forked from cocos2d/cocos2d-x
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBone.c
304 lines (281 loc) · 10.6 KB
/
Bone.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
/******************************************************************************
* Spine Runtimes Software License v2.5
*
* Copyright (c) 2013-2016, Esoteric Software
* All rights reserved.
*
* You are granted a perpetual, non-exclusive, non-sublicensable, and
* non-transferable license to use, install, execute, and perform the Spine
* Runtimes software and derivative works solely for personal or internal
* use. Without the written permission of Esoteric Software (see Section 2 of
* the Spine Software License Agreement), you may not (a) modify, translate,
* adapt, or develop new applications using the Spine Runtimes or otherwise
* create derivative works or improvements of the Spine Runtimes or (b) remove,
* delete, alter, or obscure any trademarks or any copyright, trademark, patent,
* or other intellectual property or proprietary rights notices on or in the
* Software, including any copy thereof. Redistributions in binary or source
* form must include this license and terms.
*
* THIS SOFTWARE IS PROVIDED BY ESOTERIC SOFTWARE "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL ESOTERIC SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, BUSINESS INTERRUPTION, OR LOSS OF
* USE, DATA, OR PROFITS) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
#include "spine/Bone.h"
#include "spine/extension.h"
#include <stdio.h>
static int yDown;
void spBone_setYDown (int value) {
yDown = value;
}
int spBone_isYDown () {
return yDown;
}
spBone* spBone_create (spBoneData* data, spSkeleton* skeleton, spBone* parent) {
spBone* self = NEW(spBone);
CONST_CAST(spBoneData*, self->data) = data;
CONST_CAST(spSkeleton*, self->skeleton) = skeleton;
CONST_CAST(spBone*, self->parent) = parent;
CONST_CAST(float, self->a) = 1.0f;
CONST_CAST(float, self->d) = 1.0f;
spBone_setToSetupPose(self);
return self;
}
void spBone_dispose (spBone* self) {
FREE(self->children);
FREE(self);
}
void spBone_updateWorldTransform (spBone* self) {
spBone_updateWorldTransformWith(self, self->x, self->y, self->rotation, self->scaleX, self->scaleY, self->shearX, self->shearY);
}
void spBone_updateWorldTransformWith (spBone* self, float x, float y, float rotation, float scaleX, float scaleY, float shearX, float shearY) {
float cosine, sine;
float pa, pb, pc, pd;
spBone* parent = self->parent;
self->ax = x;
self->ay = y;
self->arotation = rotation;
self->ascaleX = scaleX;
self->ascaleY = scaleY;
self->ashearX = shearX;
self->ashearY = shearY;
self->appliedValid = 1;
if (!parent) { /* Root bone. */
float rotationY = rotation + 90 + shearY;
float la = COS_DEG(rotation + shearX) * scaleX;
float lb = COS_DEG(rotationY) * scaleY;
float lc = SIN_DEG(rotation + shearX) * scaleX;
float ld = SIN_DEG(rotationY) * scaleY;
if (self->skeleton->flipX) {
x = -x;
la = -la;
lb = -lb;
}
if (self->skeleton->flipY != yDown) {
y = -y;
lc = -lc;
ld = -ld;
}
CONST_CAST(float, self->a) = la;
CONST_CAST(float, self->b) = lb;
CONST_CAST(float, self->c) = lc;
CONST_CAST(float, self->d) = ld;
CONST_CAST(float, self->worldX) = x + self->skeleton->x;
CONST_CAST(float, self->worldY) = y + self->skeleton->y;
return;
}
pa = parent->a;
pb = parent->b;
pc = parent->c;
pd = parent->d;
CONST_CAST(float, self->worldX) = pa * x + pb * y + parent->worldX;
CONST_CAST(float, self->worldY) = pc * x + pd * y + parent->worldY;
switch (self->data->transformMode) {
case SP_TRANSFORMMODE_NORMAL: {
float rotationY = rotation + 90 + shearY;
float la = COS_DEG(rotation + shearX) * scaleX;
float lb = COS_DEG(rotationY) * scaleY;
float lc = SIN_DEG(rotation + shearX) * scaleX;
float ld = SIN_DEG(rotationY) * scaleY;
CONST_CAST(float, self->a) = pa * la + pb * lc;
CONST_CAST(float, self->b) = pa * lb + pb * ld;
CONST_CAST(float, self->c) = pc * la + pd * lc;
CONST_CAST(float, self->d) = pc * lb + pd * ld;
return;
}
case SP_TRANSFORMMODE_ONLYTRANSLATION: {
float rotationY = rotation + 90 + shearY;
CONST_CAST(float, self->a) = COS_DEG(rotation + shearX) * scaleX;
CONST_CAST(float, self->b) = COS_DEG(rotationY) * scaleY;
CONST_CAST(float, self->c) = SIN_DEG(rotation + shearX) * scaleX;
CONST_CAST(float, self->d) = SIN_DEG(rotationY) * scaleY;
break;
}
case SP_TRANSFORMMODE_NOROTATIONORREFLECTION: {
float s = pa * pa + pc * pc;
float prx, rx, ry, la, lb, lc, ld;
if (s > 0.0001f) {
s = ABS(pa * pd - pb * pc) / s;
pb = pc * s;
pd = pa * s;
prx = ATAN2(pc, pa) * RAD_DEG;
} else {
pa = 0;
pc = 0;
prx = 90 - ATAN2(pd, pb) * RAD_DEG;
}
rx = rotation + shearX - prx;
ry = rotation + shearY - prx + 90;
la = COS_DEG(rx) * scaleX;
lb = COS_DEG(ry) * scaleY;
lc = SIN_DEG(rx) * scaleX;
ld = SIN_DEG(ry) * scaleY;
CONST_CAST(float, self->a) = pa * la - pb * lc;
CONST_CAST(float, self->b) = pa * lb - pb * ld;
CONST_CAST(float, self->c) = pc * la + pd * lc;
CONST_CAST(float, self->d) = pc * lb + pd * ld;
break;
}
case SP_TRANSFORMMODE_NOSCALE:
case SP_TRANSFORMMODE_NOSCALEORREFLECTION: {
float za, zc, s;
float r, zb, zd, la, lb, lc, ld;
cosine = COS_DEG(rotation); sine = SIN_DEG(rotation);
za = pa * cosine + pb * sine;
zc = pc * cosine + pd * sine;
s = SQRT(za * za + zc * zc);
if (s > 0.00001f) s = 1 / s;
za *= s;
zc *= s;
s = SQRT(za * za + zc * zc);
r = PI / 2 + atan2f(zc, za);
zb = COS(r) * s;
zd = SIN(r) * s;
la = COS_DEG(shearX) * scaleX;
lb = COS_DEG(90 + shearY) * scaleY;
lc = SIN_DEG(shearX) * scaleX;
ld = SIN_DEG(90 + shearY) * scaleY;
if (self->data->transformMode != SP_TRANSFORMMODE_NOSCALEORREFLECTION ? pa * pd - pb * pc < 0 : self->skeleton->flipX != self->skeleton->flipY) {
zb = -zb;
zd = -zd;
}
CONST_CAST(float, self->a) = za * la + zb * lc;
CONST_CAST(float, self->b) = za * lb + zb * ld;
CONST_CAST(float, self->c) = zc * la + zd * lc;
CONST_CAST(float, self->d) = zc * lb + zd * ld;
return;
}
}
if (self->skeleton->flipX) {
CONST_CAST(float, self->a) = -self->a;
CONST_CAST(float, self->b) = -self->b;
}
if (self->skeleton->flipY != yDown) {
CONST_CAST(float, self->c) = -self->c;
CONST_CAST(float, self->d) = -self->d;
}
}
void spBone_setToSetupPose (spBone* self) {
self->x = self->data->x;
self->y = self->data->y;
self->rotation = self->data->rotation;
self->scaleX = self->data->scaleX;
self->scaleY = self->data->scaleY;
self->shearX = self->data->shearX;
self->shearY = self->data->shearY;
}
float spBone_getWorldRotationX (spBone* self) {
return ATAN2(self->c, self->a) * RAD_DEG;
}
float spBone_getWorldRotationY (spBone* self) {
return ATAN2(self->d, self->b) * RAD_DEG;
}
float spBone_getWorldScaleX (spBone* self) {
return SQRT(self->a * self->a + self->c * self->c);
}
float spBone_getWorldScaleY (spBone* self) {
return SQRT(self->b * self->b + self->d * self->d);
}
/** Computes the individual applied transform values from the world transform. This can be useful to perform processing using
* the applied transform after the world transform has been modified directly (eg, by a constraint).
* <p>
* Some information is ambiguous in the world transform, such as -1,-1 scale versus 180 rotation. */
void spBone_updateAppliedTransform (spBone* self) {
spBone* parent = self->parent;
self->appliedValid = 1;
if (!parent) {
self->ax = self->worldX;
self->ay = self->worldY;
self->arotation = ATAN2(self->c, self->a) * RAD_DEG;
self->ascaleX = SQRT(self->a * self->a + self->c * self->c);
self->ascaleY = SQRT(self->b * self->b + self->d * self->d);
self->ashearX = 0;
self->ashearY = ATAN2(self->a * self->b + self->c * self->d, self->a * self->d - self->b * self->c) * RAD_DEG;
} else {
float pa = parent->a, pb = parent->b, pc = parent->c, pd = parent->d;
float pid = 1 / (pa * pd - pb * pc);
float dx = self->worldX - parent->worldX, dy = self->worldY - parent->worldY;
float ia = pid * pd;
float id = pid * pa;
float ib = pid * pb;
float ic = pid * pc;
float ra = ia * self->a - ib * self->c;
float rb = ia * self->b - ib * self->d;
float rc = id * self->c - ic * self->a;
float rd = id * self->d - ic * self->b;
self->ax = (dx * pd * pid - dy * pb * pid);
self->ay = (dy * pa * pid - dx * pc * pid);
self->ashearX = 0;
self->ascaleX = SQRT(ra * ra + rc * rc);
if (self->ascaleX > 0.0001f) {
float det = ra * rd - rb * rc;
self->ascaleY = det / self->ascaleX;
self->ashearY = ATAN2(ra * rb + rc * rd, det) * RAD_DEG;
self->arotation = ATAN2(rc, ra) * RAD_DEG;
} else {
self->ascaleX = 0;
self->ascaleY = SQRT(rb * rb + rd * rd);
self->ashearY = 0;
self->arotation = 90 - ATAN2(rd, rb) * RAD_DEG;
}
}
}
void spBone_worldToLocal (spBone* self, float worldX, float worldY, float* localX, float* localY) {
float a = self->a, b = self->b, c = self->c, d = self->d;
float invDet = 1 / (a * d - b * c);
float x = worldX - self->worldX, y = worldY - self->worldY;
*localX = (x * d * invDet - y * b * invDet);
*localY = (y * a * invDet - x * c * invDet);
}
void spBone_localToWorld (spBone* self, float localX, float localY, float* worldX, float* worldY) {
float x = localX, y = localY;
*worldX = x * self->a + y * self->b + self->worldX;
*worldY = x * self->c + y * self->d + self->worldY;
}
float spBone_worldToLocalRotation (spBone* self, float worldRotation) {
float sine, cosine;
sine = SIN_DEG(worldRotation);
cosine = COS_DEG(worldRotation);
return ATAN2(self->a * sine - self->c * cosine, self->d * cosine - self->b * sine) * RAD_DEG;
}
float spBone_localToWorldRotation (spBone* self, float localRotation) {
float sine, cosine;
sine = SIN_DEG(localRotation);
cosine = COS_DEG(localRotation);
return ATAN2(cosine * self->c + sine * self->d, cosine * self->a + sine * self->b) * RAD_DEG;
}
void spBone_rotateWorld (spBone* self, float degrees) {
float a = self->a, b = self->b, c = self->c, d = self->d;
float cosine = COS_DEG(degrees), sine = SIN_DEG(degrees);
CONST_CAST(float, self->a) = cosine * a - sine * c;
CONST_CAST(float, self->b) = cosine * b - sine * d;
CONST_CAST(float, self->c) = sine * a + cosine * c;
CONST_CAST(float, self->d) = sine * b + cosine * d;
CONST_CAST(int, self->appliedValid) = 0;
}