|
16 | 16 |
|
17 | 17 | def config():
|
18 | 18 | param_grids = [
|
19 |
| - # {"n_components": [1, 2, 3]}, |
20 |
| - # {"n_components": [1, 2, 3]}, |
21 |
| - # { |
22 |
| - # "kernel": ["rbf"], |
23 |
| - # "n_components": [1, 2, 3], |
24 |
| - # "gamma": [None], |
25 |
| - # "fit_inverse_transform": [True], |
26 |
| - # "n_jobs": [-1], |
27 |
| - # }, |
28 |
| - # { |
29 |
| - # "n_components": [1, 2, 3], |
30 |
| - # "alpha": [0.001, 0.01], |
31 |
| - # "n_jobs": [-1], |
32 |
| - # }, |
33 |
| - # { |
34 |
| - # "n_components": [1, 2, 3], |
35 |
| - # "algorithm": ["randomized"], |
36 |
| - # "n_iter": [1, 2, 4, 5], |
37 |
| - # }, |
38 |
| - # {"n_components": [1, 2, 3], "eps": [0.125, 0.75, 1]}, |
39 |
| - # {"n_components": [1, 2, 3]}, |
40 |
| - # {"n_components": [1, 2, 3]}, |
41 |
| - # { |
42 |
| - # "n_components": [1, 2, 3], |
43 |
| - # "density": ["auto"], |
44 |
| - # "eps": [ |
45 |
| - # 0.5, |
46 |
| - # ], |
47 |
| - # "dense_output": [True, False], |
48 |
| - # }, |
| 19 | + {"n_components": [1, 2, 3]}, |
| 20 | + {"n_components": [1, 2, 3]}, |
| 21 | + { |
| 22 | + "kernel": ["rbf"], |
| 23 | + "n_components": [1, 2, 3], |
| 24 | + "gamma": [None], |
| 25 | + "fit_inverse_transform": [True], |
| 26 | + "n_jobs": [-1], |
| 27 | + }, |
| 28 | + { |
| 29 | + "n_components": [1, 2, 3], |
| 30 | + "alpha": [0.001, 0.01], |
| 31 | + "n_jobs": [-1], |
| 32 | + }, |
| 33 | + { |
| 34 | + "n_components": [1, 2, 3], |
| 35 | + "algorithm": ["randomized"], |
| 36 | + "n_iter": [1, 2, 4, 5], |
| 37 | + }, |
| 38 | + {"n_components": [1, 2, 3], "eps": [0.125, 0.75, 1]}, |
| 39 | + {"n_components": [1, 2, 3]}, |
| 40 | + {"n_components": [1, 2, 3]}, |
| 41 | + { |
| 42 | + "n_components": [1, 2, 3], |
| 43 | + "density": ["auto"], |
| 44 | + "eps": [ |
| 45 | + 0.5, |
| 46 | + ], |
| 47 | + "dense_output": [True, False], |
| 48 | + }, |
49 | 49 | {"n_components": [2, 3], "n_jobs": [-1], "n_neighbors": [1, 5]},
|
50 |
| - # { |
51 |
| - # "n_components": [1, 2, 3], |
52 |
| - # "batch_size": [100, 200], |
53 |
| - # "alpha": [ |
54 |
| - # 0.0001, |
55 |
| - # 0.001, |
56 |
| - # 0.01, |
57 |
| - # ], |
58 |
| - # "n_iter": [ |
59 |
| - # 2, |
60 |
| - # 3, |
61 |
| - # 4, |
62 |
| - # ], |
63 |
| - # }, |
64 |
| - # { |
65 |
| - # "n_components": [1, 2, 3], |
66 |
| - # "algorithm": ["parallel", "deflation"], |
67 |
| - # "whiten": [True, False], |
68 |
| - # "max_iter": [50, 100], |
69 |
| - # }, |
70 |
| - # { |
71 |
| - # "n_components": [1, 2, 3], |
72 |
| - # "n_neighbors": [10], |
73 |
| - # "method": ["modified"], |
74 |
| - # "n_jobs": [4], |
75 |
| - # }, |
| 50 | + { |
| 51 | + "n_components": [1, 2, 3], |
| 52 | + "batch_size": [100, 200], |
| 53 | + "alpha": [ |
| 54 | + 0.0001, |
| 55 | + 0.001, |
| 56 | + 0.01, |
| 57 | + ], |
| 58 | + "n_iter": [ |
| 59 | + 2, |
| 60 | + 3, |
| 61 | + 4, |
| 62 | + ], |
| 63 | + }, |
| 64 | + { |
| 65 | + "n_components": [1, 2, 3], |
| 66 | + "algorithm": ["parallel", "deflation"], |
| 67 | + "whiten": [True, False], |
| 68 | + "max_iter": [50, 100], |
| 69 | + }, |
| 70 | + { |
| 71 | + "n_components": [1, 2, 3], |
| 72 | + "n_neighbors": [10], |
| 73 | + "method": ["modified"], |
| 74 | + "n_jobs": [4], |
| 75 | + }, |
76 | 76 | ]
|
77 | 77 | reduction_methods = [
|
78 |
| - # PCA, |
79 |
| - # IncrementalPCA, |
80 |
| - # KernelPCA, |
81 |
| - # SparsePCA, |
82 |
| - # TruncatedSVD, |
83 |
| - # GaussianRandomProjection, |
84 |
| - # LinearDiscriminantAnalysis, |
85 |
| - # NeighborhoodComponentsAnalysis, |
86 |
| - # SparseRandomProjection, |
| 78 | + PCA, |
| 79 | + IncrementalPCA, |
| 80 | + KernelPCA, |
| 81 | + SparsePCA, |
| 82 | + TruncatedSVD, |
| 83 | + GaussianRandomProjection, |
| 84 | + LinearDiscriminantAnalysis, |
| 85 | + NeighborhoodComponentsAnalysis, |
| 86 | + SparseRandomProjection, |
87 | 87 | Isomap,
|
88 |
| - # MiniBatchDictionaryLearning, |
89 |
| - # FastICA, |
90 |
| - # LocallyLinearEmbedding, |
| 88 | + MiniBatchDictionaryLearning, |
| 89 | + FastICA, |
| 90 | + LocallyLinearEmbedding, |
91 | 91 | ]
|
92 | 92 | standard_pipeline = Pipeline([("StandardScalar", StandardScaler())])
|
93 | 93 | return param_grids, standard_pipeline, reduction_methods
|
94 | 94 |
|
95 | 95 |
|
96 |
| -if __name__ == "__main__": |
97 |
| - X_train, X_test, y_train, y_test = load_dataset() |
98 |
| - param_grids, standard_pipeline, reduction_methods = config() |
99 |
| - all_possible_variations = Variations( |
100 |
| - param_grids=param_grids, |
101 |
| - reduction_methods=reduction_methods, |
102 |
| - standard_pipeline=standard_pipeline, |
103 |
| - analysis_instance=Analysis(X_train, y_train), |
104 |
| - ).produce_variations() |
105 |
| - all_pipeline_performance, best_performances = Evaluation( |
106 |
| - _data={ |
107 |
| - "X_train": X_train, |
108 |
| - "X_test": X_test, |
109 |
| - "y_train": y_train, |
110 |
| - "y_test": y_test, |
111 |
| - }, |
112 |
| - all_possible_variations=all_possible_variations, |
113 |
| - labels=np.unique(y_train), |
114 |
| - ).evaluate() |
115 |
| - pprint(best_performances) |
| 96 | +X_train, X_test, y_train, y_test = load_dataset() |
| 97 | +param_grids, standard_pipeline, reduction_methods = config() |
| 98 | +all_possible_variations = Variations( |
| 99 | + param_grids=param_grids, |
| 100 | + reduction_methods=reduction_methods, |
| 101 | + standard_pipeline=standard_pipeline, |
| 102 | + analysis_instance=Analysis(X_train, y_train), |
| 103 | +).produce_variations() |
| 104 | +all_pipeline_performance, best_performances = Evaluation( |
| 105 | + _data={ |
| 106 | + "X_train": X_train, |
| 107 | + "X_test": X_test, |
| 108 | + "y_train": y_train, |
| 109 | + "y_test": y_test, |
| 110 | + }, |
| 111 | + all_possible_variations=all_possible_variations, |
| 112 | + labels=np.unique(y_train), |
| 113 | +).evaluate() |
| 114 | +pprint(best_performances) |
0 commit comments