-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathopencv.cpp
364 lines (306 loc) · 10.9 KB
/
opencv.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
extern "C" {
#include <TH.h>
#include <luaT.h>
}
#include "THpp.hpp"
#include<opencv/cv.h>
#include<opencv/cvaux.h>
#include "common.hpp"
using namespace TH;
//============================================================
// Tracking
//
static int TrackPoints(lua_State* L) {
setLuaState(L);
Tensor<ubyte> im1 = FromLuaStack<Tensor<ubyte> >(1);
Tensor<ubyte> im2 = FromLuaStack<Tensor<ubyte> >(2);
Tensor<float> corresps = FromLuaStack<Tensor<float> >(3);
size_t maxCorners = FromLuaStack<size_t> (4);
float qualityLevel = FromLuaStack<float> (5);
float minDistance = FromLuaStack<float> (6);
int blockSize = FromLuaStack<int> (7);
int winSize = FromLuaStack<int> (8);
int maxLevel = FromLuaStack<int> (9);
bool useHarris = FromLuaStack<bool> (10);
Mat im1_cv, im2_cv, im1_cv_gray;
if (im1.nDimension() == 3) { //color images
im1_cv = TensorToMat3b(im1);
im2_cv = TensorToMat3b(im2);
cvtColor(im1_cv, im1_cv_gray, CV_BGR2GRAY);
} else {
im1_cv = TensorToMat(im1);
im2_cv = TensorToMat(im2);
im1_cv_gray = im1_cv;
}
matf corresps_cv = TensorToMat(corresps);
const Size winSize2(winSize, winSize);
const TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 100, 0.1);
vector<Point2f> points1, points2;
vector<ubyte> status;
vector<float> err;
Mat mask;
goodFeaturesToTrack(im1_cv_gray, points1, maxCorners, qualityLevel, minDistance,
mask, blockSize, useHarris, 0.04f);
calcOpticalFlowPyrLK(im1_cv, im2_cv, points1, points2, status, err, winSize2,
maxLevel, criteria, 0, 0);
size_t i, iCorresps = 0;
for (i = 0; i < points2.size(); ++i)
if (status[i]) {
corresps(iCorresps, 0) = points1[i].x;
corresps(iCorresps, 1) = points1[i].y;
corresps(iCorresps, 2) = points2[i].x;
corresps(iCorresps, 3) = points2[i].y;
++iCorresps;
}
THFloatTensor_narrow(corresps, corresps, 0, 0, iCorresps);
return 0;
}
//============================================================
// Dense Optical Flow
//
extern void cvCalcOpticalFlowBM(const CvArr* prev, const CvArr* curr,
CvSize blockSize, CvSize shiftSize,
CvSize maxRange, int usePrevious,
CvArr* velx, CvArr* vely);
static int DenseOpticalFlowBlockMatching(lua_State *L) {
setLuaState(L);
Tensor<ubyte> im1 = FromLuaStack<Tensor<ubyte> >(1);
Tensor<ubyte> im2 = FromLuaStack<Tensor<ubyte> >(2);
Tensor<float> flow = FromLuaStack<Tensor<float> >(3);
int block_size = FromLuaStack<int >(4);
int shift_size = FromLuaStack<int >(5);
int max_range = FromLuaStack<int >(6);
bool use_previous = FromLuaStack<bool>(7);
CvMat im1_cv = (CvMat)TensorToMat<ubyte>(im1);
CvMat im2_cv = (CvMat)TensorToMat<ubyte>(im2);
Tensor<float> flowy = flow.newSelect(0,0);
Tensor<float> flowx = flow.newSelect(0,1);
Mat vely_m = TensorToMat(flowy);
Mat velx_m = TensorToMat(flowx);
CvMat vely = vely_m;
CvMat velx = velx_m;
cvCalcOpticalFlowBM(&im1_cv, &im2_cv, cvSize(block_size, block_size),
cvSize(shift_size, shift_size),
cvSize(max_range, max_range),
(int)use_previous, &velx, &vely);
return 0;
}
//============================================================
// FREAK
//
vector<FREAK*> freaks_g;
static int CreateFREAK(lua_State* L) {
setLuaState(L);
bool orientedNormalization = FromLuaStack<bool >(1);
bool scaleNormalization = FromLuaStack<bool >(2);
float patternSize = FromLuaStack<float>(3);
int nOctave = FromLuaStack<int >(4);
Tensor<int> trainedPairs = FromLuaStack<Tensor<int> >(5);
vector<int> pairs;
if (trainedPairs.nDimension() != 0)
for (int i = 0; i < trainedPairs.size(0); ++i)
pairs.push_back(trainedPairs(i));
freaks_g.push_back(new FREAK(orientedNormalization, scaleNormalization,
patternSize, nOctave, pairs));
PushOnLuaStack<int>(freaks_g.size()-1);
return 1;
}
static int DeleteFREAK(lua_State* L) {
setLuaState(L);
int iFREAK = FromLuaStack<int >(1);
delete freaks_g[iFREAK];
return 0;
}
static int ComputeFREAKfromKeyPoints(lua_State* L){
setLuaState(L);
Tensor<ubyte> im = FromLuaStack<Tensor<ubyte> >(1);
Tensor<unsigned char> descs = FromLuaStack<Tensor<unsigned char> >(2);
Tensor<float> positions = FromLuaStack<Tensor<float> >(3);
int iFREAK = FromLuaStack<int>(5);
matb im_cv_gray;
if (im.nDimension() == 3) //color images
cvtColor(TensorToMat3b(im), im_cv_gray, CV_BGR2GRAY);
else
im_cv_gray = TensorToMat(im);
cout << positions.size() << endl;
vector<KeyPoint> keypoints (positions.size()[0]);
for (size_t i = 0; i < keypoints.size(); ++i) {
KeyPoint & kpt = keypoints[i];
kpt.pt.x = positions(i,0);
kpt.pt.y = positions(i,1);
}
Mat descs_cv;
FREAK & freak = *(freaks_g[iFREAK]);
freak.compute(im_cv_gray, keypoints, descs_cv);
descs.resize(descs_cv.size().height, descs_cv.size().width);
descs_cv.copyTo(TensorToMat(descs));
return 0;
}
static int ComputeFREAK(lua_State* L) {
setLuaState(L);
Tensor<ubyte> im = FromLuaStack<Tensor<ubyte> >(1);
Tensor<unsigned char> descs = FromLuaStack<Tensor<unsigned char> >(2);
Tensor<float> positions = FromLuaStack<Tensor<float> >(3);
float keypoints_threshold = FromLuaStack<float>(4);
int iFREAK = FromLuaStack<int>(5);
matb im_cv_gray;
if (im.nDimension() == 3) //color images
cvtColor(TensorToMat3b(im), im_cv_gray, CV_BGR2GRAY);
else
im_cv_gray = TensorToMat(im);
// keypoints
vector<KeyPoint> keypoints;
FAST(im_cv_gray, keypoints, keypoints_threshold, true);
// descriptors
FREAK & freak = *(freaks_g[iFREAK]);
Mat descs_cv;
freak.compute(im_cv_gray, keypoints, descs_cv);
// output
positions.resize(keypoints.size(), 4);
for (size_t i = 0; i < keypoints.size(); ++i) {
const KeyPoint & kpt = keypoints[i];
positions(i, 0) = kpt.pt.x;
positions(i, 1) = kpt.pt.y;
positions(i, 2) = kpt.size;
positions(i, 3) = kpt.angle;
}
descs.resize(descs_cv.size().height, descs_cv.size().width);
descs_cv.copyTo(TensorToMat(descs));
return 0;
}
static int TrainFREAK(lua_State* L) {
setLuaState(L);
vector<Tensor<ubyte> > images = FromLuaStack<vector<Tensor<ubyte> > >(1);
Tensor<int> pairs_out = FromLuaStack<Tensor<int> >(2);
size_t iFREAK = FromLuaStack<size_t>(3);
float keypoints_threshold = FromLuaStack<float>(4);
double corrThres = FromLuaStack<double>(5);
vector<Mat> images_cv;
vector<vector<KeyPoint> > keypoints;
for (size_t i = 0; i < images.size(); ++i) {
matb im_gray;
if (images[i].nDimension() == 3)
cvtColor(TensorToMat3b(images[i]), im_gray, CV_BGR2GRAY);
else
im_gray = TensorToMat(images[i]);
images_cv.push_back(im_gray);
keypoints.push_back(vector<KeyPoint>());
FAST(im_gray, keypoints.back(), keypoints_threshold, true);
}
FREAK & freak = *(freaks_g[iFREAK]);
vector<int> pairs = freak.selectPairs(images_cv, keypoints, corrThres, false);
pairs_out.resize(pairs.size());
for (size_t i = 0; i < pairs.size(); ++i)
pairs_out(i) = pairs[i];
return 0;
}
// Just compute the FAST keypoints
static int ComputeFAST(lua_State* L) {
setLuaState(L);
Tensor<ubyte> im = FromLuaStack<Tensor<ubyte> >(1);
Tensor<float> positions = FromLuaStack<Tensor<float> >(2);
float keypoints_threshold = FromLuaStack<float>(3);
matb im_cv_gray;
if (im.nDimension() == 3) //color images
cvtColor(TensorToMat3b(im), im_cv_gray, CV_BGR2GRAY);
else
im_cv_gray = TensorToMat(im);
// keypoints
vector<KeyPoint> keypoints;
FAST(im_cv_gray, keypoints, keypoints_threshold, true);
// output
positions.resize(keypoints.size(), 5);
for (size_t i = 0; i < keypoints.size(); ++i) {
const KeyPoint & kpt = keypoints[i];
positions(i, 0) = kpt.pt.x;
positions(i, 1) = kpt.pt.y;
positions(i, 2) = kpt.size;
positions(i, 3) = kpt.angle;
positions(i, 4) = kpt.response;
}
return 0;
}
inline size_t HammingDistance(unsigned long long int* p1, unsigned long long int* p2,
size_t len) {
size_t dist = 0;
for (size_t i = 0; i < len; ++i) {
dist += __builtin_popcountll(p1[i] ^ p2[i]);
}
return dist;
}
static int MatchFREAK(lua_State* L) {
setLuaState(L);
Tensor<unsigned char> descs1 = FromLuaStack<Tensor<unsigned char> >(1);
Tensor<unsigned char> descs2 = FromLuaStack<Tensor<unsigned char> >(2);
Tensor<long > matches= FromLuaStack<Tensor<long > >(3);
size_t threshold = FromLuaStack<size_t>(4);
descs1.newContiguous();
descs2.newContiguous();
unsigned char* descs1_p = descs1.data();
unsigned char* descs2_p = descs2.data();
const long* s1 = descs1.stride();
const long* s2 = descs2.stride();
matches.resize(descs1.size(0), 2);
THassert(descs1.size(1) % sizeof(unsigned long long int) == 0);
size_t bestj, bestdist, dist;
long iMatches = 0;
for (long i = 0; i < descs1.size(0); ++i) {
bestj = 0;
bestdist = descs1.size(1)*8;
for (long j = i; j < descs2.size(0); ++j) {
dist = HammingDistance((unsigned long long*)(descs1_p + i*s1[0]),
(unsigned long long*)(descs2_p + j*s2[0]),
descs1.size(1)/sizeof(unsigned long long));
if (dist < bestdist) {
bestj = j;
bestdist = dist;
}
}
if (bestdist < threshold) {
matches(iMatches, 0) = i;
matches(iMatches, 1) = bestj;
++iMatches;
}
}
PushOnLuaStack<int>(iMatches);
return 1;
}
// function to sort the KeyPoints returned in DetectorExtractor
struct keyPointCompare {
bool operator ()(const KeyPoint & a, const KeyPoint & b) const {
return a.response>b.response;
}
};
static int version (lua_State* L) {
printf("%s\n", CV_VERSION);
return 0;
}
//============================================================
// Register functions in LUA
//
#define torch_(NAME) TH_CONCAT_3(torch_, Real, NAME)
#define torch_Tensor TH_CONCAT_STRING_3(torch.,Real,Tensor)
#define libopencv24_(NAME) TH_CONCAT_3(libopencv24_, Real, NAME)
static const luaL_reg libopencv24_init [] =
{
{"TrackPoints", TrackPoints},
{"DenseOpticalFlowBlockMatching", DenseOpticalFlowBlockMatching},
{"CreateFREAK", CreateFREAK},
{"DeleteFREAK", DeleteFREAK},
{"ComputeFREAK", ComputeFREAK},
{"ComputeFREAKfromKeyPoints", ComputeFREAKfromKeyPoints},
{"TrainFREAK", TrainFREAK},
{"MatchFREAK", MatchFREAK},
{"ComputeFAST", ComputeFAST},
{"Version", version},
{NULL, NULL}
};
#include "generic/opencv.cpp"
#include "THGenerateFloatTypes.h"
LUA_EXTERNC DLL_EXPORT int luaopen_libopencv24(lua_State *L)
{
luaL_register(L, "libopencv24", libopencv24_init);
libopencv24_FloatMain_init(L);
libopencv24_DoubleMain_init(L);
return 1;
}