forked from codeplaysoftware/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcutlass_utils.py
263 lines (219 loc) · 8.33 KB
/
cutlass_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# mypy: allow-untyped-defs
import functools
import logging
import os
import sys
from dataclasses import dataclass
from typing import Any, Optional
import sympy
import torch
from torch._inductor.utils import clear_on_fresh_inductor_cache
from ... import config
from ...ir import Layout
from ...runtime.runtime_utils import cache_dir
from ...virtualized import V
log = logging.getLogger(__name__)
@functools.lru_cache(None)
def try_import_cutlass() -> bool:
"""
Currently only supporting user specified cutlass_dir or falling to the
default ../third_party/cutlass/ (build from source setups).
"""
# Copy CUTLASS python scripts to a temp dir and add the temp dir to Python search path.
cutlass_py_full_path = os.path.abspath(
os.path.join(config.cutlass_dir, "python/cutlass_library")
)
tmp_cutlass_py_full_path = os.path.abspath(
os.path.join(cache_dir(), "torch_cutlass_library")
)
dst_link = os.path.join(tmp_cutlass_py_full_path, "cutlass_library")
if os.path.isdir(cutlass_py_full_path):
if tmp_cutlass_py_full_path not in sys.path:
if os.path.exists(dst_link):
assert os.path.islink(dst_link), (
f"{dst_link} is not a symlink. Try to remove {dst_link} manually and try again."
)
assert os.path.realpath(os.readlink(dst_link)) == os.path.realpath(
cutlass_py_full_path
), f"Symlink at {dst_link} does not point to {cutlass_py_full_path}"
else:
os.makedirs(tmp_cutlass_py_full_path, exist_ok=True)
os.symlink(cutlass_py_full_path, dst_link)
sys.path.append(tmp_cutlass_py_full_path)
try:
import cutlass_library.generator # noqa: F401
import cutlass_library.library # noqa: F401
import cutlass_library.manifest # noqa: F401
return True
except ImportError as e:
log.debug(
"Failed to import CUTLASS packages: %s, ignoring the CUTLASS backend.",
str(e),
)
else:
log.debug(
"Failed to import CUTLASS packages: CUTLASS repo does not exist: %s",
cutlass_py_full_path,
)
return False
@functools.lru_cache(8)
def _normalize_sycl_arch(arch: str) -> str:
if int(arch) == 11:
return "11"
else:
raise NotImplementedError(f"Unsupported sycl arch: {arch}")
@dataclass
class CUTLASSArgs:
"""
CUTLASS args used to initialize a CUTLASS Manifest.
"""
architectures: Optional[str] = None
cuda_version: Optional[str] = None # Unused in generator.py for PVC
instantiation_level: Optional[str] = None # Unused YET in generator.py for PVC
operations = "all"
build_dir = ""
curr_build_dir = ""
generator_target = ""
kernels = "all"
ignore_kernels = ""
exclude_kernels = ""
# UNUSED at the moment, part of Manifest class in cutlass_library
kernel_filter_file: None = None
selected_kernel_list: None = None
interface_dir: None = None
filter_by_cc = False
disable_full_archs_compilation = False
def __post_init__(self):
if self.architectures is None:
raise RuntimeError(f"{self.architectures=} is None!")
self.architectures = _normalize_sycl_arch(self.architectures)
@clear_on_fresh_inductor_cache
@functools.lru_cache(None)
def _gen_ops_cached(arch) -> list[Any]:
# Import cutlass python scripts.
assert try_import_cutlass()
import cutlass_library.generator as cutlass_generator
import cutlass_library.manifest as cutlass_manifest
if arch is None:
log.error(
"Cannot detect XPU arch %s."
"Will discard all cutlass ops. "
"Please consider setting _inductor.xpu.arch",
arch,
)
return []
arch = _normalize_sycl_arch(arch)
sycl_version = "2025.0.1" # Placeholder, Unused in GeneratePVC
args = CUTLASSArgs(
architectures=arch,
instantiation_level="0", # TODO (SYCL) : Make it config param once enabled in cutlass_library/generator.py
cuda_version=sycl_version,
)
manifest = cutlass_manifest.Manifest(args)
if arch == "11":
cutlass_generator.GeneratePVC(manifest, sycl_version)
else:
log.error("Invalid XPU arch")
return []
return manifest.operations
def gen_ops() -> list[Any]:
"""
Generates all supported CUTLASS operations.
"""
# Currently limited to PVC (arch 1100), harcoding arch
# TODO :(SYCL) get_xpu_arch()
arch = "11"
return _gen_ops_cached(arch)
def torch_dtype_to_cutlass_type(
torch_dtype: torch.dtype,
) -> "cutlass_library.library.DataType": # type: ignore[name-defined] # noqa: F821
# Import cutlass python scripts.
assert try_import_cutlass()
import cutlass_library # type: ignore[import]
if torch_dtype == torch.float:
return cutlass_library.library.DataType.f32
elif torch_dtype == torch.half:
return cutlass_library.library.DataType.f16
elif torch_dtype == torch.bfloat16:
return cutlass_library.library.DataType.bf16
else:
raise NotImplementedError(f"Unsupported data type: {torch_dtype=}")
def dtype_match(
torch_dtype: Optional[torch.dtype],
cutlass_dtype: "cutlass_library.library.DataType", # type: ignore[name-defined] # noqa: F821
) -> bool:
# Import cutlass python scripts.
assert try_import_cutlass()
import cutlass_library
if torch_dtype == torch.float:
return cutlass_dtype == cutlass_library.library.DataType.f32
elif torch_dtype == torch.half:
return cutlass_dtype == cutlass_library.library.DataType.f16
elif torch_dtype == torch.bfloat16:
return cutlass_dtype == cutlass_library.library.DataType.bf16
elif torch_dtype == torch.int8:
return cutlass_dtype == cutlass_library.library.DataType.s8
elif torch_dtype == torch.uint8:
return cutlass_dtype == cutlass_library.library.DataType.u8
elif torch_dtype == torch.int32:
return cutlass_dtype == cutlass_library.library.DataType.s32
else:
return False
def get_accumulator_dtype(
input_torch_dtypes: list[torch.dtype],
) -> Optional[torch.dtype]:
"""
Given a pair of input torch dtypes, returns the inferred accumulator torch dtype.
"""
# TODO (SYCL) : Extend this once other accumulator & input types are supported
if len(input_torch_dtypes) != 2:
return None
if all(dtype == torch.bfloat16 for dtype in input_torch_dtypes):
return torch.float
else:
raise NotImplementedError(f"Unsupported data types: {input_torch_dtypes}")
def get_alignments(torch_dtype: torch.dtype) -> list[int]:
"""
Returns all possible valid CUTLASS alignments in terms of the number of elements for a given dtype.
"""
# TODO (SYCL): Extend for other types & double-check alignments
if torch_dtype == torch.bfloat16:
return [8, 4, 2, 1]
elif torch_dtype == torch.float:
return [4, 2, 1]
else:
raise NotImplementedError(f"unsupported {torch_dtype=} for alignments")
def get_max_alignment(inductor_layout: Layout) -> int:
"""
Returns the max alignment (in terms of number of elements) for a given Inductor Layout.
"""
dtype = inductor_layout.dtype
size = inductor_layout.size
offset = inductor_layout.offset
def is_static_int(number):
return isinstance(number, (int, sympy.Integer))
def a_factor_of(x, alignment):
if is_static_int(x) and is_static_int(alignment):
return x % alignment == 0
rem = sympy.Mod(x, alignment)
return V.graph.sizevars.evaluate_expr(sympy.Eq(rem, 0))
try:
contiguous_dim = inductor_layout.stride.index(1)
except ValueError:
# No dim with stride 1 found, return 1
return 1
alignments = get_alignments(dtype)
for alignment in alignments:
if not a_factor_of(size[contiguous_dim], alignment) or not a_factor_of(
offset, alignment
):
continue
if all(
(dim == contiguous_dim)
or a_factor_of(inductor_layout.stride[dim], alignment)
for dim in range(len(size))
):
return alignment
return 1
# TODO (SYCL) : Add helpers for CUTLASS kernels testing & benchmarking once standalone
# runner is enabled.