|
| 1 | +# Copyright 2023 The Cirq Developers |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +import numpy as np |
| 15 | +import pytest |
| 16 | +import cirq |
| 17 | +import sympy |
| 18 | + |
| 19 | + |
| 20 | +class TestSimulator: |
| 21 | + def test_x_gate(self): |
| 22 | + q0, q1 = cirq.LineQubit.range(2) |
| 23 | + circuit = cirq.Circuit() |
| 24 | + circuit.append(cirq.X(q0)) |
| 25 | + circuit.append(cirq.X(q1)) |
| 26 | + circuit.append(cirq.X(q1)) |
| 27 | + circuit.append(cirq.measure((q0, q1), key='key')) |
| 28 | + expected_results = {'key': np.array([[[1, 0]]], dtype=np.uint8)} |
| 29 | + sim = cirq.ClassicalStateSimulator() |
| 30 | + results = sim.run(circuit, param_resolver=None, repetitions=1).records |
| 31 | + np.testing.assert_equal(results, expected_results) |
| 32 | + |
| 33 | + def test_CNOT(self): |
| 34 | + q0, q1 = cirq.LineQubit.range(2) |
| 35 | + circuit = cirq.Circuit() |
| 36 | + circuit.append(cirq.X(q0)) |
| 37 | + circuit.append(cirq.CNOT(q0, q1)) |
| 38 | + circuit.append(cirq.measure(q1, key='key')) |
| 39 | + expected_results = {'key': np.array([[[1]]], dtype=np.uint8)} |
| 40 | + sim = cirq.ClassicalStateSimulator() |
| 41 | + results = sim.run(circuit, param_resolver=None, repetitions=1).records |
| 42 | + np.testing.assert_equal(results, expected_results) |
| 43 | + |
| 44 | + def test_Swap(self): |
| 45 | + q0, q1 = cirq.LineQubit.range(2) |
| 46 | + circuit = cirq.Circuit() |
| 47 | + circuit.append(cirq.X(q0)) |
| 48 | + circuit.append(cirq.SWAP(q0, q1)) |
| 49 | + circuit.append(cirq.measure((q0, q1), key='key')) |
| 50 | + expected_results = {'key': np.array([[[0, 1]]], dtype=np.uint8)} |
| 51 | + sim = cirq.ClassicalStateSimulator() |
| 52 | + results = sim.run(circuit, param_resolver=None, repetitions=1).records |
| 53 | + np.testing.assert_equal(results, expected_results) |
| 54 | + |
| 55 | + def test_CCNOT(self): |
| 56 | + q0, q1, q2 = cirq.LineQubit.range(3) |
| 57 | + circuit = cirq.Circuit() |
| 58 | + circuit.append(cirq.CCNOT(q0, q1, q2)) |
| 59 | + circuit.append(cirq.measure((q0, q1, q2), key='key')) |
| 60 | + circuit.append(cirq.X(q0)) |
| 61 | + circuit.append(cirq.CCNOT(q0, q1, q2)) |
| 62 | + circuit.append(cirq.measure((q0, q1, q2), key='key')) |
| 63 | + circuit.append(cirq.X(q1)) |
| 64 | + circuit.append(cirq.X(q0)) |
| 65 | + circuit.append(cirq.CCNOT(q0, q1, q2)) |
| 66 | + circuit.append(cirq.measure((q0, q1, q2), key='key')) |
| 67 | + circuit.append(cirq.X(q0)) |
| 68 | + circuit.append(cirq.CCNOT(q0, q1, q2)) |
| 69 | + circuit.append(cirq.measure((q0, q1, q2), key='key')) |
| 70 | + expected_results = { |
| 71 | + 'key': np.array([[[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 1]]], dtype=np.uint8) |
| 72 | + } |
| 73 | + sim = cirq.ClassicalStateSimulator() |
| 74 | + results = sim.run(circuit, param_resolver=None, repetitions=1).records |
| 75 | + np.testing.assert_equal(results, expected_results) |
| 76 | + |
| 77 | + def test_measurement_gate(self): |
| 78 | + q0, q1 = cirq.LineQubit.range(2) |
| 79 | + circuit = cirq.Circuit() |
| 80 | + circuit.append(cirq.measure((q0, q1), key='key')) |
| 81 | + expected_results = {'key': np.array([[[0, 0]]], dtype=np.uint8)} |
| 82 | + sim = cirq.ClassicalStateSimulator() |
| 83 | + results = sim.run(circuit, param_resolver=None, repetitions=1).records |
| 84 | + np.testing.assert_equal(results, expected_results) |
| 85 | + |
| 86 | + def test_qubit_order(self): |
| 87 | + q0, q1 = cirq.LineQubit.range(2) |
| 88 | + circuit = cirq.Circuit() |
| 89 | + circuit.append(cirq.CNOT(q0, q1)) |
| 90 | + circuit.append(cirq.X(q0)) |
| 91 | + circuit.append(cirq.measure((q0, q1), key='key')) |
| 92 | + expected_results = {'key': np.array([[[1, 0]]], dtype=np.uint8)} |
| 93 | + sim = cirq.ClassicalStateSimulator() |
| 94 | + results = sim.run(circuit, param_resolver=None, repetitions=1).records |
| 95 | + np.testing.assert_equal(results, expected_results) |
| 96 | + |
| 97 | + def test_same_key_instances(self): |
| 98 | + q0, q1 = cirq.LineQubit.range(2) |
| 99 | + circuit = cirq.Circuit() |
| 100 | + circuit.append(cirq.measure((q0, q1), key='key')) |
| 101 | + circuit.append(cirq.X(q0)) |
| 102 | + circuit.append(cirq.measure((q0, q1), key='key')) |
| 103 | + expected_results = {'key': np.array([[[0, 0], [1, 0]]], dtype=np.uint8)} |
| 104 | + sim = cirq.ClassicalStateSimulator() |
| 105 | + results = sim.run(circuit, param_resolver=None, repetitions=1).records |
| 106 | + np.testing.assert_equal(results, expected_results) |
| 107 | + |
| 108 | + def test_same_key_instances_order(self): |
| 109 | + q0, q1 = cirq.LineQubit.range(2) |
| 110 | + circuit = cirq.Circuit() |
| 111 | + circuit.append(cirq.X(q0)) |
| 112 | + circuit.append(cirq.measure((q0, q1), key='key')) |
| 113 | + circuit.append(cirq.X(q0)) |
| 114 | + circuit.append(cirq.measure((q1, q0), key='key')) |
| 115 | + expected_results = {'key': np.array([[[1, 0], [0, 0]]], dtype=np.uint8)} |
| 116 | + sim = cirq.ClassicalStateSimulator() |
| 117 | + results = sim.run(circuit, param_resolver=None, repetitions=1).records |
| 118 | + np.testing.assert_equal(results, expected_results) |
| 119 | + |
| 120 | + def test_repetitions(self): |
| 121 | + q0 = cirq.LineQubit.range(1) |
| 122 | + circuit = cirq.Circuit() |
| 123 | + circuit.append(cirq.measure(q0, key='key')) |
| 124 | + expected_results = { |
| 125 | + 'key': np.array( |
| 126 | + [[[0]], [[0]], [[0]], [[0]], [[0]], [[0]], [[0]], [[0]], [[0]], [[0]]], |
| 127 | + dtype=np.uint8, |
| 128 | + ) |
| 129 | + } |
| 130 | + sim = cirq.ClassicalStateSimulator() |
| 131 | + results = sim.run(circuit, param_resolver=None, repetitions=10).records |
| 132 | + np.testing.assert_equal(results, expected_results) |
| 133 | + |
| 134 | + def test_multiple_gates(self): |
| 135 | + q0, q1 = cirq.LineQubit.range(2) |
| 136 | + circuit = cirq.Circuit() |
| 137 | + circuit.append(cirq.X(q0)) |
| 138 | + circuit.append(cirq.CNOT(q0, q1)) |
| 139 | + circuit.append(cirq.CNOT(q0, q1)) |
| 140 | + circuit.append(cirq.CNOT(q0, q1)) |
| 141 | + circuit.append(cirq.X(q1)) |
| 142 | + circuit.append(cirq.measure((q0, q1), key='key')) |
| 143 | + expected_results = {'key': np.array([[[1, 0]]], dtype=np.uint8)} |
| 144 | + sim = cirq.ClassicalStateSimulator() |
| 145 | + results = sim.run(circuit, param_resolver=None, repetitions=1).records |
| 146 | + np.testing.assert_equal(results, expected_results) |
| 147 | + |
| 148 | + def test_multiple_gates_order(self): |
| 149 | + q0, q1 = cirq.LineQubit.range(2) |
| 150 | + circuit = cirq.Circuit() |
| 151 | + circuit.append(cirq.X(q0)) |
| 152 | + circuit.append(cirq.CNOT(q0, q1)) |
| 153 | + circuit.append(cirq.CNOT(q1, q0)) |
| 154 | + circuit.append(cirq.measure((q0, q1), key='key')) |
| 155 | + expected_results = {'key': np.array([[[0, 1]]], dtype=np.uint8)} |
| 156 | + sim = cirq.ClassicalStateSimulator() |
| 157 | + results = sim.run(circuit, param_resolver=None, repetitions=1).records |
| 158 | + np.testing.assert_equal(results, expected_results) |
| 159 | + |
| 160 | + def test_param_resolver(self): |
| 161 | + gate = cirq.CNOT ** sympy.Symbol('t') |
| 162 | + q0, q1 = cirq.LineQubit.range(2) |
| 163 | + circuit = cirq.Circuit() |
| 164 | + circuit.append(cirq.X(q0)) |
| 165 | + circuit.append(gate(q0, q1)) |
| 166 | + circuit.append(cirq.measure((q1), key='key')) |
| 167 | + resolver = cirq.ParamResolver({'t': 0}) |
| 168 | + sim = cirq.ClassicalStateSimulator() |
| 169 | + results_with_parameter_zero = sim.run( |
| 170 | + circuit, param_resolver=resolver, repetitions=1 |
| 171 | + ).records |
| 172 | + resolver = cirq.ParamResolver({'t': 1}) |
| 173 | + results_with_parameter_one = sim.run( |
| 174 | + circuit, param_resolver=resolver, repetitions=1 |
| 175 | + ).records |
| 176 | + np.testing.assert_equal( |
| 177 | + results_with_parameter_zero, {'key': np.array([[[0]]], dtype=np.uint8)} |
| 178 | + ) |
| 179 | + np.testing.assert_equal( |
| 180 | + results_with_parameter_one, {'key': np.array([[[1]]], dtype=np.uint8)} |
| 181 | + ) |
| 182 | + |
| 183 | + def test_unknown_gates(self): |
| 184 | + gate = cirq.CNOT ** sympy.Symbol('t') |
| 185 | + q0, q1 = cirq.LineQubit.range(2) |
| 186 | + circuit = cirq.Circuit() |
| 187 | + circuit.append(gate(q0, q1)) |
| 188 | + circuit.append(cirq.measure((q0), key='key')) |
| 189 | + resolver = cirq.ParamResolver({'t': 0.5}) |
| 190 | + sim = cirq.ClassicalStateSimulator() |
| 191 | + with pytest.raises( |
| 192 | + ValueError, |
| 193 | + match="Can not simulate gates other than " |
| 194 | + + "cirq.XGate, cirq.CNOT, cirq.SWAP, and cirq.CCNOT", |
| 195 | + ): |
| 196 | + _ = sim.run(circuit, param_resolver=resolver, repetitions=1).records |
0 commit comments