-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathcreate_model.py
35 lines (29 loc) · 1.24 KB
/
create_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy as np
import onnx
import onnx_graphsurgeon as gs
def main():
input0 = gs.Variable(name="input0", dtype=np.float32, shape=('n_rows', 8))
input1 = gs.Variable(name="input1", dtype=np.float32, shape=('n_rows', 8))
output = gs.Variable(name="output", dtype=np.float32, )
node = gs.Node(op="Concat", inputs=[input0, input1], outputs=[output], attrs={"axis": 0})
graph = gs.Graph(nodes=[node], inputs=[input0, input1], outputs=[output])
model = gs.export_onnx(graph)
onnx.save(model, "concat_layer.onnx")
if __name__ == '__main__':
main()