-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathplugin_utils.py
157 lines (133 loc) · 5.41 KB
/
plugin_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from cuda import cuda, cudart, nvrtc
import numpy as np
import os
import argparse
import threading
import tensorrt as trt
import cupy as cp
def parseArgs():
parser = argparse.ArgumentParser(
description="Options for Circular Padding plugin C++ example"
)
parser.add_argument(
"--precision",
type=str,
default="fp32",
choices=["fp32", "fp16"],
help="Precision to use for plugin",
)
return parser.parse_args()
def volume(d):
return np.prod(d)
# Taken from https://github.com/NVIDIA/cuda-python/blob/main/examples/common/helper_cuda.py
def checkCudaErrors(result):
def _cudaGetErrorEnum(error):
if isinstance(error, cuda.CUresult):
err, name = cuda.cuGetErrorName(error)
return name if err == cuda.CUresult.CUDA_SUCCESS else "<unknown>"
elif isinstance(error, cudart.cudaError_t):
return cudart.cudaGetErrorName(error)[1]
elif isinstance(error, nvrtc.nvrtcResult):
return nvrtc.nvrtcGetErrorString(error)[1]
else:
raise RuntimeError("Unknown error type: {}".format(error))
if result[0].value:
raise RuntimeError(
"CUDA error code={}({})".format(
result[0].value, _cudaGetErrorEnum(result[0])
)
)
if len(result) == 1:
return None
elif len(result) == 2:
return result[1]
else:
return result[1:]
def getComputeCapacity(devID):
major = checkCudaErrors(cudart.cudaDeviceGetAttribute(cudart.cudaDeviceAttr.cudaDevAttrComputeCapabilityMajor, devID))
minor = checkCudaErrors(cudart.cudaDeviceGetAttribute(cudart.cudaDeviceAttr.cudaDevAttrComputeCapabilityMinor, devID))
# Redirect 12.1 to 12.0 since 12.1 can reuse 12.0 cubins and this can save lib size and compile time.
if major == 12 and minor == 1:
minor = 0
return (major, minor)
# Taken from https://github.com/NVIDIA/cuda-python/blob/main/examples/common/common.py
class KernelHelper:
def __init__(self, code, devID):
prog = checkCudaErrors(
nvrtc.nvrtcCreateProgram(str.encode(code), b"sourceCode.cu", 0, [], [])
)
CUDA_HOME = os.getenv("CUDA_HOME")
if CUDA_HOME == None:
CUDA_HOME = os.getenv("CUDA_PATH")
if CUDA_HOME == None:
raise RuntimeError("Environment variable CUDA_HOME or CUDA_PATH is not set")
include_dirs = os.path.join(CUDA_HOME, "include")
# Initialize CUDA
checkCudaErrors(cudart.cudaFree(0))
major, minor = getComputeCapacity(devID)
_, nvrtc_minor = checkCudaErrors(nvrtc.nvrtcVersion())
use_cubin = nvrtc_minor >= 1
prefix = "sm" if use_cubin else "compute"
arch_arg = bytes(f"--gpu-architecture={prefix}_{major}{minor}", "ascii")
try:
opts = [
b"--fmad=true",
arch_arg,
"--include-path={}".format(include_dirs).encode("UTF-8"),
b"--std=c++11",
b"-default-device",
]
checkCudaErrors(nvrtc.nvrtcCompileProgram(prog, len(opts), opts))
except RuntimeError as err:
logSize = checkCudaErrors(nvrtc.nvrtcGetProgramLogSize(prog))
log = b" " * logSize
checkCudaErrors(nvrtc.nvrtcGetProgramLog(prog, log))
print(log.decode())
print(err)
exit(-1)
if use_cubin:
dataSize = checkCudaErrors(nvrtc.nvrtcGetCUBINSize(prog))
data = b" " * dataSize
checkCudaErrors(nvrtc.nvrtcGetCUBIN(prog, data))
else:
dataSize = checkCudaErrors(nvrtc.nvrtcGetPTXSize(prog))
data = b" " * dataSize
checkCudaErrors(nvrtc.nvrtcGetPTX(prog, data))
self.module = checkCudaErrors(cuda.cuModuleLoadData(np.char.array(data)))
def getFunction(self, name):
return checkCudaErrors(cuda.cuModuleGetFunction(self.module, name))
class CudaCtxManager(trt.IPluginResource):
def __init__(self, device=None):
trt.IPluginResource.__init__(self)
self.device = device
self.cuda_ctx = None
def clone(self):
cloned = CudaCtxManager()
cloned.__dict__.update(self.__dict__)
# Delay the CUDA ctx creation until clone()
# since only a cloned resource is registered by TRT
_, cloned.cuda_ctx = cuda.cuCtxCreate(0, self.device)
return cloned
def release(self):
checkCudaErrors(cuda.cuCtxDestroy(self.cuda_ctx))
class UnownedMemory:
def __init__(self, ptr, shape, dtype):
mem = cp.cuda.UnownedMemory(ptr, volume(shape) * cp.dtype(dtype).itemsize, self)
cupy_ptr = cp.cuda.MemoryPointer(mem, 0)
self.d = cp.ndarray(shape, dtype=dtype, memptr=cupy_ptr)