Skip to content

Commit 4df09a1

Browse files
committed
rm EvalModelTemplate
1 parent 2c44c2b commit 4df09a1

File tree

2 files changed

+85
-34
lines changed

2 files changed

+85
-34
lines changed
Lines changed: 75 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,75 @@
1+
# Copyright The PyTorch Lightning team.
2+
#
3+
# Licensed under the Apache License, Version 2.0 (the "License");
4+
# you may not use this file except in compliance with the License.
5+
# You may obtain a copy of the License at
6+
#
7+
# http://www.apache.org/licenses/LICENSE-2.0
8+
#
9+
# Unless required by applicable law or agreed to in writing, software
10+
# distributed under the License is distributed on an "AS IS" BASIS,
11+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12+
# See the License for the specific language governing permissions and
13+
# limitations under the License.
14+
15+
import pytest
16+
17+
from pytorch_lightning import Trainer
18+
from pytorch_lightning.trainer.states import RunningStage
19+
from tests.helpers.boring_model import BoringModel
20+
21+
22+
def test_num_dataloader_batches(tmpdir):
23+
"""Tests that the correct number of batches are allocated."""
24+
# when we have fewer batches in the dataloader we should use those instead of the limit
25+
model = BoringModel()
26+
trainer = Trainer(limit_val_batches=100, limit_train_batches=100, max_epochs=1, default_root_dir=tmpdir)
27+
trainer.fit(model)
28+
29+
assert len(model.train_dataloader()) == 64
30+
assert len(model.val_dataloader()) == 64
31+
assert isinstance(trainer.num_val_batches, list)
32+
assert trainer.num_val_batches[0] == 64
33+
assert trainer.num_training_batches == 64
34+
35+
# when we have more batches in the dataloader we should limit them
36+
model = BoringModel()
37+
trainer = Trainer(limit_val_batches=7, limit_train_batches=7, max_epochs=1, default_root_dir=tmpdir)
38+
trainer.fit(model)
39+
40+
assert len(model.train_dataloader()) == 64
41+
assert len(model.val_dataloader()) == 64
42+
assert isinstance(trainer.num_val_batches, list)
43+
assert trainer.num_val_batches[0] == 7
44+
assert trainer.num_training_batches == 7
45+
46+
47+
@pytest.mark.parametrize(
48+
["stage", "mode"],
49+
[
50+
(RunningStage.VALIDATING, "val"),
51+
(RunningStage.TESTING, "test"),
52+
(RunningStage.PREDICTING, "predict"),
53+
],
54+
)
55+
def test_eval_limit_batches(stage, mode):
56+
limit_eval_batches = f"limit_{mode}_batches"
57+
dl_hook = f"{mode}_dataloader"
58+
model = BoringModel()
59+
eval_loader = getattr(model, dl_hook)()
60+
61+
limit_batches = 0.1
62+
trainer = Trainer(**{limit_eval_batches: limit_batches})
63+
model.trainer = trainer
64+
trainer._data_connector.attach_dataloaders(model)
65+
loader_num_batches, dataloaders = trainer._reset_eval_dataloader(stage, model=model)
66+
assert loader_num_batches[0] == int(limit_batches * len(eval_loader))
67+
assert len(dataloaders[0]) == len(eval_loader)
68+
69+
limit_batches = 10
70+
trainer = Trainer(**{limit_eval_batches: limit_batches})
71+
model.trainer = trainer
72+
trainer._data_connector.attach_dataloaders(model)
73+
loader_num_batches, dataloaders = trainer._reset_eval_dataloader(stage, model=model)
74+
assert loader_num_batches[0] == limit_batches
75+
assert len(dataloaders[0]) == len(eval_loader)

tests/trainer/flags/test_overfit_batches.py

Lines changed: 10 additions & 34 deletions
Original file line numberDiff line numberDiff line change
@@ -15,9 +15,9 @@
1515
import torch
1616
from torch.utils.data import DataLoader, RandomSampler, Sampler, SequentialSampler
1717

18+
from legacy.simple_classif_training import ClassifDataModule, ClassificationModel
1819
from pytorch_lightning import Trainer
1920
from pytorch_lightning.trainer.states import RunningStage
20-
from tests.base.model_template import EvalModelTemplate
2121
from tests.helpers.boring_model import BoringModel, RandomDataset
2222

2323

@@ -70,32 +70,32 @@ def test_overfit_batch_limits(tmpdir):
7070
# ------------------------------------------------------
7171
# Make sure shuffle is correct across loaders initially
7272
# ------------------------------------------------------
73-
model = EvalModelTemplate()
74-
model.train_dataloader()
73+
model = ClassificationModel()
74+
dm = ClassifDataModule()
7575

7676
# original train loader which should be replaced in all methods
77-
train_loader = model.train_dataloader()
77+
train_loader = dm.train_dataloader()
7878

7979
# make sure the val and tests are not shuffled
8080
assert isinstance(train_loader.sampler, RandomSampler)
81-
assert isinstance(model.val_dataloader().sampler, SequentialSampler)
82-
assert isinstance(model.test_dataloader().sampler, SequentialSampler)
81+
assert isinstance(dm.val_dataloader().sampler, SequentialSampler)
82+
assert isinstance(dm.test_dataloader().sampler, SequentialSampler)
8383

8484
# ------------------------------------------------------
8585
# get the training loader and batch
8686
# ------------------------------------------------------
8787
# Create a reference train dataloader without shuffling.
88-
train_loader = DataLoader(model.train_dataloader().dataset, shuffle=False)
88+
train_loader = DataLoader(dm.train_dataloader().dataset, shuffle=False)
8989
(xa, ya) = next(iter(train_loader))
90-
train_loader = DataLoader(model.train_dataloader().dataset, shuffle=True)
90+
train_loader = DataLoader(dm.train_dataloader().dataset, shuffle=True)
9191
full_train_samples = len(train_loader)
9292
num_train_samples = int(0.11 * full_train_samples)
9393

9494
# ------------------------------------------------------
9595
# set VAL and Test loaders
9696
# ------------------------------------------------------
97-
val_loader = DataLoader(model.val_dataloader().dataset, shuffle=False)
98-
test_loader = DataLoader(model.test_dataloader().dataset, shuffle=False)
97+
val_loader = DataLoader(dm.val_dataloader().dataset, shuffle=False)
98+
test_loader = DataLoader(dm.test_dataloader().dataset, shuffle=False)
9999

100100
# set the model loaders
101101
model.train_dataloader = lambda: train_loader
@@ -165,27 +165,3 @@ def test_overfit_batch_limits(tmpdir):
165165
assert loader_num_batches[0] == 0
166166
else:
167167
assert loader_num_batches[0] == len(test_loader)
168-
169-
# ------------------------------------------------------
170-
# test limit_xxx_batches as percent AND int
171-
# ------------------------------------------------------
172-
if split == RunningStage.VALIDATING:
173-
trainer = Trainer(limit_val_batches=0.1)
174-
trainer._data_connector.attach_dataloaders(model)
175-
loader_num_batches, dataloaders = trainer._reset_eval_dataloader(split, model=model)
176-
assert loader_num_batches[0] == int(0.1 * len(val_loader))
177-
178-
trainer = Trainer(limit_val_batches=10)
179-
trainer._data_connector.attach_dataloaders(model)
180-
loader_num_batches, dataloaders = trainer._reset_eval_dataloader(split, model=model)
181-
assert loader_num_batches[0] == 10
182-
else:
183-
trainer = Trainer(limit_test_batches=0.1)
184-
trainer._data_connector.attach_dataloaders(model)
185-
loader_num_batches, dataloaders = trainer._reset_eval_dataloader(split, model=model)
186-
assert loader_num_batches[0] == int(0.1 * len(test_loader))
187-
188-
trainer = Trainer(limit_test_batches=10)
189-
trainer._data_connector.attach_dataloaders(model)
190-
loader_num_batches, dataloaders = trainer._reset_eval_dataloader(split, model=model)
191-
assert loader_num_batches[0] == 10

0 commit comments

Comments
 (0)