-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathworldConfig.h
183 lines (149 loc) · 5.32 KB
/
worldConfig.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/runtime/common.h"
#include <NvInferRuntime.h>
#include <optional>
#include <vector>
namespace tensorrt_llm::runtime
{
class WorldConfig
{
public:
#if ENABLE_MULTI_DEVICE
static SizeType32 constexpr kDefaultGpusPerNode = 8;
#else
static SizeType32 constexpr kDefaultGpusPerNode = 1;
#endif
explicit WorldConfig(SizeType32 tensorParallelism = 1, SizeType32 pipelineParallelism = 1,
SizeType32 contextParallelism = 1, SizeType32 rank = 0, SizeType32 gpusPerNode = kDefaultGpusPerNode,
std::optional<std::vector<SizeType32>> const& deviceIds = std::nullopt, bool enableAttentionDP = false);
[[nodiscard]] SizeType32 constexpr getSize() const noexcept
{
return mTensorParallelism * mPipelineParallelism * mContextParallelism;
}
[[nodiscard]] SizeType32 constexpr getTensorParallelism() const noexcept
{
return mTensorParallelism;
}
[[nodiscard]] bool constexpr isTensorParallel() const noexcept
{
return mTensorParallelism > 1;
}
[[nodiscard]] SizeType32 constexpr getPipelineParallelism() const noexcept
{
return mPipelineParallelism;
}
[[nodiscard]] bool constexpr isPipelineParallel() const noexcept
{
return mPipelineParallelism > 1;
}
[[nodiscard]] SizeType32 constexpr getContextParallelism() const noexcept
{
return mContextParallelism;
}
[[nodiscard]] bool constexpr isContextParallel() const noexcept
{
return mContextParallelism > 1;
}
[[nodiscard]] SizeType32 constexpr getRank() const noexcept
{
return mRank;
}
[[nodiscard]] SizeType32 constexpr getGpusPerNode() const noexcept
{
return mGpusPerNode;
}
[[nodiscard]] SizeType32 getGpusPerGroup() const noexcept
{
return static_cast<SizeType32>(mDeviceIds.size());
}
[[nodiscard]] SizeType32 getDevice() const noexcept
{
return mDeviceIds[mRank % getGpusPerGroup()];
}
[[nodiscard]] SizeType32 getDeviceOf(SizeType32 rank) const noexcept
{
return mDeviceIds[rank % getGpusPerGroup()];
}
[[nodiscard]] SizeType32 constexpr getPipelineParallelRank() const noexcept
{
return mRank / (mTensorParallelism * mContextParallelism);
}
[[nodiscard]] SizeType32 constexpr getTensorParallelRank() const noexcept
{
return mRank % mTensorParallelism;
}
[[nodiscard]] SizeType32 constexpr getContextParallelRank() const noexcept
{
return (mRank % (mTensorParallelism * mContextParallelism)) / mTensorParallelism;
}
[[nodiscard]] SizeType32 constexpr getLocalRank() const noexcept
{
return mRank % mGpusPerNode;
}
[[nodiscard]] SizeType32 constexpr getNodeRank() const noexcept
{
return mRank / mGpusPerNode;
}
[[nodiscard]] SizeType32 constexpr getNodeRankOf(SizeType32 rank) const noexcept
{
return rank / mGpusPerNode;
}
[[nodiscard]] bool constexpr isFirstPipelineParallelRank() const noexcept
{
return getPipelineParallelRank() == 0;
}
//! \brief Is my rank the last rank in its pipeline?
[[nodiscard]] bool constexpr isLastPipelineParallelRank() const noexcept
{
return getPipelineParallelRank() == getPipelineParallelism() - 1;
}
[[nodiscard]] bool constexpr isFirstTensorParallelRank() const noexcept
{
return getTensorParallelRank() == 0;
}
[[nodiscard]] bool constexpr isFirstContextParallelRank() const noexcept
{
return getContextParallelRank() == 0;
}
[[nodiscard]] SizeType32 constexpr getLastRank() const noexcept
{
return getSize() - 1;
}
[[nodiscard]] bool constexpr enableAttentionDP() const noexcept
{
return mEnableAttenionDP;
}
[[nodiscard]] std::vector<SizeType32> getPipelineParallelGroup() const;
[[nodiscard]] std::vector<SizeType32> getTensorParallelGroup() const;
[[nodiscard]] std::vector<SizeType32> getContextParallelGroup() const;
static WorldConfig mpi(SizeType32 gpusPerNode = kDefaultGpusPerNode,
std::optional<SizeType32> tensorParallelism = std::nullopt,
std::optional<SizeType32> pipelineParallelism = std::nullopt,
std::optional<SizeType32> contextParallelism = std::nullopt,
std::optional<std::vector<SizeType32>> const& deviceIds = std::nullopt, bool enableAttentionDP = false);
[[nodiscard]] bool validMpiConfig() const;
private:
SizeType32 mTensorParallelism;
SizeType32 mPipelineParallelism;
SizeType32 mContextParallelism;
SizeType32 mRank;
SizeType32 mGpusPerNode;
bool mEnableAttenionDP;
std::vector<SizeType32> mDeviceIds;
};
} // namespace tensorrt_llm::runtime