Skip to content

Commit 6f9954b

Browse files
feat: add C ndarray interface and refactor implementation for stats/base/dnanmeanwd
PR-URL: stdlib-js#4251 Co-authored-by: Athan Reines <[email protected]> Reviewed-by: Athan Reines <[email protected]>
1 parent 2250bb0 commit 6f9954b

22 files changed

+409
-252
lines changed

Diff for: lib/node_modules/@stdlib/stats/base/dnanmeanwd/README.md

+128-20
Original file line numberDiff line numberDiff line change
@@ -51,36 +51,33 @@ The [arithmetic mean][arithmetic-mean] is defined as
5151
var dnanmeanwd = require( '@stdlib/stats/base/dnanmeanwd' );
5252
```
5353

54-
#### dnanmeanwd( N, x, stride )
54+
#### dnanmeanwd( N, x, strideX )
5555

5656
Computes the [arithmetic mean][arithmetic-mean] of a double-precision floating-point strided array `x`, using Welford's algorithm and ignoring `NaN` values.
5757

5858
```javascript
5959
var Float64Array = require( '@stdlib/array/float64' );
6060

6161
var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
62-
var N = x.length;
6362

64-
var v = dnanmeanwd( N, x, 1 );
63+
var v = dnanmeanwd( x.length, x, 1 );
6564
// returns ~0.3333
6665
```
6766

6867
The function has the following parameters:
6968

7069
- **N**: number of indexed elements.
7170
- **x**: input [`Float64Array`][@stdlib/array/float64].
72-
- **stride**: index increment for `x`.
71+
- **strideX**: index increment for `x`.
7372

74-
The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [arithmetic mean][arithmetic-mean] of every other element in `x`,
73+
The `N` and stride parameters determine which elements in the stride array are accessed at runtime. For example, to compute the [arithmetic mean][arithmetic-mean] of every other element in `x`,
7574

7675
```javascript
7776
var Float64Array = require( '@stdlib/array/float64' );
78-
var floor = require( '@stdlib/math/base/special/floor' );
7977

8078
var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ] );
81-
var N = floor( x.length / 2 );
8279

83-
var v = dnanmeanwd( N, x, 2 );
80+
var v = dnanmeanwd( 4, x, 2 );
8481
// returns 1.25
8582
```
8683

@@ -90,45 +87,39 @@ Note that indexing is relative to the first index. To introduce an offset, use [
9087

9188
```javascript
9289
var Float64Array = require( '@stdlib/array/float64' );
93-
var floor = require( '@stdlib/math/base/special/floor' );
9490

9591
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
9692
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
9793

98-
var N = floor( x0.length / 2 );
99-
100-
var v = dnanmeanwd( N, x1, 2 );
94+
var v = dnanmeanwd( 4, x1, 2 );
10195
// returns 1.25
10296
```
10397

104-
#### dnanmeanwd.ndarray( N, x, stride, offset )
98+
#### dnanmeanwd.ndarray( N, x, strideX, offsetX )
10599

106100
Computes the [arithmetic mean][arithmetic-mean] of a double-precision floating-point strided array, ignoring `NaN` values and using Welford's algorithm and alternative indexing semantics.
107101

108102
```javascript
109103
var Float64Array = require( '@stdlib/array/float64' );
110104

111105
var x = new Float64Array( [ 1.0, -2.0, NaN, 2.0 ] );
112-
var N = x.length;
113106

114-
var v = dnanmeanwd.ndarray( N, x, 1, 0 );
107+
var v = dnanmeanwd.ndarray( x.length, x, 1, 0 );
115108
// returns ~0.33333
116109
```
117110

118111
The function has the following additional parameters:
119112

120-
- **offset**: starting index for `x`.
113+
- **offsetX**: starting index for `x`.
121114

122-
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [arithmetic mean][arithmetic-mean] for every other value in `x` starting from the second value
115+
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the [arithmetic mean][arithmetic-mean] for every other element in `x` starting from the second element
123116

124117
```javascript
125118
var Float64Array = require( '@stdlib/array/float64' );
126-
var floor = require( '@stdlib/math/base/special/floor' );
127119

128120
var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
129-
var N = floor( x.length / 2 );
130121

131-
var v = dnanmeanwd.ndarray( N, x, 2, 1 );
122+
var v = dnanmeanwd.ndarray( 4, x, 2, 1 );
132123
// returns 1.25
133124
```
134125

@@ -180,6 +171,123 @@ console.log( v );
180171

181172
<!-- /.examples -->
182173

174+
<!-- C interface documentation. -->
175+
176+
* * *
177+
178+
<section class="c">
179+
180+
## C APIs
181+
182+
<!-- Section to include introductory text. Make sure to keep an empty line after the intro `section` element and another before the `/section` close. -->
183+
184+
<section class="intro">
185+
186+
</section>
187+
188+
<!-- /.intro -->
189+
190+
<!-- C usage documentation. -->
191+
192+
<section class="usage">
193+
194+
### Usage
195+
196+
```c
197+
#include "stdlib/stats/base/dnanmeanwd.h"
198+
```
199+
200+
#### stdlib_strided_dnanmeanwd( N, \*X, strideX )
201+
202+
Computes the arithmetic mean of a double-precision floating-point strided array `x`, using Welford's algorithm and ignoring `NaN` values.
203+
204+
```c
205+
const double x[] = { 1.0, 2.0, 0.0/0.0, 3.0, 0.0/0.0, 4.0, 5.0, 6.0, 0.0/0.0, 7.0, 8.0, 0.0/0.0 };
206+
207+
double v = stdlib_strided_dnanmeanwd( 6, x, 2 );
208+
// returns 1.25
209+
```
210+
211+
The function accepts the following arguments:
212+
213+
- **N**: `[in] CBLAS_INT` number of indexed elements.
214+
- **X**: `[in] double*` input array.
215+
- **strideX**: `[in] CBLAS_INT` stride length for `X`.
216+
217+
```c
218+
double stdlib_strided_dnanmeanwd( const CBLAS_INT N, const double *X, const CBLAS_INT strideX );
219+
```
220+
221+
#### stdlib_strided_dnanmeanwd_ndarray( N, \*X, strideX, offsetX )
222+
223+
Computes the arithmetic mean of a double-precision floating-point strided array, ignoring `NaN` values and using Welford's algorithm and alternative indexing semantics.
224+
225+
```c
226+
const double x[] = { 1.0, 2.0, 0.0/0.0, 3.0, 0.0/0.0, 4.0, 5.0, 6.0, 0.0/0.0, 7.0, 8.0, 0.0/0.0 };
227+
228+
double v = stdlib_strided_dnanmeanwd_ndarray( 6, x, 2, 0 );
229+
// returns 1.25
230+
```
231+
232+
The function accepts the following arguments:
233+
234+
- **N**: `[in] CBLAS_INT` number of indexed elements.
235+
- **X**: `[in] double*` input array.
236+
- **strideX**: `[in] CBLAS_INT` stride length for `X`.
237+
- **offsetX**: `[in] CBLAS_INT` starting index for `X`.
238+
239+
```c
240+
double stdlib_strided_dnanmeanwd_ndarray( const CBLAS_INT N, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );
241+
```
242+
243+
</section>
244+
245+
<!-- /.usage -->
246+
247+
<!-- C API usage notes. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->
248+
249+
<section class="notes">
250+
251+
</section>
252+
253+
<!-- /.notes -->
254+
255+
<!-- C API usage examples. -->
256+
257+
<section class="examples">
258+
259+
### Examples
260+
261+
```c
262+
#include "stdlib/stats/base/dnanmeanwd.h"
263+
#include <stdio.h>
264+
265+
int main( void ) {
266+
// Create a strided array:
267+
const double x[] = { 1.0, 2.0, 0.0/0.0, 3.0, 0.0/0.0, 4.0, 5.0, 6.0, 0.0/0.0, 7.0, 8.0, 0.0/0.0 };
268+
269+
// Specify the number of elements:
270+
const int N = 6;
271+
272+
// Specify the stride length:
273+
const int strideX = 2;
274+
275+
// Compute the arithmetic mean:
276+
double v = stdlib_strided_dnanmeanwd( N, x, strideX );
277+
278+
// Print the result:
279+
printf( "mean: %lf\n", v );
280+
}
281+
```
282+
283+
</section>
284+
285+
<!-- /.examples -->
286+
287+
</section>
288+
289+
<!-- /.c -->
290+
183291
* * *
184292
185293
<section class="references">

Diff for: lib/node_modules/@stdlib/stats/base/dnanmeanwd/benchmark/benchmark.js

+17-13
Original file line numberDiff line numberDiff line change
@@ -21,16 +21,30 @@
2121
// MODULES //
2222

2323
var bench = require( '@stdlib/bench' );
24-
var randu = require( '@stdlib/random/base/randu' );
24+
var uniform = require( '@stdlib/random/base/uniform' );
25+
var bernoulli = require( '@stdlib/random/base/bernoulli' );
26+
var filledarrayBy = require( '@stdlib/array/filled-by' );
2527
var isnan = require( '@stdlib/math/base/assert/is-nan' );
2628
var pow = require( '@stdlib/math/base/special/pow' );
27-
var Float64Array = require( '@stdlib/array/float64' );
2829
var pkg = require( './../package.json' ).name;
2930
var dnanmeanwd = require( './../lib/dnanmeanwd.js' );
3031

3132

3233
// FUNCTIONS //
3334

35+
/**
36+
* Returns a random value or `NaN`.
37+
*
38+
* @private
39+
* @returns {number} random number or `NaN`
40+
*/
41+
function rand() {
42+
if ( bernoulli( 0.2 ) ) {
43+
return NaN;
44+
}
45+
return uniform( -10.0, 10.0 );
46+
}
47+
3448
/**
3549
* Creates a benchmark function.
3650
*
@@ -39,17 +53,7 @@ var dnanmeanwd = require( './../lib/dnanmeanwd.js' );
3953
* @returns {Function} benchmark function
4054
*/
4155
function createBenchmark( len ) {
42-
var x;
43-
var i;
44-
45-
x = new Float64Array( len );
46-
for ( i = 0; i < x.length; i++ ) {
47-
if ( randu() < 0.2 ) {
48-
x[ i ] = NaN;
49-
} else {
50-
x[ i ] = ( randu()*20.0 ) - 10.0;
51-
}
52-
}
56+
var x = filledarrayBy( len, 'float64', rand );
5357
return benchmark;
5458

5559
function benchmark( b ) {

Diff for: lib/node_modules/@stdlib/stats/base/dnanmeanwd/benchmark/benchmark.native.js

+17-13
Original file line numberDiff line numberDiff line change
@@ -22,10 +22,11 @@
2222

2323
var resolve = require( 'path' ).resolve;
2424
var bench = require( '@stdlib/bench' );
25-
var randu = require( '@stdlib/random/base/randu' );
25+
var uniform = require( '@stdlib/random/base/uniform' );
26+
var bernoulli = require( '@stdlib/random/base/bernoulli' );
27+
var filledarrayBy = require( '@stdlib/array/filled-by' );
2628
var isnan = require( '@stdlib/math/base/assert/is-nan' );
2729
var pow = require( '@stdlib/math/base/special/pow' );
28-
var Float64Array = require( '@stdlib/array/float64' );
2930
var tryRequire = require( '@stdlib/utils/try-require' );
3031
var pkg = require( './../package.json' ).name;
3132

@@ -40,6 +41,19 @@ var opts = {
4041

4142
// FUNCTIONS //
4243

44+
/**
45+
* Returns a random value or `NaN`.
46+
*
47+
* @private
48+
* @returns {number} random number or `NaN`
49+
*/
50+
function rand() {
51+
if ( bernoulli( 0.2 ) ) {
52+
return NaN;
53+
}
54+
return uniform( -10.0, 10.0 );
55+
}
56+
4357
/**
4458
* Creates a benchmark function.
4559
*
@@ -48,17 +62,7 @@ var opts = {
4862
* @returns {Function} benchmark function
4963
*/
5064
function createBenchmark( len ) {
51-
var x;
52-
var i;
53-
54-
x = new Float64Array( len );
55-
for ( i = 0; i < x.length; i++ ) {
56-
if ( randu() < 0.2 ) {
57-
x[ i ] = NaN;
58-
} else {
59-
x[ i ] = ( randu()*20.0 ) - 10.0;
60-
}
61-
}
65+
var x = filledarrayBy( len, 'float64', rand );
6266
return benchmark;
6367

6468
function benchmark( b ) {

Diff for: lib/node_modules/@stdlib/stats/base/dnanmeanwd/benchmark/benchmark.ndarray.js

+17-13
Original file line numberDiff line numberDiff line change
@@ -21,16 +21,30 @@
2121
// MODULES //
2222

2323
var bench = require( '@stdlib/bench' );
24-
var randu = require( '@stdlib/random/base/randu' );
24+
var uniform = require( '@stdlib/random/base/uniform' );
25+
var bernoulli = require( '@stdlib/random/base/bernoulli' );
26+
var filledarrayBy = require( '@stdlib/array/filled-by' );
2527
var isnan = require( '@stdlib/math/base/assert/is-nan' );
2628
var pow = require( '@stdlib/math/base/special/pow' );
27-
var Float64Array = require( '@stdlib/array/float64' );
2829
var pkg = require( './../package.json' ).name;
2930
var dnanmeanwd = require( './../lib/ndarray.js' );
3031

3132

3233
// FUNCTIONS //
3334

35+
/**
36+
* Returns a random value or `NaN`.
37+
*
38+
* @private
39+
* @returns {number} random number or `NaN`
40+
*/
41+
function rand() {
42+
if ( bernoulli( 0.2 ) ) {
43+
return NaN;
44+
}
45+
return uniform( -10.0, 10.0 );
46+
}
47+
3448
/**
3549
* Creates a benchmark function.
3650
*
@@ -39,17 +53,7 @@ var dnanmeanwd = require( './../lib/ndarray.js' );
3953
* @returns {Function} benchmark function
4054
*/
4155
function createBenchmark( len ) {
42-
var x;
43-
var i;
44-
45-
x = new Float64Array( len );
46-
for ( i = 0; i < x.length; i++ ) {
47-
if ( randu() < 0.2 ) {
48-
x[ i ] = NaN;
49-
} else {
50-
x[ i ] = ( randu()*20.0 ) - 10.0;
51-
}
52-
}
56+
var x = filledarrayBy( len, 'float64', rand );
5357
return benchmark;
5458

5559
function benchmark( b ) {

0 commit comments

Comments
 (0)