentSlots[1] = instance.getSlot(var1.asOutput(), FIRST_MOMENT).get(); - assertEquals(firstMomentSlots[1].asOutput().shape(), var1.asOutput().shape()); + assertEquals(firstMomentSlots[1].shape(), var1.shape()); secondMomentSlots[1] = instance.getSlot(var1.asOutput(), SECOND_MOMENT).get(); - assertEquals(secondMomentSlots[1].asOutput().shape(), var1.asOutput().shape()); + assertEquals(secondMomentSlots[1].shape(), var1.shape()); /* initialize the accumulators */ session.run(tf.init()); @@ -149,15 +148,14 @@ public void testBasic() { // Test powers final float beta1Power = (float) Math.pow(BETA_ONE_DEFAULT, step + 1); - try (Tensor result = - session + try (TFloat32 result = + (TFloat32)session .getGraphSession() .runner() .fetch("beta1_power") .run() - .get(0) - .expect(TFloat32.DTYPE)) { - result.data().scalars().forEach(f -> assertEquals(beta1Power, f.getFloat(), epsilon1)); + .get(0)) { + result.scalars().forEach(f -> assertEquals(beta1Power, f.getFloat(), epsilon1)); } session.run(update); diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/FtrlTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/FtrlTest.java index 597f8e52bcd..7698d76f957 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/FtrlTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/FtrlTest.java @@ -76,8 +76,8 @@ public void testFtrlWithL1L2L2Shrinkage() { Shape shape0 = Shape.of(var0Init.length); Shape shape1 = Shape.of(var1Init.length); - Variable var0 = tf.withName("var0").variable(shape0, TFloat32.DTYPE); - Variable var1 = tf.withName("var1").variable(shape1, TFloat32.DTYPE); + Variable var0 = tf.withName("var0").variable(shape0, TFloat32.class); + Variable var1 = tf.withName("var1").variable(shape1, TFloat32.class); Assign var0Initializer = tf.assign(var0, tf.constant(var0Init)); Assign var1Initializer = tf.assign(var1, tf.constant(var1Init)); @@ -141,8 +141,8 @@ public void testFtrlWithL1() { Shape shape0 = Shape.of(var0Init.length); Shape shape1 = Shape.of(var1Init.length); - Variable var0 = tf.withName("var0").variable(shape0, TFloat32.DTYPE); - Variable var1 = tf.withName("var1").variable(shape1, TFloat32.DTYPE); + Variable var0 = tf.withName("var0").variable(shape0, TFloat32.class); + Variable var1 = tf.withName("var1").variable(shape1, TFloat32.class); Assign var0Initializer = tf.assign(var0, tf.constant(var0Init)); Assign var1Initializer = tf.assign(var1, tf.constant(var1Init)); @@ -207,8 +207,8 @@ public void testFtrlWithL1L2() { Shape shape0 = Shape.of(var0Init.length); Shape shape1 = Shape.of(var1Init.length); - Variable var0 = tf.withName("var0").variable(shape0, TFloat32.DTYPE); - Variable var1 = tf.withName("var1").variable(shape1, TFloat32.DTYPE); + Variable var0 = tf.withName("var0").variable(shape0, TFloat32.class); + Variable var1 = tf.withName("var1").variable(shape1, TFloat32.class); Assign var0Initializer = tf.assign(var0, tf.constant(var0Init)); Assign var1Initializer = tf.assign(var1, tf.constant(var1Init)); @@ -273,8 +273,8 @@ public void doTestFtrlwithoutRegularization() { Shape shape0 = Shape.of(var0Init.length); Shape shape1 = Shape.of(var1Init.length); - Variable var0 = tf.withName("var0").variable(shape0, TFloat32.DTYPE); - Variable var1 = tf.withName("var1").variable(shape1, TFloat32.DTYPE); + Variable var0 = tf.withName("var0").variable(shape0, TFloat32.class); + Variable var1 = tf.withName("var1").variable(shape1, TFloat32.class); Assign var0Initializer = tf.assign(var0, tf.constant(var0Init)); Assign var1Initializer = tf.assign(var1, tf.constant(var1Init)); diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/GradientDescentTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/GradientDescentTest.java index 4362c54d815..aefcc537979 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/GradientDescentTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/GradientDescentTest.java @@ -61,8 +61,8 @@ public void testBasic() { Shape shape0 = Shape.of(var0Init.length); Shape shape1 = Shape.of(var1Init.length); - Variable var0 = tf.withName("var0").variable(shape0, TFloat32.DTYPE); - Variable var1 = tf.withName("var1").variable(shape1, TFloat32.DTYPE); + Variable var0 = tf.withName("var0").variable(shape0, TFloat32.class); + Variable var1 = tf.withName("var1").variable(shape1, TFloat32.class); Assign var0Initializer = tf.assign(var0, tf.constant(var0Init)); Assign var1Initializer = tf.assign(var1, tf.constant(var1Init)); diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/MomentumTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/MomentumTest.java index bcfff97773d..80a8d9b5fd6 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/MomentumTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/MomentumTest.java @@ -77,8 +77,8 @@ public void testBasic() { Shape shape0 = Shape.of(var0Init.length); Shape shape1 = Shape.of(var1Init.length); - Variable var0 = tf.withName("var0").variable(shape0, TFloat32.DTYPE); - Variable var1 = tf.withName("var1").variable(shape1, TFloat32.DTYPE); + Variable var0 = tf.withName("var0").variable(shape0, TFloat32.class); + Variable var1 = tf.withName("var1").variable(shape1, TFloat32.class); Assign var0Initializer = tf.assign(var0, tf.constant(var0Init)); Assign var1Initializer = tf.assign(var1, tf.constant(var1Init)); @@ -130,8 +130,8 @@ public void testMomentum() { Shape shape0 = Shape.of(var0Init.length); Shape shape1 = Shape.of(var1Init.length); - Variable var0 = tf.withName("var0").variable(shape0, TFloat32.DTYPE); - Variable var1 = tf.withName("var1").variable(shape1, TFloat32.DTYPE); + Variable var0 = tf.withName("var0").variable(shape0, TFloat32.class); + Variable var1 = tf.withName("var1").variable(shape1, TFloat32.class); Assign var0Initializer = tf.assign(var0, tf.constant(var0Init)); Assign var1Initializer = tf.assign(var1, tf.constant(var1Init)); @@ -148,9 +148,9 @@ public void testMomentum() { Op update = instance.applyGradients(gradsAndVars, "SGDTest"); Variable momentumSlot0 = instance.getSlot(var0.asOutput(), MOMENTUM).get(); - assertEquals(momentumSlot0.asOutput().shape(), var0.asOutput().shape()); + assertEquals(momentumSlot0.shape(), var0.shape()); Variable momentumSlot1 = instance.getSlot(var1.asOutput(), MOMENTUM).get(); - assertEquals(momentumSlot1.asOutput().shape(), var1.asOutput().shape()); + assertEquals(momentumSlot1.shape(), var1.shape()); /* initialize the local variables */ session.run(var0Initializer); diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/NadamTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/NadamTest.java index a583d74246b..849f2fbfec1 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/NadamTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/NadamTest.java @@ -16,7 +16,6 @@ import org.junit.jupiter.api.*; import org.tensorflow.Graph; -import org.tensorflow.Tensor; import org.tensorflow.framework.utils.ND; import org.tensorflow.framework.utils.TestSession; import org.tensorflow.ndarray.FloatNdArray; @@ -102,8 +101,8 @@ public void testBasic() { Shape shape0 = Shape.of(var0Init.length); Shape shape1 = Shape.of(var1Init.length); - Variable var0 = tf.withName("var0").variable(shape0, TFloat32.DTYPE); - Variable var1 = tf.withName("var1").variable(shape1, TFloat32.DTYPE); + Variable var0 = tf.withName("var0").variable(shape0, TFloat32.class); + Variable var1 = tf.withName("var1").variable(shape1, TFloat32.class); Assign var0Initializer = tf.assign(var0, tf.constant(var0Init)); Assign var1Initializer = tf.assign(var1, tf.constant(var1Init)); @@ -124,16 +123,16 @@ public void testBasic() { Variable[] secondMomentSlots = new Variable[2]; firstMomentSlots[0] = instance.getSlot(var0.asOutput(), Nadam.FIRST_MOMENT).get(); - assertEquals(firstMomentSlots[0].asOutput().shape(), var0.asOutput().shape()); + assertEquals(firstMomentSlots[0].shape(), var0.shape()); secondMomentSlots[0] = instance.getSlot(var0.asOutput(), Nadam.SECOND_MOMENT).get(); - assertEquals(secondMomentSlots[0].asOutput().shape(), var0.asOutput().shape()); + assertEquals(secondMomentSlots[0].shape(), var0.shape()); firstMomentSlots[1] = instance.getSlot(var1.asOutput(), Nadam.FIRST_MOMENT).get(); - assertEquals(firstMomentSlots[1].asOutput().shape(), var1.asOutput().shape()); + assertEquals(firstMomentSlots[1].shape(), var1.shape()); secondMomentSlots[1] = instance.getSlot(var1.asOutput(), Nadam.SECOND_MOMENT).get(); - assertEquals(secondMomentSlots[1].asOutput().shape(), var1.asOutput().shape()); + assertEquals(secondMomentSlots[1].shape(), var1.shape()); /* initialize the local variables */ session.run(var0Initializer); @@ -147,15 +146,14 @@ public void testBasic() { session.evaluate(var0Init, var0); session.evaluate(var1Init, var1); - try (Tensor result = - session + try (TFloat32 result = + (TFloat32)session .getGraphSession() .runner() .fetch("momentum") .run() - .get(0) - .expect(TFloat32.DTYPE)) { - result.data().scalars().forEach(f -> assertEquals(1F, f.getFloat(), epsilon1)); + .get(0)) { + result.scalars().forEach(f -> assertEquals(1F, f.getFloat(), epsilon1)); } momentum = 1F; @@ -167,15 +165,14 @@ public void testBasic() { Nadam.BETA_ONE_DEFAULT * (1F - 0.5F * (float) Math.pow(0.96F, (0.004F * (step + 1)))); momentum = momentum * mut; - try (Tensor result = - session + try (TFloat32 result = + (TFloat32)session .getGraphSession() .runner() .fetch("momentum") .run() - .get(0) - .expect(TFloat32.DTYPE)) { - result.data().scalars().forEach(f -> assertEquals(momentum, f.getFloat(), epsilon1)); + .get(0)) { + result.scalars().forEach(f -> assertEquals(momentum, f.getFloat(), epsilon1)); } mcache = ND.mul(mcache, momentum); FloatNdArray[] resultsNP = nadamUpdateNdArray(var0Np, grads0Np, step, m0, v0, mcache); diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/RMSPropTest.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/RMSPropTest.java index 202fb21ef68..3b002cd1dbe 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/RMSPropTest.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/optimizers/RMSPropTest.java @@ -87,8 +87,8 @@ public void testDense() { Shape shape0 = Shape.of(var0Init.length); Shape shape1 = Shape.of(var1Init.length); - Variable var0 = tf.withName("var0").variable(shape0, TFloat32.DTYPE); - Variable var1 = tf.withName("var1").variable(shape1, TFloat32.DTYPE); + Variable var0 = tf.withName("var0").variable(shape0, TFloat32.class); + Variable var1 = tf.withName("var1").variable(shape1, TFloat32.class); Assign var0Initializer = tf.assign(var0, tf.constant(var0Init)); Assign var1Initializer = tf.assign(var1, tf.constant(var1Init)); diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/utils/EagerTestSession.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/utils/EagerTestSession.java index bca90211e50..7884308c9fb 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/utils/EagerTestSession.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/utils/EagerTestSession.java @@ -84,57 +84,57 @@ public EagerSession getEagerSession() { /** {@inheritDoc} */ @Override public void evaluate(double expected, Operand input) { - DataType dtype = input.asOutput().dataType(); - if (dtype == TFloat32.DTYPE) { + Class inputType = input.type(); + if (inputType == TFloat32.class) { Operand o = (Operand) input; AtomicInteger index = new AtomicInteger(); if (debug) { - o.data() + o.asTensor() .scalars() .forEach(f -> System.out.printf("%d). %f\n", index.getAndIncrement(), f.getFloat())); } index.set(0); - o.data().scalars().forEach(f -> assertEquals(expected, f.getFloat(), epsilon)); - } else if (dtype == TFloat64.DTYPE) { + o.asTensor().scalars().forEach(f -> assertEquals(expected, f.getFloat(), epsilon)); + } else if (inputType == TFloat64.class) { Operand o = (Operand) input; AtomicInteger index = new AtomicInteger(); if (debug) { - o.data() + o.asTensor() .scalars() .forEach(f -> System.out.printf("%d). %f\n", index.getAndIncrement(), f.getDouble())); } index.set(0); - o.data().scalars().forEach(f -> assertEquals(expected, f.getDouble(), epsilon)); - } else if (dtype == TInt32.DTYPE) { + o.asTensor().scalars().forEach(f -> assertEquals(expected, f.getDouble(), epsilon)); + } else if (inputType == TInt32.class) { Operand o = (Operand) input; AtomicInteger index = new AtomicInteger(); if (debug) { - o.data() + o.asTensor() .scalars() .forEach(f -> System.out.printf("%d). %d\n", index.getAndIncrement(), f.getInt())); } index.set(0); - o.data().scalars().forEach(f -> assertEquals((int) expected, f.getInt())); - } else if (dtype == TInt64.DTYPE) { + o.asTensor().scalars().forEach(f -> assertEquals((int) expected, f.getInt())); + } else if (inputType == TInt64.class) { Operand o = (Operand) input; AtomicInteger index = new AtomicInteger(); if (debug) { - o.data() + o.asTensor() .scalars() .forEach(f -> System.out.printf("%d). %d\n", index.getAndIncrement(), f.getLong())); } index.set(0); - o.data().scalars().forEach(f -> assertEquals((long) expected, f.getLong())); - } else if (dtype == TUint8.DTYPE) { + o.asTensor().scalars().forEach(f -> assertEquals((long) expected, f.getLong())); + } else if (inputType == TUint8.class) { Operand o = (Operand) input; AtomicInteger index = new AtomicInteger(); if (debug) { - o.data() + o.asTensor() .scalars() .forEach(f -> System.out.printf("%d). %x\n", index.getAndIncrement(), f.getByte())); } index.set(0); - o.data().scalars().forEach(f -> assertEquals((long) expected, f.getByte())); + o.asTensor().scalars().forEach(f -> assertEquals((long) expected, f.getByte())); } } @@ -146,71 +146,71 @@ public void evaluate(Number[] expected, Output input) { expected.length, size, () -> String.format("expected length (%d) != to input length (%d)", expected.length, size)); - DataType dtype = input.dataType(); - if (dtype == TFloat32.DTYPE) { + Class inputType = input.type(); + if (inputType == TFloat32.class) { Output o = (Output) input; AtomicInteger index = new AtomicInteger(); if (debug) { - o.data() + o.asTensor() .scalars() .forEach(f -> System.out.printf("%d). %f\n", index.getAndIncrement(), f.getFloat())); } index.set(0); - o.data() + o.asTensor() .scalars() .forEach( f -> assertEquals( expected[index.getAndIncrement()].floatValue(), f.getFloat(), epsilon)); - } else if (dtype == TFloat64.DTYPE) { + } else if (inputType == TFloat64.class) { Output o = (Output) input; AtomicInteger index = new AtomicInteger(); if (debug) { - o.data() + o.asTensor() .scalars() .forEach(f -> System.out.printf("%d). %f\n", index.getAndIncrement(), f.getDouble())); } index.set(0); - o.data() + o.asTensor() .scalars() .forEach( f -> assertEquals( expected[index.getAndIncrement()].doubleValue(), f.getDouble(), epsilon)); - } else if (dtype == TInt32.DTYPE) { + } else if (inputType == TInt32.class) { Output o = (Output) input; AtomicInteger index = new AtomicInteger(); if (debug) { - o.data() + o.asTensor() .scalars() .forEach(f -> System.out.printf("%d). %d\n", index.getAndIncrement(), f.getInt())); } index.set(0); - o.data() + o.asTensor() .scalars() .forEach(f -> assertEquals(expected[index.getAndIncrement()].intValue(), f.getInt())); - } else if (dtype == TInt64.DTYPE) { + } else if (inputType == TInt64.class) { Output o = (Output) input; AtomicInteger index = new AtomicInteger(); if (debug) { - o.data() + o.asTensor() .scalars() .forEach(f -> System.out.printf("%d). %d\n", index.getAndIncrement(), f.getLong())); } index.set(0); - o.data() + o.asTensor() .scalars() .forEach(f -> assertEquals(expected[index.getAndIncrement()].longValue(), f.getLong())); - } else if (dtype == TUint8.DTYPE) { + } else if (inputType == TUint8.class) { Output o = (Output) input; AtomicInteger index = new AtomicInteger(); if (debug) { - o.data() + o.asTensor() .scalars() .forEach(f -> System.out.printf("%x). %d\n", index.getAndIncrement(), f.getByte())); } index.set(0); - o.data() + o.asTensor() .scalars() .forEach(f -> assertEquals(expected[index.getAndIncrement()].byteValue(), f.getByte())); } @@ -219,69 +219,69 @@ public void evaluate(Number[] expected, Output input) { /** {@inheritDoc} */ @Override public void evaluate(FloatNdArray expected, Output input) { - DataType dtype = input.dataType(); - if (dtype == TFloat32.DTYPE) { + Class inputType = input.type(); + if (inputType == TFloat32.class) { Output o = (Output) input; AtomicLong index = new AtomicLong(); if (debug) { - o.data() + o.asTensor() .scalars() .forEach(f -> System.out.printf("%d). %f\n", index.getAndIncrement(), f.getFloat())); } index.set(0); - o.data() + o.asTensor() .scalars() .forEach( f -> assertEquals(expected.getFloat(index.getAndIncrement()), f.getFloat(), epsilon)); - } else if (dtype == TFloat64.DTYPE) { + } else if (inputType == TFloat64.class) { Output o = (Output) input; AtomicInteger index = new AtomicInteger(); if (debug) { - o.data() + o.asTensor() .scalars() .forEach(f -> System.out.printf("%d). %f\n", index.getAndIncrement(), f.getDouble())); } index.set(0); - o.data() + o.asTensor() .scalars() .forEach( f -> assertEquals(expected.getFloat(index.getAndIncrement()), f.getDouble(), epsilon)); - } else if (dtype == TInt32.DTYPE) { + } else if (inputType == TInt32.class) { Output o = (Output) input; AtomicInteger index = new AtomicInteger(); if (debug) { - o.data() + o.asTensor() .scalars() .forEach(f -> System.out.printf("%d). %d\n", index.getAndIncrement(), f.getInt())); } index.set(0); - for (IntNdArray f : o.data().scalars()) { + for (IntNdArray f : o.asTensor().scalars()) { assertEquals((int) expected.getFloat(index.getAndIncrement()), f.getInt()); } - } else if (dtype == TInt64.DTYPE) { + } else if (inputType == TInt64.class) { Output o = (Output) input; AtomicInteger index = new AtomicInteger(); if (debug) { - o.data() + o.asTensor() .scalars() .forEach(f -> System.out.printf("%d). %d\n", index.getAndIncrement(), f.getLong())); } index.set(0); - o.data() + o.asTensor() .scalars() .forEach( f -> assertEquals((long) expected.getFloat(index.getAndIncrement()), f.getLong())); - } else if (dtype == TUint8.DTYPE) { + } else if (inputType == TUint8.class) { Output o = (Output) input; AtomicInteger index = new AtomicInteger(); if (debug) { - o.data() + o.asTensor() .scalars() .forEach(f -> System.out.printf("%d). %x\n", index.getAndIncrement(), f.getByte())); } index.set(0); - o.data() + o.asTensor() .scalars() .forEach( f -> assertEquals((long) expected.getFloat(index.getAndIncrement()), f.getByte())); @@ -296,10 +296,10 @@ public void evaluateString(Output input, Predicate predicate) { if (debug) { if (isScalar) { System.out.printf( - "0). %b <==> %s\n", predicate.test(input.data().getObject()), input.data().getObject()); + "0). %b <==> %s\n", predicate.test(input.asTensor().getObject()), input.asTensor().getObject()); } else { input - .data() + .asTensor() .scalars() .forEachIndexed( (idx, s) -> @@ -310,9 +310,9 @@ public void evaluateString(Output input, Predicate predicate) { } index.set(0); if (isScalar) { - assertTrue(predicate.test(input.data().getObject())); + assertTrue(predicate.test(input.asTensor().getObject())); } else { - input.data().scalars().forEachIndexed((idx, s) -> assertTrue(predicate.test(s.getObject()))); + input.asTensor().scalars().forEachIndexed((idx, s) -> assertTrue(predicate.test(s.getObject()))); } } @@ -320,16 +320,16 @@ public void evaluateString(Output input, Predicate predicate) { @Override public void evaluate(Output input, Predicate predicate) { AtomicInteger index = new AtomicInteger(); - DataType dtype = input.asOutput().dataType(); + Class inputType = input.type(); boolean isScalar = input.shape().equals(Shape.scalar()); - if (dtype == TFloat32.DTYPE) { + if (inputType == TFloat32.class) { Output o = (Output) input; if (debug) { if (isScalar) { System.out.printf( - "0). %b <==> %f\n", predicate.test(o.data().getFloat()), o.data().getFloat()); + "0). %b <==> %f\n", predicate.test(o.asTensor().getFloat()), o.asTensor().getFloat()); } else { - o.data() + o.asTensor() .scalars() .forEachIndexed( (idx, f) -> @@ -340,20 +340,20 @@ public void evaluate(Output input, Predicate predic } index.set(0); if (isScalar) { - assertTrue(predicate.test(o.data().getFloat())); + assertTrue(predicate.test(o.asTensor().getFloat())); } else { - o.data() + o.asTensor() .scalars() - .forEachIndexed((idx, f) -> assertTrue(predicate.test(o.data().getFloat()))); + .forEachIndexed((idx, f) -> assertTrue(predicate.test(o.asTensor().getFloat()))); } - } else if (dtype == TFloat64.DTYPE) { + } else if (inputType == TFloat64.class) { Output o = (Output) input; if (debug) { if (isScalar) { System.out.printf( - "0). %b <==> %f\n", predicate.test(o.data().getDouble()), o.data().getDouble()); + "0). %b <==> %f\n", predicate.test(o.asTensor().getDouble()), o.asTensor().getDouble()); } else { - o.data() + o.asTensor() .scalars() .forEachIndexed( (idx, f) -> @@ -364,20 +364,20 @@ public void evaluate(Output input, Predicate predic } index.set(0); if (isScalar) { - assertTrue(predicate.test(o.data().getDouble())); + assertTrue(predicate.test(o.asTensor().getDouble())); } else { - o.data() + o.asTensor() .scalars() - .forEachIndexed((idx, f) -> assertTrue(predicate.test(o.data().getDouble()))); + .forEachIndexed((idx, f) -> assertTrue(predicate.test(o.asTensor().getDouble()))); } - } else if (dtype == TFloat16.DTYPE) { + } else if (inputType == TFloat16.class) { Output o = (Output) input; if (debug) { if (isScalar) { System.out.printf( - "0). %b <==> %f\n", predicate.test(o.data().getFloat()), o.data().getFloat()); + "0). %b <==> %f\n", predicate.test(o.asTensor().getFloat()), o.asTensor().getFloat()); } else { - o.data() + o.asTensor() .scalars() .forEachIndexed( (idx, f) -> @@ -388,20 +388,20 @@ public void evaluate(Output input, Predicate predic } index.set(0); if (isScalar) { - assertTrue(predicate.test(o.data().getFloat())); + assertTrue(predicate.test(o.asTensor().getFloat())); } else { - o.data() + o.asTensor() .scalars() - .forEachIndexed((idx, f) -> assertTrue(predicate.test(o.data().getFloat()))); + .forEachIndexed((idx, f) -> assertTrue(predicate.test(o.asTensor().getFloat()))); } - } else if (dtype == TInt32.DTYPE) { + } else if (inputType == TInt32.class) { Output o = (Output) input; if (debug) { if (isScalar) { System.out.printf( - "0). %b <==> %d\n", predicate.test(o.data().getInt()), o.data().getInt()); + "0). %b <==> %d\n", predicate.test(o.asTensor().getInt()), o.asTensor().getInt()); } else { - o.data() + o.asTensor() .scalars() .forEachIndexed( (idx, f) -> @@ -412,20 +412,20 @@ public void evaluate(Output input, Predicate predic } index.set(0); if (isScalar) { - assertTrue(predicate.test(o.data().getInt())); + assertTrue(predicate.test(o.asTensor().getInt())); } else { - o.data() + o.asTensor() .scalars() - .forEachIndexed((idx, f) -> assertTrue(predicate.test(o.data().getInt()))); + .forEachIndexed((idx, f) -> assertTrue(predicate.test(o.asTensor().getInt()))); } - } else if (dtype == TInt64.DTYPE) { + } else if (inputType == TInt64.class) { Output o = (Output) input; if (debug) { if (isScalar) { System.out.printf( - "0). %b <==> %d\n", predicate.test(o.data().getLong()), o.data().getLong()); + "0). %b <==> %d\n", predicate.test(o.asTensor().getLong()), o.asTensor().getLong()); } else { - o.data() + o.asTensor() .scalars() .forEachIndexed( (idx, f) -> @@ -436,20 +436,20 @@ public void evaluate(Output input, Predicate predic } index.set(0); if (isScalar) { - assertTrue(predicate.test(o.data().getLong())); + assertTrue(predicate.test(o.asTensor().getLong())); } else { - o.data() + o.asTensor() .scalars() - .forEachIndexed((idx, f) -> assertTrue(predicate.test(o.data().getLong()))); + .forEachIndexed((idx, f) -> assertTrue(predicate.test(o.asTensor().getLong()))); } - } else if (dtype == TUint8.DTYPE) { + } else if (inputType == TUint8.class) { Output o = (Output) input; if (debug) { if (isScalar) { System.out.printf( - "0). %b <==> %x\n", predicate.test(o.data().getByte()), o.data().getByte()); + "0). %b <==> %x\n", predicate.test(o.asTensor().getByte()), o.asTensor().getByte()); } else { - o.data() + o.asTensor() .scalars() .forEachIndexed( (idx, f) -> @@ -460,14 +460,14 @@ public void evaluate(Output input, Predicate predic } index.set(0); if (isScalar) { - assertTrue(predicate.test(o.data().getByte())); + assertTrue(predicate.test(o.asTensor().getByte())); } else { - o.data() + o.asTensor() .scalars() - .forEachIndexed((idx, f) -> assertTrue(predicate.test(o.data().getByte()))); + .forEachIndexed((idx, f) -> assertTrue(predicate.test(o.asTensor().getByte()))); } } else { - fail("Unexpected DataType: " + dtype); + fail("Unexpected Class: " + inputType); } } @@ -482,13 +482,13 @@ public void evaluate(String[] expected, Output input) { AtomicInteger index = new AtomicInteger(); if (debug) { input - .data() + .asTensor() .scalars() .forEach(f -> System.out.printf("%d). %s\n", index.getAndIncrement(), f.getObject())); } index.set(0); input - .data() + .asTensor() .scalars() .forEach(f -> assertEquals(expected[index.getAndIncrement()], f.getObject())); } @@ -504,13 +504,13 @@ public void evaluate(Boolean[] expected, Output input) { AtomicInteger index = new AtomicInteger(); if (debug) { input - .data() + .asTensor() .scalars() .forEach(f -> System.out.printf("%d). %b\n", index.getAndIncrement(), f.getBoolean())); } index.set(0); input - .data() + .asTensor() .scalars() .forEach(f -> assertEquals(expected[index.getAndIncrement()], f.getBoolean())); } @@ -522,184 +522,184 @@ public void evaluate(Output expected, Output input) { : String.format( "expected shape (%s) != to input shape (%s)", expected.shape().toString(), input.shape().toString()); - DataType dtype = input.asOutput().dataType(); + Class inputType = input.asOutput().type(); boolean isScalar = input.shape().equals(Shape.scalar()); - if (dtype == TFloat32.DTYPE) { + if (inputType == TFloat32.class) { Output x = (Output) expected; Output o = (Output) input; AtomicInteger index = new AtomicInteger(); if (debug) { if (isScalar) { - System.out.printf("0). %f <==> %f\n", x.data().getFloat(), o.data().getFloat()); + System.out.printf("0). %f <==> %f\n", x.asTensor().getFloat(), o.asTensor().getFloat()); } else { - o.data() + o.asTensor() .scalars() .forEachIndexed( (idx, f) -> System.out.printf( "%d). %f <==> %f\n", - index.getAndIncrement(), x.data().getFloat(idx), f.getFloat())); + index.getAndIncrement(), x.asTensor().getFloat(idx), f.getFloat())); } } index.set(0); if (isScalar) { - assertEquals(x.data().getFloat(), o.data().getFloat(), epsilon); + assertEquals(x.asTensor().getFloat(), o.asTensor().getFloat(), epsilon); } else { - o.data() + o.asTensor() .scalars() .forEachIndexed( - (idx, f) -> assertEquals(x.data().getFloat(idx), f.getFloat(), epsilon)); + (idx, f) -> assertEquals(x.asTensor().getFloat(idx), f.getFloat(), epsilon)); } - } else if (dtype == TFloat64.DTYPE) { + } else if (inputType == TFloat64.class) { Output x = (Output) expected; Output o = (Output) input; AtomicInteger index = new AtomicInteger(); if (debug) { if (isScalar) { - System.out.printf("0). %f <==> %f\n", x.data().getDouble(), o.data().getDouble()); + System.out.printf("0). %f <==> %f\n", x.asTensor().getDouble(), o.asTensor().getDouble()); } else { - o.data() + o.asTensor() .scalars() .forEachIndexed( (idx, f) -> System.out.printf( "%d). %f <==> %f\n", - index.getAndIncrement(), x.data().getDouble(idx), f.getDouble())); + index.getAndIncrement(), x.asTensor().getDouble(idx), f.getDouble())); } } index.set(0); if (isScalar) { - assertEquals(x.data().getDouble(), o.data().getDouble(), epsilon); + assertEquals(x.asTensor().getDouble(), o.asTensor().getDouble(), epsilon); } else { - o.data() + o.asTensor() .scalars() .forEachIndexed( - (idx, f) -> assertEquals(x.data().getDouble(idx), f.getDouble(), epsilon)); + (idx, f) -> assertEquals(x.asTensor().getDouble(idx), f.getDouble(), epsilon)); } - } else if (dtype == TInt32.DTYPE) { + } else if (inputType == TInt32.class) { Output x = (Output) expected; Output o = (Output) input; AtomicInteger index = new AtomicInteger(); if (debug) { if (isScalar) { - System.out.printf("0). %d <==> %d\n", x.data().getInt(), o.data().getInt()); + System.out.printf("0). %d <==> %d\n", x.asTensor().getInt(), o.asTensor().getInt()); } else { - o.data() + o.asTensor() .scalars() .forEachIndexed( (idx, f) -> System.out.printf( "%d). %d <==> %d\n", - index.getAndIncrement(), x.data().getInt(idx), f.getInt())); + index.getAndIncrement(), x.asTensor().getInt(idx), f.getInt())); } } index.set(0); if (isScalar) { - assertEquals(x.data().getInt(), o.data().getInt()); + assertEquals(x.asTensor().getInt(), o.asTensor().getInt()); } else { - o.data() + o.asTensor() .scalars() - .forEachIndexed((idx, f) -> assertEquals(x.data().getInt(idx), f.getInt())); + .forEachIndexed((idx, f) -> assertEquals(x.asTensor().getInt(idx), f.getInt())); } - } else if (dtype == TInt64.DTYPE) { + } else if (inputType == TInt64.class) { Output x = (Output) expected; Output o = (Output) input; AtomicInteger index = new AtomicInteger(); if (debug) { if (isScalar) { - System.out.printf("0). %d <==> %d\n", x.data().getLong(), o.data().getLong()); + System.out.printf("0). %d <==> %d\n", x.asTensor().getLong(), o.asTensor().getLong()); } else { - o.data() + o.asTensor() .scalars() .forEachIndexed( (idx, f) -> System.out.printf( "%d). %d <==> %d\n", - index.getAndIncrement(), x.data().getLong(idx), f.getLong())); + index.getAndIncrement(), x.asTensor().getLong(idx), f.getLong())); } } index.set(0); if (isScalar) { - assertEquals(x.data().getLong(), o.data().getLong()); + assertEquals(x.asTensor().getLong(), o.asTensor().getLong()); } else { - o.data() + o.asTensor() .scalars() - .forEachIndexed((idx, f) -> assertEquals(x.data().getLong(idx), f.getLong())); + .forEachIndexed((idx, f) -> assertEquals(x.asTensor().getLong(idx), f.getLong())); } - } else if (dtype == TUint8.DTYPE) { + } else if (inputType == TUint8.class) { Output x = (Output) expected; Output o = (Output) input; AtomicInteger index = new AtomicInteger(); if (debug) { if (isScalar) { - System.out.printf("0). %x <==> %x\n", x.data().getByte(), o.data().getByte()); + System.out.printf("0). %x <==> %x\n", x.asTensor().getByte(), o.asTensor().getByte()); } else { - o.data() + o.asTensor() .scalars() .forEachIndexed( (idx, f) -> System.out.printf( "%d). %x <==> %x\n", - index.getAndIncrement(), x.data().getByte(idx), f.getByte())); + index.getAndIncrement(), x.asTensor().getByte(idx), f.getByte())); } } index.set(0); if (isScalar) { - assertEquals(x.data().getByte(), o.data().getByte()); + assertEquals(x.asTensor().getByte(), o.asTensor().getByte()); } else { - o.data() + o.asTensor() .scalars() - .forEachIndexed((idx, f) -> assertEquals(x.data().getByte(idx), f.getByte())); + .forEachIndexed((idx, f) -> assertEquals(x.asTensor().getByte(idx), f.getByte())); } - } else if (dtype == TString.DTYPE) { + } else if (inputType == TString.class) { Output x = (Output) expected; Output o = (Output) input; AtomicInteger index = new AtomicInteger(); if (debug) { if (isScalar) { - System.out.printf("0). %s <==> %s\n", x.data().getObject(), o.data().getObject()); + System.out.printf("0). %s <==> %s\n", x.asTensor().getObject(), o.asTensor().getObject()); } else { - o.data() + o.asTensor() .scalars() .forEachIndexed( (idx, f) -> System.out.printf( "%d). %s <==> %s\n", - index.getAndIncrement(), x.data().getObject(idx), f.getObject())); + index.getAndIncrement(), x.asTensor().getObject(idx), f.getObject())); } } index.set(0); if (isScalar) { - assertEquals(x.data().getObject(), o.data().getObject()); + assertEquals(x.asTensor().getObject(), o.asTensor().getObject()); } else { - o.data() + o.asTensor() .scalars() - .forEachIndexed((idx, f) -> assertEquals(x.data().getObject(idx), f.getObject())); + .forEachIndexed((idx, f) -> assertEquals(x.asTensor().getObject(idx), f.getObject())); } - } else if (dtype == TBool.DTYPE) { + } else if (inputType == TBool.class) { Output x = (Output) expected; Output o = (Output) input; AtomicInteger index = new AtomicInteger(); if (debug) { if (isScalar) { - System.out.printf("0). %b <==> %b\n", x.data().getBoolean(), o.data().getBoolean()); + System.out.printf("0). %b <==> %b\n", x.asTensor().getBoolean(), o.asTensor().getBoolean()); } else { - o.data() + o.asTensor() .scalars() .forEachIndexed( (idx, f) -> System.out.printf( "%d). %b <==> %b\n", - index.getAndIncrement(), x.data().getBoolean(idx), f.getBoolean())); + index.getAndIncrement(), x.asTensor().getBoolean(idx), f.getBoolean())); } } index.set(0); if (isScalar) { - assertEquals(x.data().getBoolean(), o.data().getBoolean()); + assertEquals(x.asTensor().getBoolean(), o.asTensor().getBoolean()); } else { - o.data() + o.asTensor() .scalars() - .forEachIndexed((idx, f) -> assertEquals(x.data().getBoolean(idx), f.getBoolean())); + .forEachIndexed((idx, f) -> assertEquals(x.asTensor().getBoolean(idx), f.getBoolean())); } } } @@ -707,51 +707,51 @@ public void evaluate(Output expected, Output input) { /** {@inheritDoc} */ @Override public void print(PrintWriter writer, Output input) { - DataType dtype = input.asOutput().dataType(); - if (dtype == TFloat32.DTYPE) { + Class inputType = input.asOutput().type(); + if (inputType == TFloat32.class) { Output o = (Output) input; AtomicInteger index = new AtomicInteger(); - o.data() + o.asTensor() .scalars() .forEach(f -> System.out.printf("%d). %f\n", index.getAndIncrement(), f.getFloat())); - } else if (dtype == TFloat64.DTYPE) { + } else if (inputType == TFloat64.class) { Output o = (Output) input; AtomicInteger index = new AtomicInteger(); - o.data() + o.asTensor() .scalars() .forEach(f -> System.out.printf("%d). %f\n", index.getAndIncrement(), f.getDouble())); - } else if (dtype == TInt32.DTYPE) { + } else if (inputType == TInt32.class) { Output o = (Output) input; AtomicInteger index = new AtomicInteger(); - o.data() + o.asTensor() .scalars() .forEach(f -> System.out.printf("%d). %d\n", index.getAndIncrement(), f.getInt())); - } else if (dtype == TInt64.DTYPE) { + } else if (inputType == TInt64.class) { Output o = (Output) input; AtomicInteger index = new AtomicInteger(); - o.data() + o.asTensor() .scalars() .forEach(f -> System.out.printf("%d). %d\n", index.getAndIncrement(), f.getLong())); - } else if (dtype == TUint8.DTYPE) { + } else if (inputType == TUint8.class) { Output o = (Output) input; AtomicInteger index = new AtomicInteger(); - o.data() + o.asTensor() .scalars() .forEach(f -> System.out.printf("%d). %x\n", index.getAndIncrement(), f.getByte())); - } else if (dtype == TString.DTYPE) { + } else if (inputType == TString.class) { Output o = (Output) input; AtomicInteger index = new AtomicInteger(); - o.data() + o.asTensor() .scalars() .forEach(f -> System.out.printf("%d). %s\n", index.getAndIncrement(), f.getObject())); - } else if (dtype == TBool.DTYPE) { + } else if (inputType == TBool.class) { Output o = (Output) input; AtomicInteger index = new AtomicInteger(); - o.data() + o.asTensor() .scalars() .forEach(f -> System.out.printf("%d). %b\n", index.getAndIncrement(), f.getBoolean())); } else { - writer.println("Unexpected DataType: " + dtype); + writer.println("Unexpected Class: " + inputType); } writer.flush(); } diff --git a/tensorflow-framework/src/test/java/org/tensorflow/framework/utils/GraphTestSession.java b/tensorflow-framework/src/test/java/org/tensorflow/framework/utils/GraphTestSession.java index 33ddec6dce3..33c4e064e69 100644 --- a/tensorflow-framework/src/test/java/org/tensorflow/framework/utils/GraphTestSession.java +++ b/tensorflow-framework/src/test/java/org/tensorflow/framework/utils/GraphTestSession.java @@ -30,27 +30,35 @@ import static org.junit.jupiter.api.Assertions.*; -/** Graph Mode Test Session */ +/** + * Graph Mode Test Session + */ public class GraphTestSession extends TestSession { private final Graph graph; private final Session session; private final Ops tf; - /** Create a Graph mode test session. */ + /** + * Create a Graph mode test session. + */ public GraphTestSession() { graph = new Graph(); session = new Session(graph); tf = Ops.create(graph).withName("test"); } - /** {@inheritDoc} */ + /** + * {@inheritDoc} + */ @Override public Ops getTF() { return tf; } - /** Get the Graph object that is represented by this Test Session */ + /** + * Get the Graph object that is represented by this Test Session + */ public Graph getGraph() { return graph; } @@ -64,133 +72,144 @@ public Session getSession() { return session; } - /** {@inheritDoc} */ + /** + * {@inheritDoc} + */ @Override public void close() { session.close(); graph.close(); } - /** {@inheritDoc} */ + /** + * {@inheritDoc} + */ @Override public boolean isEager() { return false; } - /** {@inheritDoc} */ + /** + * {@inheritDoc} + */ @Override public Session getGraphSession() { return this.session; } - /** {@inheritDoc} */ + /** + * {@inheritDoc} + */ @Override public EagerSession getEagerSession() { return null; } - /** {@inheritDoc} */ + /** + * {@inheritDoc} + */ @Override public void initialize() { graph.initializers().forEach(initializer -> session.runner().addTarget(initializer).run()); } - /** {@inheritDoc} */ + /** + * {@inheritDoc} + */ @Override public void run(Op op) { session.run(op); } - /** {@inheritDoc} */ + /** + * {@inheritDoc} + */ @Override public void evaluate(double expected, Operand input) { - DataType dtype = input.asOutput().dataType(); - if (dtype == TFloat32.DTYPE) { + Class inputType = input.type(); + if (inputType == TFloat32.class) { AtomicInteger index = new AtomicInteger(); if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat32.DTYPE)) { + try (TFloat32 result = + (TFloat32)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach(f -> System.out.printf("%d). %f\n", index.getAndIncrement(), f.getFloat())); } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat32.DTYPE)) { - result.data().scalars().forEach(f -> assertEquals((float) expected, f.getFloat(), epsilon)); + try (TFloat32 result = + (TFloat32)this.getGraphSession().runner().fetch(input).run().get(0)) { + result.scalars().forEach(f -> assertEquals((float) expected, f.getFloat(), epsilon)); } - } else if (dtype == TFloat64.DTYPE) { + } else if (inputType == TFloat64.class) { AtomicInteger index = new AtomicInteger(); if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat64.DTYPE)) { + try (TFloat64 result = + (TFloat64)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach(f -> System.out.printf("%d). %f\n", index.getAndIncrement(), f.getDouble())); } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat64.DTYPE)) { - result.data().scalars().forEach(f -> assertEquals(expected, f.getDouble(), epsilon)); + try (TFloat64 result = + (TFloat64)this.getGraphSession().runner().fetch(input).run().get(0)) { + result.scalars().forEach(f -> assertEquals(expected, f.getDouble(), epsilon)); } - } else if (dtype == TInt32.DTYPE) { + } else if (inputType == TInt32.class) { AtomicInteger index = new AtomicInteger(); if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt32.DTYPE)) { + try (TInt32 result = + (TInt32)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach(f -> System.out.printf("%d). %d\n", index.getAndIncrement(), f.getInt())); } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt32.DTYPE)) { - result.data().scalars().forEach(f -> assertEquals((int) expected, f.getInt())); + try (TInt32 result = + (TInt32)this.getGraphSession().runner().fetch(input).run().get(0)) { + result.scalars().forEach(f -> assertEquals((int) expected, f.getInt())); } - } else if (dtype == TInt64.DTYPE) { + } else if (inputType == TInt64.class) { AtomicInteger index = new AtomicInteger(); if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt64.DTYPE)) { + try (TInt64 result = + (TInt64)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach(f -> System.out.printf("%d). %d\n", index.getAndIncrement(), f.getLong())); } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt64.DTYPE)) { - result.data().scalars().forEach(f -> assertEquals((long) expected, f.getLong())); + try (TInt64 result = + (TInt64)this.getGraphSession().runner().fetch(input).run().get(0)) { + result.scalars().forEach(f -> assertEquals((long) expected, f.getLong())); } - } else if (dtype == TUint8.DTYPE) { + } else if (inputType == TUint8.class) { AtomicInteger index = new AtomicInteger(); if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TUint8.DTYPE)) { + try (TUint8 result = + (TUint8)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach(f -> System.out.printf("%d). %d\n", index.getAndIncrement(), f.getByte())); } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TUint8.DTYPE)) { - result.data().scalars().forEach(f -> assertEquals((long) expected, f.getByte())); + try (TUint8 result = + (TUint8)this.getGraphSession().runner().fetch(input).run().get(0)) { + result.scalars().forEach(f -> assertEquals((long) expected, f.getByte())); } } else { - fail("Unexpected DataType: " + dtype); + fail("Unexpected type class: " + inputType); } } - /** {@inheritDoc} */ + /** + * {@inheritDoc} + */ @Override public void evaluate(Number[] expected, Output input) { int size = input.shape().size() == 0 ? 1 : (int) input.shape().size(); @@ -198,227 +217,211 @@ public void evaluate(Number[] expected, Output input) { expected.length, size, () -> String.format("expected length (%d) != to input length (%d)", expected.length, size)); - DataType dtype = input.asOutput().dataType(); - if (dtype == TFloat32.DTYPE) { + Class inputType = input.type(); + if (inputType == TFloat32.class) { AtomicInteger index = new AtomicInteger(); if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat32.DTYPE)) { + try (TFloat32 result = + (TFloat32)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach(f -> System.out.printf("%d). %f\n", index.getAndIncrement(), f.getFloat())); } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat32.DTYPE)) { + try (TFloat32 result = + (TFloat32)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach( f -> assertEquals( expected[index.getAndIncrement()].floatValue(), f.getFloat(), epsilon)); } - } else if (dtype == TFloat64.DTYPE) { + } else if (inputType == TFloat64.class) { AtomicInteger index = new AtomicInteger(); if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat64.DTYPE)) { + try (TFloat64 result = + (TFloat64)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach(f -> System.out.printf("%d). %f\n", index.getAndIncrement(), f.getDouble())); } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat64.DTYPE)) { + try (TFloat64 result = + (TFloat64)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach( f -> assertEquals( expected[index.getAndIncrement()].doubleValue(), f.getDouble(), epsilon)); } - } else if (dtype == TInt32.DTYPE) { + } else if (inputType == TInt32.class) { AtomicInteger index = new AtomicInteger(); if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt32.DTYPE)) { + try (TInt32 result = + (TInt32)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach(f -> System.out.printf("%d). %d\n", index.getAndIncrement(), f.getInt())); } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt32.DTYPE)) { + try (TInt32 result = + (TInt32)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach(f -> assertEquals(expected[index.getAndIncrement()].intValue(), f.getInt())); } - } else if (dtype == TInt64.DTYPE) { + } else if (inputType == TInt64.class) { AtomicInteger index = new AtomicInteger(); if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt64.DTYPE)) { + try (TInt64 result = + (TInt64)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach(f -> System.out.printf("%d). %d\n", index.getAndIncrement(), f.getLong())); } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt64.DTYPE)) { + try (TInt64 result = + (TInt64)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach(f -> assertEquals(expected[index.getAndIncrement()].longValue(), f.getLong())); } - } else if (dtype == TUint8.DTYPE) { + } else if (inputType == TUint8.class) { AtomicInteger index = new AtomicInteger(); if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TUint8.DTYPE)) { + try (TUint8 result = + (TUint8)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach(f -> System.out.printf("%d). %d\n", index.getAndIncrement(), f.getByte())); } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TUint8.DTYPE)) { + try (TUint8 result = + (TUint8)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach(f -> assertEquals(expected[index.getAndIncrement()].longValue(), f.getByte())); } } else { - fail("Unexpected DataType: " + dtype); + fail("Unexpected type class: " + inputType); } } - /** {@inheritDoc} */ + /** + * {@inheritDoc} + */ @Override public void evaluate(FloatNdArray expected, Output input) { - DataType dtype = input.asOutput().dataType(); - if (dtype == TFloat32.DTYPE) { + Class inputType = input.type(); + if (inputType == TFloat32.class) { AtomicLong index = new AtomicLong(); if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat32.DTYPE)) { + try (TFloat32 result = + (TFloat32)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach(f -> System.out.printf("%d). %f\n", index.getAndIncrement(), f.getFloat())); } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat32.DTYPE)) { + try (TFloat32 result = + (TFloat32)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach( f -> assertEquals( expected.getFloat(index.getAndIncrement()), f.getFloat(), epsilon)); } - } else if (dtype == TFloat64.DTYPE) { + } else if (inputType == TFloat64.class) { AtomicInteger index = new AtomicInteger(); if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat64.DTYPE)) { + try (TFloat64 result = + (TFloat64)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach(f -> System.out.printf("%d). %f\n", index.getAndIncrement(), f.getDouble())); } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat64.DTYPE)) { + try (TFloat64 result = + (TFloat64)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach( f -> assertEquals( expected.getFloat(index.getAndIncrement()), f.getDouble(), epsilon)); } - } else if (dtype == TInt32.DTYPE) { + } else if (inputType == TInt32.class) { AtomicInteger index = new AtomicInteger(); if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt32.DTYPE)) { + try (TInt32 result = + (TInt32)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach(f -> System.out.printf("%d). %d\n", index.getAndIncrement(), f.getInt())); } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt32.DTYPE)) { + try (TInt32 result = + (TInt32)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach( f -> assertEquals((int) expected.getFloat(index.getAndIncrement()), f.getInt())); } - } else if (dtype == TInt64.DTYPE) { + } else if (inputType == TInt64.class) { AtomicInteger index = new AtomicInteger(); if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt64.DTYPE)) { + try (TInt64 result = + (TInt64)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach(f -> System.out.printf("%d). %d\n", index.getAndIncrement(), f.getLong())); } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt64.DTYPE)) { + try (TInt64 result = + (TInt64)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach( f -> assertEquals((long) expected.getFloat(index.getAndIncrement()), f.getLong())); } - } else if (dtype == TUint8.DTYPE) { + } else if (inputType == TUint8.class) { AtomicInteger index = new AtomicInteger(); if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TUint8.DTYPE)) { + try (TUint8 result = + (TUint8)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach(f -> System.out.printf("%d). %d\n", index.getAndIncrement(), f.getByte())); } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TUint8.DTYPE)) { + try (TUint8 result = + (TUint8)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach( f -> assertEquals((long) expected.getFloat(index.getAndIncrement()), f.getByte())); } } else { - fail("Unexpected DataType: " + dtype); + fail("Unexpected type class: " + inputType); } } - /** {@inheritDoc} */ + /** + * {@inheritDoc} + */ @Override public void evaluate(String[] expected, Output input) { int size = input.shape().size() == 0 ? 1 : (int) input.shape().size(); @@ -428,25 +431,25 @@ public void evaluate(String[] expected, Output input) { () -> String.format("expected length (%d) != to input length (%d)", expected.length, size)); AtomicInteger index = new AtomicInteger(); if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TString.DTYPE)) { + try (TString result = + (TString)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach(f -> System.out.printf("%d). %s\n", index.getAndIncrement(), f.getObject())); } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TString.DTYPE)) { + try (TString result = + (TString)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach(f -> assertEquals(expected[index.getAndIncrement()], f.getObject())); } } - /** {@inheritDoc} */ + /** + * {@inheritDoc} + */ @Override public void evaluate(Boolean[] expected, Output input) { int size = input.shape().size() == 0 ? 1 : (int) input.shape().size(); @@ -456,375 +459,360 @@ public void evaluate(Boolean[] expected, Output input) { () -> String.format("expected length (%d) != to input length (%d)", expected.length, size)); AtomicInteger index = new AtomicInteger(); if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TBool.DTYPE)) { + try (TBool result = + (TBool)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach(f -> System.out.printf("%d). %b\n", index.getAndIncrement(), f.getObject())); } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TBool.DTYPE)) { + try (TBool result = + (TBool)this.getGraphSession().runner().fetch(input).run().get(0)) { result - .data() .scalars() .forEach(f -> assertEquals(expected[index.getAndIncrement()], f.getObject())); } } - /** {@inheritDoc} */ + /** + * {@inheritDoc} + */ @Override public void evaluate(Output expected, Output input) { assert input.shape().equals(expected.shape()) : String.format( - "expected shape (%s) != to input shape (%s)", - expected.shape().toString(), input.shape().toString()); + "expected shape (%s) != to input shape (%s)", + expected.shape().toString(), input.shape().toString()); AtomicInteger index = new AtomicInteger(); - DataType dtype = input.asOutput().dataType(); - if (!dtype.equals(expected.dataType())) { + Class inputType = input.type(); + if (!inputType.equals(expected.type())) { throw new IllegalArgumentException( String.format( "Both data type must be equal, inout = %s, expected = %s", - dtype, expected.dataType())); + inputType, expected.dataType())); } boolean isScalar = input.shape().equals(Shape.scalar()); - if (dtype == TFloat32.DTYPE) { + if (inputType == TFloat32.class) { final Output finalExpected = (Output) expected; if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat32.DTYPE); - Tensor expectedResult = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat32.DTYPE)) { + try (TFloat32 result = + (TFloat32)this.getGraphSession().runner().fetch(input).run().get(0); + TFloat32 expectedResult = + (TFloat32)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { System.out.printf( - "0). %f <==> %f\n", expectedResult.data().getFloat(), result.data().getFloat()); + "0). %f <==> %f\n", expectedResult.getFloat(), result.getFloat()); } else { result - .data() .scalars() .forEachIndexed( (idx, f) -> System.out.printf( "%d). %f <==> %f\n", index.getAndIncrement(), - finalExpected.data().getFloat(idx), + finalExpected.asTensor().getFloat(idx), f.getFloat())); } } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat32.DTYPE); - Tensor expectedResult = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat32.DTYPE)) { + try (TFloat32 result = + (TFloat32)this.getGraphSession().runner().fetch(input).run().get(0); + TFloat32 expectedResult = + (TFloat32)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { - assertEquals(expectedResult.data().getFloat(), result.data().getFloat(), epsilon); + assertEquals(expectedResult.getFloat(), result.getFloat(), epsilon); } else { result - .data() .scalars() .forEachIndexed( (idx, f) -> - assertEquals(expectedResult.data().getFloat(idx), f.getFloat(), epsilon)); + assertEquals(expectedResult.getFloat(idx), f.getFloat(), epsilon)); } } - } else if (dtype == TFloat64.DTYPE) { + } else if (inputType == TFloat64.class) { final Output finalExpected = (Output) expected; if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat64.DTYPE); - Tensor expectedResult = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat64.DTYPE)) { + try (TFloat64 result = + (TFloat64)this.getGraphSession().runner().fetch(input).run().get(0); + TFloat64 expectedResult = + (TFloat64)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { System.out.printf( - "0). %f <==> %f\n", expectedResult.data().getDouble(), result.data().getDouble()); + "0). %f <==> %f\n", expectedResult.getDouble(), result.getDouble()); } else { result - .data() .scalars() .forEachIndexed( (idx, f) -> System.out.printf( "%d). %f <==> %f\n", index.getAndIncrement(), - finalExpected.data().getDouble(idx), + finalExpected.asTensor().getDouble(idx), f.getDouble())); } } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat64.DTYPE); - Tensor expectedResult = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat64.DTYPE)) { + try (TFloat64 result = + (TFloat64)this.getGraphSession().runner().fetch(input).run().get(0); + TFloat64 expectedResult = + (TFloat64)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { - assertEquals(expectedResult.data().getDouble(), result.data().getDouble(), epsilon); + assertEquals(expectedResult.getDouble(), result.getDouble(), epsilon); } else { result - .data() .scalars() .forEachIndexed( (idx, f) -> - assertEquals(expectedResult.data().getDouble(idx), f.getDouble(), epsilon)); + assertEquals(expectedResult.getDouble(idx), f.getDouble(), epsilon)); } } - } else if (dtype == TFloat16.DTYPE) { + } else if (inputType == TFloat16.class) { final Output finalExpected = (Output) expected; if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat16.DTYPE); - Tensor expectedResult = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat16.DTYPE)) { + try (TFloat16 result = + (TFloat16)this.getGraphSession().runner().fetch(input).run().get(0); + TFloat16 expectedResult = + (TFloat16)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { System.out.printf( - "0). %f <==> %f\n", expectedResult.data().getFloat(), result.data().getFloat()); + "0). %f <==> %f\n", expectedResult.getFloat(), result.getFloat()); } else { result - .data() - .scalars() - .forEachIndexed( - (idx, f) -> - System.out.printf( - "%d). %f <==> %f\n", - index.getAndIncrement(), - finalExpected.data().getFloat(idx), - f.getFloat())); + .scalars() + .forEachIndexed( + (idx, f) -> + System.out.printf( + "%d). %f <==> %f\n", + index.getAndIncrement(), + finalExpected.asTensor().getFloat(idx), + f.getFloat())); } } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat16.DTYPE); - Tensor expectedResult = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat16.DTYPE)) { + try (TFloat16 result = + (TFloat16)this.getGraphSession().runner().fetch(input).run().get(0); + TFloat16 expectedResult = + (TFloat16)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { - assertEquals(expectedResult.data().getFloat(), result.data().getFloat(), epsilon); + assertEquals(expectedResult.getFloat(), result.getFloat(), epsilon); } else { result - .data() - .scalars() - .forEachIndexed( - (idx, f) -> - assertEquals(expectedResult.data().getFloat(idx), f.getFloat(), epsilon)); + .scalars() + .forEachIndexed( + (idx, f) -> + assertEquals(expectedResult.getFloat(idx), f.getFloat(), epsilon)); } } - } else if (dtype == TInt32.DTYPE) { + } else if (inputType == TInt32.class) { final Output finalExpected = (Output) expected; if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt32.DTYPE); - Tensor expectedResult = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt32.DTYPE)) { + try (TInt32 result = + (TInt32)this.getGraphSession().runner().fetch(input).run().get(0); + TInt32 expectedResult = + (TInt32)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { System.out.printf( - "0). %d <==> %d\n", expectedResult.data().getInt(), result.data().getInt()); + "0). %d <==> %d\n", expectedResult.getInt(), result.getInt()); } else { result - .data() .scalars() .forEachIndexed( (idx, f) -> System.out.printf( "%d). %d <==> %d\n", - index.getAndIncrement(), finalExpected.data().getInt(idx), f.getInt())); + index.getAndIncrement(), finalExpected.asTensor().getInt(idx), f.getInt())); } } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt32.DTYPE); - Tensor expectedResult = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt32.DTYPE)) { + try (TInt32 result = + (TInt32)this.getGraphSession().runner().fetch(input).run().get(0); + TInt32 expectedResult = + (TInt32)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { - assertEquals(expectedResult.data().getInt(), result.data().getInt(), epsilon); + assertEquals(expectedResult.getInt(), result.getInt(), epsilon); } else { result - .data() .scalars() .forEachIndexed( - (idx, f) -> assertEquals(expectedResult.data().getInt(idx), f.getInt(), epsilon)); + (idx, f) -> assertEquals(expectedResult.getInt(idx), f.getInt(), epsilon)); } } - } else if (dtype == TInt64.DTYPE) { + } else if (inputType == TInt64.class) { final Output finalExpected = (Output) expected; if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt64.DTYPE); - Tensor expectedResult = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt64.DTYPE)) { + try (TInt64 result = + (TInt64)this.getGraphSession().runner().fetch(input).run().get(0); + TInt64 expectedResult = + (TInt64)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { System.out.printf( - "0). %d <==> %d\n", expectedResult.data().getLong(), result.data().getLong()); + "0). %d <==> %d\n", expectedResult.getLong(), result.getLong()); } else { result - .data() .scalars() .forEachIndexed( (idx, f) -> System.out.printf( "%d). %d <==> %d\n", index.getAndIncrement(), - finalExpected.data().getLong(idx), + finalExpected.asTensor().getLong(idx), f.getLong())); } } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt64.DTYPE); - Tensor expectedResult = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt64.DTYPE)) { + try (TInt64 result = + (TInt64)this.getGraphSession().runner().fetch(input).run().get(0); + TInt64 expectedResult = + (TInt64)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { - assertEquals(expectedResult.data().getLong(), result.data().getLong(), epsilon); + assertEquals(expectedResult.getLong(), result.getLong(), epsilon); } else { result - .data() .scalars() .forEachIndexed( (idx, f) -> - assertEquals(expectedResult.data().getLong(idx), f.getLong(), epsilon)); + assertEquals(expectedResult.getLong(idx), f.getLong(), epsilon)); } } - } else if (dtype == TUint8.DTYPE) { + } else if (inputType == TUint8.class) { final Output finalExpected = (Output) expected; if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TUint8.DTYPE); - Tensor expectedResult = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TUint8.DTYPE)) { + try (TUint8 result = + (TUint8)this.getGraphSession().runner().fetch(input).run().get(0); + TUint8 expectedResult = + (TUint8)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { System.out.printf( - "0). %d <==> %d\n", expectedResult.data().getByte(), result.data().getByte()); + "0). %d <==> %d\n", expectedResult.getByte(), result.getByte()); } else { result - .data() .scalars() .forEachIndexed( (idx, f) -> System.out.printf( "%d). %d <==> %d\n", index.getAndIncrement(), - finalExpected.data().getByte(idx), + finalExpected.asTensor().getByte(idx), f.getByte())); } } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TUint8.DTYPE); - Tensor expectedResult = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TUint8.DTYPE)) { + try (TUint8 result = + (TUint8)this.getGraphSession().runner().fetch(input).run().get(0); + TUint8 expectedResult = + (TUint8)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { - assertEquals(expectedResult.data().getByte(), result.data().getByte(), epsilon); + assertEquals(expectedResult.getByte(), result.getByte(), epsilon); } else { result - .data() .scalars() .forEachIndexed( (idx, f) -> - assertEquals(expectedResult.data().getByte(idx), f.getByte(), epsilon)); + assertEquals(expectedResult.getByte(idx), f.getByte(), epsilon)); } } - } else if (dtype == TBool.DTYPE) { + } else if (inputType == TBool.class) { final Output finalExpected = (Output) expected; if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TBool.DTYPE); - Tensor expectedResult = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TBool.DTYPE)) { + try (TBool result = + (TBool)this.getGraphSession().runner().fetch(input).run().get(0); + TBool expectedResult = + (TBool)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { System.out.printf( - "0). %b <==> %b\n", expectedResult.data().getBoolean(), result.data().getBoolean()); + "0). %b <==> %b\n", expectedResult.getBoolean(), result.getBoolean()); } else { result - .data() .scalars() .forEachIndexed( (idx, f) -> System.out.printf( "%d). %b <==> %b\n", index.getAndIncrement(), - finalExpected.data().getBoolean(idx), + finalExpected.asTensor().getBoolean(idx), f.getBoolean())); } } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TBool.DTYPE); - Tensor expectedResult = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TBool.DTYPE)) { + try (TBool result = + (TBool)this.getGraphSession().runner().fetch(input).run().get(0); + TBool expectedResult = + (TBool)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { - assertEquals(expectedResult.data().getBoolean(), result.data().getBoolean()); + assertEquals(expectedResult.getBoolean(), result.getBoolean()); } else { result - .data() .scalars() .forEachIndexed( - (idx, f) -> assertEquals(expectedResult.data().getBoolean(idx), f.getBoolean())); + (idx, f) -> assertEquals(expectedResult.getBoolean(idx), f.getBoolean())); } } - } else if (dtype == TString.DTYPE) { + } else if (inputType == TString.class) { final Output finalExpected = (Output) expected; if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TString.DTYPE); - Tensor expectedResult = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TString.DTYPE)) { + try (TString result = + (TString)this.getGraphSession().runner().fetch(input).run().get(0); + TString expectedResult = + (TString)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { System.out.printf( - "0). %s <==> %s\n", expectedResult.data().getObject(), result.data().getObject()); + "0). %s <==> %s\n", expectedResult.getObject(), result.getObject()); } else { result - .data() .scalars() .forEachIndexed( (idx, f) -> System.out.printf( "%d). %s <==> %s\n", index.getAndIncrement(), - finalExpected.data().getObject(idx), + finalExpected.asTensor().getObject(idx), f.getObject())); } } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TString.DTYPE); - Tensor expectedResult = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TString.DTYPE)) { + try (TString result = + (TString)this.getGraphSession().runner().fetch(input).run().get(0); + TString expectedResult = + (TString)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { - assertEquals(expectedResult.data().getObject(), result.data().getObject()); + assertEquals(expectedResult.getObject(), result.getObject()); } else { result - .data() .scalars() .forEachIndexed( - (idx, f) -> assertEquals(expectedResult.data().getObject(idx), f.getObject())); + (idx, f) -> assertEquals(expectedResult.getObject(idx), f.getObject())); } } } else { - fail("Unexpected DataType: " + dtype); + fail("Unexpected type class: " + inputType); } } - /** {@inheritDoc} */ + /** + * {@inheritDoc} + */ @Override public void evaluateString(Output input, Predicate predicate) { boolean isScalar = input.shape().equals(Shape.scalar()); AtomicInteger index = new AtomicInteger(); if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TString.DTYPE)) { + try (TString result = + (TString)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { System.out.printf( "0). %b <==> %s\n", - predicate.test(result.data().getObject()), result.data().getObject()); + predicate.test(result.getObject()), result.getObject()); } else { result - .data() .scalars() .forEachIndexed( (idx, f) -> @@ -835,36 +823,36 @@ public void evaluateString(Output input, Predicate predicate) { } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TString.DTYPE)) { + try (TString result = + (TString)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { - assertTrue(predicate.test(result.data().getObject())); + assertTrue(predicate.test(result.getObject())); } else { result - .data() .scalars() .forEachIndexed((idx, s) -> assertTrue(predicate.test(s.getObject()))); } } } - /** {@inheritDoc} */ + /** + * {@inheritDoc} + */ @Override public void evaluate(Output input, Predicate predicate) { AtomicInteger index = new AtomicInteger(); - DataType dtype = input.asOutput().dataType(); + Class inputType = input.type(); boolean isScalar = input.shape().equals(Shape.scalar()); - if (dtype == TFloat32.DTYPE) { + if (inputType == TFloat32.class) { if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat32.DTYPE)) { + try (TFloat32 result = + (TFloat32)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { System.out.printf( "0). %b <==> %f\n", - predicate.test(result.data().getFloat()), result.data().getFloat()); + predicate.test(result.getFloat()), result.getFloat()); } else { result - .data() .scalars() .forEachIndexed( (idx, f) -> @@ -875,28 +863,26 @@ public void evaluate(Output input, Predicate predic } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat32.DTYPE)) { + try (TFloat32 result = + (TFloat32)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { - assertTrue(predicate.test(result.data().getFloat())); + assertTrue(predicate.test(result.getFloat())); } else { result - .data() .scalars() - .forEachIndexed((idx, f) -> assertTrue(predicate.test(result.data().getFloat()))); + .forEachIndexed((idx, f) -> assertTrue(predicate.test(result.getFloat()))); } } - } else if (dtype == TFloat64.DTYPE) { + } else if (inputType == TFloat64.class) { if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat64.DTYPE)) { + try (TFloat64 result = + (TFloat64)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { System.out.printf( "0). %b <==> %f\n", - predicate.test(result.data().getDouble()), result.data().getDouble()); + predicate.test(result.getDouble()), result.getDouble()); } else { result - .data() .scalars() .forEachIndexed( (idx, f) -> @@ -907,27 +893,25 @@ public void evaluate(Output input, Predicate predic } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat64.DTYPE)) { + try (TFloat64 result = + (TFloat64)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { - assertTrue(predicate.test(result.data().getDouble())); + assertTrue(predicate.test(result.getDouble())); } else { result - .data() .scalars() - .forEachIndexed((idx, f) -> assertTrue(predicate.test(result.data().getDouble()))); + .forEachIndexed((idx, f) -> assertTrue(predicate.test(result.getDouble()))); } } - } else if (dtype == TInt32.DTYPE) { + } else if (inputType == TInt32.class) { if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt32.DTYPE)) { + try (TInt32 result = + (TInt32)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { System.out.printf( - "0). %b <==> %d\n", predicate.test(result.data().getInt()), result.data().getInt()); + "0). %b <==> %d\n", predicate.test(result.getInt()), result.getInt()); } else { result - .data() .scalars() .forEachIndexed( (idx, f) -> @@ -938,28 +922,26 @@ public void evaluate(Output input, Predicate predic } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt32.DTYPE)) { + try (TInt32 result = + (TInt32)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { - assertTrue(predicate.test(result.data().getInt())); + assertTrue(predicate.test(result.getInt())); } else { result - .data() .scalars() - .forEachIndexed((idx, f) -> assertTrue(predicate.test(result.data().getInt()))); + .forEachIndexed((idx, f) -> assertTrue(predicate.test(result.getInt()))); } } - } else if (dtype == TInt64.DTYPE) { + } else if (inputType == TInt64.class) { if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt64.DTYPE)) { + try (TInt64 result = + (TInt64)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { System.out.printf( "0). %b <==> %d\n", - predicate.test(result.data().getLong()), result.data().getLong()); + predicate.test(result.getLong()), result.getLong()); } else { result - .data() .scalars() .forEachIndexed( (idx, f) -> @@ -970,28 +952,26 @@ public void evaluate(Output input, Predicate predic } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt64.DTYPE)) { + try (TInt64 result = + (TInt64)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { - assertTrue(predicate.test(result.data().getLong())); + assertTrue(predicate.test(result.getLong())); } else { result - .data() .scalars() - .forEachIndexed((idx, f) -> assertTrue(predicate.test(result.data().getLong()))); + .forEachIndexed((idx, f) -> assertTrue(predicate.test(result.getLong()))); } } - } else if (dtype == TUint8.DTYPE) { + } else if (inputType == TUint8.class) { if (debug) { - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TUint8.DTYPE)) { + try (TUint8 result = + (TUint8)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { System.out.printf( "0). %b <==> %d\n", - predicate.test(result.data().getByte()), result.data().getByte()); + predicate.test(result.getByte()), result.getByte()); } else { result - .data() .scalars() .forEachIndexed( (idx, f) -> @@ -1002,140 +982,134 @@ public void evaluate(Output input, Predicate predic } } index.set(0); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TUint8.DTYPE)) { + try (TUint8 result = + (TUint8)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { - assertTrue(predicate.test(result.data().getByte())); + assertTrue(predicate.test(result.getByte())); } else { result - .data() .scalars() - .forEachIndexed((idx, f) -> assertTrue(predicate.test(result.data().getByte()))); + .forEachIndexed((idx, f) -> assertTrue(predicate.test(result.getByte()))); } } } else { - fail("Unexpected DataType: " + dtype); + fail("Unexpected type class: " + inputType); } } - /** {@inheritDoc} */ + /** + * {@inheritDoc} + */ @Override public void print(PrintWriter writer, Output input) { - boolean isScalar = input.asOutput().shape().size() == 1; + boolean isScalar = input.shape().size() == 1; - DataType dtype = input.dataType(); - if (dtype == TFloat32.DTYPE) { + Class inputType = input.type(); + if (inputType == TFloat32.class) { AtomicInteger index = new AtomicInteger(); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat32.DTYPE)) { + try (TFloat32 result = + (TFloat32)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { - writer.printf("%d). %f\n", index.getAndIncrement(), result.data().getFloat()); + writer.printf("%d). %f\n", index.getAndIncrement(), result.getFloat()); } else { result - .data() .scalars() .forEachIndexed( (idx, f) -> writer.printf("%d). %f\n", index.getAndIncrement(), f.getFloat())); } } - } else if (dtype == TFloat64.DTYPE) { + } else if (inputType == TFloat64.class) { AtomicInteger index = new AtomicInteger(); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TFloat64.DTYPE)) { + try (TFloat64 result = + (TFloat64)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { writer.printf( - "%d). %f\n", index.getAndIncrement(), ((Output) input).data().getDouble()); + "%d). %f\n", index.getAndIncrement(), ((Output) input).asTensor().getDouble()); } else { result - .data() .scalars() .forEachIndexed( (idx, f) -> writer.printf("%d). %f\n", index.getAndIncrement(), f.getDouble())); } } - } else if (dtype == TInt32.DTYPE) { + } else if (inputType == TInt32.class) { AtomicInteger index = new AtomicInteger(); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt32.DTYPE)) { + try (TInt32 result = + (TInt32)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { writer.printf( - "%d). %d\n", index.getAndIncrement(), ((Output) input).data().getInt()); + "%d). %d\n", index.getAndIncrement(), ((Output) input).asTensor().getInt()); } else { result - .data() .scalars() .forEachIndexed( (idx, f) -> writer.printf("%d). %d\n", index.getAndIncrement(), f.getInt())); } } - } else if (dtype == TInt64.DTYPE) { + } else if (inputType == TInt64.class) { AtomicInteger index = new AtomicInteger(); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TInt64.DTYPE)) { + try (TInt64 result = + (TInt64)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { writer.printf( - "%d). %d\n", index.getAndIncrement(), ((Output) input).data().getLong()); + "%d). %d\n", index.getAndIncrement(), ((Output) input).asTensor().getLong()); } else { result - .data() .scalars() .forEachIndexed( (idx, f) -> writer.printf("%d). %d\n", index.getAndIncrement(), f.getLong())); } } - } else if (dtype == TUint8.DTYPE) { + } else if (inputType == TUint8.class) { AtomicInteger index = new AtomicInteger(); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TUint8.DTYPE)) { + try (TUint8 result = + (TUint8)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { writer.printf( - "%d). %x\n", index.getAndIncrement(), ((Output) input).data().getByte()); + "%d). %x\n", index.getAndIncrement(), ((Output) input).asTensor().getByte()); } else { result - .data() .scalars() .forEachIndexed( (idx, f) -> writer.printf("%d). %x\n", index.getAndIncrement(), f.getByte())); } } - } else if (dtype == TBool.DTYPE) { + } else if (inputType == TBool.class) { AtomicInteger index = new AtomicInteger(); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TBool.DTYPE)) { + try (TBool result = + (TBool)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { writer.printf( - "%d). %b\n", index.getAndIncrement(), ((Output) input).data().getBoolean()); + "%d). %b\n", index.getAndIncrement(), ((Output) input).asTensor().getBoolean()); } else { result - .data() .scalars() .forEachIndexed( (idx, f) -> writer.printf("%d). %b\n", index.getAndIncrement(), f.getBoolean())); } } - } else if (dtype == TString.DTYPE) { + } else if (inputType == TString.class) { AtomicInteger index = new AtomicInteger(); - try (Tensor result = - this.getGraphSession().runner().fetch(input).run().get(0).expect(TString.DTYPE)) { + try (TString result = + (TString)this.getGraphSession().runner().fetch(input).run().get(0)) { if (isScalar) { writer.printf( - "%d). %s\n", index.getAndIncrement(), ((Output) input).data().getObject()); + "%d). %s\n", index.getAndIncrement(), ((Output) input).asTensor().getObject()); } else { result - .data() .scalars() .forEachIndexed( (idx, f) -> writer.printf("%d). %s\n", index.getAndIncrement(), f.getObject())); } } } else { - writer.println("Unexpected DataType: " + dtype); + writer.println("Unexpected type class: " + inputType); } writer.flush(); } diff --git a/tensorflow-framework/tensorflow-data.md b/tensorflow-framework/tensorflow-data.md index 99cd3321788..df0ec190b9f 100644 --- a/tensorflow-framework/tensorflow-data.md +++ b/tensorflow-framework/tensorflow-data.md @@ -39,8 +39,7 @@ FloatNdArray labels = NdArrays.vectorOf(0, 1, 1, 0); ``` A dataset can be constructed from a list of the constant `Operand`s generated -from this dataset, and a list of `DataType` objects corresponding -to the type of each component: +from this dataset, and a list of classes corresponding to the tensor type of each component: Note: Each of the input components must share the same first "batch" dimension. @@ -48,7 +47,7 @@ Note: Each of the input components must share the same first "batch" dimension. Ops tf = // ... TensorFlow Ops accessor (either graph or eager) Dataset dataset = Dataset.fromTensorSlices( Arrays.asList(tf.constant(features), tf.constant(labels)), - Arrays.asList(TInt32.DTYPE, TInt32.DTYPE) + Arrays.asList(TInt32.class, TInt32.class) ); ``` @@ -79,9 +78,6 @@ The primary use of a dataset is for iteration over its elements. Each row (or batch) element is represented as a list of tensor components, with type `List>`. The tensor components of this element can be accessed using `List.get(int index)`. -It is recommended to use `Tensor.expect(DataType dtype)` to restore types -to the retrieved tensors. - #### Using DatastetIterator The `DatasetIterator` class provides abstractions for creating and using iterators in graph and eager mode. These will be explained here; however @@ -89,7 +85,7 @@ end-users should only interact with `DatasetIterator` objects through the method provided in the `Dataset` class (examples to follow). To construct an iterator for a dataset of a specific structure, use -the static method `DatasetIterator.fromStructure(Ops tf, List> outputTypes, List outputShapes)`. This creates a `DatasetIterator` object +the static method `DatasetIterator.fromStructure(Ops tf, List> outputTypes, List outputShapes)`. This creates a `DatasetIterator` object which can be used with any dataset of a matching structure. Once a `DatasetIterator` is created, it can be initialized on a `Dataset` intsance using `DatasetIterator.makeInitializer(Dataset dataset)`. This will initialize (or re-initialize) the iterator to start at the beginning