forked from google-gemini/deprecated-generative-ai-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_models.py
551 lines (494 loc) · 20.5 KB
/
test_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
# -*- coding: utf-8 -*-
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
from collections.abc import Iterable
import datetime
import dataclasses
import pathlib
import pytz
from typing import Any, Union
import unittest
from unittest import mock
from absl.testing import absltest
from absl.testing import parameterized
from google.generativeai import protos
from google.api_core import operation
from google.generativeai import models
from google.generativeai import client
from google.generativeai.types import model_types
from google.generativeai import types as genai_types
import pandas as pd
HERE = pathlib.Path(__file__).parent
class UnitTests(parameterized.TestCase):
def setUp(self):
self.client = unittest.mock.MagicMock()
client._client_manager.clients["model"] = self.client
# TODO(markdaoust): Check if typechecking works better if we define this as a
# subclass of `glm.ModelServiceClient`, would pyi files for `glm`. help?
def add_client_method(f):
name = f.__name__
setattr(self.client, name, f)
return f
self.observed_requests = []
self.responses = {}
@add_client_method
def get_model(
request: Union[protos.GetModelRequest, None] = None, *, name=None
) -> protos.Model:
if request is None:
request = protos.GetModelRequest(name=name)
self.assertIsInstance(request, protos.GetModelRequest)
self.observed_requests.append(request)
response = copy.copy(self.responses["get_model"])
return response
@add_client_method
def get_tuned_model(
request: Union[protos.GetTunedModelRequest, None] = None,
*,
name=None,
**kwargs,
) -> protos.TunedModel:
if request is None:
request = protos.GetTunedModelRequest(name=name)
self.assertIsInstance(request, protos.GetTunedModelRequest)
self.observed_requests.append(request)
response = copy.copy(self.responses["get_tuned_model"])
return response
@add_client_method
def list_models(
request: Union[protos.ListModelsRequest, None] = None,
*,
page_size=None,
page_token=None,
**kwargs,
) -> protos.ListModelsResponse:
if request is None:
request = protos.ListModelsRequest(page_size=page_size, page_token=page_token)
self.assertIsInstance(request, protos.ListModelsRequest)
self.observed_requests.append(request)
response = self.responses["list_models"]
return (item for item in response)
@add_client_method
def list_tuned_models(
request: protos.ListTunedModelsRequest = None,
*,
page_size=None,
page_token=None,
**kwargs,
) -> Iterable[protos.TunedModel]:
if request is None:
request = protos.ListTunedModelsRequest(page_size=page_size, page_token=page_token)
self.assertIsInstance(request, protos.ListTunedModelsRequest)
self.observed_requests.append(request)
response = self.responses["list_tuned_models"]
return (item for item in response)
@add_client_method
def update_tuned_model(
request: protos.UpdateTunedModelRequest,
**kwargs,
) -> protos.TunedModel:
self.observed_requests.append(request)
response = self.responses.get("update_tuned_model", None)
if response is None:
response = request.tuned_model
return response
@add_client_method
def delete_tuned_model(name):
request = protos.DeleteTunedModelRequest(name=name)
self.observed_requests.append(request)
response = True
return response
@add_client_method
def create_tuned_model(
request,
**kwargs,
):
request = protos.CreateTunedModelRequest(request)
self.observed_requests.append(request)
return self.responses["create_tuned_model"]
def test_decode_tuned_model_time_round_trip(self):
example_dt = datetime.datetime(2000, 1, 2, 3, 4, 5, 600_000, pytz.UTC)
tuned_model = protos.TunedModel(name="tunedModels/house-mouse-001", create_time=example_dt)
tuned_model = model_types.decode_tuned_model(tuned_model)
self.assertEqual(tuned_model.create_time, example_dt)
@parameterized.named_parameters(
["simple", "models/fake-bison-001"],
["simple-tuned", "tunedModels/my-pig-001"],
["model-instance", protos.Model(name="models/fake-bison-001")],
["tuned-model-instance", protos.TunedModel(name="tunedModels/my-pig-001")],
)
def test_get_model(self, name):
self.responses = {
"get_model": protos.Model(name="models/fake-bison-001"),
"get_tuned_model": protos.TunedModel(name="tunedModels/my-pig-001"),
}
model = models.get_model(name)
if self.observed_requests[0].name.startswith("models/"):
self.assertIsInstance(model, model_types.Model)
else:
self.assertIsInstance(model, model_types.TunedModel)
def test_max_temperature(self):
name = "models/fake-bison-001"
max_temperature = 3.0
self.responses = {
"get_model": protos.Model(name=name, max_temperature=max_temperature),
}
model = models.get_base_model(name)
self.assertEqual(max_temperature, model.max_temperature)
def test_list_models(self):
# The low level lib wraps the response in an iterable, so this is a fair test.
self.responses = {
"list_models": [
protos.Model(name="models/fake-bison-001"),
protos.Model(name="models/fake-bison-002"),
protos.Model(name="models/fake-bison-003"),
]
}
found_models = list(models.list_models())
self.assertLen(found_models, 3)
for m in found_models:
self.assertIsInstance(m, model_types.Model)
def test_list_tuned_models(self):
self.responses = {
# The low level lib wraps the response in an iterable, so this is a fair test.
"list_tuned_models": [
protos.TunedModel(name="tunedModels/my-pig-001"),
protos.TunedModel(name="tunedModels/my-pig-002"),
protos.TunedModel(name="tunedModels/my-pig-003"),
]
}
found_models = list(models.list_tuned_models())
self.assertLen(found_models, 3)
for m in found_models:
self.assertIsInstance(m, model_types.TunedModel)
@parameterized.named_parameters(
[
"edited-protos.model",
protos.TunedModel(
name="tunedModels/my-pig-001",
description="Trained on my data",
),
None,
],
[
"name-and-dict",
"tunedModels/my-pig-001",
{"description": "Trained on my data"},
],
)
def test_update_tuned_model_basics(self, tuned_model, updates):
self.responses["get_tuned_model"] = protos.TunedModel(name="tunedModels/my-pig-001")
# No self.responses['update_tuned_model'] the mock just returns the input.
updated_model = models.update_tuned_model(tuned_model, updates)
updated_model.description = "Trained on my data"
@parameterized.named_parameters(
[
"dict",
{"tuning_task": {"hyperparameters": {"batch_size": 8}}},
],
[
"flat-dict",
{"tuning_task.hyperparameters.batch_size": 8},
],
)
def test_update_tuned_model_nested_fields(self, updates):
self.responses["get_tuned_model"] = protos.TunedModel(
name="tunedModels/my-pig-001", base_model="models/dance-monkey-007"
)
result = models.update_tuned_model("tunedModels/my-pig-001", updates)
self.assertEqual(
result,
model_types.TunedModel(
name="tunedModels/my-pig-001",
source_model="models/dance-monkey-007",
base_model="models/dance-monkey-007",
tuning_task=model_types.TuningTask(
hyperparameters=model_types.Hyperparameters(
batch_size=8, learning_rate=0, epoch_count=0
),
snapshots=[],
),
),
)
@parameterized.named_parameters(
["name", "tunedModels/bipedal-pangolin-223"],
[
"protos.TunedModel",
protos.TunedModel(name="tunedModels/bipedal-pangolin-223"),
],
[
"models.TunedModel",
model_types.TunedModel(name="tunedModels/bipedal-pangolin-223"),
],
)
def test_delete_tuned_model(self, model):
models.delete_tuned_model(model)
self.assertEqual(self.observed_requests[0].name, "tunedModels/bipedal-pangolin-223")
@parameterized.named_parameters(
["simple", "2000-01-01T01:01:01.123456Z", 123456],
["zeros-right", "2000-01-01T01:01:01.100000Z", 100000],
["zeros-left", "2000-01-01T01:01:01.000001Z", 1],
["short", "2000-01-01T01:01:01.12Z", 120000],
["long", "2000-01-01T01:01:01.1234567899999999Z", 123457],
)
def test_decode_micros(self, time_str, micros):
time = {"time": time_str}
model_types.idecode_time(time, "time")
self.assertEqual(time["time"].microsecond, micros)
def test_decode_tuned_model(self):
out_fields = protos.TunedModel(
state=protos.TunedModel.State.CREATING,
create_time="2000-01-01T01:01:01.0Z",
update_time="2001-01-01T01:01:01.0Z",
tuning_task=protos.TuningTask(
hyperparameters=protos.Hyperparameters(
batch_size=72, epoch_count=1, learning_rate=0.1
),
start_time="2002-01-01T01:01:01.0Z",
complete_time="2003-01-01T01:01:01.0Z",
snapshots=[
protos.TuningSnapshot(
step=1,
epoch=1,
compute_time="2004-01-01T01:01:01.0Z",
),
protos.TuningSnapshot(
step=2,
epoch=1,
compute_time="2005-01-01T01:01:01.0Z",
),
],
),
)
decoded = model_types.decode_tuned_model(out_fields)
self.assertEqual(decoded.state, protos.TunedModel.State.CREATING)
self.assertEqual(decoded.create_time.year, 2000)
self.assertEqual(decoded.update_time.year, 2001)
self.assertIsInstance(decoded.tuning_task.hyperparameters, model_types.Hyperparameters)
self.assertEqual(decoded.tuning_task.hyperparameters.batch_size, 72)
self.assertIsInstance(decoded.tuning_task, model_types.TuningTask)
self.assertEqual(decoded.tuning_task.start_time.year, 2002)
self.assertEqual(decoded.tuning_task.complete_time.year, 2003)
self.assertIsInstance(decoded.tuning_task.snapshots, list)
self.assertEqual(decoded.tuning_task.snapshots[0]["compute_time"].year, 2004)
self.assertEqual(decoded.tuning_task.snapshots[1]["compute_time"].year, 2005)
@parameterized.named_parameters(
["simple", protos.TunedModel(base_model="models/swim-fish-000")],
[
"nested",
protos.TunedModel(
tuned_model_source={
"tuned_model": "tunedModels/hidden-fish-55",
"base_model": "models/swim-fish-000",
}
),
],
)
def test_smoke_decode_tuned_model(self, model):
decoded = model_types.decode_tuned_model(model)
self.assertEqual(decoded.base_model, "models/swim-fish-000")
self.assertFalse(decoded.source_model is None)
def test_smoke_create_tuned_model(self):
self.responses["create_tuned_model"] = operation.Operation(
operation.operations_pb2.Operation(), None, None, None
)
models.create_tuned_model(
source_model="models/sneaky-fox-001",
temperature=0.5,
batch_size=32,
training_data=[
("in", "out"),
{"text_input": "in", "output": "out"},
protos.TuningExample(text_input="in", output="out"),
],
)
req = self.observed_requests[-1]
self.assertEqual(req.tuned_model.base_model, "models/sneaky-fox-001")
self.assertEqual(self.observed_requests[-1].tuned_model.temperature, 0.5)
self.assertEqual(req.tuned_model.tuning_task.hyperparameters.batch_size, 32)
self.assertLen(req.tuned_model.tuning_task.training_data.examples.examples, 3)
@parameterized.named_parameters(
["simple", protos.TunedModel(base_model="models/swim-fish-000")],
[
"nested",
protos.TunedModel(
tuned_model_source={
"tuned_model": "tunedModels/hidden-fish-55",
"base_model": "models/swim-fish-000",
}
),
],
)
def test_create_tuned_model_on_tuned_model(self, tuned_source):
self.responses["create_tuned_model"] = operation.Operation(
operation.operations_pb2.Operation(), None, None, None
)
self.responses["get_tuned_model"] = tuned_source
models.create_tuned_model(source_model="tunedModels/swim-fish-001", training_data=[])
self.assertEqual(
self.observed_requests[-1].tuned_model.tuned_model_source.tuned_model,
"tunedModels/swim-fish-001",
)
self.assertEqual(
self.observed_requests[-1].tuned_model.tuned_model_source.base_model,
"models/swim-fish-000",
)
@parameterized.named_parameters(
[
"protos",
protos.Dataset(
examples=protos.TuningExamples(
examples=[
{"text_input": "a", "output": "1"},
{"text_input": "b", "output": "2"},
{"text_input": "c", "output": "3"},
]
)
),
],
[
"list",
[
("a", "1"),
{"text_input": "b", "output": "2"},
protos.TuningExample({"text_input": "c", "output": "3"}),
],
],
["dict", {"text_input": ["a", "b", "c"], "output": ["1", "2", "3"]}],
[
"dict_custom_keys",
{"my_inputs": ["a", "b", "c"], "my_outputs": ["1", "2", "3"]},
"my_inputs",
"my_outputs",
],
[
"pd.DataFrame",
pd.DataFrame(
[
{"text_input": "a", "output": "1"},
{"text_input": "b", "output": "2"},
{"text_input": "c", "output": "3"},
]
),
],
["csv-path-string", str(HERE / "test.csv")],
["csv-path", HERE / "test.csv"],
["json-file-1", HERE / "test1.json"],
["json-file-2", HERE / "test2.json"],
["json-file-3", HERE / "test3.json"],
[
"json-url",
"https://storage.googleapis.com/generativeai-downloads/data/test1.json",
],
[
"csv-url",
"https://storage.googleapis.com/generativeai-downloads/data/test.csv",
],
[
"sheet-share",
"https://docs.google.com/spreadsheets/d/1OffcVSqN6X-RYdWLGccDF3KtnKoIpS7O_9cZbicKK4A/edit?usp=sharing",
],
[
"sheet-export-csv",
"https://docs.google.com/spreadsheets/d/1OffcVSqN6X-RYdWLGccDF3KtnKoIpS7O_9cZbicKK4A/export?format=csv",
],
[
"sheet-with-tab",
"https://docs.google.com/spreadsheets/d/118LXTS3RIkS4yAO68c-cMPP4PwLFTxKYj4R43R7dU0E/edit#gid=1526779134",
],
)
def test_create_dataset(self, data, ik="text_input", ok="output"):
ds = model_types.encode_tuning_data(data, input_key=ik, output_key=ok)
expect = protos.Dataset(
examples=protos.TuningExamples(
examples=[
{"text_input": "a", "output": "1"},
{"text_input": "b", "output": "2"},
{"text_input": "c", "output": "3"},
]
)
)
self.assertEqual(expect, ds)
def test_get_model_called_with_request_options(self):
self.client.get_model = unittest.mock.MagicMock()
name = unittest.mock.ANY
request_options = {"timeout": 120}
try:
models.get_model(name="models/", request_options=request_options)
except AttributeError:
pass
self.client.get_model.assert_called_once_with(name=name, **request_options)
def test_get_tuned_model_called_with_request_options(self):
self.client.get_tuned_model = unittest.mock.MagicMock()
name = unittest.mock.ANY
request_options = genai_types.RequestOptions(timeout=120)
try:
models.get_model(name="tunedModels/", request_options=request_options)
except KeyError:
pass
self.client.get_tuned_model.assert_called_once_with(name=name, **request_options)
def test_list_models_called_with_request_options(self):
self.client.list_models = unittest.mock.MagicMock()
page_size = unittest.mock.ANY
request_options = {"timeout": 120}
list(models.list_models(request_options=request_options))
self.client.list_models.assert_called_once_with(page_size=page_size, **request_options)
def test_list_tuned_models_called_with_request_options(self):
self.client.list_tuned_models = unittest.mock.MagicMock()
page_size = unittest.mock.ANY
request_options = {"timeout": 120}
list(models.list_tuned_models(request_options=request_options))
self.client.list_tuned_models.assert_called_once_with(
page_size=page_size, **request_options
)
def test_update_tuned_model_called_with_request_options(self):
self.client.update_tuned_model = unittest.mock.MagicMock()
request = unittest.mock.ANY
request_options = {"timeout": 120}
self.responses["get_tuned_model"] = protos.TunedModel(name="tunedModels/")
try:
models.update_tuned_model(
tuned_model="tunedModels/",
updates=dict(),
request_options=request_options,
)
except KeyError:
pass
self.client.update_tuned_model.assert_called_once_with(request, **request_options)
def test_delete_tuned_model_called_with_request_options(self):
self.client.delete_tuned_model = unittest.mock.MagicMock()
name = unittest.mock.ANY
request_options = {"timeout": 120}
models.delete_tuned_model("tunedModels/", request_options=request_options)
self.client.delete_tuned_model.assert_called_once_with(name=name, **request_options)
def test_create_tuned_model_called_with_request_options(self):
self.client.create_tuned_model = unittest.mock.MagicMock()
request = unittest.mock.ANY
request_options = {"timeout": 120}
try:
models.create_tuned_model(
source_model="models/sneaky-fox-001",
training_data=[
("in", "out"),
{"text_input": "in", "output": "out"},
protos.TuningExample(text_input="in", output="out"),
],
request_options=request_options,
)
except KeyError:
pass
self.client.create_tuned_model.assert_called_once_with(request, **request_options)
if __name__ == "__main__":
absltest.main()