|
| 1 | +# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import importlib.metadata |
| 16 | +import unittest |
| 17 | + |
| 18 | +import numpy as np |
| 19 | +from parameterized import parameterized |
| 20 | + |
| 21 | + |
| 22 | +def build_blending_indices_python(dataset_index, dataset_sample_index, weights, num_datasets, size, verbose): |
| 23 | + """ |
| 24 | + Given multiple datasets and a weighting array, build samples such that it follows those weights. |
| 25 | +
|
| 26 | + Parameters: |
| 27 | + - dataset_index: NumPy array to store the dataset index for each sample. |
| 28 | + - dataset_sample_index: NumPy array to store the sample index within each dataset. |
| 29 | + - weights: NumPy array of weights for each dataset. |
| 30 | + - num_datasets: Integer, the number of datasets. |
| 31 | + - size: Integer, the total number of samples to generate. |
| 32 | + - verbose: Boolean, whether to print verbose output. |
| 33 | + """ |
| 34 | + if verbose: |
| 35 | + print("> building indices for blendable datasets ...") |
| 36 | + |
| 37 | + # Initialize buffer for number of samples used for each dataset. |
| 38 | + current_samples = np.zeros(num_datasets, dtype=np.int64) |
| 39 | + |
| 40 | + # For each sample: |
| 41 | + for sample_idx in range(size): |
| 42 | + # Determine where the max error in sampling is happening. |
| 43 | + sample_idx_double = max(sample_idx, 1) |
| 44 | + max_error_index = 0 |
| 45 | + max_error = weights[0] * sample_idx_double - current_samples[0] |
| 46 | + for dataset_idx in range(1, num_datasets): |
| 47 | + error = weights[dataset_idx] * sample_idx_double - current_samples[dataset_idx] |
| 48 | + if error > max_error: |
| 49 | + max_error = error |
| 50 | + max_error_index = dataset_idx |
| 51 | + |
| 52 | + # Populate the indices. |
| 53 | + dataset_index[sample_idx] = max_error_index |
| 54 | + dataset_sample_index[sample_idx] = current_samples[max_error_index] |
| 55 | + |
| 56 | + # Update the total samples. |
| 57 | + current_samples[max_error_index] += 1 |
| 58 | + |
| 59 | + # Print info |
| 60 | + if verbose: |
| 61 | + print(" > sample ratios:") |
| 62 | + for dataset_idx in range(num_datasets): |
| 63 | + ratio = current_samples[dataset_idx] / size |
| 64 | + print(f" dataset {dataset_idx}, input: {weights[dataset_idx]}, achieved: {ratio}") |
| 65 | + |
| 66 | + |
| 67 | +def skip_if_version_not_equal(version="0.1.1", package_name="tool_helpers"): |
| 68 | + try: |
| 69 | + importlib.import_module(package_name) |
| 70 | + except ImportError: |
| 71 | + return True, f"package<{package_name}> not found, so to skip this test" |
| 72 | + package_version = importlib.metadata.version(package_name) |
| 73 | + if package_version != version: |
| 74 | + return True, f"{package_name} version must be equal to {version}, but got {package_version}!" |
| 75 | + return False, f"{package_name} version is ok!" |
| 76 | + |
| 77 | + |
| 78 | +class TestToolHelpers(unittest.TestCase): |
| 79 | + def _test_build_blending_indices( |
| 80 | + self, num_datasets=128, size=8192, dataset_index_dtype="uint8", verbose=False, seed=42, assert_true=True |
| 81 | + ): |
| 82 | + if isinstance(dataset_index_dtype, str): |
| 83 | + dataset_index_dtype = np.dtype(dataset_index_dtype) |
| 84 | + assert dataset_index_dtype in [np.uint8, np.int16], "dataset_index_dtype must be uint8 or int16!" |
| 85 | + |
| 86 | + np.random.seed(seed) |
| 87 | + random_numbers = np.random.rand(num_datasets) |
| 88 | + random_numbers[0] = 200 |
| 89 | + weights = random_numbers / random_numbers.sum() |
| 90 | + weights = weights.astype(np.float64) |
| 91 | + |
| 92 | + # for ground truth, so we use np.int32 |
| 93 | + python_dataset_index = np.zeros(size, dtype=np.int32) |
| 94 | + python_dataset_sample_index = np.zeros(size, dtype=np.int64) |
| 95 | + build_blending_indices_python( |
| 96 | + python_dataset_index, python_dataset_sample_index, weights, num_datasets, size, verbose |
| 97 | + ) |
| 98 | + |
| 99 | + from tool_helpers import helpers |
| 100 | + |
| 101 | + c_dataset_index = np.zeros(size, dtype=dataset_index_dtype) |
| 102 | + c_dataset_sample_index = np.zeros(size, dtype=np.int64) |
| 103 | + helpers.build_blending_indices(c_dataset_index, c_dataset_sample_index, weights, num_datasets, size, verbose) |
| 104 | + |
| 105 | + assert_func = self.assertTrue if assert_true else self.assertFalse |
| 106 | + assert_func(np.all(python_dataset_index == c_dataset_index.astype(python_dataset_index.dtype))) |
| 107 | + self.assertTrue( |
| 108 | + np.all(python_dataset_sample_index == c_dataset_sample_index.astype(python_dataset_sample_index.dtype)) |
| 109 | + ) |
| 110 | + |
| 111 | + @parameterized.expand( |
| 112 | + [ |
| 113 | + (128, 8192, "uint8", False, 42, True), |
| 114 | + (1024, 8192, "uint8", False, 42, False), |
| 115 | + (128, 8192, "int16", False, 42, False), |
| 116 | + (1024, 8192, "int16", False, 42, False), |
| 117 | + ] |
| 118 | + ) |
| 119 | + @unittest.skipIf(*skip_if_version_not_equal(version="0.1.1", package_name="tool_helpers")) |
| 120 | + def test_build_blending_indices_version_0_1_1( |
| 121 | + self, num_datasets=128, size=8192, dataset_index_dtype="uint8", verbose=False, seed=42, assert_true=True |
| 122 | + ): |
| 123 | + self._test_build_blending_indices(num_datasets, size, dataset_index_dtype, verbose, seed, assert_true) |
| 124 | + |
| 125 | + @parameterized.expand( |
| 126 | + [ |
| 127 | + (128, 8192, "uint8", False, 42, True), |
| 128 | + (1024, 8192, "uint8", False, 42, False), |
| 129 | + (128, 8192, "int16", False, 42, True), |
| 130 | + (1024, 8192, "int16", False, 42, True), |
| 131 | + ] |
| 132 | + ) |
| 133 | + @unittest.skipIf(*skip_if_version_not_equal(version="0.1.2", package_name="tool_helpers")) |
| 134 | + def test_build_blending_indices_version_0_1_2( |
| 135 | + self, num_datasets=128, size=8192, dataset_index_dtype="uint8", verbose=False, seed=42, assert_true=True |
| 136 | + ): |
| 137 | + self._test_build_blending_indices(num_datasets, size, dataset_index_dtype, verbose, seed, assert_true) |
0 commit comments