-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathmhaRunner.h
268 lines (209 loc) · 8.67 KB
/
mhaRunner.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/*
* SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef TRT_MHA_RUNNER_H
#define TRT_MHA_RUNNER_H
// Need 10.1 for cublasGemmStridedBatchedEx
#include <cuda.h>
#if CUDA_VERSION >= 10010
#include "NvInferPlugin.h"
#include "common/cublasWrapper.h"
#include "zeroPadding2d.h"
#include <math.h>
#include <string>
#include <vector>
using namespace nvinfer1::pluginInternal;
namespace nvinfer1
{
namespace plugin
{
namespace bert
{
// Multi Head Attention runner
class MHARunner
{
public:
MHARunner(nvinfer1::DataType const type, int32_t const numHeads)
: mType(type)
, mS(0)
, mB(0)
, mOmatSize(0)
, mNumMats(0)
, mNumHeads(numHeads)
, mHeadSize(0)
, mWordSize(getElementSize(type))
, mLdQKV(0)
, mStrideQKV(0)
, mLdOut(0)
, mStrideOut(0)
, mRsqrtHeadSize(0)
{
}
virtual ~MHARunner() = default;
virtual void setup(int32_t S, int32_t B, int32_t headSize)
{
PLUGIN_ASSERT(S);
PLUGIN_ASSERT(B);
mB = B;
mS = S;
mHeadSize = headSize;
mRsqrtHeadSize = 1.F / std::sqrt(headSize);
mLdQKV = 3 * B * mNumHeads * mHeadSize;
mStrideQKV = 3 * mHeadSize;
mLdOut = B * mNumHeads * mHeadSize;
mStrideOut = mHeadSize;
mOmatSize = S * S;
mNumMats = B * mNumHeads;
}
virtual void run(nvinfer1::PluginTensorDesc const& inputDesc, nvinfer1::PluginTensorDesc const& outputDesc,
void const* qkvPtr, void const* maskPtr, void* output, void* workspace, cudaStream_t stream,
nvinfer1::pluginInternal::cublasHandle_t cublas)
= 0;
virtual void run(nvinfer1::PluginTensorDesc const* inputDesc, nvinfer1::PluginTensorDesc const* outputDesc,
void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream,
nvinfer1::pluginInternal::cublasHandle_t cublas)
= 0;
virtual size_t getSerializationSize() const noexcept;
virtual void serialize(void* buffer) const noexcept;
virtual void deserialize(void const* data, size_t length);
virtual size_t getWorkspaceSize() const = 0;
virtual bool isValid(int32_t headSize, int32_t s) const = 0;
protected:
nvinfer1::DataType mType;
int32_t mS;
int32_t mB;
int32_t mOmatSize;
int32_t mNumMats;
int32_t mNumHeads;
int32_t mHeadSize;
int32_t mWordSize;
int32_t mLdQKV;
int32_t mStrideQKV;
int32_t mLdOut;
int32_t mStrideOut;
float mRsqrtHeadSize;
};
class UnfusedMHARunner : public MHARunner
{
public:
UnfusedMHARunner(nvinfer1::DataType const type, int32_t const numHeads, int32_t const smVersion);
virtual ~UnfusedMHARunner();
virtual void setup(int32_t S, int32_t B, int32_t headSize) override;
void run(nvinfer1::PluginTensorDesc const& inputDesc, nvinfer1::PluginTensorDesc const& outputDesc,
void const* qkvPtr, void const* maskPtr, void* output, void* workspace, cudaStream_t stream,
nvinfer1::pluginInternal::cublasHandle_t cublas) override;
void run(nvinfer1::PluginTensorDesc const* inputDesc, nvinfer1::PluginTensorDesc const* outputDesc,
void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream,
nvinfer1::pluginInternal::cublasHandle_t cublas) override;
size_t getWorkspaceSize() const override;
size_t getSerializationSize() const noexcept override;
void serialize(void* buffer) const noexcept override;
void deserialize(void const* data, size_t length) override;
bool isValid(int32_t headSize, int32_t s) const override;
private:
bool mIsBestAlgoFound{};
int32_t mAlgoBatchedEx1{};
int32_t mAlgoBatchedEx2{};
int32_t mSm{};
};
class FusedMHARunnerFP16 : public MHARunner
{
public:
FusedMHARunnerFP16(int32_t const numHeads, int32_t const sm);
~FusedMHARunnerFP16() = default; // for pimpl
virtual void setup(int32_t S, int32_t B, int32_t headSize) override;
void run(nvinfer1::PluginTensorDesc const& inputDesc, nvinfer1::PluginTensorDesc const& outputDesc,
void const* qkvPtr, void const* maskPtr, void* output, void* workspace, cudaStream_t stream,
nvinfer1::pluginInternal::cublasHandle_t cublas) override;
void run(nvinfer1::PluginTensorDesc const* inputDesc, nvinfer1::PluginTensorDesc const* outputDesc,
void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream,
nvinfer1::pluginInternal::cublasHandle_t cublas) override;
size_t getWorkspaceSize() const override;
void deserialize(void const* data, size_t length) override;
bool isValid(int32_t headSize, int32_t s) const override;
private:
int32_t mSm;
class mhaImpl;
std::unique_ptr<mhaImpl> pimpl;
};
class FusedMHARunnerInt8 : public MHARunner
{
public:
FusedMHARunnerInt8(int32_t const numHeads, int32_t const sm, float const dqProbs);
~FusedMHARunnerInt8() = default; // for pimpl
virtual void setup(int32_t S, int32_t B, int32_t headSize) override;
void run(nvinfer1::PluginTensorDesc const& inputDesc, nvinfer1::PluginTensorDesc const& outputDesc,
void const* qkvPtr, void const* maskPtr, void* output, void* workspace, cudaStream_t stream,
nvinfer1::pluginInternal::cublasHandle_t cublas) override;
void run(nvinfer1::PluginTensorDesc const* inputDesc, nvinfer1::PluginTensorDesc const* outputDesc,
void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream,
nvinfer1::pluginInternal::cublasHandle_t cublas) override;
size_t getWorkspaceSize() const override;
void deserialize(void const* data, size_t length) override;
bool isValid(int32_t headSize, int32_t s) const override;
private:
float mDqProbs;
int32_t mSm;
class mhaImpl;
std::unique_ptr<mhaImpl> pimpl;
};
class FusedMHARunnerFP16v2 : public MHARunner
{
public:
FusedMHARunnerFP16v2(int32_t const numHeads, int32_t const sm);
~FusedMHARunnerFP16v2() = default; // for pimpl
virtual void setup(int32_t S, int32_t B, int32_t headSize) override;
void run(nvinfer1::PluginTensorDesc const& inputDesc, nvinfer1::PluginTensorDesc const& outputDesc,
void const* qkvPtr, void const* maskPtr, void* output, void* workspace, cudaStream_t stream,
nvinfer1::pluginInternal::cublasHandle_t cublas) override;
void run(nvinfer1::PluginTensorDesc const* inputDesc, nvinfer1::PluginTensorDesc const* outputDesc,
void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream,
nvinfer1::pluginInternal::cublasHandle_t cublas) override;
size_t getWorkspaceSize() const override;
void deserialize(void const* data, size_t length) override;
bool isValid(int32_t headSize, int32_t s) const override;
private:
int32_t mSm;
class mhaImpl;
std::unique_ptr<mhaImpl> pimpl;
};
class FusedMHARunnerInt8v2 : public MHARunner
{
public:
FusedMHARunnerInt8v2(int32_t const numHeads, int32_t const sm, float const dqProbs, bool const useInt8ScaleMax);
~FusedMHARunnerInt8v2() = default; // for pimpl
virtual void setup(int32_t S, int32_t B, int32_t headSize) override;
void run(nvinfer1::PluginTensorDesc const& inputDesc, nvinfer1::PluginTensorDesc const& outputDesc,
void const* qkvPtr, void const* maskPtr, void* output, void* workspace, cudaStream_t stream,
nvinfer1::pluginInternal::cublasHandle_t cublas) override;
void run(nvinfer1::PluginTensorDesc const* inputDesc, nvinfer1::PluginTensorDesc const* outputDesc,
void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream,
nvinfer1::pluginInternal::cublasHandle_t cublas) override;
size_t getWorkspaceSize() const override;
void deserialize(void const* data, size_t length) override;
bool isValid(int32_t headSize, int32_t s) const override;
private:
float mDqProbs;
int32_t mSm;
class mhaImpl;
std::unique_ptr<mhaImpl> pimpl;
bool mUseInt8ScaleMax{true};
};
} // namespace bert
} // namespace plugin
} // namespace nvinfer1
#endif // TRT_MHA_RUNNER_H
#endif // CUDA_VERSION >= 10010