|
| 1 | +// Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +// |
| 3 | +// Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +// you may not use this file except in compliance with the License. |
| 5 | +// You may obtain a copy of the License at |
| 6 | +// |
| 7 | +// http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +// |
| 9 | +// Unless required by applicable law or agreed to in writing, software |
| 10 | +// distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +// See the License for the specific language governing permissions and |
| 13 | +// limitations under the License. |
| 14 | + |
| 15 | +#include <paddle/phi/backends/xpu/xpu_context.h> |
| 16 | + |
| 17 | +#include "paddle/extension.h" |
| 18 | +#include "paddle/phi/core/enforce.h" |
| 19 | +#include "xpu/plugin.h" |
| 20 | +#include <core/ctx_manager.h> |
| 21 | +#include <core/xft_check.h> |
| 22 | +#include <core/xft_event.h> |
| 23 | +#include <core/xft_params.h> |
| 24 | +#include <xft/xdnn_plugin.h> |
| 25 | +#include <xft/operation/page_attn.h> |
| 26 | +#include <xft/operation/fmha.h> |
| 27 | +#include <flash_api.h> // link xfa |
| 28 | +#include "ops.h" |
| 29 | + |
| 30 | +namespace xftkernel = baidu::xpu::xftkernel; |
| 31 | + |
| 32 | +template <typename T> |
| 33 | +struct kl3_pa_TL_trait { |
| 34 | + using TL = T; |
| 35 | +}; |
| 36 | +template <> |
| 37 | +struct kl3_pa_TL_trait<bfloat16> { |
| 38 | + using TL = float; |
| 39 | +}; |
| 40 | +std::vector<paddle::Tensor> MlaDeAttn( |
| 41 | + const paddle::Tensor& q, |
| 42 | + const paddle::Tensor& kv_cache, |
| 43 | + const paddle::Tensor& decoder_context_len, |
| 44 | + const paddle::Tensor& decoder_batch_map, |
| 45 | + const paddle::Tensor& decoder_context_len_cpu, |
| 46 | + const paddle::Tensor& decoder_batch_map_cpu, |
| 47 | + const paddle::Tensor& dec_batch_tensor, |
| 48 | + const paddle::Tensor& padding_offsets, |
| 49 | + const paddle::Tensor& cum_offsets, |
| 50 | + const paddle::Tensor& block_tables, |
| 51 | + const float softmax_scale, |
| 52 | + const int block_size, |
| 53 | + const int num_head, |
| 54 | + const int kv_lora_rank, |
| 55 | + const int rope_head_dim, |
| 56 | + const int dim_qk, |
| 57 | + const int dim_v) { |
| 58 | + baidu::xpu::api::plugin::print_times("[TIME BEGIN] MlaDeAttn" ); |
| 59 | + phi::XPUPlace place(phi::backends::xpu::GetXPUCurrentDeviceId()); |
| 60 | + auto dev_ctx = paddle::experimental::DeviceContextPool::Instance().Get(place); |
| 61 | + auto xpu_ctx = static_cast<const phi::XPUContext*>(dev_ctx); |
| 62 | + xpu::ctx_guard RAII_GUARD(xpu_ctx->x_context()); |
| 63 | + |
| 64 | + using QType = typename XPUTypeTrait<bfloat16>::Type; |
| 65 | + using CacheType = typename XPUTypeTrait<bfloat16>::Type; |
| 66 | + typedef paddle::bfloat16 qdata_t, cache_t; |
| 67 | + const auto& input_dims = q.dims(); |
| 68 | + const int bsz = cum_offsets.dims()[0]; |
| 69 | + const int token_num = input_dims[0]; |
| 70 | + const int block_batch = block_tables.dims()[0]; // TODO参数含义 block_batch_ PageParam page_param_ |
| 71 | + const int max_block_per_seq = block_tables.dims()[1]; |
| 72 | + const int max_seq_len = block_size * max_block_per_seq; |
| 73 | + int dec_batch = dec_batch_tensor.data<int32_t>()[0]; |
| 74 | + // 初始化输入:q k v |
| 75 | + auto q_xft = baidu::xpu::xft::xftTensor<QType, 3>( |
| 76 | + reinterpret_cast<QType*>(const_cast<paddle::bfloat16*>(q.data<qdata_t>())), |
| 77 | + std::array<int64_t, 3>{q.shape()[0], |
| 78 | + q.shape()[1], |
| 79 | + q.shape()[2]}); |
| 80 | + // 初始化输入:k cache |
| 81 | + auto kv_cache_xft = baidu::xpu::xft::xftTensor<CacheType, 4>( |
| 82 | + reinterpret_cast<CacheType*>(const_cast<paddle::bfloat16*>(kv_cache.data<cache_t>())), |
| 83 | + std::array<int64_t, 4>{kv_cache.shape()[0], |
| 84 | + kv_cache.shape()[1], |
| 85 | + kv_cache.shape()[2], |
| 86 | + kv_cache.shape()[3]}); |
| 87 | + // 初始化输入:block table |
| 88 | + auto block_tables_xft = baidu::xpu::xft::xftTensor<int, 2>( |
| 89 | + reinterpret_cast<int*>(const_cast<int*>(block_tables.data<int>())), |
| 90 | + std::array<int64_t, 2>{block_tables.shape()[0], |
| 91 | + block_tables.shape()[1]}); |
| 92 | + // 初始化输出tensor |
| 93 | + auto fmha_out = paddle::full({q.shape()[0], num_head * kv_lora_rank}, -2, q.type(), q.place()); |
| 94 | + auto fmha_out_xft = baidu::xpu::xft::xftTensor<QType, 2>( |
| 95 | + reinterpret_cast<QType*>(const_cast<paddle::bfloat16*>(fmha_out.data<qdata_t>())), |
| 96 | + std::array<int64_t, 2>{fmha_out.shape()[0], |
| 97 | + fmha_out.shape()[1]}); |
| 98 | + |
| 99 | + // decoder |
| 100 | + if(dec_batch > 0){ |
| 101 | + // context_len |
| 102 | + baidu::xpu::api::VectorParam<int32_t> context_len_vp{const_cast<int32_t*>(decoder_context_len_cpu.data<int32_t>()), dec_batch, const_cast<int32_t*>(decoder_context_len.data<int32_t>())}; |
| 103 | + // real batch |
| 104 | + baidu::xpu::api::VectorParam<int32_t> valid_batch_vp{const_cast<int32_t*>(decoder_batch_map_cpu.data<int32_t>()), dec_batch, const_cast<int32_t*>(decoder_batch_map.data<int32_t>())}; |
| 105 | + |
| 106 | + // multi_latent_attention |
| 107 | + using TQ = bfloat16; |
| 108 | + using TKVCACHE = bfloat16; |
| 109 | + using TO = TQ; |
| 110 | + using TGEMM = float; |
| 111 | + using TEW = float; |
| 112 | + using TID = int; |
| 113 | + constexpr int quant_mode = 0; |
| 114 | + // xpu_ctx->x_context().set_debug_level(0xa1); |
| 115 | + int ret = baidu::xpu::xfa::multi_latent_attention< |
| 116 | + TQ, |
| 117 | + TKVCACHE, |
| 118 | + TO, |
| 119 | + TGEMM, |
| 120 | + TEW, |
| 121 | + TID, |
| 122 | + quant_mode>( |
| 123 | + xpu_ctx->x_context(), |
| 124 | + fmha_out_xft.data(), |
| 125 | + q_xft.data(), |
| 126 | + kv_cache_xft.data(), |
| 127 | + block_tables_xft.data(), |
| 128 | + context_len_vp, |
| 129 | + valid_batch_vp, |
| 130 | + block_batch, |
| 131 | + max_seq_len, |
| 132 | + num_head, |
| 133 | + kv_lora_rank, |
| 134 | + rope_head_dim, |
| 135 | + nullptr, // attn_mask |
| 136 | + softmax_scale, // 0.13523377478122711f, // scale |
| 137 | + block_size, |
| 138 | + max_block_per_seq, |
| 139 | + -1, |
| 140 | + nullptr, |
| 141 | + nullptr, |
| 142 | + nullptr); |
| 143 | + } |
| 144 | + baidu::xpu::api::plugin::print_times("[TIME END] MlaDeAttn"); |
| 145 | + return {fmha_out}; |
| 146 | +} |
| 147 | + |
| 148 | +std::vector<std::vector<int64_t>> MlaDeAttnInferShape( |
| 149 | + const std::vector<int64_t>& q_shape, |
| 150 | + const std::vector<int64_t>& kv_cache_shape, |
| 151 | + const std::vector<int64_t>& decoder_context_len_shape, |
| 152 | + const std::vector<int64_t>& decoder_batch_map_shape, |
| 153 | + const std::vector<int64_t>& decoder_context_len_cpu_shape, |
| 154 | + const std::vector<int64_t>& decoder_batch_map_cpu_shape, |
| 155 | + const std::vector<int64_t>& dec_batch_tensor_shape, |
| 156 | + const std::vector<int64_t>& padding_offsets_shape, |
| 157 | + const std::vector<int64_t>& cum_offsets_shape, |
| 158 | + const std::vector<int64_t>& block_tables_shape, |
| 159 | + const float softmax_scale, |
| 160 | + const int block_size, |
| 161 | + const int num_head, |
| 162 | + const int kv_lora_rank, |
| 163 | + const int rope_head_dim, |
| 164 | + const int dim_qk, |
| 165 | + const int dim_v) { |
| 166 | + return {{q_shape[0], num_head * kv_lora_rank}}; |
| 167 | +} |
| 168 | + |
| 169 | +std::vector<paddle::DataType> MlaDeAttnInferDtype( |
| 170 | + const paddle::DataType& q_dtype, |
| 171 | + const paddle::DataType& kv_cache_dtype, |
| 172 | + const paddle::DataType& decoder_context_len_dtype, |
| 173 | + const paddle::DataType& decoder_batch_map_dtype, |
| 174 | + const paddle::DataType& decoder_context_len_cpu_dtype, |
| 175 | + const paddle::DataType& decoder_batch_map_cpu_dtype, |
| 176 | + const paddle::DataType& dec_batch_tensor_dtype, |
| 177 | + const paddle::DataType& padding_offsets_dtype, |
| 178 | + const paddle::DataType& cum_offsets_dtype, |
| 179 | + const paddle::DataType& block_tables_dtype, |
| 180 | + const float softmax_scale, |
| 181 | + const int block_size, |
| 182 | + const int num_head, |
| 183 | + const int kv_lora_rank, |
| 184 | + const int rope_head_dim, |
| 185 | + const int dim_qk, |
| 186 | + const int dim_v) { |
| 187 | + if (q_dtype == paddle::DataType::FLOAT16) { |
| 188 | + return {paddle::DataType::FLOAT16}; |
| 189 | + } else if(q_dtype == paddle::DataType::BFLOAT16){ |
| 190 | + return {paddle::DataType::BFLOAT16}; |
| 191 | + } |
| 192 | + else { |
| 193 | + PD_THROW("Only supported attr of compute_dtype in ['fp16','bfp16']."); |
| 194 | + } |
| 195 | +} |
| 196 | + |
| 197 | +PD_BUILD_OP(absorb_mla_block_mha_decoder_xpu) |
| 198 | + .Inputs({"q", |
| 199 | + "kv_cache", |
| 200 | + "decoder_context_len", |
| 201 | + "decoder_batch_map", |
| 202 | + "decoder_context_len_cpu", |
| 203 | + "decoder_batch_map_cpu", |
| 204 | + "dec_batch_tensor", |
| 205 | + "padding_offsets", |
| 206 | + "cum_offsets", |
| 207 | + "block_tables"}) |
| 208 | + .Outputs({"fmha_out"}) |
| 209 | + .Attrs({"softmax_scale: float", |
| 210 | + "block_size: int", |
| 211 | + "num_head: int", |
| 212 | + "kv_lora_rank: int", |
| 213 | + "rope_head_dim: int", |
| 214 | + "dim_qk: int", |
| 215 | + "dim_v: int"}) |
| 216 | + .SetKernelFn(PD_KERNEL(MlaDeAttn)) |
| 217 | + .SetInferShapeFn(PD_INFER_SHAPE(MlaDeAttnInferShape)) |
| 218 | + .SetInferDtypeFn(PD_INFER_DTYPE(MlaDeAttnInferDtype)); |
| 219 | + |
0 commit comments