|
| 1 | +/** |
| 2 | + Descripton : |
| 3 | + Source :https://blog.anudeep2011.com/heavy-light-decomposition/ |
| 4 | +*/ |
| 5 | + |
| 6 | + |
| 7 | +#include <cstdio> |
| 8 | +#include <vector> |
| 9 | +using namespace std; |
| 10 | + |
| 11 | +#define root 0 |
| 12 | +#define N 10100 |
| 13 | +#define LN 14 |
| 14 | + |
| 15 | +vector <int> adj[N], costs[N], indexx[N]; |
| 16 | +int baseArray[N], ptr; |
| 17 | +int chainNo, chainInd[N], chainHead[N], posInBase[N]; |
| 18 | +int depth[N], pa[LN][N], otherEnd[N], subsize[N]; |
| 19 | +int st[N*6], qt[N*6]; |
| 20 | + |
| 21 | +/* |
| 22 | + * make_tree: |
| 23 | + * Used to construct the segment tree. It uses the baseArray for construction |
| 24 | + */ |
| 25 | +void make_tree(int cur, int s, int e) { |
| 26 | + if(s == e-1) { |
| 27 | + st[cur] = baseArray[s]; |
| 28 | + return; |
| 29 | + } |
| 30 | + int c1 = (cur<<1), c2 = c1 | 1, m = (s+e)>>1; |
| 31 | + make_tree(c1, s, m); |
| 32 | + make_tree(c2, m, e); |
| 33 | + st[cur] = st[c1] > st[c2] ? st[c1] : st[c2]; |
| 34 | +} |
| 35 | + |
| 36 | +/* |
| 37 | + * update_tree: |
| 38 | + * Point update. Update a single element of the segment tree. |
| 39 | + */ |
| 40 | +void update_tree(int cur, int s, int e, int x, int val) { |
| 41 | + if(s > x || e <= x) return; |
| 42 | + if(s == x && s == e-1) { |
| 43 | + st[cur] = val; |
| 44 | + return; |
| 45 | + } |
| 46 | + int c1 = (cur<<1), c2 = c1 | 1, m = (s+e)>>1; |
| 47 | + update_tree(c1, s, m, x, val); |
| 48 | + update_tree(c2, m, e, x, val); |
| 49 | + st[cur] = st[c1] > st[c2] ? st[c1] : st[c2]; |
| 50 | +} |
| 51 | + |
| 52 | +/* |
| 53 | + * query_tree: |
| 54 | + * Given S and E, it will return the maximum value in the range [S,E) |
| 55 | + */ |
| 56 | +void query_tree(int cur, int s, int e, int S, int E) { |
| 57 | + if(s >= E || e <= S) { |
| 58 | + qt[cur] = -1; |
| 59 | + return; |
| 60 | + } |
| 61 | + if(s >= S && e <= E) { |
| 62 | + qt[cur] = st[cur]; |
| 63 | + return; |
| 64 | + } |
| 65 | + int c1 = (cur<<1), c2 = c1 | 1, m = (s+e)>>1; |
| 66 | + query_tree(c1, s, m, S, E); |
| 67 | + query_tree(c2, m, e, S, E); |
| 68 | + qt[cur] = qt[c1] > qt[c2] ? qt[c1] : qt[c2]; |
| 69 | +} |
| 70 | + |
| 71 | +/* |
| 72 | + * query_up: |
| 73 | + * It takes two nodes u and v, condition is that v is an ancestor of u |
| 74 | + * We query the chain in which u is present till chain head, then move to next chain up |
| 75 | + * We do that way till u and v are in the same chain, we query for that part of chain and break |
| 76 | + */ |
| 77 | + |
| 78 | +int query_up(int u, int v) { |
| 79 | + if(u == v) return 0; // Trivial |
| 80 | + int uchain, vchain = chainInd[v], ans = -1; |
| 81 | + // uchain and vchain are chain numbers of u and v |
| 82 | + while(1) { |
| 83 | + uchain = chainInd[u]; |
| 84 | + if(uchain == vchain) { |
| 85 | + // Both u and v are in the same chain, so we need to query from u to v, update answer and break. |
| 86 | + // We break because we came from u up till v, we are done |
| 87 | + if(u==v) break; |
| 88 | + query_tree(1, 0, ptr, posInBase[v]+1, posInBase[u]+1); |
| 89 | + // Above is call to segment tree query function |
| 90 | + if(qt[1] > ans) ans = qt[1]; // Update answer |
| 91 | + break; |
| 92 | + } |
| 93 | + query_tree(1, 0, ptr, posInBase[chainHead[uchain]], posInBase[u]+1); |
| 94 | + // Above is call to segment tree query function. We do from chainHead of u till u. That is the whole chain from |
| 95 | + // start till head. We then update the answer |
| 96 | + if(qt[1] > ans) ans = qt[1]; |
| 97 | + u = chainHead[uchain]; // move u to u's chainHead |
| 98 | + u = pa[0][u]; //Then move to its parent, that means we changed chains |
| 99 | + } |
| 100 | + return ans; |
| 101 | +} |
| 102 | + |
| 103 | +/* |
| 104 | + * LCA: |
| 105 | + * Takes two nodes u, v and returns Lowest Common Ancestor of u, v |
| 106 | + */ |
| 107 | +int LCA(int u, int v) { |
| 108 | + if(depth[u] < depth[v]) swap(u,v); |
| 109 | + int diff = depth[u] - depth[v]; |
| 110 | + for(int i=0; i<LN; i++) if( (diff>>i)&1 ) u = pa[i][u]; |
| 111 | + if(u == v) return u; |
| 112 | + for(int i=LN-1; i>=0; i--) if(pa[i][u] != pa[i][v]) { |
| 113 | + u = pa[i][u]; |
| 114 | + v = pa[i][v]; |
| 115 | + } |
| 116 | + return pa[0][u]; |
| 117 | +} |
| 118 | + |
| 119 | +void query(int u, int v) { |
| 120 | + /* |
| 121 | + * We have a query from u to v, we break it into two queries, u to LCA(u,v) and LCA(u,v) to v |
| 122 | + */ |
| 123 | + int lca = LCA(u, v); |
| 124 | + int ans = query_up(u, lca); // One part of path |
| 125 | + int temp = query_up(v, lca); // another part of path |
| 126 | + if(temp > ans) ans = temp; // take the maximum of both paths |
| 127 | + printf("%d\n", ans); |
| 128 | +} |
| 129 | + |
| 130 | +/* |
| 131 | + * change: |
| 132 | + * We just need to find its position in segment tree and update it |
| 133 | + */ |
| 134 | +void change(int i, int val) { |
| 135 | + int u = otherEnd[i]; |
| 136 | + update_tree(1, 0, ptr, posInBase[u], val); |
| 137 | +} |
| 138 | + |
| 139 | +/* |
| 140 | + * Actual HL-Decomposition part |
| 141 | + * Initially all entries of chainHead[] are set to -1. |
| 142 | + * So when ever a new chain is started, chain head is correctly assigned. |
| 143 | + * As we add a new node to chain, we will note its position in the baseArray. |
| 144 | + * In the first for loop we find the child node which has maximum sub-tree size. |
| 145 | + * The following if condition is failed for leaf nodes. |
| 146 | + * When the if condition passes, we expand the chain to special child. |
| 147 | + * In the second for loop we recursively call the function on all normal nodes. |
| 148 | + * chainNo++ ensures that we are creating a new chain for each normal child. |
| 149 | + */ |
| 150 | +void HLD(int curNode, int cost, int prev) { |
| 151 | + if(chainHead[chainNo] == -1) { |
| 152 | + chainHead[chainNo] = curNode; // Assign chain head |
| 153 | + } |
| 154 | + chainInd[curNode] = chainNo; |
| 155 | + posInBase[curNode] = ptr; // Position of this node in baseArray which we will use in Segtree |
| 156 | + baseArray[ptr++] = cost; |
| 157 | + |
| 158 | + int sc = -1, ncost; |
| 159 | + // Loop to find special child |
| 160 | + for(int i=0; i<adj[curNode].size(); i++) if(adj[curNode][i] != prev) { |
| 161 | + if(sc == -1 || subsize[sc] < subsize[adj[curNode][i]]) { |
| 162 | + sc = adj[curNode][i]; |
| 163 | + ncost = costs[curNode][i]; |
| 164 | + } |
| 165 | + } |
| 166 | + |
| 167 | + if(sc != -1) { |
| 168 | + // Expand the chain |
| 169 | + HLD(sc, ncost, curNode); |
| 170 | + } |
| 171 | + |
| 172 | + for(int i=0; i<adj[curNode].size(); i++) if(adj[curNode][i] != prev) { |
| 173 | + if(sc != adj[curNode][i]) { |
| 174 | + // New chains at each normal node |
| 175 | + chainNo++; |
| 176 | + HLD(adj[curNode][i], costs[curNode][i], curNode); |
| 177 | + } |
| 178 | + } |
| 179 | +} |
| 180 | + |
| 181 | +/* |
| 182 | + * dfs used to set parent of a node, depth of a node, subtree size of a node |
| 183 | + */ |
| 184 | +void dfs(int cur, int prev, int _depth=0) { |
| 185 | + pa[0][cur] = prev; |
| 186 | + depth[cur] = _depth; |
| 187 | + subsize[cur] = 1; |
| 188 | + for(int i=0; i<adj[cur].size(); i++) |
| 189 | + if(adj[cur][i] != prev) { |
| 190 | + otherEnd[indexx[cur][i]] = adj[cur][i]; |
| 191 | + dfs(adj[cur][i], cur, _depth+1); |
| 192 | + subsize[cur] += subsize[adj[cur][i]]; |
| 193 | + } |
| 194 | +} |
| 195 | + |
| 196 | +int main() { |
| 197 | + int t; |
| 198 | + scanf("%d ", &t); |
| 199 | + while(t--) { |
| 200 | + ptr = 0; |
| 201 | + int n; |
| 202 | + scanf("%d", &n); |
| 203 | + // Cleaning step, new test case |
| 204 | + for(int i=0; i<n; i++) { |
| 205 | + adj[i].clear(); |
| 206 | + costs[i].clear(); |
| 207 | + indexx[i].clear(); |
| 208 | + chainHead[i] = -1; |
| 209 | + for(int j=0; j<LN; j++) pa[j][i] = -1; |
| 210 | + } |
| 211 | + for(int i=1; i<n; i++) { |
| 212 | + int u, v, c; |
| 213 | + scanf("%d %d %d", &u, &v, &c); |
| 214 | + u--; v--; |
| 215 | + adj[u].push_back(v); |
| 216 | + costs[u].push_back(c); |
| 217 | + indexx[u].push_back(i-1); |
| 218 | + adj[v].push_back(u); |
| 219 | + costs[v].push_back(c); |
| 220 | + indexx[v].push_back(i-1); |
| 221 | + } |
| 222 | + |
| 223 | + chainNo = 0; |
| 224 | + dfs(root, -1); // We set up subsize, depth and parent for each node |
| 225 | + HLD(root, -1, -1); // We decomposed the tree and created baseArray |
| 226 | + make_tree(1, 0, ptr); // We use baseArray and construct the needed segment tree |
| 227 | + |
| 228 | + // Below Dynamic programming code is for LCA. |
| 229 | + for(int i=1; i<LN; i++) |
| 230 | + for(int j=0; j<n; j++) |
| 231 | + if(pa[i-1][j] != -1) |
| 232 | + pa[i][j] = pa[i-1][pa[i-1][j]]; |
| 233 | + |
| 234 | + while(1) { |
| 235 | + char s[100]; |
| 236 | + scanf("%s", s); |
| 237 | + if(s[0]=='D') { |
| 238 | + break; |
| 239 | + } |
| 240 | + int a, b; |
| 241 | + scanf("%d %d", &a, &b); |
| 242 | + if(s[0]=='Q') { |
| 243 | + query(a-1, b-1); |
| 244 | + } else { |
| 245 | + change(a-1, b); |
| 246 | + } |
| 247 | + } |
| 248 | + } |
| 249 | +} |
| 250 | + |
| 251 | +/**problem: |
| 252 | +
|
| 253 | +You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3...N-1. |
| 254 | +
|
| 255 | +We will ask you to perfrom some instructions of the following form: |
| 256 | +
|
| 257 | + CHANGE i ti : change the cost of the i-th edge to ti |
| 258 | + or |
| 259 | + QUERY a b : ask for the maximum edge cost on the path from node a to node b |
| 260 | +
|
| 261 | +Input |
| 262 | +
|
| 263 | +The first line of input contains an integer t, the number of test cases (t <= 20). t test cases follow. |
| 264 | +
|
| 265 | +For each test case: |
| 266 | +
|
| 267 | + In the first line there is an integer N (N <= 10000), |
| 268 | + In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 1000000), |
| 269 | + The next lines contain instructions "CHANGE i ti" or "QUERY a b", |
| 270 | + The end of each test case is signified by the string "DONE". |
| 271 | +
|
| 272 | +There is one blank line between successive tests. |
| 273 | +
|
| 274 | +*/ |
0 commit comments