-
Notifications
You must be signed in to change notification settings - Fork 503
/
Copy pathmodel_v2w.py
340 lines (287 loc) · 15 KB
/
model_v2w.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Callable, Dict, Optional, Tuple, Union
import torch
from torch import Tensor
from cosmos1.models.diffusion.conditioner import VideoExtendCondition
from cosmos1.models.diffusion.config.base.conditioner import VideoCondBoolConfig
from cosmos1.models.diffusion.diffusion.functional.batch_ops import batch_mul
from cosmos1.models.diffusion.model.model_t2w import DiffusionT2WModel
from cosmos1.utils import log, misc
@dataclass
class VideoDenoisePrediction:
x0: torch.Tensor # clean data prediction
eps: Optional[torch.Tensor] = None # noise prediction
logvar: Optional[torch.Tensor] = None # log variance of noise prediction, can be used a confidence / uncertainty
xt: Optional[torch.Tensor] = None # input to the network, before muliply with c_in
x0_pred_replaced: Optional[torch.Tensor] = None # x0 prediction with condition region replaced by gt_latent
class DiffusionV2WModel(DiffusionT2WModel):
def __init__(self, config):
super().__init__(config)
def augment_conditional_latent_frames(
self,
condition: VideoExtendCondition,
cfg_video_cond_bool: VideoCondBoolConfig,
gt_latent: Tensor,
condition_video_augment_sigma_in_inference: float = 0.001,
sigma: Tensor = None,
seed: int = 1,
) -> Union[VideoExtendCondition, Tensor]:
"""Augments the conditional frames with noise during inference.
Args:
condition (VideoExtendCondition): condition object
condition_video_indicator: binary tensor indicating the region is condition(value=1) or generation(value=0). Bx1xTx1x1 tensor.
condition_video_input_mask: input mask for the network input, indicating the condition region. B,1,T,H,W tensor. will be concat with the input for the network.
cfg_video_cond_bool (VideoCondBoolConfig): video condition bool config
gt_latent (Tensor): ground truth latent tensor in shape B,C,T,H,W
condition_video_augment_sigma_in_inference (float): sigma for condition video augmentation in inference
sigma (Tensor): noise level for the generation region
seed (int): random seed for reproducibility
Returns:
VideoExtendCondition: updated condition object
condition_video_augment_sigma: sigma for the condition region, feed to the network
augment_latent (Tensor): augmented latent tensor in shape B,C,T,H,W
"""
# Inference only, use fixed sigma for the condition region
assert (
condition_video_augment_sigma_in_inference is not None
), "condition_video_augment_sigma_in_inference should be provided"
augment_sigma = condition_video_augment_sigma_in_inference
if augment_sigma >= sigma.flatten()[0]:
# This is a inference trick! If the sampling sigma is smaller than the augment sigma, we will start denoising the condition region together.
# This is achieved by setting all region as `generation`, i.e. value=0
log.debug("augment_sigma larger than sigma or other frame, remove condition")
condition.condition_video_indicator = condition.condition_video_indicator * 0
augment_sigma = torch.tensor([augment_sigma], **self.tensor_kwargs)
# Now apply the augment_sigma to the gt_latent
noise = misc.arch_invariant_rand(
gt_latent.shape,
torch.float32,
self.tensor_kwargs["device"],
seed,
)
augment_latent = gt_latent + noise * augment_sigma[:, None, None, None, None]
_, _, c_in_augment, _ = self.scaling(sigma=augment_sigma)
# Multiply the whole latent with c_in_augment
augment_latent_cin = batch_mul(augment_latent, c_in_augment)
# Since the whole latent will multiply with c_in later, we devide the value to cancel the effect
_, _, c_in, _ = self.scaling(sigma=sigma)
augment_latent_cin = batch_mul(augment_latent_cin, 1 / c_in)
return condition, augment_latent_cin
def denoise(
self,
noise_x: Tensor,
sigma: Tensor,
condition: VideoExtendCondition,
condition_video_augment_sigma_in_inference: float = 0.001,
seed: int = 1,
) -> VideoDenoisePrediction:
"""Denoises input tensor using conditional video generation.
Args:
noise_x (Tensor): Noisy input tensor.
sigma (Tensor): Noise level.
condition (VideoExtendCondition): Condition for denoising.
condition_video_augment_sigma_in_inference (float): sigma for condition video augmentation in inference
seed (int): Random seed for reproducibility
Returns:
VideoDenoisePrediction containing:
- x0: Denoised prediction
- eps: Noise prediction
- logvar: Log variance of noise prediction
- xt: Input before c_in multiplication
- x0_pred_replaced: x0 prediction with condition regions replaced by ground truth
"""
assert (
condition.gt_latent is not None
), f"find None gt_latent in condition, likely didn't call self.add_condition_video_indicator_and_video_input_mask when preparing the condition or this is a image batch but condition.data_type is wrong, get {noise_x.shape}"
gt_latent = condition.gt_latent
cfg_video_cond_bool: VideoCondBoolConfig = self.config.conditioner.video_cond_bool
condition_latent = gt_latent
# Augment the latent with different sigma value, and add the augment_sigma to the condition object if needed
condition, augment_latent = self.augment_conditional_latent_frames(
condition, cfg_video_cond_bool, condition_latent, condition_video_augment_sigma_in_inference, sigma, seed
)
condition_video_indicator = condition.condition_video_indicator # [B, 1, T, 1, 1]
# Compose the model input with condition region (augment_latent) and generation region (noise_x)
new_noise_xt = condition_video_indicator * augment_latent + (1 - condition_video_indicator) * noise_x
# Call the abse model
denoise_pred = super().denoise(new_noise_xt, sigma, condition)
x0_pred_replaced = condition_video_indicator * gt_latent + (1 - condition_video_indicator) * denoise_pred.x0
x0_pred = x0_pred_replaced
return VideoDenoisePrediction(
x0=x0_pred,
eps=batch_mul(noise_x - x0_pred, 1.0 / sigma),
logvar=denoise_pred.logvar,
xt=new_noise_xt,
x0_pred_replaced=x0_pred_replaced,
)
def generate_samples_from_batch(
self,
data_batch: Dict,
guidance: float = 1.5,
seed: int = 1,
state_shape: Tuple | None = None,
n_sample: int | None = None,
is_negative_prompt: bool = False,
num_steps: int = 35,
condition_latent: Union[torch.Tensor, None] = None,
num_condition_t: Union[int, None] = None,
condition_video_augment_sigma_in_inference: float = None,
add_input_frames_guidance: bool = False,
x_sigma_max: Optional[torch.Tensor] = None,
) -> Tensor:
"""Generates video samples conditioned on input frames.
Args:
data_batch: Input data dictionary
guidance: Classifier-free guidance scale
seed: Random seed for reproducibility
state_shape: Shape of output tensor (defaults to model's state shape)
n_sample: Number of samples to generate (defaults to batch size)
is_negative_prompt: Whether to use negative prompting
num_steps: Number of denoising steps
condition_latent: Conditioning frames tensor (B,C,T,H,W)
num_condition_t: Number of frames to condition on
condition_video_augment_sigma_in_inference: Noise level for condition augmentation
add_input_frames_guidance: Whether to apply guidance to input frames
x_sigma_max: Maximum noise level tensor
Returns:
Generated video samples tensor
"""
if n_sample is None:
input_key = self.input_data_key
n_sample = data_batch[input_key].shape[0]
if state_shape is None:
log.debug(f"Default Video state shape is used. {self.state_shape}")
state_shape = self.state_shape
assert condition_latent is not None, "condition_latent should be provided"
x0_fn = self.get_x0_fn_from_batch_with_condition_latent(
data_batch,
guidance,
is_negative_prompt=is_negative_prompt,
condition_latent=condition_latent,
num_condition_t=num_condition_t,
condition_video_augment_sigma_in_inference=condition_video_augment_sigma_in_inference,
add_input_frames_guidance=add_input_frames_guidance,
seed=seed,
)
if x_sigma_max is None:
x_sigma_max = (
misc.arch_invariant_rand(
(n_sample,) + tuple(state_shape),
torch.float32,
self.tensor_kwargs["device"],
seed,
)
* self.sde.sigma_max
)
samples = self.sampler(x0_fn, x_sigma_max, num_steps=num_steps, sigma_max=self.sde.sigma_max)
return samples
def get_x0_fn_from_batch_with_condition_latent(
self,
data_batch: Dict,
guidance: float = 1.5,
is_negative_prompt: bool = False,
condition_latent: torch.Tensor = None,
num_condition_t: Union[int, None] = None,
condition_video_augment_sigma_in_inference: float = None,
add_input_frames_guidance: bool = False,
seed: int = 1,
) -> Callable:
"""Creates denoising function for conditional video generation.
Args:
data_batch: Input data dictionary
guidance: Classifier-free guidance scale
is_negative_prompt: Whether to use negative prompting
condition_latent: Conditioning frames tensor (B,C,T,H,W)
num_condition_t: Number of frames to condition on
condition_video_augment_sigma_in_inference: Noise level for condition augmentation
add_input_frames_guidance: Whether to apply guidance to input frames
seed: Random seed for reproducibility
Returns:
Function that takes noisy input and noise level and returns denoised prediction
"""
if is_negative_prompt:
condition, uncondition = self.conditioner.get_condition_with_negative_prompt(data_batch)
else:
condition, uncondition = self.conditioner.get_condition_uncondition(data_batch)
condition.video_cond_bool = True
condition = self.add_condition_video_indicator_and_video_input_mask(
condition_latent, condition, num_condition_t
)
uncondition.video_cond_bool = False if add_input_frames_guidance else True
uncondition = self.add_condition_video_indicator_and_video_input_mask(
condition_latent, uncondition, num_condition_t
)
def x0_fn(noise_x: torch.Tensor, sigma: torch.Tensor) -> torch.Tensor:
cond_x0 = self.denoise(
noise_x,
sigma,
condition,
condition_video_augment_sigma_in_inference=condition_video_augment_sigma_in_inference,
seed=seed,
).x0_pred_replaced
uncond_x0 = self.denoise(
noise_x,
sigma,
uncondition,
condition_video_augment_sigma_in_inference=condition_video_augment_sigma_in_inference,
seed=seed,
).x0_pred_replaced
return cond_x0 + guidance * (cond_x0 - uncond_x0)
return x0_fn
def add_condition_video_indicator_and_video_input_mask(
self, latent_state: torch.Tensor, condition: VideoExtendCondition, num_condition_t: Union[int, None] = None
) -> VideoExtendCondition:
"""Adds conditioning masks to VideoExtendCondition object.
Creates binary indicators and input masks for conditional video generation.
Args:
latent_state: Input latent tensor (B,C,T,H,W)
condition: VideoExtendCondition object to update
num_condition_t: Number of frames to condition on
Returns:
Updated VideoExtendCondition with added masks:
- condition_video_indicator: Binary tensor marking condition regions
- condition_video_input_mask: Input mask for network
- gt_latent: Ground truth latent tensor
"""
T = latent_state.shape[2]
latent_dtype = latent_state.dtype
condition_video_indicator = torch.zeros(1, 1, T, 1, 1, device=latent_state.device).type(
latent_dtype
) # 1 for condition region
# Only in inference to decide the condition region
assert num_condition_t is not None, "num_condition_t should be provided"
assert num_condition_t <= T, f"num_condition_t should be less than T, get {num_condition_t}, {T}"
log.debug(
f"condition_location first_n, num_condition_t {num_condition_t}, condition.video_cond_bool {condition.video_cond_bool}"
)
condition_video_indicator[:, :, :num_condition_t] += 1.0
condition.gt_latent = latent_state
condition.condition_video_indicator = condition_video_indicator
B, C, T, H, W = latent_state.shape
# Create additional input_mask channel, this will be concatenated to the input of the network
# See design doc section (Implementation detail A.1 and A.2) for visualization
ones_padding = torch.ones((B, 1, T, H, W), dtype=latent_state.dtype, device=latent_state.device)
zeros_padding = torch.zeros((B, 1, T, H, W), dtype=latent_state.dtype, device=latent_state.device)
assert condition.video_cond_bool is not None, "video_cond_bool should be set"
# The input mask indicate whether the input is conditional region or not
if condition.video_cond_bool: # Condition one given video frames
condition.condition_video_input_mask = (
condition_video_indicator * ones_padding + (1 - condition_video_indicator) * zeros_padding
)
else: # Unconditional case, use for cfg
condition.condition_video_input_mask = zeros_padding
return condition