@@ -9761,20 +9761,16 @@ static struct ggml_tensor * llm_build_kqv(
9761
9761
cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
9762
9762
hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
9763
9763
9764
- if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_GEMMA2) {
9765
- ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
9766
- }
9764
+ ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
9767
9765
9768
9766
cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
9769
9767
} else {
9770
9768
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
9771
9769
cb(kq, "kq", il);
9772
9770
9773
- if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2 || model.arch == LLM_ARCH_NEMOTRON || model.arch == LLM_ARCH_CHATGLM) {
9774
- // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
9775
- // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
9776
- ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
9777
- }
9771
+ // note: this op tends to require high floating point range
9772
+ // while for some models F16 is enough, for others it is not, so we default to F32 here
9773
+ ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
9778
9774
9779
9775
if (model.arch == LLM_ARCH_GROK) {
9780
9776
// need to do the following:
@@ -9783,9 +9779,6 @@ static struct ggml_tensor * llm_build_kqv(
9783
9779
// kq = 30 * tanh(kq / 30)
9784
9780
// before the softmax below
9785
9781
9786
- //try from phi2
9787
- //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
9788
-
9789
9782
kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
9790
9783
kq = ggml_scale(ctx, kq, 30);
9791
9784
}
0 commit comments