diff --git a/images/binary.png b/images/binary.png new file mode 100644 index 000000000..6412b30cd Binary files /dev/null and b/images/binary.png differ diff --git a/tutorials/algorithms/09_IQPE.ipynb b/tutorials/algorithms/09_IQPE.ipynb new file mode 100644 index 000000000..3e51dc4c6 --- /dev/null +++ b/tutorials/algorithms/09_IQPE.ipynb @@ -0,0 +1,1059 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "approximate-charger", + "metadata": {}, + "source": [ + "# Iterative Quantum Phase Estimation Algorithm\n", + "\n", + "The goal of this tutorial is to understand how the Iterative Phase Estimation (IPE) algorithm works, why would we use the IPE algorithm instead of the QPE (Quantum Phase Estimation) algorithm and how to build it with Qiskit using the same circuit exploiting reset gate and the `c_if` method that allows to apply gates conditioned by the values stored in a classical register, resulting from previus measurements.\n", + "\n", + "**References**\n", + "\n", + "- [Section 2 of Lab 4: Iterative Phase Estimation (IPE) Algorithm](https://qiskit.org/textbook/ch-labs/Lab04_IterativePhaseEstimation.html#2-iterative-phase-estimation-ipe-algorithm) \n", + "\n", + "- [Ch.3.6 Quantum Phase Estimation](https://qiskit.org/textbook/ch-algorithms/quantum-phase-estimation.html)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "id": "nasty-binding", + "metadata": {}, + "outputs": [], + "source": [ + "from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute, assemble, Aer\n", + "from qiskit.tools.visualization import plot_histogram\n", + "from math import pi\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "id": "prescribed-skill", + "metadata": {}, + "source": [ + "# Conditined gates: the c_if method" + ] + }, + { + "cell_type": "markdown", + "id": "protective-tender", + "metadata": {}, + "source": [ + "Before starting the IPE algorithm, we will give a brief tutorial about the Qiskit conditional method, c_if, as it goes into building the IPE circuit.\n", + "\n", + "`c_if` is a function (actually a method of the gate class) to perform conditioned operations based on the value stored previously in a classical register. With this feature you can apply gates after a measurement in the same circuit conditioned by the measuement outcome.\n", + "\n", + "For example, the following code will execute the $X$ gate if the value of the classical register is $0$." + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "spoken-willow", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAM4AAAB7CAYAAAA8GL8CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAL00lEQVR4nO3de1ATdwIH8G8e2hyIkUqVpgY4X9Ti+2ir2ChY9Zh6tEhQmVHRIuPrbK0jFqdqO7XFcuLdlavT8wpatbS9UZCi1rNTnQbx8IHaUJTxrC2VRxFfKOCLR/b+sKQXeZj8DtwFv5+ZzITNb3e/BL6zu9lsopIkSQIRuUQtdwCijojFIRLA4hAJYHGIBLA4RAJYHCIBLA6RABaHSACLQySAxSESwOIQCWBxiASwOEQCWBwiASwOkQAWh0gAi0MkgMUhEsDiEAlgcYgEsDhEAlgcIgEsDpEAFodIAItDJIDFIRKglTuAXHYeB8oq5Vn3E55ARKDYvK+99hqsVmub5nHG8OHD8f777wvNu+w/hcivrm7bQE4a5uGBP/s/1ebLfWiLU1YJ/HBR7hSus1qtyM7OljuGS/Krq3Gw8qrcMdoUd9WIBLA4RAJYHCIBLA6RABaHSACLQySAxaEm9Hq93BEU76E9j/MwMBgMMJvNCAwMxKBBg6DT6XDz5k2cPn0aeXl5yMjIwKVLlxzm8fb2hsViwZ49exAXFydTcuVjcTqh/v3747333kN4eDi02qZ/4meffRYxMTFITk7G9u3b8cYbb6CkpMReGn9/f9y6dQvu7u64ceOGDL+B8nFXzUnp7wbj2BfvOj1dLosXL0Z+fj4iIyMhSRLS09OxcOFCBAUFYejQoTCZTHjllVewe/duaLVazJw5E6dOncKrr75qL43VasWECRNkK41UV4e6BYvR8I8Uh+kNmV+gbuZsSDU1suT6X4osTmZmJgYPHoxHHnkEAwcORGpqKubMmQM/Pz+5oylaUlISPvjgA7i5ueGTTz6Br68vpk6dio0bN+Lw4cMoKCjAoUOHsGHDBrz44ovo27cvMjMz0b17dyQnJzuU5sqVK7L9HqouXaBdsRy2PXth+9YKAJCKimDbvBWa1+Og6tZNtmyNFFecffv2wWw2w2AwYMeOHXj77bexbt06HDhwQO5oirZkyRLExcWhtrYWUVFRiI6ORnl5eavznD9/HosWLcKFCxfs01JSUmQtTSOVny/UMbPRsP6vkK5eRX1iEtQvhUE9dIjc0QAo8BjnzTffhJ+fH/bu3WvfPw8KCsKAAQNgMBhkTqdM/v7+SExMBADMmDED6enpTs3XeEzj7e2NkpISGI1GrF27FllZWSgrK2vPyE5Rh78E6dhx1M//I/CYF9SzZ8kdyU5RW5wbN27g+PHjMJvNDge1vr6+CAoKcmoZKpXKqVt2tsXlfMeyEvD3eT0cbj+fPeTycrKzLU7nbJq76Tujk5KSoNPpsHnzZpdL07h7NmLECGRlZUGv1yMhIaGZzNnCmS0Wi8vPEfDL33LoEOD6daifHw9Vly4uL8Nicf65doWiilNZWQlJkuDt7d3kseamPWjPvLQSCz+65nAzDHxO1kx+fn6YPHky7ty5g/j4eKfmubc0jcc0S5cuhc1mw/Tp09GzZ892Tn5/UlERbJ/9E+rpU2FL+wzSReVcB6Ko4nh6ekKlUjnsczdqblpzJEly6jZuXHAbp3feuHHBTudsmnucw7KmTZsGtVqN9PR0XL58+b7rbqk0AFBUVISvvvoKOp0O4eHh92QeJ5w5ODjY5edIqq27e1wTEQ7N3JehGjMaDUl/gWSzubSc4GDnn2tXKKo47u7uCAwMREZGBurr6+3Tz58/j9zcXBmTKVdg4N1LSb/++uv7jm2tNI3279/vsFy52DZ/DJVWC/WsGQAAzaIFkC5UwJaRKWuuRooqDgCsWbMGP/30E1544QXs3r0bn3/+OSZNmoTevXvLHU2Rnnrq7mXB+fn5rY5zpjQA7JdlBwQEtHlWZ9m+tcK2dx80K16H6pdjXZWbGzTxcbBtS4NUVCRbtkaKe1UtNDQU6enpWL16NcxmM3x9fbFixQrk5OQIH2S2hchVza+7pekPysaNG+Ht7Y3i4uJWx6WkpDh1nubs2bNISEhAkYz/nOoRw6HetbPp9MEBUO9WxhZHccUBgIiICERERDhMy8nJkSmNsm3YsMGpcQsWLEBycjLmz5/f6nma0tJSrFq1qq3idVqKLA61vbKyMkRGRsodo9NQ3DEOUUfQYbY4W7ZskTsCkR23OEQCWBwiASwOkQAWh0gAi0MkgMUhEtBhXo5ua094dsx1Dx8+3OV5fiy+eyVoX5/HHe6393obDfPwcHmeH4t/BgD09TE43H8Q63aGSnL1/dTU4az400cAgMT4eQ73lUzpmbmrRiSAxSESwOIQCWBxiASwOEQCWBwiASwOkQAWh0gAi0MkgMUhEsDiEAlgcYgEsDhEAlgcIgEsDrXKYrEgICAA/fv3R2xsLBoaGuSOpAgsDrXIZrMhNjYWO3bswLlz51BVVYW0tDS5YykCi0MtysvLg8FgsH8jwty5c5GRkSFzKmVgcahFpaWlMBqN9p99fHxQUlIiYyLleGg/c6Azu1x5HZ9l7ce9F8Unf5zR5L5Go0b0lEno7uHeZDm8qr5l3OJ0Ql6eegzw64Pyi1dQfvHXr/S49375xSsYPPC3zZYGAIxGo8MWpri4GH369Gm/4B0Ii9NJTXwuEN6PPdrqGL8+3hj7zNAWHw8MDERpaSkKCwsBAJs2bWryvUUPKxank9JqNZj+hxBoNM3/ibt27YJpk4OhVrf8L6DRaJCamorIyEj069cP3bp1w6xZs9orcofCY5xO7PFePTHJ9DT+ZTna5LGw50fj0R7d77uM8ePH27c49CsWp5MzPT0EZ34oRlFJuX3aoP6+CBziL2Oq+7t96yZOnTyC2bP/jW9Pn4NPP3/cvh0NnU4ndzQA/EDCh8LV69VI3pyOO7V1cHfTYWnMVHRz/43csVqUlpaGl1+OQX19HTQaDWw2GyRJgpeXF3bu3AmTySR3ROUe4xQUFMBsNsPLyws6nQ4DBgzAypUr5Y7VIT2q90DY80EAAHPoWEWX5ssvv0R0dDTq6+sAAA0NDfaXxa9evYrQ0FBF7Doqcotz4sQJjB07FkajEfHx8fD19UVRURFyc3OxadOmVudt/LhU6pi2/C0BF8tLWjyHpFKpEDByFCZPndPm63blI3YVeYyzbNkyuLu74+jRo9Dr9fbpc+fOlTEVtbfLF8tR8XNxq2MkSUKh9Rh+P2UGtNouDyhZU4rb4ty8eRMeHh5YvHgxkpOT5Y5DD5DFYkFISIhTYysqKtCrV692TtQyxW1xKisrYbPZhM9Qc1et47p0ocypcWq1Gus+2gFtl7bd4riyq6a4Fwc8PT2hVqtRVubck0idh1dvA7x6G6BSqVoco1Kp4D/kd21eGlcpblcNAEJCQlBYWIjvv/8e3bvf/yQddR4ZGRmIjIxs9jG1Wg2tVoujR4/+X1901RYUt8UBgPXr16OmpgajRo3Cli1b8M0332Dr1q2IjY2VOxq1M7PZjA8//BAajQbA3bI03ndzc8OuXbtkLw2g0C0OAHz33XdYvXo1Dh48iNu3b8NoNCIqKgpr1qyROxo9AOXl5UhNTcWJEyeg0WgQEhKC6OhoxeyBKLY4REqmyF01IqVjcYgEsDhEAlgcUoylS5fCZDJhyZIlzT5eXV2NsLAwjBkzBtu2bXvA6RyxOKQIJ0+eRE1NDXJyclBbW4u8vLwmY1JSUhAVFYWDBw8iNTUVtbW1MiS9i8UhRThy5AgmTpwIAJgwYQIOHz6M5cuXw2azITQ0FMXFxfYxGo0Gw4YNw5kzZ2TLy+KQIly7ds1+jkav1+PatWuoqKjAvHnzEBYWBh8fn2bHyIXFIUXQ6/WoqqoCAFRVVaFHjx6YP38+tm/fbn/HSHNj5MLikCKMHj0aBw4cAADs378fo0aNwjvvvIO33noLiYmJDmMaGhpgtVrx5JNPypaXxSFFGDlyJHQ6HUwmEzQaDXJzczFlyhQsW7YMBQUFOH36NGJjY/Hpp5/CZDIhJiYGXbt2lS0v33JDJIBbHCIBLA6RABaHSACLQySAxSESwOIQCWBxiASwOEQCWBwiASwOkQAWh0gAi0MkgMUhEsDiEAlgcYgEsDhEAlgcIgH/BW0tYcvry8GWAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "q = QuantumRegister(1,'q')\n", + "c = ClassicalRegister(1,'c')\n", + "qc = QuantumCircuit(q, c)\n", + "qc.h(0)\n", + "qc.measure(0,0)\n", + "qc.x(0).c_if(c, 0)\n", + "qc.draw(output='mpl')" + ] + }, + { + "cell_type": "markdown", + "id": "worth-speech", + "metadata": {}, + "source": [ + "We highlight that the method c_if expects as the first argument a whole classical register, not a single classical bit (or a list of classical bits), and as the second argument a value in decimal representation (a non-negative integer), not the value of a single bit, 0, or 1 (or a list/string of binary digits).\n", + "\n", + "Let's make another example. Consider that we want to perform a bit flip on the third qubit after the measurements in the following circuit, when the results of the measurement of $q_0$ and $q_1$ are both $1$." + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "id": "excellent-count", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAATMAAADWCAYAAAC9pmXbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAa40lEQVR4nO3de1iUdaIH8O8MctFI08NB4yItKAjoMAp6vLQwGBm6lqboCR896WIW4uZle4JdRdOQDE3YLurxUu5WDyWXtPbBVjRmsvACKi6hxnpZEZZWNBRJGUw4f3iYdXyRmXEHfu+8fj/P0/OM77yX72h8eS+/eV9Va2trK4iIHJxadAAiIntgmRGRIrDMiEgRWGZEpAgsMyJSBJYZESkCy4yIFIFlRkSKwDIjIkVgmRGRIrDMiEgRWGZEpAgsMyJSBJYZESkCy4yIFIFlRkSKwDIjIkVgmRGRIrDMiEgRuokOQF3v1KlTHb7/7rvvYsGCBR3OM2jQIHtGIvq3cc+MJN577z3REYhsxjIjIkVgmRGRIrDMSCI3N1d0BCKbscyISBFYZiQRFxcnOgKRzTg0w4L8UqCmXsy2vXsDUyLEbFuERYsWoaysTMi2tVotsrKyhGyb7INlZkFNPXDmougUD4aysjIYDAbRMchB8TCTJJKSkkRHILIZy4wkLI3+J5IjlhlJREZGio5AZDOWGUnU1dWJjkBkM5YZESkCy4wkQkJCREcgshnLjCTy8vJER+hUzs7OoiNQJ+A4M5JYvnw5Vq1aJTqGRUOHDkVkZCTCw8Ph6emJ1tZW1NTU4MiRI9i3bx8qKysly8yePRtLlixBTEwMLl7kAEIlYZmRRE5OjqzLbPr06XjllVcwfPjwdt9PSEgAAHz11VdIT0/Hvn37ANwusm3btkGtVuPpp5/Gtm3buiwzdT5ZH2a2tLRg3bp1GDhwINzc3BAWFgaDwYCgoCDMmzdPdLx25abpcHhnmtXTyXqenp7YtWsXPv30UwwfPhyXL1/G1q1b8eKLL2L8+PGYMGECXn75ZXz88cdobGzE2LFjsXfvXmzZsgUvvfSSqciSk5NZZAok6z2zhIQE5OfnIzU1FeHh4SguLkZ8fDzq6uqwZMkS0fGoC/n6+qKoqAgBAQG4evUqUlJSsH37djQ1NUnmfeedd9CzZ08sWLAAy5cvx9y5c5GQkACVSoXk5GRkZGQI+ATU2WRbZtnZ2di+fTv0ej2ioqIAANHR0Th69Cjy8/MxbNgwwQmVS27fj3zooYdQWFiIgIAAlJaWYvLkyaipqelwmYaGBqSnpwMA0tLSoFKpcPbsWaxbt64rIpMAsj3MTE9PR2xsrKnI2gwYMADOzs7QaDQAgL///e+IiopCYGAghgwZgv3794uIqygVFRWiI5jJyMhAUFAQysvLERMTY7HI2syePRuvv/46VCoVGhoa4O/vj8WLF3dyWhJF1dra2io6xN2qq6vh6+uLbdu24de//rXZe/Hx8Th16hSOHTsGAHjqqacwadIkzJ8/H8XFxZg2bRrOnTsHFxeXDrehUqmsyjJ1aRF8gnVWZ89N0+GHM4fg5OxqNv1mUyNGTnkNIyYvs3pd1Sf1yFsdbfX81rL0A52ZmWnVPF0hLCwMZWVlaG5uRkREBMrLy61a7s6T/cnJySgvL0dBQQGamprg5+fHK5kOwpZ6kuWeWXV1NQCgX79+ZtNv3LgBg8FgOsS8dOkSvvnmG9PVq9GjR8PLywtFRUVdG/guIyYtReLmK2b/eQU+LjSTo5o/fz4AYNOmTfddZBkZGdi9eze++OILuLm5SX5BkjLI8pyZh4cHAKCyshITJkwwTc/IyEBtbS3Cw8MBAFVVVejbty9cXf+1F/SLX/wC58+ft7gNaxv/nUJx9zOLitIhN83+O86WnpuZmZlp8Wrx+vXr7RkJAKDT6czO1zk5OWHGjBkArH/8XXtF1ua9997D008/jVmzZmHNmjVmy0VFRUGv1//7H4KEkWWZ+fv7Q6PRID09HX369IG3tzdyc3NRUFAAAKYyo86xcuVK0REAAMHBwXB3d8fZs2fbHQB7t46KDACKiopgNBoxaNAguLu7o7GxsbOikwCyPMxUq9XIyclBaGgoEhMTMWfOHHh4eCApKQlOTk6mk//9+/fHP//5TxiNRtOy586dg5+fn6joijB9+nTREQAAQ4YMAQDT+dGOWCoyAGhubkZFRQXUajUGDx5s97wkliz3zAAgMDBQcu5r1qxZCAkJQffu3QHcPhwdM2YMtm3bZroAUFNTg+ho+580t1bcMr1N0+UoODgYJ0+eFB0D58+fx+bNm3Hw4MEO5xs1apTFImvzySefoKSkBPX1gh7sQJ1GtmXWntLSUowcOdJs2qZNmzB79mxkZWXBxcUF2dnZFq9kkmMoLi5GcXGxxfkOHDiAjRs3oqqqyuKA2LVr19orHsmMw5RZY2MjKisrTVe32vj7++Prr78WlIrkgrf6JocpM3d3d9y6dUt0jAeCTqcTHYHIZrK8AEBibdy4UXQEIpuxzEgiMTFRdAQim7HMSIKDR8kRscyISBFYZkSkCCwzkpDDgFkiW7HMSGLHjh2iIxDZzGHGmYni3fvB2/aKFSuEfD9Tq9XavMzZqloAgH//R81ed8W2SV5YZhZMiRCd4MGRlZVl8zIpb24GAKxJnmf2mh48PMwkIkVgmZHEhg0bREcgshnLjCRCQ0NFRyCyGcuMJO5+IhaRI2CZEZEisMyISBFYZiQxfPhw0RGIbMYyI4mSkhLREYhsxjIjIkVgmRGRIrDMSCI3N1d0BCKbscyISBFYZiQRFxcnOgKRzXjXDAvyS4EaQQ+/9u7Nu3Y4gkWLFqGsrKzLt6vVau/rTiNKxTKzoKYeOHNRdAqSs7KyMhgMBtExHng8zCSJpKQk0RGIbMYyI4kFCxaIjkBkM5YZSURGRoqOQGQzlhlJ1NXViY5AZDOWGREpAsuMJEJCQkRHILIZh2aQRF5enugIitevXz8EBQXBxcUFjY2NqKioQENDwz3nnzt3Lj7//HNcvMhxQvfCPTOSWL58uegIihQcHIy3334bNTU1qK2thV6vx549e1BcXIyrV6/i5MmT+P3vfw9PT0+z5VJSUrBlyxbs3bsXzs7OgtLLn6zLrKWlBevWrcPAgQPh5uaGsLAwGAwGBAUFYd48Phuxs+Tk5IiOoCg9e/bEli1bcOLECfzmN7+Bl5cXrl69im+//RaFhYU4cuQIjEYjBg0ahNWrV+P8+fN45ZVXoFarkZKSgjfeeMP0s3Dz5k3RH0e2ZH2YmZCQgPz8fKSmpiI8PBzFxcWIj49HXV0dlixZIjpeu3LTdOg/OAYjJi+zajopW3BwMHbv3g0/Pz8YjUZ88MEH2Lx5M8rKytDa2mqaz9nZGdHR0UhKSsIzzzyDtWvXIjExEf7+/mhpacGcOXPwpz/9SeAnkT/Zlll2dja2b98OvV5velpQdHQ0jh49ivz8fAwbNkxwQqKOBQYGQq/Xw9PTEyUlJXj++edx8uTJdue9efMm9uzZgz179iA2NhaffPIJ/P390draisTERBaZFWR7mJmeno7Y2FjJY88GDBgAZ2dnaDQaALfP7wQGBkKtVvM+XHbC7xn++5ydnfHpp5/C09MTf/nLXxAZGXnPIrubVqtFr1690NraCpVKhYgI3m3AGrIss+rqanz33XeYNm2a5L2qqiqEhobC1dUVABAbG4svv/ySo9btqKKiQnQEh5ecnAytVoszZ85g6tSpaGpqsmq5O8+RLV26FEajES+88AKeeOKJTk7s+GR5mFldXQ3g9uXrO924cQMGgwHjx483TRs9evR9bUOlUlk139SlRfAJ1tm07sO7VuNIwTqzaTebGtF/cIxN6zEY9Hh5XLRNy1hj8eLFHb6fmZlp1TxykLzmfwHc/ve887VI3bt3N/39vfDCC/jpp5+sWu7OIms7R6ZWq5GWloaUlBTs27fPbH6DwSD8s3a2O88rWiLLPTMPDw8AQGVlpdn0jIwM1NbWIjw8XEQsq42YtBSJm6+Y/ecV+LjoWNRFpk+fjj59+uDQoUMoKiqyapn2igwA3n33Xfz000+IiYlBYGBgZ8Z2eLLcM/P394dGo0F6ejr69OkDb29v5ObmoqCgAADsUmbWNv47heLuZxYVpUNumvW/max16tSpDt/PzMy0OPRl/fr19ox031Le3Azg9r/nna+7kk6nMzvP2HZI+OGHH1q1/L2KDACuXr2KXbt2YcaMGYiOjjb7BR8VFQW9Xm+fD6EAstwzU6vVyMnJQWhoKBITEzFnzhx4eHggKSkJTk5OppP/1DlWrlwpOoJDa7vSfujQIYvzdlRkbQ4fPgzAPr/ElUyWe2bA7cvad++iz5o1CyEhIejevbugVA+G6dOni47g0Ly9vQEAZ86c6XA+a4oMAE6fPg0A8PLysm9QhZFtmbWntLQUI0eONJuWmpqKDz74AHV1dSgvL8eiRYtgMBgQEBAgJGPcMr1N0+UoODjY6mEEJOXt7Q03NzdcuXKlw/l8fHysGhBbWFiI3r1748aNG3ZOqiyyPMxsT2NjIyorKyWDZV9//XVUV1fDaDTi8uXLqK6uFlZkRABw/fp1/PjjjxbP3S1YsABjxoyxOCC2ubkZV65cgdFotGdMxXGYPTN3d3fcunVLdAwiuzp48KDoCIrhMHtm1HV0Op3oCEQ2Y5mRxMaNG0VHILIZy4wkEhMTRUcgshnLjCQ4EJMcEcuMiBSBZUZEisAyIwkOmCVH5DDjzETx7v3gbXvHjh38SpMNtFqtzcucraoFAPj3f9TsdWdvV8lYZhZMeQBv8rlixQqWmQ2ysrJsXqbtDh9rkueZvab7x8NMIlIElhkRKQLLjCQ2bNggOgKRzVhmJBEaGio6ApHNWGYkcffj/YgcAcuMiBSBZUYSw4cPFx2ByGYsM5IoKSkRHYHIZiwzIlIElhkRKQLLjCRyc3NFRyCyGcuMiBSBZUYScXFxoiMQ2Yx3zbAgvxSoqRezbe/eD+ZdO6jzLVq0CGVlZUK2rdVq7+tOI5awzCyoqQfOXBSdgsi+ysrKYDAYRMewKx5mkkRSUpLoCEQ2Y5mRxIIFC0RHILIZy4wkIiMjRUcgshnLjCTq6upERyCyGcuMiBSBZUYSISEhoiMQ2YxlRhJ5eXmiI5BC9OzZs8u2xTIjieXLl4uOQDLi4uKCKVOm4K233kJRURGOHz+OY8eOYefOnUhNTb3n/e+ysrJw4MAB9O3bt0tyyrrMWlpasG7dOgwcOBBubm4ICwuDwWBAUFAQ5s3jMwY7S05OjugIJAMuLi5YtmwZqqqqkJeXhyVLlkCn00Gj0UCr1WLSpElYtWoVDh8+jJKSEkycONG0bFZWFhYuXIiAgAAMHjy4S/LK+hsACQkJyM/PR2pqKsLDw1FcXIz4+HjU1dVhyZIlouO1KzdNh/6DYzBi8jKrphPJUVhYGD7++GPTw23++te/IicnB6WlpfjHP/6Bbt26ISgoCKNGjcKMGTMQERGBL774Ah999BGuXbuGxMREGI1GTJkyBfv27euSzLIts+zsbGzfvh16vd70gI3o6GgcPXoU+fn5GDZsmOCERMo0evRo7N69Gz179sT333+PxMREFBUVSeY7evQosrOz8eqrr+Kll17C6tWrMXPmTAAwFVlBQUGX5ZbtYWZ6ejpiY2MlTwoaMGAAnJ2dodFoUF9fj4kTJyIwMBBhYWEYN24cTp8+LSixcijtO3tkvcceewwFBQXo2bMnsrOzodVq2y2yOzU1NSErK8vs9MSJEyewe/fuzo5rRpZlVl1dje+++w7Tpk2TvFdVVYXQ0FC4urpCpVJh0aJFqKysxPHjxzFx4kTMmTNHQGJlqaioEB2BBFCpVHj//ffRq1cv7Nq1CzNnzkRTU5NVy2ZlZeH555+H0WhEfX09hg4disTExE5ObE6Wh5nV1dUAgH79+plNv3HjBgwGA8aPHw8AeOSRRxATE2N6f/To0cjIyLBqGyqVyqr5pi4tgk+wzqp52xzetRpHCtaZTbvZ1Ij+g2PusUT7DAY9Xh4XbdMy1li8eHGH72dmZlo1jxwkr/lfALf/Pe98LXdyzP3ss88iOjoaFy9exNy5c9HS0mLVcm0n+9sOLV1dXZGfn4833ngDH374Ia5du2Y2v8FgsPqztra2Wp1flmXm4eEBAKisrMSECRNM0zMyMlBbW4vw8PB2l8vKysLkyZO7ImKHRkxa2u4FACI5a7tbSlpaGi5dumTVMncXWds5Mr1eD51Oh5kzZ2Ljxo2dlvlOsiwzf39/aDQapKeno0+fPvD29kZubq7pL6q9Mlu5ciVOnz6Nr776yqptWNv47xSKu59ZVJQOuWnW/2ay1qlTpzp8PzMz0+LQl/Xr19sz0n1LeXMzgNv/nne+ljvRuXU6ndm5UU9PT4wdOxbXr1/HH//4R6vWca8iA4BNmzZBp9MhPj5eUmZRUVHQ6/V2+Rx3kuU5M7VajZycHISGhiIxMRFz5syBh4cHkpKS4OTkBI1GYzZ/Wloa/vznP+PLL79Ejx49BKVWjpUrV4qOQF0sIuL2LY0PHTqEhoYGi/N3VGQAsHfvXgDAsGHDoFZ3Tc3Ics8MAAIDAyVXUWbNmoWQkBB0797dNG3lypUoKChAYWEhHnnkkS5OqUzTp08XHYG6WNt4suPHj1uc11KRAcDly5dx4cIF+Pr6ws/PD+fOnbN75rvJtszaU1paipEjR5r+XFFRgddeew0BAQHQ6XSm6aLubQ4Accv0Nk2Xo+DgYJw8eVJ0DOpCBw8exKpVq7B///4O55s6darFImuzfv169OrVS3IBoLM4TJk1NjaisrIS8+fPN00LDQ11iPMjRHK3f/9+i0UG3L4JQVZWFgoLCy0OiO2Mh5Z0xGHKzN3dHbdu3RIdg+iBZ2nYjiiyvABAYt15yE7kKFhmJNFV44KI7IllRhJd/TUUIntgmZFEZwxoJOpsLDMiUgSWGREpAsuMJDhglhwRy4wkduzYIToCkc0cZtCsKN69H7xtr1ixgt/PVDitVmvzMmeragEA/v0fNXvdFdu2BsvMgikRohMQ2d/9fNWo7VZFa5Lnmb2WCx5mEpEisMxIYsOGDaIjENmMZUYSbfe2InIkLDOSuPvxfkSOgGVGRIrAMiMiReDQjAfQoEGDOnx/xYoVFuchkhvumZHEa6+9JjoCkc1YZkSkCCwzIlIElhkRKQLLjIgUgWVGRIrAMiMiRWCZ3cO4ceOg1WoxZMgQxMXFoaGhQXQk6gR6vR6hoaEYMGAA5s6d6xAPml64cCF8fHzQrZvjDBO9cOECnnjiCQQHByM0NBS/+93v7L4Nltk95OTkoKysDOXl5fDx8cH69etFRyI7a2lpwdy5c5GTk4PTp0+joaEBH330kehYFk2bNg2lpaWiY9ikW7duePPNN3Hy5EkcO3YM33zzDXbt2mXXbbDM7qFXr14Abv8P39TUBJVKJTgR2VtJSQm8vLwQEhICAEhISEBeXp7gVJY9/vjj6Nevn+gYNnn00UcREXH7TqcuLi4YOnQoqqqq7LoNllkHnn32WXh6euL777/Hb3/7W9FxyM6qq6vh6+tr+nP//v1x4cIFgYkeDD/++CN27tyJJ5980q7rdZyDbgE+++wzNDc3IyEhAbm5uZg9e7boSATgi73FOHuh1mzaHz7Ia/e1NmQAov4rrN31tLa2dk7AdtT8cAm5uw2S6e3ldnVxxv9MfQo93Fy7LF97Wltb8emfi/DPS/Vm0+/1dz0mfDAiNEEdrrO5uRlxcXFYuHCh3b//yz0zC1xcXPDcc8/hs88+Ex2F/t/jw4fgxysNqL142TTt7te1Fy/jRpMR/6UNvud6fH19zfbEqqqq4OPj0ymZvft5wLuvhylbR7nDBwcKLzIAUKlUiByhwcVL9RYzA4A2dECH67t16xZmzJgBrVbbKUc6LLN2XLt2DbW1t3/zt7S04PPPP+fdV2Wkd6+H8UzMmA7nUQGY9isd3Fxd7jlPREQEqqurceLECQDAtm3bMGXKFHtGNTPxiVHo3evhDucJHuBnce+mK3n19cCTv+z4qT5OTmr898RodHNy6nC+efPm4eGHH8Zbb71lz4gmLLN2XLt2Dc888ww0Gg00Gg1+/vlnLFu2THQsusOwwQMRGvjYPd9/fLgGAf29OlyHk5MTtm7diri4OAQEBMDd3R2zZs2yc9J/cXN1wfRf6XCvS0kP9XDD1NhIixebXnzxRfj4+ODWrVvw8fFBUlKS/cPeIXKEBn7efe/5/lORI9DvP/t0uI5vv/0W77//PkpLSzF06FBotVq8/fbbds2pau3KEwcK0NrayiubMtF4/Qay3s9F4083zKb39eiNBc8/C2eZjsParT8Ew6HjkumzpoxD6MDHuj6QFS5facAfPshDc/NNs+m/8H0UL8RPhFoGPxPcM7OR4dBxfLyzED87wOBKpXPv0R1x482fV+Ckvn3II9ciA4AnH4+Q7MlEDAmSbZEBwH880hMTx44ym+bq4ozpv9LJosgABZRZeXk5pk6dCg8PD7i5uWHgwIFYunRpp2zLaGzG14eOo/nmzxbPD1DXGBTQHyPC/nVV7MlfRsCrr4fARJZ16+aE554eCyen2z9+fXo9jKefGGVhKfGGa4IQPKC/6c/PxIyxeA6wKzl0mR05cgQjR45ERUUF1q5di4KCAqSkpOCHH37olO0VH63A9SYjYsaEd8r66f78auwo/McjPeHn3ReRIzSi41il33/2wbhfDjddqHDt4EKFXKhUKkyJjcRDPdwQGvgYhg0eKDqSGYc+Z6bT6XDixAn87W9/M43Yt1bb4+WJSL7WJM+zel6H3TO7fv069u/fj/j4eJuLjIiUR75nSS2or69HS0vLfQ9ytKXxjcZmvLkpG75enpgzbfx9bY+IOpfDllnv3r2hVqtRU1NzX8vfz2Hm92cv8PCUqAs9EIeZPXr0QGRkJLKzs3mvMSJy7AsAR44cQWRkJPz8/PDqq6/Cz88PVVVV2L9/P7Zu3WqXbRQdOIa/fF2CpFmT4evlaZd1EpH9OexhJgCEh4fjwIEDSE1NxeLFi9HU1ARfX18899xzdlm/0diM/Yf/iiB/XxYZkcw59J5ZZ6u9eBkf7SzEcxPHssyIZI5lZkFLSwvUaoc9tUj0wGCZEZEicJeDiBSBZUZEisAyIyJFYJkRkSKwzIhIEVhmRKQILDMiUgSWGREpAsuMiBSBZUZEisAyIyJFYJkRkSKwzIhIEVhmRKQILDMiUgSWGREpAsuMiBSBZUZEisAyIyJFYJkRkSKwzIhIEVhmRKQILDMiUgSWGREpAsuMiBSBZUZEisAyIyJF+D+qW5Vhk2IV+AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 83, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "q = QuantumRegister(3,'q')\n", + "c = ClassicalRegister(3,'c')\n", + "qc = QuantumCircuit(q, c)\n", + "qc.h(q[0])\n", + "qc.h(q[1])\n", + "qc.h(q[2])\n", + "qc.barrier()\n", + "qc.measure(q,c)\n", + "qc.draw('mpl')" + ] + }, + { + "cell_type": "markdown", + "id": "entertaining-adams", + "metadata": {}, + "source": [ + "We want to apply the $X$ gate, only if both the results of the measurement of $q_1$ and $q_2$ are $1$. We can do this using the c_if method, conditioning the application of $X$ depending on the value passed as argument to c_if.\n", + "\n", + "We will have to encode the value to pass to the c_if method such that it will check the values 011 and 111 (in binary representation), since it does not matter what is in the rightmost position.\n", + "\n", + "The 2 integer values in decimal representation:" + ] + }, + { + "cell_type": "markdown", + "id": "finished-failure", + "metadata": {}, + "source": [ + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "brutal-slope", + "metadata": {}, + "source": [ + "We can check the solutions using the bin() method in python (the prefix `0b` indicates the binary format)." + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "id": "boxed-electronics", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0b11\n", + "0b111\n" + ] + } + ], + "source": [ + "print(bin(3))\n", + "print(bin(7))" + ] + }, + { + "cell_type": "markdown", + "id": "d47e359e-ad29-4fb7-a428-cfcb69904257", + "metadata": {}, + "source": [ + "So we have to apply $X$ to $q_2$ using c_if two times, one for each value corresponding to 011 and 111." + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "id": "following-surfing", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAADWCAYAAAAtmd5RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAhEElEQVR4nO3de1iUdcI+8HsGOagE6suLxkEKFAQURgHXQ8JgVFgeEdn0F790MY1w10MHafN8QEVT3g7qapZttpQgnvbFNlSYLDyAihFKLGohLCUqipiAMfP+wTIrDsw8EPB9wPtzXV7X+BzmuUcuuef5PieFTqfTgYiISAKl6ABERNRxsDSIiEgylgYREUnG0iAiIslYGkREJBlLg4iIJGNpEBGRZCwNIiKSjKVBRESSsTSIiEgylgYREUnG0iAiIslYGkREJBlLg4iIJGNpEBGRZCwNIiKSjKVBRESSsTSIiEgylgYREUnWRXQAan/5+flG57/33nuYM2eO0WUGDBjQmpGIqIPgngYZeP/990VHICKZYmkQEZFkLA0iIpKMpUEGkpOTRUcgIpliaRARkWQsDTIQHh4uOgIRyRRPuTUhJRsoKRezbceeQJi/mG2LMG/ePOTk5AjZtkqlQkJCgpBtE3UkLA0TSsqBi1dFp3g45OTkQKPRiI5BREZweIoMxMTEiI5ARDLF0iADpq4GJ6KHF0uDDAQGBoqOQEQyxdIgA2VlZaIjEJFMsTSIiEgylgYZ8PLyEh2BiGSKpUEG9uzZIzpCmzI3NxcdgajD4nUaZGDJkiVYsWKF6BgmDR48GIGBgfDz84O9vT10Oh1KSkpw+vRpHDlyBAUFBQbrTJ8+HQsWLEBISAiuXuUFOETNxdIgA0lJSbIujYiICLz22msICAhodH5UVBQA4OjRo4iLi8ORI0cA1BXGjh07oFQqMW7cOOzYsaPdMhN1FrIentJqtdiwYQP69+8PKysr+Pr6QqPRwMPDA7NmzRIdr1HJq9Q4tW+V5Okknb29Pfbv34/PP/8cAQEBuH79Oj744APMnj0bY8aMwbPPPos//elP+PTTT1FZWYnRo0fj8OHD2L59O15++WV9YSxcuJCFQdRCst7TiIqKQkpKChYvXgw/Pz9kZmZi6tSpKCsrw4IFC0THo3bk7OyM9PR0uLm54datW4iNjcXOnTtRVVVlsOy7774LGxsbzJkzB0uWLMHMmTMRFRUFhUKBhQsXIj4+XsAnIOocZFsaiYmJ2LlzJzIyMhAUFAQACA4OxpkzZ5CSkoIhQ4YITth5ye3+T927d0daWhrc3NyQnZ2NiRMnoqSkxOg6FRUViIuLAwCsWrUKCoUCly5dwoYNG9ojMlGnJdvhqbi4OISGhuoLo16/fv1gbm4OHx8fAMAPP/yAoKAguLu7Y9CgQTh27JiIuJ1KXl6e6AgNxMfHw8PDA7m5uQgJCTFZGPWmT5+OlStXQqFQoKKiAq6urpg/f34bpyXq3BQ6nU4nOsSDiouL4ezsjB07duAPf/hDg3lTp05Ffn4+zp49CwB45plnMGHCBLzyyivIzMzElClTcPnyZVhYWBjdhkKhkJRl8lvpcPJUS86evEqNny6ehJm5ZYPp96oqMSxsGYZOXCT5vYovZGDP6mDJy0tl6hfnpk2bJC3THnx9fZGTk4Oamhr4+/sjNzdX0nr3H/ReuHAhcnNzkZqaiqqqKri4uPDMKaIHSK0CWe5pFBcXAwD69OnTYPrdu3eh0Wj0Q1PXrl3D119/rT9bZsSIEXBwcEB6enr7Bn7A0AlvIXrbzQZ/HNyfEJqpo3rllVcAAFu3bm1xYcTHx+PQoUM4ePAgrKysDL6IEJF0sjymYWdnBwAoKCjAs88+q58eHx+P0tJS+Pn5AQCKiorQu3dvWFr+51v9448/jh9//NHkNqS26rtp4p6nERSkRvKq1t8RzM/PNzp/06ZNJs9O27hxY2tGAgCo1eoGx1PMzMwwbdo0AMD7778v6T0aK4x677//PsaNG4fIyEisXbu2wXpBQUHIyMj47R+CqJOTZWm4urrCx8cHcXFx6NWrFxwdHZGcnIzU1FQA0JcGtY3ly5eLjgAA8PT0hLW1NS5dutTohXoPMlYYAJCeno7q6moMGDAA1tbWqKysbKvoRJ2WLIenlEolkpKS4O3tjejoaMyYMQN2dnaIiYmBmZmZ/iB437598fPPP6O6ulq/7uXLl+Hi4iIqeqcQEREhOgIAYNCgQQCgP35ljKnCAICamhrk5eVBqVRi4MCBrZ6X6GEgyz0NAHB3dzc4NhEZGQkvLy907doVQN0w1siRI7Fjxw79gfCSkhIEB7f+wWOpwhdlNGu6HHl6euLChQuiY+DHH3/Etm3bcOLECaPLDR8+3GRh1Pvss8+QlZWF8nJBD34n6uBkWxqNyc7OxrBhwxpM27p1K6ZPn46EhARYWFggMTHR5JlT1DFkZmYiMzPT5HLHjx/Hli1bUFRUZPLCvfXr17dWPKKHUocpjcrKShQUFOjPpqnn6uqKr776SlAqkgs+opaofXSY0rC2tkZtba3oGA8FtVotOgIRyZQsD4STWFu2bBEdgYhkiqVBBqKjo0VHICKZYmmQAV7kRkRNYWkQEZFkLA0iIpKMpUEG5HBhHxHJE0uDDOzevVt0BCKSqQ5znYYojj0fvm0vXbpUyP2nVCpVs9e5VFQKAHDt+2iD1+2xbaKHEUvDhDB/0QkeHgkJCc1eJ3bdNgDA2oWzGrwmorbB4SkiIpKMpUEGNm/eLDoCEckUS4MMeHt7i45ARDLF0iADQUFBoiMQkUyxNIiISDKWBhERScbSIAMBAQGiIxCRTLE0yEBWVpboCEQkUywNIiKSjKVBRESSsTTIQHJysugIRCRTLA0iIpKMpUEGwsPDRUcgIpniXW5NSMkGSsrFbNuxJ++y2xHMmzcPOTk57b5dlUrVojsDE/0WLA0TSsqBi1dFpyA5y8nJgUajER2DqF1weIoMxMTEiI5ARDLF0iADc+bMER2BiGSKpUEGAgMDRUcgIpliaZCBsrIy0RGISKZYGkREJBlLgwx4eXmJjkBEMsVTbsnAnj17REfo9Pr06QMPDw9YWFigsrISeXl5qKioaHL5mTNn4sCBA7h6led/k1jc0yADS5YsER2hU/L09MQ777yDkpISlJaWIiMjA19++SUyMzNx69YtXLhwAX/+859hb2/fYL3Y2Fhs374dhw8fhrm5uaD0RHVkXRparRYbNmxA//79YWVlBV9fX2g0Gnh4eGDWrFmi43VaSUlJoiN0KjY2Nti+fTvOnz+PP/7xj3BwcMCtW7fwzTffIC0tDadPn0Z1dTUGDBiA1atX48cff8Rrr70GpVKJ2NhYrFmzRv9/4d69e6I/Dj3kZD08FRUVhZSUFCxevBh+fn7IzMzE1KlTUVZWhgULFoiO16jkVWr0HRiCoRMXSZpOnZunpycOHToEFxcXVFdX46OPPsK2bduQk5MDnU6nX87c3BzBwcGIiYnB+PHjsX79ekRHR8PV1RVarRYzZszAX//6V4GfhKiObEsjMTERO3fuREZGBoKCggAAwcHBOHPmDFJSUjBkyBDBCYmMc3d3R0ZGBuzt7ZGVlYUXX3wRFy5caHTZe/fu4csvv8SXX36J0NBQfPbZZ3B1dYVOp0N0dDQLg2RDtsNTcXFxCA0N1RdGvX79+sHc3Bw+Pj4A6sbf3d3doVQq+RyIVsL7KP125ubm+Pzzz2Fvb49//OMfCAwMbLIwHqRSqWBrawudTgeFQgF/f961kuRDlqVRXFyM7777DlOmTDGYV1RUBG9vb1haWgIAQkND8cUXX/Aq5laUl5cnOkKHt3DhQqhUKly8eBGTJ09GVVWVpPXuP4bx1ltvobq6Gi+99BKefPLJNk5MJI0sh6eKi4sB1J2WeL+7d+9Co9FgzJgx+mkjRoxo0TYUCoWk5Sa/lQ4nT3Wz3vvU/tU4nbqhwbR7VZXoOzCkWe+j0WTgT08HN2sdKebPn290/qZNmyQtIwcL1/4FQN3P8/7XInXt2lX/7/fSSy/hzp07kta7vzDqj2EolUqsWrUKsbGxOHLkSIPlNRqN8M9Kncf9x9iMkeWehp2dHQCgoKCgwfT4+HiUlpbCz89PRCzJhk54C9Hbbjb44+D+hOhY1E4iIiLQq1cvnDx5Eunp6ZLWaawwAOC9997DnTt3EBISAnd397aMTSSJLPc0XF1d4ePjg7i4OPTq1QuOjo5ITk5GamoqALRKaUht1XfTxD1PIyhIjeRV0nI2R35+vtH5mzZtMnlK88aNG1szUovFrtsGoO7nef/r9qRWqxscB6ofSvrkk08krd9UYQDArVu3sH//fkybNg3BwcENvkgFBQUhIyOjdT4EkUSy3NNQKpVISkqCt7c3oqOjMWPGDNjZ2SEmJgZmZmb6g+DUNpYvXy46QodWf2bfyZMnTS5rrDDqnTp1CkDrfFki+q1kuacB1J2u+OCufWRkJLy8vNC1a1dBqR4OERERoiN0aI6OjgCAixcvGl1OSmEAQGFhIQDAwcGhdYMStYBsS6Mx2dnZGDZsWINpixcvxkcffYSysjLk5uZi3rx50Gg0cHNzE5IxfFFGs6bLkaenp+TTQ8mQo6MjrKyscPPmTaPLOTk5SbpwLy0tDT179sTdu3dbOSlR88lyeKoxlZWVKCgoMLiob+XKlSguLkZ1dTWuX7+O4uJiYYVBBAC//PILbty4YfLYypw5czBy5EiTF+7V1NTg5s2bqK6ubs2YRC3SYfY0rK2tUVtbKzoGUas6ceKE6AhEzdJh9jSo/ajVatERiEimWBpkYMuWLaIjEJFMsTTIQHR0tOgIRCRTLA0ywAvGiKgpLA0iIpKMpUFERJKxNMgAL+wjoqZ0mOs0RHHs+fBte/fu3byVSDOoVKpmr3OpqBQA4Nr30Qav23q7RL8VS8OEsIfwoWlLly5laTRDQkJCs9epvyPv2oWzGrwmkjsOTxERkWQsDSIikoylQQY2b94sOgIRyRRLgwx4e3uLjkBEMsXSIANBQUGiIxCRTLE0iIhIMpYGGQgICBAdgYhkiqVBBrKyskRHICKZYmkQEZFkLA0iIpKMpUEGkpOTRUcgIpliaRARkWQsDTIQHh4uOgIRyRTvcmtCSjZQUi5m2449H8677FLbmzdvHnJycoRsW6VStejOwADw6vfnce727dYNJIHvI4/gbQ+vFq0rKjPw23I3haVhQkk5cPGq6BRErSsnJwcajUZ0jGY7d/s2viq/ITpGs3TEzMZweIoMxMTEiI5ARDLF0iADc+bMER2BiGSKpUEGAgMDRUcgIpliaZCBsrIy0RGISKZYGkREJBlLgwx4ebXuKXpE1HmwNMjAnj17REegTsLGxkZ0BGplLA0ysGTJEtERSEYsLCwQFhaGt99+G+np6Th37hzOnj2Lffv2YfHixU0+fyUhIQHHjx9H79692zkxtSVZl4ZWq8WGDRvQv39/WFlZwdfXFxqNBh4eHpg1a5boeJ1WUlKS6AgkAxYWFli0aBGKioqwZ88eLFiwAGq1Gj4+PlCpVJgwYQJWrFiBU6dOISsrC2PHjtWvm5CQgLlz58LNzQ0DBw4U+Cmotcn6ivCoqCikpKRg8eLF8PPzQ2ZmJqZOnYqysjIsWLBAdLxGJa9So+/AEAyduEjSdCI58vX1xaeffgpvb28AwLfffoukpCRkZ2fjX//6F7p06QIPDw8MHz4c06ZNg7+/Pw4ePIhdu3bh9u3biI6ORnV1NcLCwnDkyBEhn0F37x5+/eN8KAf7wmz2S/rptXv3QbtnL7psfR8Ka2sh2YyRe27ZlkZiYiJ27tyJjIwMBAUFAQCCg4Nx5swZpKSkYMiQIYITEnVOI0aMwKFDh2BjY4Pvv/8e0dHRSE9PN1juzJkzSExMxBtvvIGXX34Zq1evxgsvvAAA+sJITU1t7/h6CnNzdIl9Hb/+cR4UQwOgHKyC7vJlaD/8GGarV8iyMAD555bt8FRcXBxCQ0P1hVGvX79+MDc3h4+PD8rLyzF27Fi4u7vD19cXTz/9NAoLCwUl7jw64j2JqHU89thjSE1NhY2NDRITE6FSqRotjPtVVVUhISGhwbDm+fPncejQobaOa5LiMRco//Aiajdsgu7GDfy6dj2UE8ZB6TNIdDSj5JxblqVRXFyM7777DlOmTDGYV1RUBG9vb1haWkKhUGDevHkoKCjAuXPnMHbsWMyYMUNA4s4lLy9PdAQSQKFQ4MMPP4StrS3279+PF154AVVVVZLWTUhIwIsvvojq6mqUl5dj8ODBiI6ObuPE0ignToCirzN+nR0DmJlB+WKk6EiSyDW3LIeniouLAQB9+vRpMP3u3bvQaDQYM2YMAKBHjx4ICQnRzx8xYgTi4+MlbUOhUEhabvJb6XDyVEtatt6p/atxOnVDg2n3qirRd2BIE2s0TqPJwJ+eDm7WOlLMnz/f6PxNmzZJWkYOFq79C4C6n+f9r+VOjrknTZqE4OBgXL16FTNnzoRWq5W0Xv1B7/ohKUtLS6SkpGDNmjX45JNPcPuB24JrNJoWf1az9Wuh9PVp1joKhQIKn0HQnT4D5fMRUJibN3u7GRkZUAQMa/Z6QMsyA+2fW6fTSVpOlnsadnZ2AICCgoIG0+Pj41FaWgo/P79G10tISMDEiRPbOp5JQye8hehtNxv8cXB/QnQsIqPq7268atUqXLt2TdI6DxZGamoq9u7di4yMDNjY2OiPcYiku3wZ2r99BuXvp0C762/QXe0YzzqQa25Z7mm4urrCx8cHcXFx6NWrFxwdHZGcnKw/qNZYaSxfvhyFhYU4evSopG1IbdV308Q9TyMoSI3kVdJyNkd+fr7R+Zs2bTJ5SvPGjRtbM1KLxa7bBqDu53n/a7kTnVutVjc4dmVvb4/Ro0fjl19+wccffyzpPRorjHpbt26FWq3G1KlTsWXLlgbrBQUFISMjo0W5Q7JPNuvZFLqae3XHA8ImwmzGi9CVl6N2/UaYrYuDQin9O7NarcbhFv58mpsZkEfupshyT0OpVCIpKQne3t6Ijo7GjBkzYGdnh5iYGJiZmcHHp+Gu3qpVq/D3v/8dX3zxBbp16yYodeexfPly0RGonfn71z0i8uTJk6ioqDC5vLHCAIDDhw8DAIYMGQJlM37JtTbthx9B0aULlJH/DwBg9srL0P30M7R79grLJIWcc8uyNADA3d0d6enpuHPnDoqKirBy5Urk5ubCy8sLXbt21S+3fPlyHDx4EGlpaejRo4e4wJ1IRESE6AjUzuqvxzh37pzJZU0VBgBcv34dV65cQffu3eHi4tLqeaXQns2BNvULmMW+AUWXukEVRbduMFv4GrR/3QXd5ctCcpki99yyHJ5qSnZ2NoYN+89Bnby8PCxbtgxubm5Qq9X66aKefQwA4YsymjVdjjw9PXHhwgXRMagdnThxAitWrMCxY8eMLjd58mSThVFv48aNsLW1NTgQ3l6Ug1VQHkgxnD7QG8qD4r+xN0XuuTtMaVRWVqKgoACvvPKKfpq3t3eHGL8mkrtjx46ZLAyg7maWCQkJSEtLM3nhXkJCQiulIznpMKVhbW2N2tpa0TGIHnqmTsemzk22xzRInPuH+oiI7sfSIAMPniJJRFSPpUEG5HL7ByKSH5YGGWjphVdE1PmxNIiISDKWBhERScbSIAO8sI+ImsLSIAO7d+8WHYGIZKrDXNwnimPPh2/bS5cu5f2nOjmVStXsdS4VlQIAXPs+2uB1e2y7nu8jjzR7nUtF/wIAuPZ1aPC6rbf7W9Ztjcwt3bYpLA0TwvxFJyBqfS25xUf9LdzXLpzV4HV7etvDq9nrxB75d9awSQ1et5eOmNkYDk8REZFkLA0ysHnzZtERiEimWBpkoP7ZCkRED2JpkIGgoCDREYhIplgaREQkGUuDiIgk4ym3D6EBAwYYnb906VKTyxDRw4l7GmRg2bJloiMQkUyxNIiISDKWBhERScbSICIiyVgaREQkGUuDiIgkY2kQEZFkLI0mPP3001CpVBg0aBDCw8NRUVEhOhK1gYyMDHh7e6Nfv36YOXMmamtrRUcyae7cuXByckKXLh3nMqsrV67gySefhKenJ7y9vfHmm2+KjkQtxNJoQlJSEnJycpCbmwsnJyds3LhRdCRqZVqtFjNnzkRSUhIKCwtRUVGBXbt2iY5l0pQpU5CdnS06RrN06dIF69atw4ULF3D27Fl8/fXX2L9/v+hY1AIsjSbY2toCqPvFUlVVBYVCITgRtbasrCw4ODjAy6vuITlRUVHYs2eP4FSmPfHEE+jTp4/oGM3y6KOPwt+/7olmFhYWGDx4MIqKigSnopZgaRgxadIk2Nvb4/vvv8err74qOg61suLiYjg7O+v/3rdvX1y5ckVgoofDjRs3sG/fPjz11FOio1ALdJxBUQH27t2LmpoaREVFITk5GdOnTxcdiQAcPJyJS1dKG0z7n4/2NPpa5dUPQb/zbfR9dDpd2wRsRMlP15B8SGMwvbHclhbm+P+Tn0E3K8t2y9cYnU6Hz/+ejp+vlTeY3tS/9Ui/gfD38TD6njU1NQgPD8fcuXN5f7MOinsaJlhYWOD555/H3r17RUehf3siYBBu3KxA6dXr+mkPvi69eh13q6rxO5Vnk+/j7OzcYM+iqKgITk5ObZLZsY8dHHvb6bMZy+030F14YQCAQqFA4FAfXL1WbjIzAKi8+xl9v9raWkybNg0qlYp77h0YS6MRt2/fRmlp3TdZrVaLAwcO8Gl2MtLT9hGMDxlpdBkFgCnPqWFladHkMv7+/iguLsb58+cBADt27EBYWFhrRm1g7JPD0dP2EaPLePZzMfltvT059LbDU6P8jS5jZqbE78cGo4uZmdHlZs2ahUceeQRvv/12a0akdsbSaMTt27cxfvx4+Pj4wMfHB7/++isWLVokOhbdZ8jA/vB2f6zJ+U8E+MCtr4PR9zAzM8MHH3yA8PBwuLm5wdraGpGRka2c9D+sLC0Q8ZwaTZ1S0b2bFSaHBpo86WL27NlwcnJCbW0tnJycEBMT0/ph7xM41Acujr2bnP9M4FD0+e9eRt/jm2++wYcffojs7GwMHjwYKpUK77zzTmtHpXbAYxqNcHBwQFZWVqPzdDodz6SSAYVCgUnPjMKPJT+j8s7dBvN62/XE04HGvx3XGz16tH5Poz087vwoAn/nC83JcwbzwkIDYd29q8n3+Mtf/tIW0ZqkVCoRMTYY//PRHtTU3Gsw73HnR/FEwCCT7zFy5Mh2PYZEbYd7Gs2kOXkOn+5Lw68d4CKwzs66W1eEj2n4PHMzZd1QibmML3x76gl/g2/m/oM84N3/MTGBJPivHjYYO3p4g2mWFuaIeE4NpYy/RGm1Wlz6/jv8Y++niIyMxNeHD6Li5g3RsUyquFWOb478LyIjI/FFyi5czM+VzYWn8v2fJVFubi6WLVsGjUaDyspKODs7IyIiAqtXr271bVVX1+Crk+fg7GBvcvyW2scAt74Y6jsAp87lAwCeGuUPh952glMZ16WLGZ4fNxrvfpyC2lotetk+gnFPDje9omABPh64UPgDLhTWXV8xPmSkyWM0Iv3www947rnncP78eSgUCuRmK1FbW4tvjvwvbHQ3sWbNGtmNGuh0Oixbtgxb166ETqfDcTMzaLVanDt1DF6ZXyI1NRVubm5CM3boPY3Tp09j2LBhyMvLw/r165GamorY2Fj89NNPbbK9zDN5+KWqGiEj/drk/allnhs9HP/VwwYujr0RONRHdBxJ+vx3Lzw9KkB/wN7SyAF7uVAoFAgLDUT3blbwdn8MQwb2Fx2pSbdv38bo0aORn1/3ZUKn0/3nm7pOh3Xr1iEuLk5gwsZt2LABK1as0A/l1dbW6l8XFhYiODgY5eXlxt6izSl0HXigUa1W4/z58/jnP/+pv4Jbqth129ooFRGJduZ4OtL2f2Z0GXNzC8QsWg9LS6t2SmXcvZoavLf6ddRUVxldLvi5cAwd1foXRq5dOEvSch12T+OXX37BsWPHMHXq1GYXBhF1bt9mZ5ocerp3rwb/zMtpn0ASFOZ/a7IwACA3O7Md0jStwx7TKC8vh1arbfHFWFJbFag7lrFuayKcHewxY8qYFm2PiNrPrndXSDpbK8jfE6+/Lv13QVt6991qHPibhAVra5r1+6u1ddjS6NmzJ5RKJUpKSlq0fkuGp76/dIXDWkQdwD2tAnWXeBovjvRT3+G6TP5Pn88xPA27MVqFWZv8Hur0w1PdunVDYGAgEhMT+awLImrAe8gwmCqMLl3M4e49uH0CSeDm6QNzc9MnRAwcIvZMuw59IPz06dMIDAyEi4sL3njjDbi4uKCoqAjHjh3DBx980CrbSD9+Fv/4KgsxkRPh7GDfKu9JRG2rvLwcAwcOxE8//QStVtvoMm+++abszqBavnw5li1b1ug8pVIJOzs75OXlwc5O3GnlHXZPAwD8/Pxw/Phx9O/fH/Pnz8ezzz6L1atXw8HB+O0jpKqursGxU9/Cw9WZhUHUgfTs2RNHjx7V3/rezMwMSqVSf3A8OjoaK1euFBmxUYsXL8bcuXMB1J3irFQqYfbva8IcHBxw9OhRoYUBdPA9jbZWevU6du1Lw/NjR7M0iDqgmpoa7Nu3D3v37sWdO3fg5uaGl156Sf/gLbnKz8/H9u3bUVhYiK5du2LChAkICwuDpaUM7n7M0jBOq9VCqezQO2RERK2GpUFERJLxKzQREUnG0iAiIslYGkTUqcyfPx+jRo3Sn4X0oI8//hiBgYEICAjA5s2b2zld00zlXrt2LdRqNdRqNbp3744bN8Tc4p2lQUSdxpkzZ1BZWYljx46hpqam0YepTZs2DV999RVOnDjR7g+0aoqU3LGxscjIyEBycjICAgLQq5fxpyW2FZYGEXUaJ06cwFNP1d0BNiQkBMePH8frr78OrVaL0NBQFBUVwdzcHEDd6bienp4i4+pJyV3vwIEDGD9+vKioLA0i6jxu3rwJGxsbAICtrS1u3ryJn3/+GbNmzcK4cePQt29fAMCKFSvQv39/+PnJ49k4UnMDwN69ezFp0iRRUVkaRNR52Nra6u9FV1FRgR49emD27NnYvXs3Zs6cqV9uyZIluHjxIpKSknD9+nVRcfWk5r59+zauXbuGxx9/XFRUlgYRdR7Dhw/HkSNHAACHDx/GsGHDsHLlSixduhRr164FAFRXVwMALCws0K1bN1lcZS0lNwAcOnQIY8aIfTwDS4OIOo0hQ4bAysoKo0aNgpmZGTIzMzFp0iS8+uqryM3NRV5eHtasWQO1Wo2RI0fi97//PaytrUXHlpQbqBuaCgsLE5qVV4QTEZFk3NMgIiLJWBpERCQZS4OIiCRjaRARkWQsDSIikoylQUREkrE0iIhIMpYGERFJxtIgIiLJWBpERCQZS4OIiCRjaRARkWQsDSIikoylQUREkrE0iIhIMpYGERFJxtIgIiLJ/g/LPUw7nBVLagAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "q = QuantumRegister(3,'q')\n", + "c = ClassicalRegister(3,'c')\n", + "qc = QuantumCircuit(q, c)\n", + "qc.h(0)\n", + "qc.h(1)\n", + "qc.h(2)\n", + "qc.barrier()\n", + "qc.measure(q,c)\n", + "\n", + "qc.x(2).c_if(c, 3) # for the 011 case\n", + "qc.x(2).c_if(c, 7) # for the 111 case\n", + "\n", + "qc.draw(output='mpl')" + ] + }, + { + "cell_type": "markdown", + "id": "african-adams", + "metadata": {}, + "source": [ + "# IPE\n", + "\n", + "The motivation for using the IPE algorithm is that QPE algorithm works fine for short depth circuits but when the circuit starts to grow, it doesn't work properly due to gate noise and decoherence times.\n", + "\n", + "The detailed explanation of how the algorithm works can be found in [Iterative Phase Estimation (IPE) Algorithm](https://qiskit.org/textbook/ch-labs/Lab04_IterativePhaseEstimation.html#2-iterative-phase-estimation-ipe-algorithm). To understand QPE in depth, you can see also [Ch.3.6 Quantum Phase Estimation](https://qiskit.org/textbook/ch-algorithms/quantum-phase-estimation.html).\n", + "\n", + "## IPE example with a 1-qubit gate for $U$\n", + "\n", + "We want to apply the IPE algorithm to estimate the phase for a 1-qubit operator $U$. For example, here we use the $S$-gate.\n", + "\n", + "Let's apply the IPE algorithm to estimate the phase for $S$-gate.\n", + "Its matrix is \n", + "$$ S = \n", + "\\begin{bmatrix}\n", + "1 & 0\\\\\n", + "0 & e^\\frac{i\\pi}{2}\\\\ \n", + "\\end{bmatrix}$$\n", + "\n", + "That is, the $S$-gate adds a phase $\\pi/2$ to the state $|1\\rangle$, leaving unchanged the phase of the state $|0\\rangle$\n", + "\n", + "$$ S|1\\rangle = e^\\frac{i\\pi}{2}|1\\rangle $$\n", + "\n", + "In the following, we will use the notation and terms used in [Section 2 of lab 4](https://qiskit.org/textbook/ch-labs/Lab04_IterativePhaseEstimation.html#2-iterative-phase-estimation-ipe-algorithm).\n", + "\n", + "Let's consider to estimate the phase $\\phi=\\frac{\\pi}{2}$ for the eigenstate $|1\\rangle$, we should find $\\varphi=\\frac{1}{4}$ (where $\\phi = 2 \\pi \\varphi$). Therefore to estimate the phase we neeed exactly 2 phase bits, i.e. $m=2$, since $1/2^2=1/4$. So $\\varphi=0.\\varphi_1\\varphi_2$.\n", + "\n", + "Remember from the theory that for the IPE algorithm, $m$ is also the number of iterations, so we need only $2$ iterations or steps.\n", + "\n", + "First, we initialize the circuit. IPE works with only 1 auxiliary qubit, instead of $m$ counting qubits of the QPE algorithm. Therefore, we need 2 qubits, 1 auxiliary qubit and 1 for the eigenstate of $U$-gate, and a classical register of 2 bits, for the phase bits $\\varphi_1$, $\\varphi_2$." + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "id": "competent-japanese", + "metadata": {}, + "outputs": [], + "source": [ + "nq = 2\n", + "m = 2\n", + "q = QuantumRegister(nq,'q')\n", + "c = ClassicalRegister(m,'c')\n", + "\n", + "qc_S = QuantumCircuit(q,c)" + ] + }, + { + "cell_type": "markdown", + "id": "dominican-camcorder", + "metadata": {}, + "source": [ + "### First step\n", + "\n", + "Now we build the quantum circuit for the first step, that is, the first iteration of the algorithm, to estimate the least significant phase bit $\\varphi_m$, in this case $\\varphi_2$. For the first step we have 3 sub-steps:\n", + "- initialization\n", + "- application of the Controlled-$U$ gates\n", + "- measure of the auxiliary qubit in x-basis\n", + "\n", + "#### Initialization\n", + "\n", + "The initialization consists of application the Hadamard gate to the auxiliary qubit and the preparation of the eigenstate $|1\\rangle$." + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "id": "classified-pipeline", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAH0AAACoCAYAAADNc+G5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAIsElEQVR4nO3dXUxU+RnH8d85A4gKuhhSRQYoKIM6vCxiDSWGwRoVLxqJokBa4ssYZkVXq3bDGhcviktWpVbbNNVtpJhslk2kiDRR0zZhRnGoFF9QgxajgzjUuiq4OlEBZ04vyNJFYZmhB845PM8n4eao5zz45f8HRvJXkCRJAiNFVHoANvY4OkEcnSCOThBHJ4ijE8TRCeLoBHF0gjg6QRydII5OEEcniKMTxNEJ4ugEcXSCODpBHJ0gjk4QRyeIoxPE0Qni6ARxdII4OkF+Sg+gdtVNQEeXMs8ODwFWLZD/vhx9GB1dwN2vlZ5CXry9E8TRCeLoBHF0gjg6QRydII5OEEcniKMTpOroHo8HZWVliI2NRWBgIJKSkmCz2RAXF4eCggKlxxtU1b4MNNbs8/q6ElT9MqzZbEZ1dTWKi4uRkpICu92OvLw8PH78GDt37lR6PM1SbfTKykpUVFTAarXCZDIBABYvXowrV66guroa8+fPV3hC7VLt9l5aWorMzMz+4N+aPXs2/P39kZiYCABoa2uDyWSCwWBAQkICLly4oMS4mqLK6E6nEzdv3sSaNWve+bX29nYYjUZMmDABAGCxWJCTk4PW1lYcO3YMubm56OnpGfYZgiB49WazWX2ev/H0p/hDwXsD3v7dWu/zfWw2q9dz+kKV27vT6QQAzJgxY8D1V69ewWazYcWKFQCAJ0+eoL6+HrW1tQCAtLQ0zJw5E3V1dVi+fPnYDv0dC1fuwcKsTwZcq9qXocwwg1DlSg8NDQUAtLa2Drh+4MABPHz4ECkpKQD6Vv306dP7Vz0AREdH4/79+8M+Q5Ikr95Mpgz53jEfmUwZXs/pC1Wu9JiYGCQmJqK0tBTTpk1DeHg4qqqqcObMGQDoj85GRpUrXRRFnDx5EkajEZs3b8aGDRsQGhqKLVu2QKfT9X8RFxkZiUePHqG7u7v/zzocDkRFRSk1uiYIWjr6Oz8/H83Nzbh+/Xr/tWXLliErKwuFhYWw2+3Izs5GW1sbAgICZHnm7/6m3I9LzfoB8OFS+e+ryu19KE1NTUhNTR1w7ejRo1i/fj0OHz6MgIAAVFZWyhZ8vNJMdJfLhdbWVhQWFg64HhMTg/Pnzys0lTZpJnpQUBDcbrfSY4wLqvxCjo0ujk4QRyeIoxPE0Qni6ARp5ls2pYSHjL9na+plWCYP3t4J4ugEcXSCODpBHJ0gjk4QRyeIoxPE0Qni6ARxdII4OkEcnSD+p9Vh7PpXC5pfvFDk2UnBwfh13DzZ78vRh9H84gXOd3UqPYaseHsniKMTxNEJ4ugEcXSCODpBHJ0gjk4QRydI1dG1eCCwFqg6utlsRklJCSwWC86ePYu1a9ciLy8P9+7dU+2xYlJvL3o/2Ar3sT8OuO4+VYPen6+D5HIpNNn/qPa1d60eCCz4+8Pv44/w5sNfQFj4I4jJ70NyOOApPwHdp7+CEBSk9IjqXeneHgi8d+9eGAwGiKKIqqoqJUZ9h/DDKIgb18Fd9htInZ1489lBiCt/CjExQenRAKg0ui8HAmdmZuLcuXNIT0/36RneHrRrtVpH9D6IWSshREbgjWULoNNBXJfv8z2s1tE5EFi10YGhDwT+7taelpaGmJiYMZ3PG4IgQEhMAL75BuKSn0Dw91d6pH6qjO7tgcD/D28P2s3IyBjZ/R0OeL78CmLOGni++BLS174fO5mRwQcCa+ZAYKmnt+/z+Kos6Dasg9TVBffBQ9DtL4UgKr/OlJ9gEN4eCKxWnvI/QfDzg5j/MwCArvADSP95BM+fTyk8WR9VrnQAMBgMqKurG3AtPz8f8+bNw8SJExWaanieq9fgOXMOfr//LQS/vr9eYdIk6Ip+CffuTyAumA8hOlrRGVW50ofS1NT0ztZeXFwMvV6PhoYGWCwW6PV63L17V6EJATH5ffjXVkOI0A+8Hm+E/19OKR4c0FD0bw8EfvtFmZKSEjidTnR3d+Pp06dwOp2YNWuWQlNqg2q397fxgcDy0cxKZ/Lh6ARxdII4OkEcnSCOThBHJ0gz36crJSk4eNw9m0+BJoi3d4I4OkEcnSCOThBHJ4ijE8TRCeLoBHF0gjg6QRydII5OEEcniKMTxNEJ4uiDePDgAZYsWYK5c+fCaDRi9+7dSo8kK44+CD8/P+zfvx+3bt3C1atXUV9fj9OnTys9lmz4x6UGERYWhrCwMABAQEAAkpOT0d7ervBU8uGVPozOzk7U1NRg6dKlSo8iG47+PXp6epCdnY3t27djzpw5So8jG/7ByCG43W7k5OQgMjIShw4dUnocWXH0IZjNZng8HpSXl/t8ZJfacfRBXLx4EYsWLUJ8fDx0Oh0AYOPGjdi2bRskSdL8BwFH91Ht3+1wu93IWrZIs/H5CzkfPHvuwqVrLZpf7ZqPfuPGDaxevRqhoaEIDAxEbGws9uzZMyrPsv7jGiRJwuIfJ4/K/ceKprf3y5cvIz09HRERESgqKkJUVBQcDgfsdjuOHz/+vX/24/2fj9GUY+OzIu/Pv9f0K3K7du3C5MmTcenSJUydOrX/utlsVnAq9dPsSn/58iWCg4OxdetWHDlyZFSf9ey5Cwc//wop8QasyvTttGk10uxK7+rqgsfjgV6vH/43D2Ik23tj8200Nt8e0fNGmy/bu2a/kAsJCYEoiujo6FB6FM3R7PYO9P33Hi0tLbhz5w6mTJkyKs+o+Ws9Gptv4aOCXIRMVe6AAjlpdqUDQFlZGVwuF1JTU1FRUYG6ujqcOHECmzZtkuX+z5678M/rt7EgIW7cBAc0/Dkd6Dv3vaGhAcXFxdixYwdev36NiIgI5ObmynL/p8+eI3jyJM1/X/42TW/vY8Hj8UBUwcH8cuLoBI2vD2HmFY5OEEcniKMTxNEJ4ugEcXSCODpBHJ0gjk4QRyeIoxPE0Qni6ARxdII4OkEcnSCOThBHJ4ijE8TRCeLoBHF0gjg6QRydII5OEEcn6L+kuQV9V0jLqwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "qc_S.h(0)\n", + "qc_S.x(1)\n", + "qc_S.draw('mpl')" + ] + }, + { + "cell_type": "markdown", + "id": "pacific-momentum", + "metadata": {}, + "source": [ + "#### Application of the Controlled-$U$ gates\n", + "\n", + "Then we have to apply $2^t$ times the Controlled-$U$ operators (see also in the docs [Two qubit gates](https://qiskit.org/documentation/tutorials/circuits/3_summary_of_quantum_operations.html#Two-qubit-gates)), that, in this example, is the Controlled-$S$ gate ($CS$ for short).\n", + "\n", + "To implement $CS$ in the circuit, since $S$ is a phase gate, we can use the controlled phase gate $\\text{CP}(\\theta)$, with $\\theta=\\pi/2$." + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "id": "410d3936-190e-4950-80bc-8902ea7f6bac", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKoAAAB7CAYAAADkFBsIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAIK0lEQVR4nO3dW0xU+R3A8e8MC8KWrcWQYsSIIowKkUHxFmK51OqiL9h4t0yiIdGI2kTb6kOD7Ut5IJPGtMHGpgYTH2iUkE2aGFI2wiBC6rWD2rqjQURdBNSyLlRQYfow67AoF+mGc85v+H2SCXBgwm/CN+fMmXDmb/P7/X6Usji72QMo9SE0VCWChqpE0FCVCBqqEkFDVSJoqEoEDVWJoKEqETRUJYKGqkTQUJUIGqoSQUNVImioSgQNVYmgoSoRNFQlgoaqRNBQlQgaqhJBQ1UiaKhKBA1ViaChKhE0VCWChqpE0FCVCBqqEkFDVSJoqEoEDVWJoKEqETRUJYKGqkTQUJUIGqpAgwPQ3wsDr8yexDiWDnVwcBC3201ycjKRkZE4nU48Hg8LFixgz549Zo9nuL4XcOdzqPsjXPwT1P4BblTB8zazJ5t8H5k9wFgKCwupqqqiuLiYjIwMGhsb2bFjB11dXRw+fNjs8QzV8xSu/RVe9w3f/uw+PGuBRZ9C/GJzZjOCZUOtqKjg9OnT1NXVkZ2dDUBubi7Xr1+nqqqKpUuXmjyhcfx+uPk3eN0/0jcDH/79d4iZDR/HGDqaYSx76C8pKSEvLy8Y6VtJSUmEh4eTlpYGQGtrK9nZ2TgcDhYvXszFixfNGHdSdT+C3mcEoxyRHx57jZrIeJYM9dGjR9y6dYstW7a89722tjZSU1OZNm0aAHv37mXbtm34fD5OnjzJ9u3befVq/LMMm80m5vbzwt+M+3j8fj81n10zfdaJ3j6UZUMFmDlz5rDtL1++xOPxBA/7T58+paGhgcLCQgAyMzOZNWsWtbW1xg48ycJsYYy3EqjNZiPMHmbQRMaz5HPU2NhYAHw+Hxs2bAhuLy0tpb29nYyMDCCwd42LiwvuXQHmzZvHgwcPxv0dkpaA7bwHzZ+N/3M/+jQd/+/lPK6JsGSoiYmJpKWlUVJSwowZM4iPj6eyspLz588DBEOdKmITYVp04LXTsZ6nzk43aiLjWfLQb7fbOXfuHKmpqezbt4/du3cTGxvL/v37CQsLC55IzZkzh46ODvr7h06H79+/T0JCglmjTwq7HVI3gM0GjPK0bu5K+H6coWMZyiZpGXSXy4XX66W5uTm4bd26dWzcuJGioiIaGxvZvHkzra2tREREmDjp5PjqS7h3Ef7zcGhb5HSYtxJmLf4m5BAlKtRFixaxatUqysvLg9taWlrYtWsXT548ISIigrKysvde0go1L7vh0l8Cn6/5RWgH+pYln6OOpKenB5/PR1FR0bDtiYmJ1NfXmzSVOaJ+MPT5VIgUBIUaHR3NwMCA2WMok1jyZEqpd2moSgQNVYmgoSoRNFQlgoaqRNBQlQgaqhJBQ1UiaKhKBA01BNXV1ZGQkEBOTg75+fn09Q2/dNXtdnPjxo1R7//48WPWr19PZmYmq1ev5tChQwB4vV5KS0sndfbRaKghyuVyUVdXR2ZmJpWVlcHtg4ODXLp0iSVLlox635qaGgoKCrhw4QINDQ10dnZy8+ZNnE4nTU1NplwdoaGGuPT09OA1aBDYKyYlJQGBPW9MTAw5OTkkJCSQn58PgMfjIT8/n8jISADCw8MJCwtcj5WcnDzm3niyaKghrr6+HofDEfz67t27zJ07F4CsrCxWrFgRfO+EEydO4Pf76e3tJTo6GoDm5ma6urpISUkBAv9WeefOHcMfh4Yaos6cOUNubi7d3d3BPeW7WlpaSExMBODhw4fEx8fj9XpxOp0APH/+nAMHDnDq1CnD5h6NhhqiXC4XtbW1lJWVBQ/bEDh0t7a2AnD79m1SU1MZGBjAbg+kUFNTw9q1a3nz5g0FBQW43e5hl623tLSwcOFCQx8LaKhTjtPpxOfzAUOh9vf309nZSXt7O1evXmXZsmWcO3eOK1eucOTIEXJycmhqagICl7Cnp6cbPreoa6bUkM/dgY8/+eXE7+t2u1mzZs2IZ/5nz55l69atI97P6/VSXV3N0aNHJ/5LvyMNVajvEqpEeuhXImioSgQNVYmgoSoRNFQlgoaqRNBQlQgaqhJBQ1UiaKhKBA1ViaChKhE0VCWCpUPVRXvf999uuNcw9PXztsASlKHO0u84rYv2DvEPwhcX4NE/h2+/fhY+iYP0nwaW+AlVlv1/1IqKCnbu3Dls0V6ATZs2UVVVxeXLl1m+fLmJExrLVwdtV0f5pg2+NwNWusBu6V3P/8+yh/4PXbT32LFjOBwO7Hb7sOvXQ8mrXnh4fYwf8AcW9e3wGTaS4SwZ6kQW7c3Ly6O6upqsrCyjxzTMky8Ch/4x2aD9tiHjmMKyocL4i/ZCYKHet5f8ToTZqypP5PbbX/9u/Hcn8cO1f9wyfdYptbr0txft/bZ3F+2dKr7qfTruH3VwcIDurzsMmsh4lnzqbcSivRY9hxxR39fQ8GfGXLDXbg/jZwfW8KuTch7XRFhyj/qhi/ZOFZGfwOyxHrINoqZDnPHvC2EYS+5RARwOB7W1tcO2uVwuUlJSiIqKMmkq8zh+DG9ew5N/fbPh7TMBP3wcA0s2QVi4WdNNPsu+jjqSkRbtLS4upry8nK6uLqKjo4mKisLj8TB//nwTJ508Lzrgy1vQ9wI+ioAfLoDYxMBS6aFMTKg9PT1Mnz6d48ePc/DgQbPHUQYTE6qa2kL8gKFChYaqRNBQlQgaqhJBQ1UiaKhKBA1ViaChKhE0VCWChqpE0FCVCBqqEkFDVSJoqEoEDVWJoKEqETRUJYKGqkTQUJUIGqoSQUNVImioSgQNVYmgoSoRNFQlgoaqRNBQlQj/A08ZhshjQJjAAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cu_circ = QuantumCircuit(2)\n", + "cu_circ.cp(pi/2,0,1)\n", + "cu_circ.draw('mpl')" + ] + }, + { + "cell_type": "markdown", + "id": "e9e49bfb-b699-4219-8133-08190551daeb", + "metadata": {}, + "source": [ + "Let's apply $2^t$ times $\\text{CP}(\\pi/2)$. Since for the first step $t=m-1$, and $m=2$, we have $2^t=2$." + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "id": "tender-variation", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAATIAAACoCAYAAABjTGJUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAP40lEQVR4nO3de3BUZZ7G8W93JxAkgGEyIsQQiLkAgQQIo5Bic9FBobZ2QynXXVIWxgrDZbUoGR2LwX9wUwpZp9wtXZ0pBMutAQdWkZoCd7FMAoEIcgugsGFMICQwhju0QEi6z/7REs2YKyZ9zts8n6q3pM853e+vX+Hp9z3pnOOyLMtCRMRgbrsLEBH5qRRkImI8BZmIGE9BJiLGU5CJiPEUZCJiPAWZiBhPQSYixlOQiYjxFGQiYjwFmYgYT0EmIsZTkImI8RRkImI8BZmIGE9BJiLGU5CJiPEUZCJiPAWZiBhPQSYixlOQiYjxFGQiYjwFmYgYT0EmIsZTkImI8RRkImK8MLsLcLoP90HdJXv6jomCJybY07eISRRkHai7BF/X212FiLRHS0sRMZ6CTESMpyATEeMpyETEeAoyETGegkxEjKcgExHjKchExHj6Qqz0OMuCSzVw8TRYfuh/H/w8EdweuysLPZYfzlfDlTOBxwOGQPRwcIX4lMXRb8/v91NUVERiYiIRERGkpaVRWlpKcnIyBQUFdpfXqk2vZLN38yud3h7qvOehfC0c2AgnP4dTe+HIn2Hn23C+yu7qQsuVM1D2B6j4CE7uCbSKjwLbLp+xu7qe5eggy8/PZ+XKlSxYsIBt27Yxa9Ys5s6dS1VVFenp6XaXJx24eRX2b4DrrfyuauMNOPQRXDod/LpCkfcc7P8TNHh/vK/BCwf+FDgmVDl2abl+/XrWrVtHSUkJWVlZAOTk5HDgwAE+/PBDxo8fb3OF0pFT+6DxZvvH/GUn/OKfglNPKKsqB78PsFrZaQX2VZVD6j8Gu7LgcOyMrLCwkKlTpzaH2G0JCQmEh4eTmpoKwMmTJ8nKyiIpKYkxY8awc+dOO8qVv2H54cyRjg4KLIe+vRiUkkJW4w2oP0HrIXabFTjm1o1gVRVcjgyy2tpajh49ysyZM3+0r6amhpSUFHr37g3AggULmD17NpWVlbzzzjvMmTOHW7duddiHy+XqVCstLely/Xs//lf+s+DeFu1MZVmXX6e0tKTTdTqt9Y+MwtfYufeZOXGK7fWa3BKGjWo/xG6zIHn4aNvr7UrrLEcuLWtrawG4//77W2y/ceMGpaWlTJs2DYDz589TVlbGli1bAMjIyGDIkCEUFxfz+OOPB7foH3godzkPTf9ti22bXsm2pxibNNy6js/fhMfd8V+xb29eCUJFoasr4xeqY+3IGVl0dDQAlZWVLbavWrWKs2fPNp/or6mpYdCgQc2zM4Dhw4dz6tSpDvuwLKtTLSsru/veWBdlZWV3uk6ntVtNDdyfHAYdfKhG9Idjp/baXq/J7fyVOvoPpv2xdkH/wVB/+bTt9XaldZYjZ2Tx8fGkpqZSWFjIwIEDiYmJYdOmTWzduhVAP7E0xLBfwLm/dHDMw9CFFYS0YfjDULG5nQOswFiHKkfOyNxuNxs3biQlJYWFCxcyf/58oqOjWbx4MR6Pp/lE/9ChQ/nmm29oaGhofm51dTVxcXF2lS4/MGAIjP77tr+MOexhiEkNbk2h6ucJkPRI2/uTHoH7EoJXT7C5rK7M32yWl5dHRUUFhw8fbt722GOPMX36dBYtWsTu3buZMWMGJ0+epFevXt3S539st+9S1w/eB/8yxZ6+u9PNq1B3GKo/DzyOSYMH0qDfffbWFYquX4LaQ1CzP/A4Nj0w1n0H2lpWj3PkjKwt+/bt+9Gy8u2332bDhg0kJSVRUFDA+vXruy3EpHtE9IcHJ3//eOQUhVhPuScKknK+f5ycE/ohBg49R9Yar9dLZWUlixYtarE9Pj6eHTt22FSViDiBMUEWGRmJz+ezuwwRcSCjlpYiIq1RkImI8RRkImI8BZmIGE9BJiLGU5CJiPGM+fqFXWKi7s6+RUyiIOvAExPsrkBEOqKlpYgYT0EmIsZTkIkjlJSUEBcXR3Z2Nrm5udy82fKuJUVFRRw8eLDN59fV1TFt2jQyMjKYPHkyS5cuBaCiooJVq1b1aO2mCcWxVpCJY+Tl5VFSUkJGRgabNm1q3u73+9m1axfjxo1r87nbt29n3rx5fPbZZ5SVlVFfX8+RI0dIS0ujvLy8S1cbvRuE2lgryMRxxo4d23zfBgh80ickBK4KWFJSQlRUFNnZ2cTFxZGbmwtAaWkpubm5REREABAeHo7HE7iVeWJiYrszjLtZqIy1gkwcZ8eOHSQlJTU/PnHiBMOGDQMgMzOThx56qPl+p2+99RaWZfHtt98SGRkJwOHDhzl37hyjRo0CApd6On78eNDfhwlCZawVZOIY77//Pjk5OVy+fLn50/9vVVVVER8fD8Dp06eJiYmhoqKCtLQ0AC5evMiSJUtYs2ZN0Oo2UaiNtYJMHCMvL4/i4mLefPPN5qUKBJYrJ0+eBODLL78kJSUFn8+H2x3467t9+3amTJlCU1MT8+bNo6ioqMWtBKuqqhgxYkRQ34vThdpYK8jE8dLS0ppvDXj7H1dDQwP19fWcPXuWffv2MWHCBDZu3MgXX3zBCy+8QHZ2NuXl5UDgtoJjx4618R2Yw9ixtkSCZPvqQLsTq1evtg4cONDqvg8++KDN5x06dMh69dVX76xTg91tY23UXZTEbJ8WBf77y2X21nE3uNvGWktLETGegkxEjKerX3Tg+f/7iopr12zpO61fP/4teZQtfYuYREHWgYpr19hx6aLdZYhIO7S0FBHjKchExHgKMhExnoJMRIynIBMR4ynIRMR4CjIRMZ6CTESMpyCToPjhpQl0mYKedTeOtaODzO/3U1RURGJiIhEREaSlpVFaWkpycjIFBQV2lyedYFlQdwT2vPf9trJ3oPpz8DXaV1co8vug5gDs/sEFW3evgZr9gX2hzNFBlp+fz8qVK1mwYAHbtm1j1qxZzJ07l6qqKtLT0+0ur1VWYyONv1qC750/tNju+2gzjfOewvJ6baos+CwLjv1PoHkvfL+9wQtfl8H+D6Dpln31hRK/Dyo+hsrP4Mbl77ffuAyVxVCxObTDzLFBtn79etatW8eWLVtYtmwZOTk5LF++nEmTJtHU1MT48ePtLrFVrvBwwn7za/x/3or/4CEArOpq/O++h+eFZbi+u2nD3eDsl3Dm6HcPWlniXP0rfL0zqCWFrFP74EJV2/svVAeOCVWODbLCwkKmTp1KVlZWi+0JCQmEh4eTmpoKwMsvv0xSUhJut7vF/fns5BoWh/vpp/AV/Q7r4kWaXl2NO/cfcKeOsbu0oDp9AHC1f0zdUc3KfirLD7WduANb7UHw+3u+Hjs4Mshqa2s5evQoM2fO/NG+mpoaUlJS6N27NwBTp07lk08+ITMzs0t9uFyuTrWSkpI7eg/u6bm4hsbStGAxeDy4n8rr8muUlJR0uk6ntT69I7lWT6szsR/yN0L6yCzb6zW5xQ5KpKETZywavDB0UJLt9XaldZZjgwxocXcWgBs3blBaWtpiWZmRkdF8yyoncblcuFLHwJUruB99BFd4uN0lBZXb7en4oNvHujp/rPxYV8bP04X/LyZxZJBFR0cDNN/N5bZVq1Zx9uzZbjnRb1lWp1p2dvadvX51Nf4/bsA9eyb+//ojVn19l18jOzu703U6rXmvXyFiQMfv0eWGPRWf2V6vya36zHHCenc81p5eUFV7zPZ6u9I6y5EXVoyPjyc1NZXCwkIGDhxITEwMmzZtYuvWrQCO/YnlbdatxsB5sSem45n/FNalS/hWv47ntUJcbkd+dnQ7lwtix8GJkvYOgkHJ0KtvsKoKTZ4wiBnT8cn8mFTwhOjCwJH/qtxuNxs3biQlJYWFCxcyf/58oqOjWbx4MR6Pp/lEv1P5312LKywMd94/A+BZ9Cusv36D/78/srmy4IodC/fGtrHTBb0jITGrjf3SJcMnQd/otvf3/RnETwpePcHmyBkZQFJSEsXFxS225eXlMWrUKPr06WNTVR3zHzyEf+snhL3577jCAsPruucePC8uw/fSb3FPGI9r+HCbqwwOdxiMewKqdkNtBfi+++mkyw2DRkBiZiDM5KcL6w0T5gS+znLmS/A3Bba7w2BwCiT8HZ1afprKqPtajhw5kokTJ7J27drmbStWrGDt2rWcO3eOyMhI+vTpQ2lpKQ8++GC39PnLfXtsu2Z/ZtRAPp3wsC19dzdfI1w7B/jhnp9BL+d+FhmvqQG85wN/jowO7QC7zZFLy9Z4vV4qKyt/9EXYlStXUltbS0NDAxcuXKC2trbbQky6jycc7h0C9z6gEOtpYb3h3phAuxtCDBy8tPxbkZGR+Hwh/DsWInLHjJmRiYi0RUEmIsZTkImI8RRkImI8BZmIGE9BJiLGU5CJiPGM+R6ZXdL69bsr+xYxiVG/oiQi0hotLUXEeAoyETGegkxEjKcgExHjKchExHgKMhExnoJMRIynIBMR4ynIRMR4CjIRMZ6CTESMpyATEeMpyETEeAoyETGegkxEjKcga8Xp06d59NFHGTlyJCkpKbz00kt2lyQi7VCQtSIsLIzXXnuNY8eOcfDgQcrKyvj444/tLktE2qBLXbdi8ODBDB48GIBevXoxbtw4ampqbK5KRNqiGVkHLl68yObNm5kyZYrdpYhIGxRk7bh16xYzZszgueeeY8SIEXaXIyJt0M1H2uDz+Zg9ezZDhw7l9ddft7scEWmHgqwN+fn5+P1+3n33XVwul93liEg7FGSt2LVrF5MnT2b06NF4PB4Ann76aZ599lksy1KwiTiMgqyLtny6G5/Px/THJivQRBxCJ/u74PJVL3sOfaVZmYjDGB9kR44c4cknnyQ6OpqIiAgSExNZvnx5j/RV8vkhLMsiZ9K4Hnl9EbkzRi8t9+/fT2ZmJrGxsbz44ovExcVRXV3N7t27WbNmTbvP/c1rvw9SlSJyp159saBTxxn9zf7nn3+evn37smfPHgYMGNC8PT8/38aqRCTYjJ2RXb9+nX79+rFkyRLeeOONHu3r8lUvq3+/gfTRSTwxNbNH+xKRrjN2Rnbp0iX8fj8PPPDAHT3/TpaWeyuOs7fi+B31JyJd19mlpbEn+6OionC73dTV1dldiojYzNilJUBOTg5fffUVJ06coH///j3Sx+b/LWNvxTF+XTCHqAH9eqQPEflpjJ2RARQVFeH1epk4cSLr1q2juLiY9957j2eeeaZbXv/yVS9fHD7OhDHJCjERBzP2HBlAeno65eXlrFixgqVLl3Lz5k1iY2OZM2dOt7z+hctX6df3Hn1vTMThjF5aBoPf78ftNnriKhLyFGQiYjxNNUTEeAoyETGegkxEjKcgExHjKchExHgKMhExnoJMRIynIBMR4ynIRMR4CjIRMZ6CTESMpyATEeMpyETEeAoyETGegkxEjKcgExHjKchExHgKMhExnoJMRIynIBMR4ynIRMR4CjIRMZ6CTESMpyATEeMpyETEeAoyETGegkxEjPf/L0zxZl/8r40AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "for _ in range(2**(m-1)):\n", + " qc_S.cp(pi/2,0,1)\n", + "qc_S.draw('mpl')" + ] + }, + { + "cell_type": "markdown", + "id": "continued-worst", + "metadata": {}, + "source": [ + "#### Measure in x-basis\n", + "\n", + "Finally, we perform the measurenment of the auxiliary qubit in x-basis. So we will define a function to perform the x_measure and then apply it." + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "id": "considerable-sense", + "metadata": {}, + "outputs": [], + "source": [ + "def x_measurement(qc, qubit, cbit):\n", + " \"\"\"Measure 'qubit' in the X-basis, and store the result in 'cbit'\"\"\"\n", + " qc.h(qubit)\n", + " qc.measure(qubit, cbit)" + ] + }, + { + "cell_type": "markdown", + "id": "0082b76c-1b15-472d-bd78-eeaf4acd4956", + "metadata": {}, + "source": [ + "In this way we obtain the phase bit $\\varphi_2$ and store it in the classical bit $c_0$." + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "id": "subtle-background", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAACoCAYAAAAcsbLgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUuUlEQVR4nO3df1RUdf7H8ecMPwQFUyN/gPgDARUUUNhWKQXyW+npW7bmz76xrV9cXdNzzJPbz23/cfNsLvW1zumHu4ta28lt1TLzmJvfE6AmaZgSZn0xwRBkw58ZoYDMfP+YlUKB+WAwdwZfj3M+58x87p1733N15jWfz53L2JxOpxMREREDdqsLEBER36HQEBERYwoNERExptAQERFjCg0RETGm0BAREWMKDRERMabQEBERYwoNERExptAQERFjCg0RETGm0BAREWMKDRERMabQEBERYwoNERExptAQERFjCg0RETGm0BAREWMKDRERMabQEBERYwoNERExptAQERFjCg0RETGm0BAREWMKDRERMabQEBERY/5WF+Dt3i6EyrPW7DuiN0xLsWbfIt7GV1+LDz/8MAcPHuzQekwkJSWxatWqDt+uQsONyrNwtNrqKkTEV1+LBw8eJD8/3+oyOoymp0RExJhCQ0REjCk0RETEmEJDRESMKTRERMSYQkNERIzpK7ciIl4mNDSUUaNGERISQn19PSUlJVRVVbW6/qRJk6itraWgoKDTa1NoiIh4gZtuuomsrCx++ctfMnLkyKuWV1VVsWnTJl555RUOHz7c1D9p0iTee+89GhoaSE5O5quvvurUOhUa0umcTjhbDmeOg9MBPfvCTTFg97O6sq7H6YBTZfDtCdf9G8IhbCjYNBHttex2O0uWLOGZZ54hODgYgLq6Og4dOsSZM2cIDg5m1KhRDBgwgMWLF7N48WLWrl3L0qVLSUlJ4b333iM4OJjXX3+do0ePdn69nb6Hn8DhcJCdnU1MTAxBQUEkJiaSn5/P8OHDmT9/vtXltWjjH9LZt/kPxv1dXc0pKFgLn26AYx/D1/ugeCvsehVOlVpdXdfy7QnY/RcoegeO7XW1ondcfedOWF2dNbz99dizZ0927NjB888/T3BwMFu3bmXKlCmEhoaSkpLCHXfcwYQJE+jTpw9JSUm8/PLLXLx4kblz51JSUsLWrVsJDg5m9erVLFy4EKfT2ek1e3VoZGVlsXz5chYsWMD777/PzJkzmTNnDqWlpSQnJ1tdnrhx8Tzs/zvUtvD3ghouwMF34Oxxz9fVFdWchP3/gLqaq5fV1cCn/3CtI96je/fubN++ndtuu42qqiruuusu7r77brZv305DQ0OzdZ1OJ0VFRSxatIikpCQOHz5M3759CQoK4q233vJYYIAXT0+tX7+edevWkZeXR1paGgAZGRl8+umnvP3224wdO9biCsWdrwuh4WLb63y1C352v2fq6cpKC8DRCLT0vuF0LSstgIR7PF2ZtCY7O5vx48dz7Ngx0tPT+frrr40eN3DgQIYOHdp0Py4ujoCAAOrr6zur1Ga8dqSxYsUKJk+e3BQYl0VHRxMQEEBCQgIAx44dIy0tjdjYWEaPHs2uXbusKFeu4HTAiWJ3K7mmVL4/45GSuqyGC1B9hJYD4zKna536C56qStqSlpbGwoULqa+v55577jEOjMsnvYODg8nJyeHIkSOMHj2aJ598spMr/oFXhkZFRQWHDh1ixowZVy0rLy8nPj6ebt26AbBgwQJmzZpFSUkJq1evZvbs2UaJa7PZjFp+fl6769/37jO8Mr9Xs3aiZHe7t5Ofn2dcp7e1niG9aWxw/xwBJo673fJ6fblFD4lrOzAuc8LwoaMsr/da27W8FqFjXo8/5bXY0l+4ffzxxwHXh+PiYnefrlx+HBirV6/m17/+NVlZWQAsWbKE7t27X1FzfrvqNOWV01MVFRUA9O/fv1n/hQsXyM/PZ8qUKQCcOnWK3bt3s2XLFgBSU1MJDw8nNzeXO++807NF/8jNU5/i5nt/16xv4x/SrSnGInX1tTQ6LuFnd/9f7PuL33qgoq6rPcfvejzW3vZ6jIqKYvLkydTW1vLCCy8YPebKwLh8DmPXrl3s2bOH1NRUZs+ezZo1azq5ei8daYSFhQFQUlLSrH/lypVUVVU1nQQvLy+nX79+TaMOgKFDhxoN9ZxOp1FLS0vvuCfWTmlp6cZ1elurv1RH/+H+4OYDTFBP+OLrfZbX68vt1LeV9BxA28faBj0HQPW545bXe63NV1+LV06xZ2RkALB161bOnTvndt+tBcZlr7/+etN6zWtOa1edprxypBEVFUVCQgIrVqygT58+REREsHHjRrZt2wagb075iCE/g5NurjMa8nNox8hYWjH051C0uY0VnK5jLda7/P61d+9et+u6C4wfb8dT74teOdKw2+1s2LCB+Ph4Fi5cyNy5cwkLC2PRokX4+fk1nQQfNGgQ33zzDXV1dU2PLSsrY/DgwVaVLj9yQziMuqv1C8uG/BwiEjxbU1d1UzTE3tb68tjboG+05+qR1oWHhwO4vRDPJDCApivAL2+3s3nlSAMgNjaW3NzcZn2ZmZnExcU1XTUZFhbGLbfcQk5ODg899BB79uyhsrKyafhnhem/y2tXf1fXfwT0CofKz6DsY1dfRCIMTITQvtbW1tUMGuu6+rviIJTvd/VFJruOdY8+lpZmGW98Pc6aNYvg4GBqa2vbXK9fv34EBga6vXCvpqaGG2+8kYsX3Xy/vYN4bWi0pLCwkHHjxjXre/XVV/nVr37FqlWrCAwMZP369QQGBlpUobQkqCcMu/WH0Bh5u7X1dGXde0Nsxg+hMdy6z0/Sirq6umazI6158803OXr0KPv27XN7zuHMGc99b91nQqOmpoaSkhIeeuihZv1RUVHs3LnToqpERDqPyXkPT/OZ0AgJCaGxsdHqMkRErmteeSJcRES8k0JDRESMKTRERMSYQkNERIwpNERExJhCQ0REjPnMV26tEtH7+ty3iLfx1ddiUlJSux9TWl4FQNSgAc1ud/Z+TSg03JiWYnUFIgK++1pctWpVux/z+LN/BuCPj81vdtsbaHpKRESMKTRERMSYQkO8Ql5eHoMHDyY9PZ2pU6de9Rc7s7OzOXDgQKuPr6ysZMqUKaSmpnLrrbeydOlSAIqKili5cmWn1u5rdKzlp1BoiNfIzMwkLy+P1NRUNm7c2NTvcDj46KOPGDNmTKuP3bFjBw888AAffvghu3fvprq6muLiYhITEykoKGjXL5NdD3Ss5VopNMTrJCUlNf1OPLg+wUZHu35BKC8vj969e5Oens7gwYOZOnUqAPn5+UydOpWgoCAAAgIC8PPzAyAmJqbNT87XMx1raS+FhnidnTt3Ehsb23T/yJEjDBkyBICJEydy8803k5eXR1paGi+//DJOp5Pvv/+ekJAQAD777DNOnjxJXFwc4Prz+V9++aXHn4cv0LGW9lJoiNf429/+RkZGBufOnWv6VHul0tJSoqKiADh+/DgREREUFRWRmJgIuH6MZvHixeTk5Hisbl+kYy3XSqEhXiMzM5Pc3FxeeumlpukOcE15HDt2DIDPP/+c+Ph4Ghsbsdtd/3137NjB7bffzqVLl3jggQfIzs6mf//+TY8vLS1lxIgRHn0u3k7HWq6VQkO8XmJiIiUlJcAPb2R1dXVUV1dTVVVFYWEhKSkpbNiwgU8++YRHH32U9PR0CgoKACgpKem0q2O7Gh1rcUdXhItXSE9PJz09vcVldrudCRMmcODAAZ588smm/uLiYgDuu+8+7HY7c+bMYc6cOc0eW1RUxPjx45s+KYuOtfw0Cg3xCcuWLWt12cyZM1tdlpiY2DQHL2Z0rKUt+kggIiLGFBoiImJM01NuPPJ/hyn67jtL9p0YGspzw+Ms2beISEsUGm4UffcdO8+esboMERGvoOkpERExptAQERFjCg0RETGm0BAREWMKDRERMabQEBERYwoNERExptAQERFjCg3xiB//bLR+Qrpz6VhLZ/Lq0HA4HGRnZxMTE0NQUBCJiYnk5+czfPhw5s+fb3V5YsDphMpi2PvaD327V0PZx9DYYF1dXZGjEco/hT0/+iG9PTlQvt+1TKQjeHVoZGVlsXz5chYsWMD777/PzJkzmTNnDqWlpSQnJ1tdXoucDQ00/GYxjav/0qy/8Z3NNDzwIM6aGosq8zynE774p6vVnP6hv64Gju6G/W/BpXrr6utKHI1Q9C6UfAgXzv3Qf+EclORC0WYFh3QMrw2N9evXs27dOrZs2cKyZcvIyMjgqaeeYvz48Vy6dImxY8daXWKLbAEB+D/+Wxxbt+E4cBAAZ1kZjjWv4ffoMmwhIdYW6EFVn8OJQ/++08I0yfl/wdFdHi2py/q6EE6Xtr78dJlrHZGfymtDY8WKFUyePJm0tLRm/dHR0QQEBJCQkADA73//e2JjY7Hb7WzcuNGKUq9iGzIY+38/SGP2/+A8c4ZLf/wT9ql3Y08YbXVpHnX8U8DW9jqVhzTa+KmcDqg44H69igPgcHR+PdK1eWVoVFRUcOjQIWbMmHHVsvLycuLj4+nWrRsAkydPZvv27UycOLFd+7DZbEYtLy/vmp6D/d6p2AZFcmnBIvDzw/5gZru3kZeXZ1ynt7XgbiF8V02LI4wfczRA8sg0y+v15RbZL4Y6g1nPuhoY1C/W8nrV3LfLrrztiX2647WhAdC/f/9m/RcuXCA/P7/Z1FRqaipRUVEerc+EzWbDljAavv0W+6TbsAUEWF2SR9ntfubr2szXlau15/j5tePfRaQlXhkaYWFhAJSUlDTrX7lyJVVVVR1yEtzpdBq19PT0a9t+WRmON/+OfdYMHG+8ibO6ut3bSE9PN67T21pN7bcE3eD+OdrssLfoQ8vr9eVWduJL/Lu5P9Z+gVBa8YXl9aq5b03vI1fc9sQ+3fHKH2GKiooiISGBFStW0KdPHyIiIti4cSPbtm0D8NpvTl3mrG9wnceYdi9+cx/EefYsjX96Hr9nV2Cze2VOdzibDSLHwJG8tlaCfsMhsIenquqa/PwhYrT7E90RCeB3fQ14pRN45TuY3W5nw4YNxMfHs3DhQubOnUtYWBiLFi3Cz8+v6SS4t3KsWYvN3x975n8B4PfQb3D+6xscm96xuDLPikyCXpGtLLRBtxCISWtlubTL0PHQI6z15T1uhKjxnqtHui6vHGkAxMbGkpub26wvMzOTuLg4goODLarKPceBgzi2bcf/pRex+bsOr617d/weW0bjE7/DnjIW29ChFlfpGXZ/GDMNSvdARRE0/vtbUjY79BsBMRNdwSE/nX83SJnt+grzic/BccnVb/eHAfEQPQGjKSwRd7w2NFpSWFjIuHHjmvU9/fTTrF27lpMnT1JcXMzDDz9Mfn4+w4YNs6RG+5gk7Fvevrp/VDz2966vkQa4pkNi0iAqFb47CTig+40Q6L2577MCgmDE7RA9EWpOufpCwhQW0rG8cnqqJTU1NZSUlFx1Ud/y5cupqKigrq6O06dPU1FRYVlgSOv8AqBXOPQaqMDobP7doFeEqykwpKP5zEgjJCSExkb9HQQRESv5zEhDRESsp9AQERFjCg0RETGm0BAREWMKDRERMabQEBERYwoNEREx5jPXaVglMTT0uty3iEhLFBpuPDc8zuoSRES8hqanRETEmEJDRESMKTRERMSYQkNERIwpNERExJhCQ0REjCk0RETEmEJDRESMKTRERMSYQkNERIwpNERExJhCQ0REjCk0RETEmEJDRESMKTRERMSYQqMFx48fZ9KkSYwcOZL4+HieeOIJq0sSETGWl5dHfHw80dHRzJs3j8bGxg7btkKjBf7+/jz77LN88cUXHDhwgN27d/Puu+9aXZaIiFsOh4N58+axYcMGvvrqK86fP88bb7zRYdtXaLRgwIABpKSkABAYGMiYMWMoLy+3uCoREfc++eQTwsPDiYtz/epoVlYWmzZt6rDt6+de3Thz5gybN2/mgw8+sLoUEemiLtbV89qmf3Kxrr5Z/wtrN7V4e9qdE4gM79vitioqKoiMjGy6P2jQII4fP95htWqk0Yb6+nqmT5/OkiVLGDFihNXliEgXFdQtkJTRw6mqPk1V9emm/itvV1WfZkDfPq0GBoDT6ezUWhUarWhsbOT+++8nKSmJRx55xOpyRKSLGzsqhvjYIW2u06tnCPf8xy1trhMZGdlsZFFeXs7AgQM7okRAodGq+fPnExoaynPPPWd1KSJyHbDZbPzizgmE9AhueTkw4650groFtrmdlJQUKioqOHz4MAA5OTlMmzatw+pUaLTgo48+Ys2aNRQWFjJmzBiSkpJ48cUXgc4f+onI9SukezDTp6S1uOzWnyUwbFC42234+fnx17/+lenTpzNs2DBCQkLIzMzssBptTr0LtsuW/91DY2Mj995xKzabzepyRKQLenv7TvYVfdl0v19YbxY/+AsC/K3/7pJGGu1w7nwNew8exul0KjBEpNPcddt4buzVEwA/u51Z/5nhFYEBXSA0iouLue+++wgLCyMoKIiYmBieeuqpTtlX3scHcTqdZIwf0ynbFxEB6BYYwMy70rHZbNw+IYXwfmFWl9TEp6en9u/fz8SJE4mMjOSxxx5j8ODBlJWVsWfPHnJyctp87OPP/tlDVYqIeL8/PjbfaD3vGO9co0ceeYQePXqwd+9ebrjhhqb+rKwsC6sSEem6fHakUVtbS2hoKIsXL+aFF17o1H2dO1/Dn/78d5JHxTJt8sRO3ZeIiDfz2ZHG2bNncTgc13zRyrVMT+0r+rLZNxpERLoK0+kpnz0R3rt3b+x2O5WVlVaXIiJy3fDZ6SmAjIwMDh8+zJEjR+jZs2en7GPzB7vZV/QFv50/m943hHbKPkREfIXPjjQAsrOzqampYdy4caxbt47c3Fxee+015s2b1yHbP3e+hk8++5KU0cMVGCIi+PA5DYDk5GQKCgp4+umnWbp0KRcvXiQyMpLZs2d3yPZPnztPaI/uui5DROTffHp6yhMcDgd2u08PyEREOoxCQ0REjOkjtIiIGFNoiIiIMYWGiIgYU2iIiIgxhYaIiBhTaIiIiDGFhoiIGFNoiIiIMYWGiIgYU2iIiIgxhYaIiBhTaIiIiDGFhoiIGFNoiIiIMYWGiIgYU2iIiIgxhYaIiBhTaIiIiDGFhoiIGFNoiIiIMYWGiIgYU2iIiIgxhYaIiBhTaIiIiDGFhoiIGFNoiIiIMYWGiIgY+38bkksB4oM9EwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x_measurement(qc_S, q[0], c[0])\n", + "qc_S.draw('mpl')" + ] + }, + { + "cell_type": "markdown", + "id": "lasting-difference", + "metadata": {}, + "source": [ + "### Subsequent steps (2nd step)\n", + "\n", + "Now we build the quantum circuit for the other remaining steps, in this example, only the second one.\n", + "In these steps we have 4 sub-steps: the 3 sub-steps as in the first step and, in the middle, the additional step of the phase correction\n", + "- initialization with reset\n", + "- phase correction\n", + "- application of the Control-$U$ gates\n", + "- measure of the auxiliary qubit in x-basis\n", + "\n", + "#### Initialization with reset\n", + "\n", + "As we want to perform an iterative algorithm in the same circuit, we need to reset the auxiliary qubit $q0$ after the measument gate and initialize it again as before to recycle the qubit. " + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "id": "123e4313-366a-4ea4-b672-7b30cbdccc15", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAegAAACoCAYAAAArf33UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAW8klEQVR4nO3dfVBU96HG8e8u7wr4RuIrogTQgAIqTcRGgdgYndxKb16M9oamXqzW6IxxYqKNTTsdWxst6U0607TmlmiSTmyv2ERjE2/tREiMVsUqYkwuRlDE0GJURKICsnv/2LoJEdhFYc9v4fnMnHH3d87ueTju8uw5e3axOZ1OJyIiImIUu9UBRERE5HoqaBEREQOpoEVERAykghYRETGQClpERMRAKmgREREDqaBFREQMpIIWERExkApaRETEQCpoERERA6mgRUREDKSCFhERMZAKWkRExEAqaBEREQOpoEVERAykghYRETGQClpERMRAKmgREREDqaBFREQMpIIWERExkApaRETEQCpoERERA6mgRUREDKSCFhERMZAKWkRExEAqaBEREQMFWh3AdH8qhtPnrVn30H5wf5o16xYxjb8+Fx9//HEOHTrUqXm8kZqayvPPP39Dt7UqM9xcbqseI131u1oF7cHp83C8xuoUIuKvz8VDhw5RVFRkdYwO8cfM4L+PkbboELeIiIiBVNAiIiIGUkGLiIgYSAUtIiJiIBW0iIiIgVTQIiIiBtLHrEREDBMREcGYMWMIDw+nsbGRsrIyqqur21x+6tSpXLp0iT179vgwpXQ1FbSIiAFuueUWcnNz+c53vsPtt99+3fzq6mo2b97Mb37zG44ePeoenzp1Km+99RZNTU1MmDCBTz75xJexpQupoKXLOZ1wvhLOnQKnAyJvhVviwR5gdbLux+mAzyrgwqeu632GQNRIsOnNLGPZ7XaWLFnCz372M8LCwgBoaGjgyJEjnDt3jrCwMMaMGcPgwYNZvHgxixcvZv369SxdupS0tDTeeustwsLCePXVVzl+/LjFP410JqOftg6Hg7y8POLj4wkNDSUlJYWioiJGjRrF/PnzrY7XqoKfZrLvzZ96Pd7d1X8Ge9bD3zfBib/ByX1Qug3e/y18Vm51uu7lwqew67+h5A04sdc1lbzhGqv91Op01jD9+RgZGcmOHTv45S9/SVhYGNu2bWPGjBlERESQlpbGtGnTmDx5Mv379yc1NZUXX3yRK1euMHfuXMrKyti2bRthYWGsW7eOhQsX4nQ6fZb90UcfZefOnV4vX1xczLRp07owUceZ/vgwuqBzc3NZtWoVCxYs4J133mHWrFnMmTOH8vJyJkyYYHU88eBKHRz4A1xq5btxmy7DoTfg/Cnf5+qO6s/Agf+Bhvrr5zXUw9//x7WMmKNXr15s376du+++m+rqau677z6++c1vsn37dpqamlos63Q6KSkpYdGiRaSmpnL06FFuvfVWQkND+eMf/+jzcm6N3W5n7dq11NTUUFdXR0FBAQMGDHDP37JlCzNnzrQwof8xtqA3btzIhg0b2Lp1K8uWLSMrK4uVK1eSnp7O1atXGT9+vNURxYOTxdB0BWjn98Yn7/ssTrdWvgcczbS+rZ2ueeU6f8goeXl5pKenc+LECdLT03n77be9ut2wYcMYOXKk+3piYiJBQUFdFdNrK1asIDs7mzvvvJNhw4YB8Nprr7nnq6A7ztiCXr16NdOnTycjI6PFeFxcHEFBQSQnJwNw4sQJMjIySEhIYOzYsbz/vn7jm8DpgE9LPS3kOiz7+TmfROq2mi5DzTHafSGE07VM42VfpZL2ZGRksHDhQhobG5k5cyYnT5706nbXTggLCwsjPz+fY8eOMXbsWJ5++ukuTuzZ/PnzWbNmDRUVFdTV1fHUU08xY8YMhg8fDsDhw4dpbm7WzlUHGFnQVVVVHDlyhIceeui6eZWVlSQlJRESEgLAggULePjhhykrK2PdunXMnj2bxsZGj+uw2WxeTUVFhR3Ov2/Lz/jN/L4tpk/LdnX4foqKCr3OadoUGd6P5ibPPyPAlIn3WJ7Xn6e4EYntl/M1Thg1cozleW90upHnInTO8/Fmnout/VWoFStWAK4dkdJST69kXb5czuvWreN73/seubm5ACxZsoRevXp9JXNRp2ZuT58+fYiJieHAgQPusfLyci5cuEBKSop7bMuWLWRnZ7d7XzeXu7BDucGax4e3jDyLu6qqCoBBgwa1GL98+TJFRUXMmDEDgM8++4xdu3axdetWACZNmsSQIUPYuXMn9957r29Df8kd2Su541s/bDFW8NNMa8JYpKHxEs2OqwTYPT/EPr9ywQeJuq+ObL+euK1Nez7GxsYyffp0Ll26xAsvvODVbb5aztfec37//ffZvXs3kyZNYvbs2bz88stdnL51ERERAFy40PLxVVtbS2RkpPv6n//8Z37+85/z4x//2Kf52mPa4+PLjNyDjoqKAqCsrKzF+Nq1a6murnafIFZZWcnAgQPde9MAI0eO9OpwkdPp9GrKyMjsvB+sgzIyMr3OadrUeLWBQaMCwcOLxdBI+OjkPsvz+vP02YXTRA6m/W1tg8jBUFN7yvK8Nzr563Pxq2/TZWVlAbBt2zZqa2s9rrutcr7m1VdfdS/XMnNGp2X25OLFi4BrT/rL+vbtS11dnft6TEwMlZWV7d7XzeXO7FDuztLRx4e3jNyDjo2NJTk5mdWrV9O/f3+GDh1KQUGB+yQKncHtH0Z8Dc54+M6EEXdCB474SBtG3gklb7azgNO1rcV6135/7d271+Oynsr5y/dj5e/FCxcucPLkScaPH09JSQng2lnq06cPhw8fdi83c+ZMNm/ebFVMv2PkHrTdbmfTpk0kJSWxcOFC5s6dS1RUFIsWLSIgIMB9gtjw4cP55z//SUNDg/u2FRUVxMTEWBVdvqTPEBhzX9tfkjHiThia7NtM3dUtcZBwd9vzE+6GW+N8l0faNmTIEACPXyriTTkD7m8Ou3a/VnnppZdYvnw5I0aMICIigjVr1rB9+3b3Ec1evXqRlZXFtm3bLM3pT4zcgwZISEi47kPwOTk5JCYmur9tJyoqiq9//evk5+fz2GOPsXv3bk6fPu0+hGSFB39Y2KHx7m7QaOg7BE4fhoq/ucaGpsCwFIi41dps3c3w8a5vDas6BJX/OlcneoJrW/fub2k0y5j4fHz44YcJCwvj0qVL7S43cOBAgoODPX4JSX19PQMGDODKlStdEddrzz77LP369WP//v2EhISwY8cOHnnkEff8adOmcfDgQc6ePWthypZMfHx8mbEF3Zri4mImTpzYYuy3v/0t3/3ud3n++ecJDg5m48aNBAcHW5RQWhMaCbfd9UVB336PtXm6s179ICHri4IeZd1rVWlDQ0NDi6N+bXn99dc5fvw4+/bt8/i+5blz1n9W0eFw8OSTT/Lkk0+2On/mzJls2bLFx6n8m98UdH19PWVlZTz22GMtxmNjY3nvvfcsSiUi0nW8eZ/aX5w8eZJNmzZZHcOv+E1Bh4eH09zcbHUMEREBDh06xIYNG7xe/ic/+UnXhemm/KagRUTEHCUlJe4ztqVrGHkWt4iISE+nghYRETGQClpERMRAKmgREREDqaBFREQMpLO4PRjar2euW8Q0/vpcTE1N7fBtyiurAYgdPrjF5a5eb2fc9mbdzLqteox01Xptzo78aQ2Rm/DXPNe/31hmbY6eQNvav61Y8xIAzy6f3+Ky9Cw6xC0iImIgFbSIiIiBVNBihMLCQmJiYsjMzCQ7O/u6v8yTl5fHwYMH27z96dOnmTFjBpMmTeKuu+5i6dKlgOvbjtauXdul2f2NtrWIf1BBizFycnIoLCxk0qRJFBQUuMcdDgcffPAB48aNa/O21/603bvvvsuuXbuoqamhtLSUlJQU9uzZ4/GvAfU02tYi5lNBi3FSU1OpqqpyXy8pKSEuLg5w7f3169ePzMxMYmJiyM7OBqCoqIjs7GxCQ0MBCAoKIiAgAID4+Ph29wh7Mm1rEXOpoMU47733HgkJCe7rx44dY8SIEQBMmTKFO+64g8LCQjIyMnjxxRdxOp18/vnnhIeHA3D48GHOnDlDYmIi4PqTpB9//LHPfw5/oG0tYi4VtBjjtddeIysri9raWvfe2leVl5cTGxsLwKlTpxg6dCglJSWkpKQArj9cv3jxYvLz832W2x9pW4uYTwUtxsjJyWHnzp38+te/dh8yBddh0xMnTgDw4YcfkpSURHNzM3a76+G7Y8cO7rnnHq5evcojjzxCXl4egwYNct++vLyc0aNH+/RnMZ22tYj5VNBivJSUFMrKyoAvSqOhoYGamhqqq6spLi4mLS2NTZs2sX//fp566ikyMzPZs2cPAGVlZZZ+M5I/0bYWMYe+6lOMkJmZSWZmZqvz7HY7kydP5uDBgzz99NPu8dLSUgAeeOAB7HY7c+bMYc6cOS1uW1JSQnp6unsPULStRfyFClr8wrJlbX9n5axZs9qcl5KS4n7PVLyjbS1iBr3UFRERMZAKWkRExEA6xO3BE/93lJKLFy1Zd0pEBM+NSrRk3SIiYi0VtAclFy/y3vlzVscQEZEeRoe4RUREDKSCFhERMZAKWkRExEAqaBEREQOpoEVERAykghYRETGQClpERMRAKmgREREDqaDFJ5zO1i9L59O2FukejC5oh8NBXl4e8fHxhIaGkpKSQlFREaNGjWL+/PlWxxMvOJ1wuhT2vvLF2K51UPE3aG6yLld35GiGyr/D7vwvxnbnQ+UB1zwR8S9GF3Rubi6rVq1iwYIFvPPOO8yaNYs5c+ZQXl7OhAkTrI7XKmdTE03fX0zzuv9uMd78xps0PfIozvp6i5L5ntMJH/2va6o/+8V4Qz0c3wUH/ghXG63L1504mqFkC5S9C5drvxi/XAtlO6HkTZW0iL8xtqA3btzIhg0b2Lp1K8uWLSMrK4uVK1eSnp7O1atXGT9+vNURW2ULCiJwxZM4tr2N4+AhAJwVFThefoWAp5ZhCw+3NqAPVX8Inx7515VWDrXW/QOOv+/TSN3WyWI4W972/LMVrmVExH8YW9CrV69m+vTpZGRktBiPi4sjKCiI5ORkAH70ox+RkJCA3W6noKDAiqjXsY2Iwf6fj9Kc9184z53j6rO/wJ79TezJY62O5lOn/g7Y2l/m9BHtRd8spwOqDnperuogOBxdn0dEOoeRBV1VVcWRI0d46KGHrptXWVlJUlISISEhAEyfPp3t27czZcqUDq3DZrN5NRUWFt7Qz2D/Vja24dFcXbAIAgKwP5rT4fsoLCz0OqdpU1hIOBdraHXP+cscTTDh9gzL8/rzFD0wngYv3jlpqIfhAxMsz6vJ83TNVy9r6h6Tt4wtaIBBgwa1GL98+TJFRUUtDm9PmjSJ2NhYn+bzhs1mw5Y8Fi5cwD71bmxBQVZH8im7PcD7ZW3eLyvX68j2C+jA/4uIWMvIgo6KigKgrKysxfjatWuprq7ulBPEnE6nV1NmZuaN3X9FBY7X/4D94Ydw/P51nDU1Hb6PzMxMr3OaNtVfukBoH88/o80Oe0vetTyvP08Vn35MYIjnbR0QDOVVH1meV5Pnyf175CuXNXWPyVuBXi/pQ7GxsSQnJ7N69Wr69+/P0KFDKSgo4O233wYw9gzua5yNTa73ne//FgFzH8V5/jzNv/glAWtWY7Mb+Zqo09lsED0OjhW2txAMHAXBvX2VqnsKCIShYz2fBDY0GQJ61oEcEb9mZFvY7XY2bdpEUlISCxcuZO7cuURFRbFo0SICAgLcJ4iZyvHyemyBgdhz/gOAgMe+j/Mf/8Sx+Q2Lk/lWdCr0jW5jpg1CwiE+o4350iEj06F3VNvzew+A2HTf5RGRm2fkHjRAQkICO3fubDGWk5NDYmIiYWFhFqXyzHHwEI63txP4619hC3RtXluvXgQsX0bzD36IPW08tpEjLU7pG/ZAGHc/lO+GqhJo/tfZ2jY7DBwN8VNcJS03LzAE0ma7Prb26YfguOoatwfC4CSIm4xXh8FFxBzGFnRriouLmThxYouxZ555hvXr13PmzBlKS0t5/PHHKSoq4rbbbrMko31cKvatf7p+fEwS9rd61h40uA6pxmdA7CS4eAZwQK8BEGzuayy/FRQKo++BuClQ/5lrLDxKxSzir4w8xN2a+vp6ysrKrvuCklWrVlFVVUVDQwNnz56lqqrKsnKWtgUEQd8h0HeYyrmrBYZA36GuSeUs4r/8Zg86PDyc5mZ9V6GIiPQMfrMHLSIi0pOooEVERAykghYRETGQClpERMRAKmgREREDqaBFREQMpIIWERExkN98DtoqKRERPXLdIiJiLRW0B8+NSrQ6goiI9EA6xC0iImIgFbSIiIiBVNAiIiIGUkGLiIgYSAUtIiJiIBW0iIiIgVTQIiIiBlJBi4iIGEgFLSIiYiAVtIiIiIFU0CIiIgZSQYuIiBhIBS0iImIgFbSIiIiBVNAiIiIGUkG34tSpU0ydOpXbb7+dpKQkfvCDH1gdSUTEa4WFhSQlJREXF8e8efNobm62OpLcABV0KwIDA1mzZg0fffQRBw8eZNeuXWzZssXqWCIiHjkcDubNm8emTZv45JNPqKur4/e//73VseQGqKBbMXjwYNLS0gAIDg5m3LhxVFZWWpxKRMSz/fv3M2TIEBITEwHIzc1l8+bNFqeSGxFodQDTnTt3jjfffJO//OUvVkcRkW7qSkMjr2z+X640NLYYf2H95lYv33/vZKKH3NrqfVVVVREdHe2+Pnz4cE6dOtXJicUXtAfdjsbGRh588EGWLFnC6NGjrY4jIt1UaEgwaWNHUV1zluqas+7xr16urjnL4Fv7t1nOAE6ns0uziu+ooNvQ3NzMt7/9bVJTU3niiSesjiMi3dz4MfEkJYxod5m+keHM/MbX210mOjq6xR5zZWUlw4YN64yI4mMq6DbMnz+fiIgInnvuOaujiEgPYLPZ+Pd7JxPeO6z1+cBD92USGhLc7v2kpaVRVVXF0aNHAcjPz+f+++/v7LjiAyroVnzwwQe8/PLLFBcXM27cOFJTU/nVr34F6PCRiHSd8F5hPDgjo9V5d30tmduGD/F4HwEBAfzud7/jwQcf5LbbbiM8PJycnJzOjio+YHOqcTpk619309zczLem3YXNZrM6joh0Q3/a/h77Sj52Xx8Y1Y/Fj/47QYE6r7cn0R50B9TW1bP30FGcTqfKWUS6zH13pzOgbyQAAXY7D/9blsq5B/L7gi4tLeWBBx4gKiqK0NBQ4uPjWblyZZesq/Bvh3A6nWSlj+uS+xcRAQgJDmLWfZnYbDbumZzGkIFRVkcSC/j1Ie4DBw4wZcoUoqOjWb58OTExMVRUVLB7927y8/Pbve2KNS/5KKWIiMgXnl0+36vl/PqYyRNPPEHv3r3Zu3cvffr0cY/n5uZamEpEROTm+e0e9KVLl4iIiGDx4sW88MILXbqu2rp6fvHSH5gwJoH7p0/p0nWJiIiAH+9Bnz9/HofDccMfwL+RQ9z7Sj5ucWaliIhIR3l7iNtvTxLr168fdrud06dPWx1FRESk0/ntIW6ArKwsjh49yrFjx4iMjOySdbz5l13sK/mIJ+fPpl+fiC5Zh4iIyFf57R40QF5eHvX19UycOJENGzawc+dOXnnlFebNm9cp919bV8/+wx+TNnaUyllERHzKb9+DBpgwYQJ79uzhmWeeYenSpVy5coXo6Ghmz57dKfd/traOiN699LlnERHxOb8+xO0LDocDu92vDzSIiIgfUkGLiIgYSLuGIiIiBlJBi4iIGEgFLSIiYiAVtIiIiIFU0CIiIgZSQYuIiBhIBS0iImIgFbSIiIiBVNAiIiIGUkGLiIgYSAUtIiJiIBW0iIiIgVTQIiIiBlJBi4iIGEgFLSIiYiAVtIiIiIFU0CIiIgZSQYuIiBhIBS0iImIgFbSIiIiBVNAiIiIGUkGLiIgYSAUtIiJiIBW0iIiIgVTQIiIiBlJBi4iIGEgFLSIiYqD/BxUPdimeXFp3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "qc_S.reset(0)\n", + "qc_S.h(0)\n", + "qc_S.draw('mpl')" + ] + }, + { + "cell_type": "markdown", + "id": "fcd145b2-870e-42a9-9178-df21a77b2354", + "metadata": {}, + "source": [ + "#### Phase correction (for step 2)\n", + "As seen in the theory, in order to extract the phase bit $\\varphi_{1}$, we perform a phase correction of $-\\pi\\varphi_2/2$.\n", + "Of course, we need to apply the phase correction in the circuit only if the phase bit $\\varphi_2=1$, i.e. we have to apply the phase correction of $-\\pi/2$ only if the classical bit $c_0$ is 1.\n", + "\n", + "So, after the reset we apply the phase gate $P(\\theta)$ with phase $\\theta=-\\pi/2$ conditioned by the classical bit $c_0$ ($=\\varphi_2$) using the `c_if` method.\n", + "So as we saw in the first part of this tutorial, we have to use the `c_if` method with a value of 1, as $1_{10} = 001_{2}$ (the subscripts $_{10}$ and $_2$ indicate the decimal and binary representations)." + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "id": "shaped-fluid", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAACoCAYAAAC8GKf/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbdElEQVR4nO3df1xUdaL/8dcMIKD88AelooiigoEKKlvihoC/0kc3KSvT0tt6dXFNH1/zoZabtd29lqsutbV7a9d2Ncvd3Fbd1Cy92Sak4S9M8VcuKiiibJgKSCooM98/ZsVQfuphzgy+n4/HecScOTPnzWkG3/OZM5+x2O12OyIiIiIGsJodQERERJoOFQsRERExjIqFiIiIGEbFQkRERAyjYiEiIiKGUbEQERERw6hYiIiIiGFULERERMQwKhYiIiJiGBULERERMYyKhYiIiBhGxUJEREQMo2IhIiIihlGxEBEREcOoWIiIiIhhVCxERETEMCoWIiIiYhgVCxERETGMioWIiIgYRsVCREREDKNiISIiIoZRsRARERHDqFiIiIiIYVQsRERExDAqFiIiImIYFQsRERExjKfZAVzd3zPh1Hlz9t2hFYyKNWffIq7GXZ+Lzz77LHv37jU0T33ExMTwxhtv3NJtzcoMt5fbrMfI7Tw+/vkFXCg0Nk99+d8NEYOMv18VizqcOg/HTPqfLiLXuetzce/evaSnp5sdo0HcMTO452PkQiEU5Zudwlh6K0REREQMo2IhIiIihlGxEBEREcOoWIiIiIhhVCxERETEMPpUiIiIiBuZ+ftEvjmxDQ8PL6xWD9q3DuOpwS8S3/tRs6MBKhYiIi7H39+fnj174ufnR3l5OdnZ2RQUFNS4/eDBg7l48SLbtm1zYkox01NDXuKpIS9SUXGVVV++zit/eYIl7Q/R8a5ws6PprRAREVdw1113MWfOHA4dOkRJSQkZGRl89tlnpKWlcfr0aU6fPs3vfvc7IiMjq9xu8ODBfPzxx2zcuJFu3bqZlF7M4uHhycgBz2CzVZBbsN/sOIBGLMQJ7HY4nwfnToLdBgF3w13dwephdrKmx26D73Kh+LTjcmAwBHUBi15CuCyr1cr06dN59dVX8fX1BaCsrIwDBw5w7tw5fH196dmzJ+3bt2fatGlMmzaNd999lxkzZhAbG8vHH3+Mr68v77//PseOHTP5txFnu3K1nLUZb+Hp4UVYcLTZcQAXH7Gw2WykpqbSvXt3fHx8iI6OJj09nYiICFJSUsyOV61VrySyc80r9V7f1JV+B9veha9XwvHtcGIn7F8PW/4A3+WYna5pKT4NW/8IWR/B8R2OJesjx7qi02anM4erPx8DAgLYtGkTr7/+Or6+vqxfv54RI0bg7+9PbGwsw4YNIz4+ntatWxMTE8Pbb7/N5cuXmTBhAtnZ2axfvx5fX18WL17MlClTsNvtTsv+9NNPs3nz5npvn5mZybBhwxoxUcO5+uOjNh/841UefqklT77SkW0H1/KL/1xNhyDXGLFy6WIxceJE5s2bx+TJk9mwYQOjR49m7Nix5OTk0K9fP7PjSR0ul8Duv8LFaubuv3IJ9n4E5086P1dTVHoGdv8Nykpvvq6sFL7+m2MbcR3Nmzdn48aNDBo0iIKCAh588EEeeughNm7cyJUrV6psa7fbycrKYurUqcTExHDo0CHuvvtufHx8+PDDD51eKqpjtVpZtGgRhYWFlJSUsGrVKtq0aVN5/dq1axk5cqSJCZuWJwfPZc28Ilb+dyFvTssgLvIhsyNVctlisWLFCpYtW8a6deuYNWsWSUlJzJ07l7i4OK5evUrfvn3Njih1OJEJVy4Dtfy9O7rFaXGatJxtYKug+mNtd1yXo/P6XEpqaipxcXEcP36cuLg4Pv3003rdrmPHjnTp0qXycmRkJF5eXo0Vs97mzJlDcnIy9913Hx07dgRg+fLllderWNw5XLZYzJ8/n+HDh5OQkFBlfbdu3fDy8qJ3794AHD9+nISEBMLDw+nVqxdbtuhfKldgt8Hpus4jsjuG778/55RITdaVS1B4hFoLHHbHNuWXnJVKapOQkMCUKVMoLy9n5MiRnDhxol63u3aipq+vL0uWLOHIkSP06tWLF154oZET1y0lJYWFCxeSm5tLSUkJzz33HCNGjKBTp04A7Nu3j4qKCr0ovAO4ZLHIz8/nwIEDPP744zddl5eXR1RUFN7e3gBMnjyZJ554guzsbBYvXsyYMWMoLy+vcx8Wi6VeS3p6WoPz71z7Kr9PaVllOZ29tcH3k56eVu+crrYE+LWi4krdvyPAwP5DTc/rzku3zpG1l4pr7BDRpafpeW91uZXnIhjzfLyd52J13xI6Z84cwPECav/++p3J/8NSsXjxYn76058yceJEAKZPn07z5s1vyJxuaObaBAYGEhoayu7duyvX5eTkUFxcTHT09RMK165dS3Jycq33dXu50xqUG1zh8dHwzEZpSO6GcMlPheTnO75Dtl27dlXWX7p0ifT0dEaMGAHAd999x9atW1m3bh0AAwYMIDg4mM2bN/PAAw84N/QP3Js8l3sffrHKulWvJJoTxiRl5RepsF3Fw1r3Q+z7y8VOSNR0NeT43YnH2tWej2FhYQwfPpyLFy/y5ptv1us2N5aKa+dUbNmyhYyMDAYMGMCYMWNYunRpI6evnr+/PwDFxVUfX0VFRQQEBFRe/uSTT/jVr37Fyy+/7NR8tXG1x0d9vDYlzewItXLJEYugoCAAsrOzq6xftGgRBQUFlSdu5uXl0bZt28rRC4AuXbrUa1jRbrfXa0lISDTuF2ughITEeud0taX8ahntIjyhjqLrEwDfnNhpel53Xr4rPkVAe2o/1hYIaA+FRSdNz3uri7s+F298OzcpKQmA9evXU1RUVOe+ayoV17z//vuV21XNnGBY5rpcuHABcIxc/FDLli0pKSmpvBwaGkpeXl6t93V7uRMblNsot/f4MCdzQ3M3hEuOWISFhdG7d2/mz59P69at6dChA6tWrao8uUmfCHEPnX8EZ47Wsc190MBRNqlGl/sga00tG9gdx1rMd+3v144dO+rctq5S8cP7MfPvYnFxMSdOnKBv375kZWUBjhd5gYGB7Nu3r3K7kSNHsnr1arNiipO45IiF1Wpl5cqVREVFMWXKFCZMmEBQUBBTp07Fw8Oj8sTNTp068e2331JWVlZ529zcXEJDQ82KLj8QGAw9H6x5cqbO90GH3s7N1FTd1Q3CB9V8ffgguNs1PuJ+xwsODgaoczKr+pQKgKNHj1a5X7O88847PP/883Tu3Bl/f38WLlzIxo0bK0eQmzdvTlJSEuvXrzc1pzQ+lxyxAAgPD79p8pXx48cTGRlZOTtdUFAQP/7xj1myZAnPPPMMGRkZnDp1qnKo0QyPvZjWoPVNXbse0DIYTu2D3O2OdR2ioWM0+N9tbramplNfxyyb+Xsh79/n0IX0cxzrFq1NjWYaV3w+PvHEE/j6+nLx4sVat2vbti3NmjWrc/Kr0tJS2rRpw+XLlxsjbr0tWLCAVq1asWvXLry9vdm0aRPjxo2rvH7YsGHs2bOHs2fPmpiyKld8fDQFLlssqpOZmUn//v2rrPvDH/7AT37yE9544w2aNWvGihUraNasmUkJpTo+AdD1/uvF4p6h5uZpypq3gvCk68UiwryOLTUoKyurMspakw8++IBjx46xc+fOOt/jPnfO/M9s22w2Zs+ezezZs6u9fuTIkaxdu9bJqcQMblMsSktLyc7O5plnnqmyPiwsjC+//NKkVCIijac+52G4ixMnTrBy5UqzYzRp3xWf4vWVk/j+cjEWi5WIkB8xZeRvnJ7DbYqFn58fFRUVZscQERFg7969LFu2rN7b//KXv2y8MALA7uxNDO47jvhej9LMy4dfffAUuQX76dK+l1NzuE2xEBER15GVlVX5CRBxrqxjafz3e48Q1j6af53LpWtwDP8zYS37ctKZ9vDvaOblA4CH1QurCV8j7ZKfChEREZHq9eoykIiQe3ltShq9wxL4f6Pexm63c7n8e3y9/QDIOb2P4u/PENo20un5NGIhIiLigs6V/ItX/zKmyrrW/u34yfBXaN86DIAzxScJCuzA0VN7CQt2TJ9ecvEc/7tmGi+O+5vTM4OKhYiIiEtqHdCu2um7Mw6sJbRdFBW2Ciz/nijo6yOb6Nd9KBUVV1mwYhwp/5FK64B2N93WGfRWiIiIiBs5/u1BOreN4srVMopKCzlbUkB2fibhHWNJ37eS7JO7+OMnzzHz94kcOr7N6fk0YiEiIuJGnhz8QuXPf5zp+Hbc+F6PYrVaGdRnLIP6jDUrGqBiUacOre7MfYu4Gnd9LsbExDT4Njl5BQCEdWpf5efG3q8Rt71dt7Nvsx4jt7PfW52BOPfk6SqXkx8c7bR918Vib+jXloncos9THf8dMsvcHHcCHWv3NmfhOwAseD6lys8i11x7XFzjSo8PnWMhIiIihlGxEBEREcOoWIhLSEtLIzQ0lMTERJKTk2/6psbU1FT27NlT4+1PnTrFiBEjGDBgAPfffz8zZswAHLMDLlq0qFGzuxsdaxFpTCoW4jLGjx9PWloaAwYMYNWqVZXrbTYbX331FX369Knxtte+ovmLL75g69atFBYWsn//fqKjo9m2bVud3w55p9GxFpHGomIhLicmJob8/PzKy1lZWXTr1g1wvNpu1aoViYmJhIaGkpycDEB6ejrJycn4+DjmyPfy8sLDwzFHfvfu3Wt9BX4n07EWEaOpWIjL+fLLLwkPD6+8fOTIETp37gzAwIEDuffee0lLSyMhIYG333bMkf/999/j5+eYI3/fvn2cOXOGyEjHHPlhYWEcPnzY6b+HO9CxFhGjqViIy1i+fDlJSUkUFRVVvjq+UU5ODmFhjjnyT548SYcOHcjKyiI62jFH/rlz55g2bRpLlixxWm53pGMtIo1FxUJcxvjx49m8eTNvvfVW5dA6OIbXjx8/DsDBgweJioqioqICq9Xx8N20aRNDhw7l6tWrjBs3jtTUVNq1uz5Hfk5ODj169HDq7+LqdKxFpLGoWIjLi46OJjs7G7j+j11ZWRmFhYUUFBSQmZlJbGwsK1euZNeuXTz33HMkJiaybZtjjvzs7GxTZxJ0JzrWInK7NKW3uITExEQSExOrvc5qtRIfH8+ePXt44YXrc+Tv3++YI//RRx1z5I8dO5axY6vOkZ+VlUVcXFzlK27RsRaRxqViIW5h1qya56YePbrmOfKjo6MrzwmQ+tGxFpHboZcWIiIiYhgVCxERETGM3gqpw8x/HiLrwgVT9h3t789rEZGm7FtERORWqFjUIevCBb48f87sGCIiIm5Bb4WIiIiIYVQsRERExDAqFiIiImIYFQsRERExjIqFiIiIGEbFQkRERAyjYiEiIiKGUbEQERERw6hYiFPY7dX/LMbTsRYRM7l0sbDZbKSmptK9e3d8fHyIjo4mPT2diIgIUlJSzI4n9WC3w6n9sOO96+u2Lobc7VBxxbxcTZGtAvK+howl19dlLIG83Y7rREScwaWLxcSJE5k3bx6TJ09mw4YNjB49mrFjx5KTk0O/fv3Mjlct+5UrXPnZNCoW/7HK+oqP1nBl3NPYS0tNSuZ8djt883+OpfTs9fVlpXBsK+z+EK6Wm5evKbFVQNZayP4CLhVdX3+pCLI3Q9YalQsRcQ6XLRYrVqxg2bJlrFu3jlmzZpGUlMTcuXOJi4vj6tWr9O3b1+yI1bJ4eeE5Zza29Z9i27MXAHtuLral7+Hx3Cwsfn7mBnSigoNw+sC/L1QzJF/yLzi2xamRmqwTmXA2p+brz+Y6thERaWwuWyzmz5/P8OHDSUhIqLK+W7dueHl50bt3bwB+8YtfEB4ejtVqZdWqVWZEvYmlcyjW/3qaitTfYD93jqsLfo01+SGsvXuZHc2pTn4NWGrf5tQBjVrcLrsN8vfUvV3+HrDZGj+PiNzZXLJY5Ofnc+DAAR5//PGbrsvLyyMqKgpvb28Ahg8fzsaNGxk4cGCD9mGxWOq1pKWl3dLvYH04GUunEK5OngoeHlifHt/g+0hLS6t3TldbfL39uFBItSMVP2S7Av3uSTA9rzsvIW27U1aPd9jKSqFT23DT82qpe7nmxp+1aLm23MjZ+6uNyxYLgHbt2lVZf+nSJdLT06u8DTJgwADCwsKcmq8+LBYLlt69oLgY6+BBWLy8zI7kVFarR/23tdR/W7lZQ46fRwP+v4iI3AqXLBZBQUEAZGdnV1m/aNEiCgoKDDlx026312tJTEy8tfvPzcX2wV+xPvE4tj9/gL2wsMH3kZiYWO+crraUXizGJ7Du39FihR1ZX5ie152X3NOH8fSu+1h7NIOc/G9Mz6ul7qXy78gNP2vRcm25kbP3VxvPBm3tJGFhYfTu3Zv58+fTunVrOnTowKpVq/j0008BXPYTIdfYy684zqsY9TAeE57Gfv48Fb9+HY+F87FYXbLLGc5igZA+cCStto2gbQQ0a+GsVE2Thyd06FX3yZkdeoPHnTVwJiImcMl/5axWKytXriQqKoopU6YwYcIEgoKCmDp1Kh4eHpUnbroq29J3sXh6Yh3/FAAez/wM+7++xbb6I5OTOVdIDLQMqeFKC3j7QfeEGq6XBukSBy2Car6+RRsIi3NeHhG5c7nkiAVAeHg4mzdvrrJu/PjxREZG4uvra1Kqutn27MX26UY83/otFk/H4bU0b47H87Oo+PmLWGP7YunSxeSUzmH1hD6jICcD8rOg4t+f/rBYoW0P6D7QUS7k9nl6Q+wYx8d3Tx8E21XHeqsntI+CbvHU6+0SEZHb5bLFojqZmZn079+/yrqXXnqJd999lzNnzrB//36effZZ0tPT6dq1qykZrX1isK77+83re0Zh/fjOGrEAx9B79wQIGwAXzgA2aN4GmrluN3RbXj7QYyh0Gwil3znW+QWpUIiIc7nkWyHVKS0tJTs7+6aJsebNm0d+fj5lZWWcPXuW/Px800qF1MzDC1oGQ8uOKhWNzdMbWnZwLCoVIuJsbjNi4efnR0WF5iQWERFxZW4zYiEiIiKuT8VCREREDKNiISIiIoZRsRARERHDqFiIiIiIYVQsRERExDAqFiIiImIYt5nHwizR/v535L5FRERuhYpFHV6LiDQ7goiIiNvQWyEiIiJiGBULERERMYyKhYiIiBhGxUJEREQMo2IhIiIihlGxEBEREcOoWIiIiIhhVCxERETEMCoWIiIiYhgVCxERETGMioWIiIgYRsVCREREDKNiISIiIoZRsRARERHDqFiIiIiIYVQsqnHy5EkGDx7MPffcQ1RUFD//+c/NjiQiUm9paWlERUXRrVs3Jk2aREVFhdmR5A6iYlENT09PFi5cyDfffMOePXvYunUra9euNTuWiEidbDYbkyZNYuXKlRw9epSSkhL+/Oc/mx1L7iAqFtVo3749sbGxADRr1ow+ffqQl5dncioRkbrt2rWL4OBgIiMjAZg4cSKrV682OZXcSTzNDuDqzp07x5o1a/jss8/MjiIiTdTlsnLeW/1/XC4rr7L+zXdXV/vzqAfiCQm+u9r7ys/PJyQkpPJyp06dOHnypMGJRWqmEYtalJeX89hjjzF9+nR69OhhdhwRaaJ8vJsR2yuCgsKzFBSerVx/488FhWdpf3frGksFgN1ub9SsInVRsahBRUUFTz75JDExMcycOdPsOCLSxPXt2Z2o8M61btMywI+RQ35c6zYhISFVRijy8vLo2LGjERFF6kXFogYpKSn4+/vz2muvmR1FRO4AFouFRx6Ix6+Fb/XXA48/mIiPd7Na7yc2Npb8/HwOHToEwJIlSxg1apTRcUVqpGJRja+++oqlS5eSmZlJnz59iImJ4be//S2gYUYRaTx+zX15bERCtdfd/6PedO0UXOd9eHh48Kc//YnHHnuMrl274ufnx/jx442OKlIji13/UjbIus8zqKio4OFh92OxWMyOIyJN0N83fsnOrMOVl9sGtWLa04/g5anz7QUuXLjAY//5M07n5YIFOoZ2Y9X7v6dFixZmRwM0YtEgRSWl7Nh7CLvdrlIhIo3mwUFxtGkZAICH1coT/5GkUiEArFu3juDgYD5b8wEH9+zg4Nc72Pj35QQHB7Nhwwaz4wFNoFjs37+fRx99lKCgIHx8fOjevTtz585tlH2lbd+L3W4nKa5Po9y/iAiAdzMvRj+YiMViYWh8LMFtg8yOJC5g69atjBo1iosXLwJgt9uw220AlJaWkpyczM6dO82MCLj5WyG7d+9m4MCBhISE8PzzzxMaGkpubi4ZGRksWbKk1tvOWfiOk1KKiIjcvr/+6TfkHftnjef6WSwWuvbozaNPP2P4vhc8n1Lvbd16bG3mzJm0aNGCHTt2EBgYWLl+4sSJJqYSERExVmlJMSeOHq51G7vdzrHD+7h08Xt8m5t3voXbjlhcvHgRf39/pk2bxptvvtmo+yoqKeXX7/yVfj3DGTV8YKPuS0RE5EZZWVnExMTUa9vDhw8TERHRuIFq4bYjFufPn8dms93yxC+38lbIzqzDVc7UFhERcYaS4vP13vatv3xC8xbphu6/IW+FuO3Jm61atcJqtXLq1Cmzo4iIiDSqgMBWdOzcvdZPJFosFrqER9K8hZ8Tk1WTw13fCgFISkri0KFDHDlyhICAgEbZx5rPtrIz6xtmp4yhVaB/o+xDRESkLp9//jkPPPAAdrv9phM4LRYLFouFtLQ04uPjTUro4LYjFgCpqamUlpbSv39/li1bxubNm3nvvfeYNGmSIfdfVFLKrn2Hie0VoVIhIiKmGjJkCMuXL8fLywsAq9WKh4cHAN7e3nz44Yemlwpw43MsAPr168e2bdt46aWXmDFjBpcvXyYkJIQxY8YYcv9ni0rwb9Fc81aIiIhLePLJJxk6dChLly5l+/btWK1W4uLimDBhAm3atDE7HuDmb4U4g81mw2p164EdERERp1GxEBEREcPopbiIiIgYRsVCREREDKNiISIi4uJmzJhBfHw806dPr/b6DRs20KNHD+6//34nJ7uZioWIiIgL+/rrryktLWXLli2Ul5eza9eum7bp378/WVlZJqS7mYqFiIiIC9u+fTtDhw4FHHNZbNu2jdmzZ2Oz2Rg+fDh5eXm0atUKb29vk5M6qFiIiIi4sKKiosrZpQMDAykqKuLbb78lJSWFhx56iE6dOpmcsCq3niBLRESkqQsMDKSkpASAkpISWrZsyeTJkxkxYgRvvfWWyeluphELERERFxYXF8c//vEPwPF9If3792fevHm8/PLLLFiwwOR0N1OxEBERcWF9+/bFx8eH+Ph4PDw8yMjI4JFHHmHmzJns37+fgwcPkpmZyZAhQzhw4ABDhgzh8uXLpuXVzJsiIiJiGI1YiIiIiGFULERERMQwKhYiIiJiGBULERERMYyKhYiIiBhGxUJEREQMo2IhIiIihlGxEBEREcOoWIiIiIhhVCxERETEMCoWIiIiYhgVCxERETGMioWIiIgYRsVCREREDKNiISIiIoZRsRARERHDqFiIiIiIYf4/Q2yTWN7ZqxQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "qc_S.p(-pi/2,0).c_if(c,1)\n", + "qc_S.draw('mpl')" + ] + }, + { + "cell_type": "markdown", + "id": "moving-vertical", + "metadata": {}, + "source": [ + "#### Application of the Control-$U$ gates and x-measurement (for step 2)\n", + "\n", + "We apply the $CU$ operations as we did in the first step. For the second step we have $t=m-2$, hence $2^t=1$. So we apply $\\text{CP}(\\pi/2)$ once. And then we perform the x-measurment of the qubit $q_0$, storing the result, the phase bit $\\varphi_1$, in the bit $c_1$ of classical register." + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "id": "thrown-galaxy", + "metadata": {}, + "outputs": [], + "source": [ + "## 2^t c-U operations (with t=m-2)\n", + "for _ in range(2**(m-2)):\n", + " qc_S.cp(pi/2,0,1)\n", + "\n", + "x_measurement(qc_S, q[0], c[1]) " + ] + }, + { + "cell_type": "markdown", + "id": "supported-speaking", + "metadata": {}, + "source": [ + "Et voilà, we have our final circuit" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "id": "former-plain", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAssAAACoCAYAAAAW96MGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAhhklEQVR4nO3deVgUh+H/8c8ut4KKYkTECxUVRPBoKkYEvH3SaGsSj6hN/Gq0RvuzPuZqTNpvv7bmqGmbtkmaNuayzVE1jcZEWxOFaDAqRhE1FiMoYkg8EBEVEHZ/f2zEoAy7KDC76/v1PPOEnZnd+bgZZj/MzmGx2+12AQAAALiG1ewAAAAAgLuiLAMAAAAGKMsAAACAAcoyAAAAYICyDAAAABigLAMAAAAGKMsAAACAAcoyAAAAYICyDAAAABigLAMAAAAGKMsAAACAAcoyAAAAYICyDAAAABigLAMAAAAGKMsAAACAAcoyAAAAYICyDAAAABigLAMAAAAGKMsAAACAAcoyAAAAYICyDAAAABigLAMAAAAGKMsAAACAAcoyAAAAYICyDAAAABigLAMAAAAGfM0O4O7ezZSOnzFn2R1CpQkDzVk24G489XfxZz/7mfbs2dOgeVyRkJCgP/zhD9f1XLMySzeW26x15EbWj/9uks6daNg8rgq5Reo5zJxlw3WeuF576jbECGXZieNnpMMmbcgAXOGpv4t79uxRenq62THqxRMzS565jpw7IRUXmJ0C7swT12tP3YYY4TAMAAAAwABlGQAAADBAWQYAAAAMUJYBAAAAA5RlAAAAwABXwwAAwIMsejFFXxzdJh8fP1mtPmrfOkpThz+upL53mh0N8EqUZQBwMyEhIerTp4+Cg4NVUVGhnJwcFRYWGs4/fPhwXbhwQdu2bWvClDDT1BFPaOqIx1VVValVn/xOv/7HJC1vf0CRbaPNjgZcl8DAQPXp00ehoaGqqqpSXl6e8vLyDOfv3bu3evfurXfffbfRs1GWAcANtG3bVjNnztSPf/xj9e7d+5rphYWFWr16tV588UUdOHCgevzw4cP1/vvv69KlSxowYIC+/PLLpowNk/n4+Grc4Af08oePKK8wm7IMjxIcHKypU6dq5syZ6tevn3x9a9bSoqIirV+/Xi+88IIyMjKqx/fu3VubNm1S27ZtNWrUKG3atKlRc1KW0ejsdulMvlR0TLLbpBa3SG17SFYfs5N5H7tNOpUnnf3K8bhlhBTWVbJwdoLbslqtWrBggX7zm98oKChIklReXq59+/apqKhIQUFB6tOnj9q3b6/58+dr/vz5evXVV7Vw4UINHDhQ77//voKCgvTGG2/o8OHDJv9r0NQuVVZoTcbz8vXxU1REvNlxTGG3S2ePS6ePSDabFBwm3RIt+dBw3NqkSZP05z//WWFhYZKkqqoq7du3T4WFhfLz81Pv3r3Vrl07TZ06VVOnTtW///1vzZo1SyEhIdq0aZPCw8O1cePGGiW6sbj1R6jNZtOyZcvUo0cPBQYGKj4+Xunp6erZs6dmz55tdrxarfp1ina892uXx3u70lPStlelz1dKRz6Tju6QstdJW/4inco1O513OfuVtPVvUta/pCPbHUPWvxzjir8yO5053P33sUWLFtq4caN+97vfKSgoSOvWrdPYsWMVEhKigQMHatSoUUpKSlLr1q2VkJCgF154QWVlZZoxY4ZycnK0bt06BQUF6aWXXtLcuXNlt9ubLPu9996rzZs3uzx/ZmamRo0a1YiJ6s/d14+6vPnxb/TDJ1rpnl9Hatv+NfrFj1erQ1h3s2M1uQvF0vY3pMy3pbxvP2P2fyhteVH65r9mpzOHu6/Xvr6+evXVV/X2228rLCxM27Zt05QpU9SiRQvFxcVp1KhRSk1NVXh4uLp3766lS5eqqKhIo0eP1oEDB7R169bqojxu3DiVlZU1ema3LsszZ87UkiVLNGfOHK1fv14TJ07UlClTlJubqwEDBpgdD06UlUi73pYu1HJP+0sXpT3/ks4ca/pc3qj0pLTrn1J56bXTykulz//pmAfuo1mzZtqwYYOGDRumwsJC3X777brjjju0YcMGXbp0qca8drtdWVlZmjdvnhISEnTgwAHdcsstCgwM1DvvvNPkRbk2VqtVzzzzjE6cOKGSkhKtWrVKbdq0qZ6+Zs0ajRs3zsSE3uWe4Yv13pJirfzfE3pufoYSY+4wO1KTqzjv+IwpPXXttMpyKft96RRftrgVi8WiFStW6L777lNpaanuv/9+DR48WG+//bYuXLhwzfyHDx/W4sWLFRMTo48//lghISFq3bq1du3a1WRFWXLjsvzWW2/ptdde09q1a/Xggw8qNTVVixcvVmJioiorK9W/f3+zI8KJo5nSpTJJdXyGf7mlyeJ4tdxtkq1Ktb/Xdse0XM79civLli1TYmKijhw5osTERH344YcuPS8yMlJdu3atfhwTEyM/P7/GiumyRx99VOPHj9f3v/99RUZGSpJWrFhRPZ2yjIZ2bPe3Owjq+Iw59InjMA24h5/+9KeaPHmySkpKNGzYML388ssuPa9169aKjY2tftypUyeFhIQ0VsxruG1ZXrp0qcaMGaPk5OQa47t37y4/Pz/17dtXknTkyBElJycrOjpacXFx2rKF9uUO7Dbpq2xnMzkOHThf1CSRvNali9KJQ6rzA0N2xzwVF5sqFeqSnJysuXPnqqKiQuPGjdPRo0ddet7lk/mCgoK0fPlyHTp0SHFxcXrssccaObFzs2fP1tNPP628vDyVlJTo4Ycf1tixY9WpUydJ0t69e1VVVcWODjSY43udz3P+tFTydeNngXNdunTRk08+KUmaPn26du7c6dLzLp/Md/nQi8sn9v3pT39qzLg1uGVZLigo0L59+3T33XdfMy0/P1+xsbEKCAiQJM2ZM0eTJk1STk6OXnrpJU2ePFkVFRVOl2GxWFwa0tPT6p1/x5rf6MXZrWoMX+VsrffrpKenuZzT3YYWwaGquuT83yhJQweNND2vJw/du8TUXZQvs0s9u/YxPe/1Dtfzuyg1zO/jjfwupqenX/N6jz76qCTHToHsbGd/VTp8tyi/9NJLuv/++zVz5kxJ0oIFC9SsWbOrMqc3aOa6tGzZUp07d9auXbuqx+Xm5urs2bOKj79y0tmaNWs0fvz4Ol/rxnKn1Su35A7rR/0zNxRP/ozxsfqo4tpv7Wt1x+i7TM97I4NnrtfXbkMub6feeecdrV271qUMVxflcePGacaMGbp48aImTZqkbt261ZI73eWcrnLLc0ULCgokSeHh4TXGX7x4Uenp6Ro7dqwk6dSpU9q6dWv1mz548GBFRERo8+bNGj16dNOG/o5bxy/WrT98vMa4Vb9OMSeMScorLqjKVikfq/NV7HzZ2SZI5L3q8/7djO+1u/0+RkVFacyYMbpw4YKee+45l55zdVG+fIzyli1blJGRocGDB2vy5Ml65ZVXGjl97S5/HXr2bM31q7i4WC1atKh+/MEHH+jJJ5/UL3/5yybNVxd3Wz9c8ezcNLMjmM5mt6ms4rwC/Zs7nZftnoOZ63VgYKDuu+8+Sareu+xMbUW5rKxM+fn5evPNNzVz5kzNmTNHDz/8cCMmd3DLPcuXLyOSk5NTY/wzzzyjwsLC6pP78vPz1a5du+q9zJLUtWtXl77StNvtLg3JySkN9w+rp+TkFJdzuttQUVmu8J6+kpM/3AJbSF8c3WF6Xk8eTp09rhbtVfd7bZFatJdOFB8zPe/1Dp76u3j1oWSpqamSpHXr1qm4uNjpso2K8mVvvPFG9Xw1Myc3WGZnzp07J8mxh/m7WrVqpZKSkurHnTt3Vn5+fp2vdWO5U+qVu6Hc2PphTuYbze0OQ1R/50XZL0ja+cVG07PeyOCZ63XNbciAAQPUqlUr7d27V1lZWU6XbVSUL7t8PsTV2z1H7mSXc7rKLfcsR0VFqW/fvlq6dKlat26tDh06aNWqVdUnwHAlDM/Q5XvSSSf3R+jyfake34TAQNfvS1nv1TGD3fFew3yXt1/bt293Oq+zovzd1zFzu3j27FkdPXpU/fv3r/4g7Nq1q1q2bKm9e68cWDpu3DitXr3arJjwMp0GSIUHHOfIGOn8Pa7p7w7qs91zVpQlx6UobTab4uLi5O/v79LhtzfCLfcsW61WrVy5UrGxsZo7d65mzJihsLAwzZs3Tz4+PtUn93Xq1EnffPONysvLq5+bl5enzp07mxUd39EyQupzu/ENMbp8X+rQt2kzeau23aXoYcbTo4dJt9x8l2B1SxEREZLk9AYirhRlSdV37Lv8umb561//qkceeURdunRRSEiInn76aW3YsKH6m75mzZopNTVV69atMzUnvEdwW6nv+FrK8Lc7YCL7OcoyzOfqds+VoixJ58+fr755Sdu2bRsl83e55Z5lSYqOjr7mgvfTp09XTExM9V2uwsLCdNttt2n58uV64IEHlJGRoePHj1d/zWmGux5Pq9d4bxfeS2oV4ThrOe8zx7gO8VJkvBRyi7nZvE2n/o679RXskfK/Pc+q4wDHe928tanRTOOOv4+TJk1SUFBQrdcU/a527drJ39/f6Q1HSktL1aZNmya73qiRp556SqGhodq5c6cCAgK0ceNGTZs2rXr6qFGjtHv3bp0+fdrElDW54/qB+mnbTbrtful4tpT7qWNcRKzjc6Zle3OzmcUd1+vHH39cTz75pNM9wKGhoQoODnbphiNxcXGqqKjQ+fPnGzruNdy2LNcmMzNTgwYNqjHuL3/5i+677z794Q9/kL+/v9566y35+/ublBC1CWwhdRtypSz3HmluHm/WLFSKTr1Slnua93cjDJSXl9f4NszIm2++qcOHD2vHjh1Oj60rKjL/+os2m00PPfSQHnrooVqnjxs3TmvWrGniVLgZBARLUYlXynLMGHPz4FqVlZXXnABcm4yMDCUlJengwYNOdwCcOVPLHc8aiceU5dLSUuXk5OiBBx6oMT4qKkqffPKJSakAoPG4cnyfpzh69KhWrlxpdgyvdurscf1u5SydLzsri8Wqnh2/p7njfm92LKBe9uzZY3aEa3hMWQ4ODlZVVZXZMQAAcnygvfbaay7P/6tf/arxwkCStCtno4b3n6akuDvl7xeoJ9+cqrzCbHVtH2d2NMCjeUxZBgC4j6ysLJcuAYWGl3U4Tf/7+o8U1T5eXxflqVtEgv5vxhrtzU3X/B/+Sf5+gZIkH6ufrFwKArhhbnk1DAAAULu4rkPVs+OtenZumvpGJev/TXhBdrtdZRXnFRQQLEnK/Wqvzp4/qc7tYkxOC3g+9iwDAOCGikq+1m/+MbnGuNYh4bpvzK/VvnWUJOnk2WMKa9lBXx7fo6gIx63FSy4U6c/vzdfj0/7Z5JkBb0RZBgDADbVuEV7rra0z9q1R5/BYVdmqZPn2QvafH9qoAT1GqqqqUk+9NU2zf7BMrVuEN3FiwDtxGAYAAB7kyDf71aVdrC5Vlqu49IROlxQqpyBT0ZEDlb53pXKO7dTfPnhYi15M0YEj28yOC3g89iwDAOBB7hn+WPXPf1uULUlKirtTVqtVw/pN0bB+U8yKBnglyrITHUJvzmUD7sZTfxcTEhLq/Zzc/EJJUlSn9jV+buzlNsRzb9SNLNusdeRGlnu9dzLNO/ZVjcfjb5/YZMtG0/LE9dqs7d71LtsZi93ZraGABvLRMsd/Rzxobo6bAe+1Z3v06b9Kkp56ZHaNn4HLLq8Xl7F+sN3zdO683eOYZQAAAMAAZRkAAAAwQFmGW0hLS1Pnzp2VkpKi8ePHq6ysrMb0ZcuWaffu3YbPP378uMaOHavBgwdryJAhWrhwoSTHXcaeeeaZRs3uaXivAdxs2O7hRlCW4TamT5+utLQ0DR48WKtWraoeb7PZ9Omnn6pfv36Gz924caOmTZumTZs2aevWrTpx4oSys7MVHx+vbdu2iUPza+K9BnCzYbuH60VZhttJSEhQQUFB9eOsrCx1795dkmPvQGhoqFJSUtS5c2eNHz9ekpSenq7x48crMDBQkuTn5ycfHx9JUo8ePercY3Az470GcLNhu4f6oizD7XzyySeKjo6ufnzo0CF16dJFkjR06FDdeuutSktLU3Jysl544QXZ7XadP39ewcHBkqS9e/fq5MmTiomJkSRFRUXp4MGDTf7v8AS81wBuNmz3UF+UZbiNFStWKDU1VcXFxdV/zV8tNzdXUVFRkqRjx46pQ4cOysrKUnx8vCSpqKhI8+fP1/Lly5sstyfivQZws2G7h+tFWYbbmD59ujZv3qznn3+++ustyfEV15EjRyRJ+/fvV2xsrKqqqmS1OlbfjRs3auTIkaqsrNS0adO0bNkyhYeHVz8/NzdXvXr1atJ/i7vjvQZws2G7h+tFWYbbi4+PV05OjqQrG7Ly8nKdOHFChYWFyszM1MCBA7Vy5Urt3LlTDz/8sFJSUrRt2zZJUk5Ojql3JPMkvNcAbjZs9+AMt7uGW0hJSVFKSkqt06xWq5KSkrR792499thj1eOzs7MlSXfeeaesVqumTJmiKVOm1HhuVlaWEhMTq/cQgPcawM2H7R5uBGUZHuHBB43vXzpx4kTDafHx8dXHmsE1vNcAbjZs91AX/hQCAAAADFCWAQAAAAMchuHEov8eUNa5c6YsOz4kRM/2jDFl2QAAAKAsO5V17pw+OVNkdgwAAACYgMMwAAAAAAOUZQAAAMAAZRkAAAAwQFkGAAAADFCWAQAAAAOUZQAAAMAAZRkAAAAwQFkGAAAADFCW0STs9tp/RsPjvQZwM7PbzE4Ab+PWZdlms2nZsmXq0aOHAgMDFR8fr/T0dPXs2VOzZ882Ox5cYLdLx7Ol7a9fGbf1JSnvM6nqknm5vJGtSsr/XMpYfmVcxnIpf5djGgB4G7td+voLafuKK+O2/EU6/KlUWW5eLngXty7LM2fO1JIlSzRnzhytX79eEydO1JQpU5Sbm6sBAwaYHa9W9kuXdOkn81X10t9qjK/613u6NO1e2UtLTUrW9Ox26Yt/O4bS01fGl5dKh7dKu96RKivMy+dNbFVS1hopZ5N0sfjK+IvFUs5mKes9CjMA72K3Szlp0r4PpHMnroyvuCDlbZN2viVdKjMtHryI25blt956S6+99prWrl2rBx98UKmpqVq8eLESExNVWVmp/v37mx2xVhY/P/k++pBs6z6UbfceSZI9L0+2V16Xz8MPyhIcbG7AJlS4X/pq37cPajkcoORr6fCWJo3ktY5mSqdzjaefznPMAwDe4uSX0rFd3z6o5TPm/CnHDgTgRrltWV66dKnGjBmj5OTkGuO7d+8uPz8/9e3bV5L0i1/8QtHR0bJarVq1apUZUa9h6dJZ1v+5V1XLfi97UZEqn/qtrOPvkLVvnNnRmtSxzyVZ6p7n+D72Lt8ou00q2O18voLdko1j+QB4CVc+Y74+6NjTDNwItyzLBQUF2rdvn+6+++5rpuXn5ys2NlYBAQGSpDFjxmjDhg0aOnRovZZhsVhcGtLS0q7r32D94XhZOnVU5Zx5ko+PrPdOr/drpKWluZzT3YaggGDH12JOTjCzXZIG9E42Pa8nDx3b9VC5C0f3lJdKndpFm56Xwflw2dU/MzBcHq5mdh4zhlNHK51+xthtUsr3xpmelcH5YMZ2z1VuW5YlKTw8vMb4ixcvKj09vcYhGIMHD1ZUVFST5nOFxWKRpW+cdPasrMOHyeLnZ3akJmW1+rg+r8X1eXGt+rx/PvX4/wIA7spRdlyrMPX5PAJq45ZlOSwsTJKUk5NTY/wzzzyjwsLCBjm5z263uzSkpKRc3+vn5cn25tuyTrpbtr+/KfuJE86fdJWUlBSXc7rbUHrhrAJbOv83WqzS9qxNpuf15CHvq4PyDXD+Xvv4S7kFX5iel8H5UL0duepnBobLw9XMztPUg81mU4t2VqeHYUjSxq3/Mj0vg/PBjO2eq3xdnrMJRUVFqW/fvlq6dKlat26tDh06aNWqVfrwww8lyW2vhHGZveKS4zjlCT+Uz4x7ZT9zRlW//Z18nl4qi9Ut/z5pcBaL1LGfdCitrpmkdj0l/+ZNlco7+fhKHeKcn8DXoa/kc3N9wQHAi3Xs57jakiGL1KarFOTCjhugLm7Z3KxWq1auXKnY2FjNnTtXM2bMUFhYmObNmycfH5/qk/vcle2VV2Xx9ZV1+lRJks8DP5H9629kW/0vk5M1rY4JUquOBhMtUkCw1CPZYDrqpWui1DzMeHrzNlJUYtPlAYDG1j5WCjM6CtMi+QVKvYY1aSR4KbfcsyxJ0dHR2rx5c41x06dPV0xMjIKCgkxK5Zxt9x7ZPtwg3+f/KIuv4+21NGsmn0ceVNXPH5d1YH9ZunY1OWXTsPpK/SZIuRlSQZZU9e1VLyxWqV0vqcdQR2HGjfMNkAZOdlyK76v9kq3SMd7q6/hA6Z4klw7VAABPYbVKfcc7rql8bI9Uefmayt9+a9k9ib3KaBhuW5Zrk5mZqUGDBtUY98QTT+jVV1/VyZMnlZ2drZ/97GdKT09Xt27dTMlo7Zcg69p3rx3fJ1bW92+uPcuS42v/HslS1GDp3ElJNqlZG8nfff/e8Vh+gVKvkVL3oVLpKce44DBKMgDvZfWRug2Rug5yfMbYqqTmoRzeh4bllodh1Ka0tFQ5OTnX3IxkyZIlKigoUHl5uU6fPq2CggLTijKM+fhJrSKkVpEU5cbmGyC16uAYKMoAbgZWX6lleyk0kqKMhucxe5aDg4NVVcX9egEAANB0PGbPMgAAANDUKMsAAACAAcoyAAAAYICyDAAAABigLAMAAAAGKMsAAACAAcoyAAAAYMBjrrNslviQkJty2QAAAKAsO/VszxizIwAAAMAkHIYBAAAAGKAsAwAAAAYoywAAAIAByjIAAABggLIMAAAAGKAsAwAAAAYoywAAAIAByjIAAABggLIMAAAAGKAsAwAAAAYoywAAAIAByjIAAABggLIMAAAAGKAsAwAAAAYoywAAAIABynItjh07puHDh6t3796KjY3Vz3/+c7MjAYDL0tLSFBsbq+7du2vWrFmqqqoyOxIANJoFCxYoMjJSvr6+jfL6lOVa+Pr66umnn9YXX3yh3bt3a+vWrVqzZo3ZsQDAKZvNplmzZmnlypX68ssvVVJSor///e9mxwKARnP33XcrMzOz0V6fslyL9u3ba+DAgZIkf39/9evXT/n5+SanAgDndu7cqYiICMXExEiSZs6cqdWrV5ucCgAaz5AhQxQeHt5or984+6u9SFFRkd577z395z//MTsKAC9VVl6h11f/W2XlFTXGP/fq6lp/njA6SR0jbqn1tQoKCtSxY8fqx506ddKxY8caODEA3BibzaY313ys08UlNcYbbfdSByWob+9uTZbvu9izXIeKigrdddddWrBggXr16mV2HABeKjDAXwPjeqrwxGkVnjhdPf7qnwtPnFb7W1obFmVJstvtjZoVABqC1WpV0vfi9PXJIqfbPT9fX8X27GpGTEmUZUNVVVW65557lJCQoEWLFpkdB4CX69+nh2Kju9Q5T6sWwRo34rY65+nYsWONPcn5+fmKjIxsiIgA0KA6R4YrZVB8nfP4+/lq4g9S5GM1r7JSlg3Mnj1bISEhevbZZ82OAuAmYLFY9KPRSQpuHlT7dEl3356iwAD/Ol9n4MCBKigo0IEDByRJy5cv14QJExo6LgA0iOG3DVBEuzaG028flqiw0JZNmOhalOVafPrpp3rllVeUmZmpfv36KSEhQX/84x8l8RUngMYT3CxId41NrnXakO/1VbdOEU5fw8fHRy+//LLuuusudevWTcHBwZo+fXpDRwWABuHr46NJt6fK18fnmmm9unXSrfHOD4OdM2eOIiMjVVVVpcjISM2bN69BM1rstL96WftRhqqqqvTDUUNksVjMjgPAC7274RPtyDpY/bhdWKjm3/sj+TXSNUThWc6dO6e7fvwTfZWfJ1mkyM7dteqNF9W8eXOzowHXbcvOvfpg02fVj5sFBWjh/9ytkOBmJqZyYM9yPRSXlGr7ngOy2+0UZQCN5vZhiWrTqoUkycdq1aQfpFKUIUlau3atIiIi9J/33tT+3du1//Pt2vDuCkVERGj9+vVmxwOu220D4xT1nW/PJowe6hZFWfKCspydna0777xTYWFhCgwMVI8ePbR48eJGWVbaZ3tkt9uVmtivUV4fACQpwN9PE29PkcVi0cikgYpoF2Z2JLiBrVu3asKECbpw4YIkyW63yW63SZJKS0s1fvx47dixw8yIwHWzWiyaeHuKAvz91L9PD/Ux8eoXV/PowzB27dqloUOHqmPHjnrkkUfUuXNn5eXlKSMjQ8uXL6/zuY8+/dcmSgkAwI17++XfK//wfw3PnbFYLOrWq6/uvPeBJk4GeKanHpnt0nwe/b3eokWL1Lx5c23fvl0tW145U3LmzJkmpgIAoGGVlpzV0S8P1jmP3W7X4YN7dfHCeQU14/hloKF47J7lCxcuKCQkRPPnz9dzzz3XqMsqLinVb//6tgb0idaEMUMbdVkAAFwtKytLCQkJLs178OBB9ezZs3EDATcRj92zfObMGdlstuu+2P71HIaxI+tgjTPUAQBoCiVnz7g87/P/+EDNmqc3YhrAO7h6GIbHnuAXGhoqq9Wq48ePmx0FAIBG1aJlqCK79KjzSkwWi0Vdo2PUrHlwEyYDvJ/HHoYhSampqTpw4IAOHTqkFi1aNMoy3vvPVu3I+kIPzZ6s0JYhjbIMAACc+eijjzR69GjZ7fZrTvKzWCyyWCxKS0tTUlKSSQkB7+Sxe5YladmyZSotLdWgQYP02muvafPmzXr99dc1a9asBnn94pJS7dx7UAPjelKUAQCmGjFihFasWCE/Pz9JktVqlc+3dz0LCAjQO++8Q1EGGoHHHrMsSQMGDNC2bdv0xBNPaOHChSorK1PHjh01efLkBnn908UlCmnejOsqAwDcwj333KORI0fqlVde0WeffSar1arExETNmDFDbdq0MTse4JU8+jCMpmCz2WS1evQOeAAAAFwnyjIAAABggF2mAAAAgAHKMgAAAGCAsgwAgJtbuHChkpKStGDBglqnr1+/Xr169dKQIUOaOBng/SjLAAC4sc8//1ylpaXasmWLKioqtHPnzmvmGTRokLKyskxIB3g/yjIAAG7ss88+08iRIyU5rrW8bds2PfTQQ7LZbBozZozy8/MVGhqqgIAAk5MC3omyDACAGysuLq6+S23Lli1VXFysb775RrNnz9Ydd9yhTp06mZwQ8G4efVMSAAC8XcuWLVVSUiJJKikpUatWrTRnzhyNHTtWzz//vMnpAO/HnmUAANxYYmKiPv74Y0nSRx99pEGDBmnJkiX65S9/qaeeesrkdID3oywDAODG+vfvr8DAQCUlJcnHx0cZGRn60Y9+pEWLFik7O1v79+9XZmamRowYoX379mnEiBEqKyszOzbgNbiDHwAAAGCAPcsAAACAAcoyAAAAYICyDAAAABigLAMAAAAGKMsAAACAAcoyAAAAYICyDAAAABigLAMAAAAGKMsAAACAAcoyAAAAYICyDAAAABigLAMAAAAGKMsAAACAAcoyAAAAYICyDAAAABigLAMAAAAGKMsAAACAgf8PHEKOIjI+llIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "qc_S.draw('mpl')" + ] + }, + { + "cell_type": "markdown", + "id": "falling-ballot", + "metadata": {}, + "source": [ + "Let's execute the circuit with the `qasm_simulator`, the simulator without noise that run locally." + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "id": "included-jesus", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAaeElEQVR4nO3dfbQcdZng8e9DkIGoMEQgBMJLFHbYQRmQC4IuGDxmeHEOKsyKOJhlWGDAXSJydEePouIIjrrDwjqLLnEGCLoOA464LkGCKC8HgswN7pEXZVx5USAJCaCIvISXZ/+oukzb3JtbdW/f7uru7+ecOrf7V7+qfhrynKer6le/isxEkqSm2aTXAUiSNB4LlCSpkSxQkqRGskBJkhrJAiVJaqRNex1AL22zzTa566679joM9alVq1atz8xtex1HE5hLmo6JcmmoC9Suu+7K6Ohor8NQn4qIB3odQ1OYS5qOiXLJU3ySpEayQEmSGskCJUlqJAuUJKmRLFCSpEayQEmSGskCJUlqJAuUJKmRLFCSpEayQEmSGskCJUlqJAuUJKmRLFCSpEayQEmSGskCJUlqJAuUJKmRLFCSpEayQA2JE044ge22247Xv/71467PTJYsWcJuu+3GXnvtxe233/7SuksuuYTdd9+d3XffnUsuueSl9lWrVvGGN7yB3XbbjSVLlpCZM/49pF4zl7ooM4d22XfffXNY3HDDDblq1arcc889x11/1VVX5WGHHZYvvvhirly5Mvfff//MzHz00UdzwYIF+eijj+Zjjz2WCxYsyMceeywzM/fbb79cuXJlvvjii3nYYYfl8uXLu/Z9mgAYzQb8O27CYi79K3OpvolyySOoIXHwwQczZ86cCdd/+9vfZvHixUQEBxxwAL/61a9YvXo111xzDYsWLWLOnDlsvfXWLFq0iO9+97usXr2aJ554ggMOOICIYPHixVx55ZXd+0JSj5hL3WOBEgAPPfQQO+2000vv58+fz0MPPbTR9vnz57+sXRp25lLnWKAkSY1kgRIAO+64I7/85S9fev/ggw+y4447brT9wQcffFm7NOzMpc6xQAmAI488kmXLlpGZ3HrrrWy11VbMmzePQw89lBUrVvD444/z+OOPs2LFCg499FDmzZvHlltuya233kpmsmzZMt75znf2+mtIPWcudc6mvQ5A3XHsscdy/fXXs379eubPn89ZZ53Fc889B8App5zCEUccwfLly9ltt92YPXs2F110EQBz5szhzDPPZL/99gPgk5/85EsXiC+44AKOP/54nn76aQ4//HAOP/zw3nw5qYvMpe6JYoTfcBoZGcnR0dFeh6E+FRGrMnOk13E0gbmk6ZgolzzFJ0lqJAuUJKmRLFCSpEayQEmSGskCJUlqJAuUJKmRulqgIuLgiPjfEfFQRGREHF9hmzdExA0R8XS53ScjItr6HB0Rd0fEs+Xfd8/Yl5AawFzSMOj2EdSrgDuBDwJPT9Y5IrYErgXWAvuV230EOKOlz4HAZcDXgb3Lv5dHxJs6HLvUJOaSBl5XZ5LIzOXAcoCIuLjCJn8GzAb+Q2Y+DdwZEXsAZ0TEueVzRE4HfpCZZ5fbnB0Rh5Ttx3b2G0jNYC5pGDT9GtSBwE1lQo25BtgB2LWlz4q27a4B3jzj0Un9w1xS32n6XHzbAw+2ta1tWXdf+XftOH22H2+HEXEycDLAzjvvPOEHn3Re7Vg1gJae3usIOqYnuWQeacxUcqnpR1Adl5kXZuZIZo5su+22vQ5H6lvmkmZa0wvUGmBuW9vclnUb67MGSWPMJfWdpheolcBBEbF5S9si4GHg/pY+i9q2WwTcMuPRSf3DXFLf6fZ9UK+KiL0jYu/ys3cu3+9crv9cRFzXssn/Ap4CLo6I10fEUcBHgbFRRwDnA2+LiI9GxB4R8THgEOC8Ln0tqevMJQ2Dbh9BjQA/KpctgLPK158p188DXjfWOTN/TfELbgdgFPgfwN8A57b0uQV4L3A88GNgMXBMZv5wZr+K1FPmkgZet++Duh6Ijaw/fpy2O4CDJ9nvFcAV0wxP6hvmkoZB069BSZKGlAVKktRIFihJUiNZoCRJjWSBkiQ1kgVKktRIFihJUiNZoCRJjWSBkiQ1kgVKktRIFihJUiNZoCRJjWSBkiQ1kgVKktRIFihJUiNZoCRJjWSBkiQ1kgVKktRIFihJUiNZoCRJjWSBkiQ1kgVKktRIFihJUiNZoCRJjWSBkiQ1kgVKktRIFihJUiNZoCRJjWSBkiQ1Uq0CFRGbRMQmLe+3j4gTI+ItnQ9NGkzmkVRN3SOoq4DTACLiVcAo8EXg+ohY3OHYpEFlHkkV1C1QI8D3y9dHAU8A2wEnAR/uYFzSIDOPpArqFqhXAb8qX/8x8K3MfI4i2V7XwbikQWYeSRXULVC/AN4SEa8EDgWuLdvnAE91MjBpgJlHUgWb1ux/LnAp8CTwAHBj2X4wcEcH45IGmXkkVVCrQGXm/4yIVcBOwLWZ+WK56ufAmZ0OThpE5pFUTe37oDJzNDO/lZlPtrRdlZk3V9k+Ij4QEfdFxDMRsSoiDtpI34sjIsdZftvSZ+EEffao+92kbpluHoG5pMFXu0CVSXFXRDwVEa8t2/4yIt5TYdtjgPOBc4B9gFuAqyNi5wk2+SAwr225F/jHcfru2dbvZ7W+mNRF08mjsq+5pIFX90bd04FPABcC0bLqYeA/V9jFGcDFmbk0M3+SmacBq4FTx+ucmb/OzDVjC8UIp9cCS8fp/khr38x8ofo3k7qnA3kE5pKGQN0jqFOAkzLzfOD5lvbbKX51TSgiNgP2BVa0rVoBvLni558E3JWZt4yzbjQiVkfEdRFxSMX9Sb0w5TwCc0nDo26B2gW4c5z254AtJtl2G2AWsLatfS2w/WQfHBFbAe/h5b/4xn41Hk1x0+M9wHUTnY+PiJMjYjQiRtetWzfZx0ozYTp5BOaShkTdYeb3Am+kGBrb6gjg7o5ENLHjKArqpa2NmXkPRSKNWRkRuwIfAW5q30lmXkhxaoWRkZGcqWCljehlHoG5pD5Rt0D9V+BvI2I2xbnzAyPi/cB/AU6YZNv1wAvA3Lb2ucCaCp99EvDNzHysQt8fAu+t0E/qhenkEZhLGhJ174O6KCI2pRg5NJviF9jDwJLMvGySbTeU934sAi5vWbUI+ObGto2I/YE/Ak6vGOreFKcrpMaZTh6V25tLGgp1j6DIzKXA0ojYBtgkMx+psfm5wKURcRtwM8XF4h2ArwBExLLyM9pndD4Z+FlmXt++w3JE1P3AXcBmFKcv3kVxHl1qpGnmEZhLGgK1C9SYzFw/hW0ui4jXUAyxnUdxofiIzBw7F/+yezgi4tUUpxg+M8FuN6N4VMF84GmK5HpHZi6vG5/UbVPJo3I7c0kDb9ICFRE/Bt6amY9HxB3AhBdDM3OvyfaXmRcAF0ywbuE4bb+hmP15ov19AfjCZJ8r9VKn86jsZy5poFU5gvom8GzLa0frSPWZR1JNkxaozDyr5fWnZzQaaUCZR1J9dac6+n5E/P447VtGxPfH2URSG/NIqqbuTBILKS6kttscmHAmZUm/YyHmkTSpSqP4IuKNLW/3iojWG/xmUTwV9KFOBiYNGvNIqqfqMPNRiou6ycsnqIRiSOppnQpKGlDmkVRD1QK1gGJKlnuB/YHWmSE3UEzP75T80saZR1INlQpUy81/tR9wKKlgHkn1VLlR9yjgO5n5XPl6Qpn5Tx2LTBog5pFUX5UjqCsonjHzSPl6IklxoVfSy5lHUk1VbtTdZLzXkqozj6T6TBRJUiNVvQZViefOpfGZR1J9Va9BVeG5c2li5pFUU61rUJKmxjyS6jNpJEmN5H1QUheYR1J93gcldYd5JNXkfVBSF5hHUn0miiSpkWoXqIh4Y0Qsi4jRcrm07Tk3kiZhHkmTq/vI9z8D/hmYBywvl7nAbRFxXOfDkwaPeSRVU/V5UGPOBs7MzHNaGyPiY8Bnga91KjBpgJlHUgV1T/FtC/zjOO2XA9tNPxxpKJhHUgV1C9QPgIXjtC8EbphuMNKQMI+kCupOFns18LmIGAFuLdsOAI4CPt3x6KQBYR5J9U11stiTy6XVl4ALph2RNJjMI6kmJ4uVusA8kuozaSRJjVR3mDkRsTVwOLAzsFnrusz8TIfikgaaeSRNrlaBiogDgKuAZymGyj5EcbPhs8D9gIklTcI8kqqpe4rvi8DXgR2BZ4C3UfwCHAU+39nQpIFlHkkV1C1QewF/m5kJvAD8XmauBf4Sh8dKVZlHUgV1C9SGltdrgV3K108CO3QkImnwmUdSBXUHSdwO7Af8C3A98NmImAscB/y4s6FJA8s8kiqoewT1ceDh8vUngHUUNxZuzctvOJQ0PvNIqqBWgcrM0cz8Qfl6XWYenplbZuZIZt5RZR8R8YGIuC8inomIVRFx0Eb6LoyIHGfZo63f0RFxd0Q8W/59d53vJXVTJ/IIzCUNvindqBsRr4uIPymX19bY7hjgfOAcYB/gFuDqiNh5kk33pBiGO7b8rGWfBwKXUYyK2rv8e3lEvKn6N5K6b6p5VG5rLmng1X1g4Wsi4kqKf9RXlsvPIuLbEfGaCrs4A7g4M5dm5k8y8zRgNXDqJNs9kplrWpYXWtadDvwgM88u93k2xXn902t8NalrOpBHYC5pCNQ9gvoqsBtwELB5uRwMLACWbmzDiNgM2BdY0bZqBfDmST53NCJWR8R1EXFI27oDx9nnNRX2KfXKlPMIzCUNj7oF6lDgpMy8OTOfL5ebgb8o123MNsAsimG1rdYC20+wzdgvwqMpHkVwD3Bd27n27evsMyJOjojRiBhdt27dJCFLM2I6eQTmkoZE3WHm64DfjtP+FPDo9MP5XZl5D0UijVkZEbsCHwFumuI+LwQuBBgZGcnpxihNQVfzCMwl9ae6R1CfAc6LiB3HGsrXf8Pk84etp7hrfm5b+1xgTY0Yfgjs3vJ+TQf2KXXTdPIIzCUNiSpP1L0DaP11tAC4PyIeKt+PzSe2HcW59XFl5oaIWAUsAi5vWbUI+GaNmPemOF0xZmW5jy+27fOWGvuUZlSn8gjMJQ2PqT5Rd6rOBS6NiNuAm4FTKKZ2+QpARCwDyMzF5fvTKWZ3vovikQTHAe+iOI8+5nzgxoj4KMVoqHcDhwD/roNxS9PVyTwCc0lDoMoTdc/q1Idl5mXlMNpPUNyDcSdwRGY+UHZpv4djM4pfc/OBpymS6x2Zubxln7dExHuBz1KcHvk5cExm/rBTcUvT1ck8KvdnLmng1X5gIUBEvA34Q4pTFndl5vVVt83MC4ALJli3sO39F4AvVNjnFXT+F6o0o6aTR2AuafDVfWDhjsC3KO7BGJtLbIeIGAXenZkPT7ixJMA8kqqqO4rvv1OMHtotM3fKzJ0oRgG9UK6TNDnzSKqg7im+RcDCzLxvrCEz742IJcB1HY1MGlzmkVTBVCaLHe+GPG/Sk+oxj6RJ1C1Q1wFfioidxhrK2ZPPw19+UlXmkVRB3QK1BHglcG9EPBARD1AMRX1luU7S5MwjqYK616AeBfYHFgJjDzr7SWZ+r5NBSQPOPJIqqFygImIW8GvgjzLzWuDaGYtKGlDmkVRd5VN85YPNHqC4I13SFJhHUnV1r0H9FfDXEbHNTAQjDQnzSKqg7jWoD1PMwvxQRDxI2zNtMnOvTgUmDTDzSKqgboG6guJejZiBWKRhYR5JFVQqUBExm2Im5HcBr6C4V+O0zFw/c6FJg8U8kuqpeg3qLOB44CrgG8DbgS/PUEzSoDKPpBqqnuI7CviPmfkPABHxdeDmiJhVjkqSNDnzSKqh6hHUTsBNY28y8zbgeYoneEqqxjySaqhaoGYBG9ranmeKDzyUhpR5JNVQNTEC+FpEPNvStjmwNCKeGmvIzCM7GZw0YMwjqYaqBeqScdq+1slApCFgHkk1VCpQmfnnMx2INOjMI6meqTywUJKkGWeBkiQ1kgVKktRIFihJUiNZoCRJjWSBkiQ1kgVKktRIFihJUiNZoCRJjWSBkiQ1kgVKktRIFihJUiNZoCRJjWSBkiQ1kgVKktRIFihJUiN1vUBFxAci4r6IeCYiVkXEQRvpe1RErIiIdRHxm4j4YUQc2dbn+IjIcZbNZ/7bSL1jLmnQdbVARcQxwPnAOcA+wC3A1RGx8wSbvBX4PvCOsv9y4FvjJOJTwLzWJTOf6fw3kJrBXNIwqPTI9w46A7g4M5eW70+LiMOAU4GPtXfOzA+2NZ0VEe8A3gXc9Ltdc80MxCs1lbmkgde1I6iI2AzYF1jRtmoF8OYau3o18Hhb2xYR8UBEPBgR/yci9plGqFKjmUsaFt08xbcNMAtY29a+Fti+yg4i4j8B84FLW5rvAU4A3gkcCzwD3BwRu0+wj5MjYjQiRtetW1fvG0jNYC5pKPTNKL6IOBr4IvC+zHxgrD0zV2bmJZn5fzPzJuAY4OfAaePtJzMvzMyRzBzZdtttuxK71CTmkvpFNwvUeuAFYG5b+1xgo+e8I+JPKX7pLc7M72ysb2a+AIwC4/7qkwaAuaSh0LUClZkbgFXAorZViyhGII0rIt5DkVDHZ+YVk31ORASwF7B66tFKzWUuaVh0exTfucClEXEbcDNwCrAD8BWAiFgGkJmLy/fvpUioDwM3RsTY+fUNmflY2edTwK3Az4AtgSUUSXVql76T1AvmkgZeVwtUZl4WEa8BPkFxj8WdwBEt58Hb7+E4hSLG88plzA3AwvL17wMXUlwc/jXwI+DgzLyt419AaghzScOg20dQZOYFwAUTrFu4sfcTbPMh4EOdiE3qJ+aSBl3fjOKTJA0XC5QkqZEsUJKkRrJASZIayQIlSWokC5QkqZEsUJKkRrJASZIayQIlSWokC5QkqZEsUJKkRrJASZIayQIlSWokC5QkqZEsUJKkRrJASZIayQIlSWokC5QkqZEsUJKkRrJASZIayQIlSWokC5QkqZEsUJKkRrJASZIayQIlSWokC5QkqZEsUJKkRrJASZIayQIlSWokC5QkqZEsUJKkRrJASZIayQIlSWokC5QkqZEsUJKkRrJASZIaqesFKiI+EBH3RcQzEbEqIg6apP9by37PRMS9EXHKdPcpDQJzSYOuqwUqIo4BzgfOAfYBbgGujoidJ+i/AFhe9tsH+BzwpYg4eqr7lAaBuaRh0O0jqDOAizNzaWb+JDNPA1YDp07Q/xTg4cw8rey/FLgE+PA09ikNAnNJA69rBSoiNgP2BVa0rVoBvHmCzQ4cp/81wEhEvGKK+5T6mrmkYbFpFz9rG2AWsLatfS3w9gm22R743jj9Ny33F3X3GREnAyeXb5+MiHuqBD+ktgHW9zqIXvrqhza6epcuhdHOXOo/5tIUcqmbBaoRMvNC4MJex9EPImI0M0d6HYeayVyqzlyamm4WqPXAC8Dctva5wJoJtlkzQf/ny/3FFPYp9TtzSUOha9egMnMDsApY1LZqEcVoofGsnKD/aGY+N8V9Sn3NXNLQyMyuLcAxwAbgRODfUgxpfRLYpVy/DFjW0n8B8FvgvLL/ieX2R1fdp8u0/n+d3OsYXCb8f2Mu9dFiLk3xv1sP/kd9ALgfeJbiF9vBLeuuB65v6/9W4Pay/33AKXX26eIyqIu55DLoS2Tm+IdWkiT1kHPxSZIayQIlSWokC5QkqZEsUJI0gyIieh1Dv7JASdIMiYhXpCPRpswCpZdExBa9jkEaMI9GxO/MMxcRr+pVMP3GAiUAImJr4J6I+HJEvKX1tETb6z0iYsueBCn1kYg4HvhNZj4QEbMiYt+IuAi4KCL+LiKO8PTfxlmgNOY4innX9gVuBP5fRHwmIv5g7BRFROwEfINiZmZJG3cacFH5+gRgKbA/xWwduwCfBfbrTWj9wRt1BUBELKWYLPSTFI9mOBb4U+C1wD8Dfw+8Bvh4ZnqKQtqIiJhDMQnv5pm5ISLuAC4DzsnMF8unFF8N3JGZ7+1lrE02dI/b0MtFxO8BdwOzM/MR4BHgxxHx1xS/8N4HfJqicH2qV3FKfeSQ8u/lEXE3sBnw5bGVmfmLiPg88BcRsW1mrutFkE3nKT6Rmc8CFwB/B1CeL98kM3+dmd/LzBMoihT86ykLSRO7CziVYk7DE4F7gFnl0dPYdafngC0tThPzCEpERGTmsxExOyLmZubatnUJHAzcn5kP9i5SqT9k5k/LJwxfCfwbYDbwRLkuI2IWReG6pmdB9gEL1JCLiO2A90fEGRSn9p6PiNXA5cA/ZeZvy198a4AlPQxV6ivlD7u1wNqImJWZL8BLo2JPpRgo8ec9DLHxHCQx5CLiYmBP4DvAY8AcYB9gD+BB4IuZuaJnAUp9JiJeDRwAzAP+JTNvbVu/BfAeYLPMXNqDEPuGBWqIlb/kfgMckZk3trTNp0iwkyh+5R2bmbf3LFCpT0TEHwBnUlyzvZviCOqDmXlnTwPrUw6SGG5/SPHgug1jDVn4ZWZeDvwJRQH79z2KT+o3n6K43jQCHA08T3Fj7uZjHSJiTkTs3Zvw+osFarjdS3Hd6b9FxO4R8Tv/HjJzA3AJcHgvgpP60GHA5zLz9sy8B3g/xQ3wi1v6fAj4eC+C6zcWqCGWmU9TJMoWwDJgcUTsNDZXWETMpnhMuKcnpElExCHAAxTXcilv1XgEOBs4MSK2KrueBHyzN1H2FwvUkCsv4B4H/ILiRsIfAd+IiL8HfgrsBHy+dxFKfWMD8HPg1W3tV5Vtb4qIEWCrzPyHbgfXjxwkoZeUQ87fAbwLeIbiyOnyzPxpL+OS+kF5nemPgWvKm99fuo8wIs4HdqS4JjUrM72uW4EFSuMqT0+82Os4pEFQzr23imI+y/0zc7THIfUFT/FpXBYnqXMy8xfAV4HbLU7VeQQlSTNo7GxEOfhol8y8q9cx9QsLlCR1UHmz+yYUtxWOTQ67bTmiTzV4ik+SOqC8l3C78mb3F1pOk78VuDEiPtLL+PqRk8VK0hSNTbZMcfPtOsaZbJniQOBJihvjVYOn+CRpiipMtvyFzLy27Dv26BpVZIGSpCmoONnyrsD7HLk3NV6DkqSpqTLZ8hMUk8ZqCixQkjQ1TrY8wyxQkjQFTrY887wGJUnTEBGvp3hI4ZHAb4GVFCP63g6sBk7MzDt6F2H/skBJUgc42XLnWaAkqcOcbLkzLFCSpEZykIQkqZEsUJKkRrJASZIayQIlSWokC5QkqZEsUJKkRvr/SlEIDELDCMcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sim = Aer.get_backend('qasm_simulator')\n", + "count0 = execute(qc_S, sim).result().get_counts()\n", + "\n", + "key_new = [str(int(key,2)/2**m) for key in list(count0.keys())]\n", + "count1 = dict(zip(key_new, count0.values()))\n", + "\n", + "fig, ax = plt.subplots(1,2)\n", + "plot_histogram(count0, ax=ax[0])\n", + "plot_histogram(count1, ax=ax[1])\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "id": "dried-tribute", + "metadata": {}, + "source": [ + "In the picture we have the same histograms but on the left we have on the x-axis the string with phase bits $\\varphi_1$, $\\varphi_2$ and on the right the actual phase $\\varphi$ in decimal representation.\n", + "\n", + "As we expected we have found $\\varphi=\\frac{1}{4}=0.25$ with a $100\\%$ probability." + ] + }, + { + "cell_type": "markdown", + "id": "5e04c3fc-7cb8-413a-8781-a8aa5a47bde6", + "metadata": {}, + "source": [ + "## IPE example with a 2-qubit gate\n", + "\n", + "Now, we want to apply the IPE algorithm to estimate the phase for a 2-qubit gate $U$. For this example, let's consider the controlled version of the $T$ gate, i.e. the gate $U=\\textrm{Controlled-}T$ (that from now we will express more complactly with $CT$). Its matrix is\n", + "$$ CT = \n", + "\\begin{bmatrix}\n", + "1 & 0 & 0 & 0\\\\\n", + "0 & 1 & 0 & 0\\\\\n", + "0 & 0 & 1 & 0\\\\\n", + "0 & 0 & 0 & e^\\frac{i\\pi}{4}\\\\ \n", + "\\end{bmatrix} $$\n", + "That is, the $CT$ gate adds a phase $\\pi/4$ to the state $|11\\rangle$, leaving unchanged the phase of the other computational basis states $|00\\rangle$, $|01\\rangle$, $|10\\rangle$.\n", + "\n", + "Let's consider to estimate the phase $\\phi=\\pi/4$ for the eigenstate $|11\\rangle$, we should find $\\varphi=1/8$, since $\\phi = 2 \\pi \\varphi$. Therefore to estimate the phase we neeed exactly 3 classical bits, i.e. $m=3$, since $1/2^3=1/8$. So $\\varphi=0.\\varphi_1\\varphi_2\\varphi_3$.\n", + "\n", + "As done with the example for the 1-qubit $U$ operator we will go through the same steps but this time we will have $3$ steps since $m=3$, and we will not repeat all the explanations. So for details see the above example for 1-qubit $U$ gate.\n", + "\n", + "First, we initialize the circuit with 3 qbuits, 1 for the auxiliary qubit and 2 for the 2-qubit gate, and 3 classical bits to store the phase bits $\\varphi_1$, $\\varphi_2$, $\\varphi_3$." + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "id": "409c28f5-54c4-49fd-a487-9b801e8fc78f", + "metadata": {}, + "outputs": [], + "source": [ + "nq = 3 # number of qubits\n", + "m = 3 # number of classical bits\n", + "q = QuantumRegister(nq,'q')\n", + "c = ClassicalRegister(m,'c')\n", + "\n", + "qc = QuantumCircuit(q,c)" + ] + }, + { + "cell_type": "markdown", + "id": "0ff38765-de06-4432-9296-732994631a3e", + "metadata": {}, + "source": [ + "### First step\n", + "\n", + "Now we build the quantum circuit for the first step, to estimate the least significant phase bit $\\varphi_m=\\varphi_3$.\n", + "\n", + "#### Initialization\n", + "\n", + "We inizialize the auxiliary qubit and the other qubits with the eigenstate $|11\\rangle$." + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "id": "c5bf93b8-9c96-4a1a-83fa-5cb9234cca4a", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAH0AAADWCAYAAAD8W40IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAKKElEQVR4nO3dfUwUiRnH8d/MAiJBDwxBo7tuBVmiq3AnVglNAK8WMaEBzzdIS5SSyIm9BLX1rlGMFI6cL21Jm6baGrXJ9WjiFiw1SMNFWDAQLXriW+KKLtJVKr5sFKMsuLv9g4iiIrNklpnheT4J/4xh59GvM7ss+iB4vV4vGCmi0gOw8cfRCeLoBHF0gjg6QRydII5OEEcniKMTxNEJ4ugEcXSCODpBHJ0gjk4QRyeIoxPE0Qni6ARxdII4OkEcnSCOThBHJ4ijE8TRCQpQegC1q2oD7jiVOfescOCTxfI/LkcfxR0ncLNH6Snkxbd3gjg6QRydII5OEEcniKMTxNEJ4ugEcXSCVB3d4/HgwIEDiImJQXBwMOLj42G1WhEbG4tNmzYpPd47WcpSce5EmeTjSlD127D5+fmoqqpCcXExEhIS0NLSgpycHNy/fx/btm1TejzNUm30yspKHDt2DI2NjUhJSQEALFu2DBcuXEBVVRUWLVqk8ITapdrbe3l5OdLT04eCvzR37lwEBgYiLi4OANDZ2YmUlBSYTCYsXLgQzc3NSoyrKaqM7nA4cOXKFaxdu/atX+vq6oLZbMakSZMAAAUFBVi/fj1sNhsOHTqE7Oxs9Pf3j3oOQRAkfVitjT7Pf+6fX+JPm8KGfdy1nfH5cazWRslz+kKVt3eHwwEAmDFjxrDjz58/h9VqxcqVKwEADx48wJkzZ1BTUwMASEpKwsyZM9HQ0IAVK1aM79CvWZK5E0uydg07ZilLVWaYd1DllR4REQEAsNlsw47v27cP3d3dSEhIADB41U+fPn3oqgeAOXPm4Pbt26Oew+v1SvpISUmV7zfmo5SUVMlz+kKVV3pUVBTi4uJQXl6OadOmYdasWbBYLKitrQWAoehsbFR5pYuiiOPHj8NsNmPz5s3Iy8tDREQEtmzZAp1ON/Qibvbs2bh37x5cLtfQ59rtdhiNRqVG1wRBS6u/c3Nz0d7ejkuXLg0dS0tLQ1ZWFgoLC9HS0oI1a9ags7MTQUFBspzzD/XK/XOp6Ejgsx/J/7iqvL2PpK2tDYmJicOOHTx4EBs3bkRFRQWCgoJQWVkpW/CJSjPRnz59CpvNhsLCwmHHo6Ki0NTUpNBU2qSZ6KGhoXC73UqPMSGo8oUc8y+OThBHJ4ijE8TRCeLoBHF0gjTzdbpSZoVPvHNr6r13Jg++vRPE0Qni6ARxdII4OkEcnSCOThBHJ4ijE8TRCeLoBHF0gjg6Qfyt1VFsv34N7b29ipw7fsoU/CZ2vuyPy9FH0d7biybnI6XHkBXf3gni6ARxdII4OkEcnSCOThBHJ4ijE6Tq6FpcCKwFqo6en5+P0tJSFBQU4NSpU1i3bh1ycnJw69Yt1a4V8w4MYODTn8N96C/DjrurT2DgpxvgffpUocleUe3bsFpdCCwEBiLgi1/ixWdFEJZ8H+JHH8Jrt8Nz5K/QfflrCKGhSo+o3itd6kLg3bt3w2QyQRRFWCwWJUZ9i/A9I8SfbYD7wO/gffQIL77aDzHzxxDjFio9GgCVRvdlIXB6ejrq6uqQnJw83mO+l5iVCWG2AS8KtgA6HcQNuUqPNES10YGRFwK/fmtPSkpCVFSUz+eQul25sbFxTL8HQRAgxC0EHj+G+MOPIQQG+vwYjY3+2QKtyuhSFwKrmdduh+ebv0Ncvxaer7+Bt0c9P6VXlS/kxmMhsNT/ob287azP30/39g8MPo9/kgVd3gZ4nU649/8Wur3lEETp11lqaiq+9cP/JFfllS51IbBaeY4chRAQADH3JwAAXeGn8P7vHjz/qFZ4skGqvNIBwGQyoaGhYdix3NxczJ8/H5MnT1ZoqtF5vrsIT20dAv74ewgBg3+8QkgIdJ//Au5f7YK4eBGEOXMUnVGVV/pI2tra3rq1FxcXQ6/Xo7W1FQUFBdDr9bh586ZCEwLiRx8isKYKgkE//PgCMwL/Va14cEBD0V8uBH7zTZnS0lI4HA64XC48fPgQDocD0dHRCk2pDaq9vb+JFwLLRzNXOpMPRyeIoxPE0Qni6ARxdII4OkGa+TpdKfFTpky4c/NCYIL49k4QRyeIoxPE0Qni6ARxdII4OkEcnSCOThBHJ4ijE8TRCeLoBPG3VkfBC4EJ4oXAbELg6ARxdII4OkEcnSCOThBHJ4ijE6Tq6LwQ2D9UHZ0XAvuHat+G5YXA/qPaK13KQmCn04mMjAyYTCbEx8cjLS0NHR0dCk38Ci8EHgOpC4EFQUBRURFsNhva29uRkZGBvLw8BSZ+Gy8E9pHUhcBhYWFYvnz50K8nJSXBbrdLOgcvBFaZsS4ErqioQFZWlr/Hk4QXAvtoLAuBS0pK0NHRgdOnT0s6By8EVhlfFwKXlZXh5MmTqKurQ0hIiEJTv8ILgcdI6kLgkpIS1NbWor6+HmFhYeM85du0sBBYU5so5s2bh8TERBw9ehQAcPXqVSxYsADR0dEIfe3r34sXL8p2zrHc3uWSHD4N3y5eKvvjqvZKf9PLhcCFhYVDx8xms+TnZvaKZqLzQmD5qPKFHPMvjk4QRyeIoxPE0Qni6ARxdII4OkGaeXNGKbwFmk0IfHsniKMTxNEJ4ugEcXSCODpBHJ0gjk4QRyeIoxPE0Qni6ARxdII4OkH8/fQRpKWloaenB263G7GxsThy5AimTp2q9Fiy4O+nj+Dx48f44IMPAABFRUUICwvDnj17lB1KJnx7H8HL4B6PB319fT5ve1Azjv4eq1atQmRkJK5fv47t27crPY5sOPp7VFdX4+7du9Dr9bBYLEqPIxuOPoqgoCBkZ2ejulodWyTkwNHfobe3F93d3QAGn9NrampgNpsVnko+/CXbO/T29iIzMxMulwsejwdLly7Frl27lB5LNvwlm4+8Xq/mX8nz7d1H1rPt+NuJerzQ8FYMzUe/fPkyVq9ejYiICAQHByMmJgY7d+70y7lcrn40nW1H/8ALBOh0fjnHeND0c/r58+eRnJwMg8GA/fv3w2g0wm63o6WlxS/na7lwFc/6XFj+A3WuHZdK08/pqampuHbtGm7cuDH0DppUX+z9s5+mUsZXn0v/oQeavb0/e/YMzc3NyMnJ8Tk4dZq9vTudTng8Huj1+jF9vi9XhsvVj70HK2GYGYm8tSvHdD410Wz08PBwiKKIO3fujOnzx3J7v37rv6p9WiBxew8JCUFycjIqKyvx5MkTpcfRFE2/kHv56t1oNGLHjh0wGo3o6upCc3MzDh8+LMs5Glq/w7+b/oMtuVkwzIyU5TGVptnbOzC49721tRXFxcXYunUr+vr6YDAYkJ2dLcvju1z9aD53CbFRhgkTHND4le5v3T0P8fWJemRnfMzRKfF4PBB9+GkMWsDRCZpYf4WZJBydII5OEEcniKMTxNEJ4ugEcXSCODpBHJ0gjk4QRyeIoxPE0Qni6ARxdII4OkEcnSCOThBHJ4ijE8TRCeLoBHF0gjg6QRydII5O0P8BTmvlWmCsIVAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "qc.h(0)\n", + "qc.x([1,2])\n", + "qc.draw('mpl')" + ] + }, + { + "cell_type": "markdown", + "id": "47e2a81b-6433-49e9-9d20-1de52d8cdd30", + "metadata": { + "tags": [] + }, + "source": [ + "#### Application of the Controlled-$U$ gates\n", + "\n", + "Then we have to apply multiple times the $CU$ operator, that, in this example, is the Controlled-$CT$ gate ($CCT$ for short).\n", + "\n", + "To implement $CCT$ in the circuit, since $T$ is a phase gate, we can use the multi-controlled phase gate $\\text{MCP}(\\theta)$, with $\\theta=\\pi/4$." + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "id": "f64270a5-cc37-45cf-9163-8b9cd82bf0d6", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKoAAACoCAYAAABwvnWJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAK0klEQVR4nO3dXWxUdRrH8e9MoYDU3UJqUOlSaOkIDDJFBLFBKAaxGrKwgi+Q7SJpYrXGhJi9MsGEYMhKSCQxgF4YTdhsdyPp3hgsurEvIDVYhUEapUBbSgvLm1SlyIDt7MXAlBZK29U55zzD75NMsGdO2//gl3PmNJ15fNFoNIqIx/ndXoDIQChUMUGhigkKVUxQqGKCQhUTFKqYoFDFBIUqJihUMUGhigkKVUxQqGKCQhUTFKqYoFDFBIUqJihUMUGhigkKVUxQqGKCQhUTFKqYoFDFBIUqJihUMUGhigkKVUxQqGKCQhUTFKqYoFDFBIUqJihUMUGhigkKVUwY4vYCZHB+uQynDsHF78E/BO7Kgd/d7faqEs/TR9Suri42btxIbm4uw4cPJxQKUV1dzX333ccLL7zg9vIc13YAdm2Fb3fCsS+hqRb2/h2+LIPIBbdXl1ieDrW4uJh169ZRUlLCxx9/zDPPPMPy5ctpbGxkxowZbi/PUSfq4dtPoPPKjff9cAK++lfsaJusPHvqLysr44MPPqCqqop58+YBMH/+fL7++mvKy8t54IEHXF6hc7o64Uj1LXaIwsXzcOIgjEvSvxbPHlHXr19PYWFhPNJrJk6cyNChQ5k2bRoAzc3NzJs3j0AgwP3338+uXbvcWG5Cfd8Mly/2v1/bgYQvxTWeDLW1tZWDBw/y9NNP33BfS0sLwWCQYcOGAVBSUsKzzz5LQ0MD7777Ls899xyXL/d/DvT5fGZuq/784oD+3k4db3d9rYO9DZRnQwW4++6el7M///wz1dXV8dP+2bNn2b17N8XFxQDk5+dz7733UllZ6eyCE6zj0g/97hONRge0n1WeDDUjIwOAhoaGHts3bNjAyZMn4xdSLS0tjBkzJn50BZgwYQLHjh3r93tEo1Ezt0++KMOfcuvH4/P5mPV4lutrHextoDx5MZWdnc20adNYv349o0ePZuzYsWzfvp0dO3YA3HZX/EOGwR+mw7G6PnbwQcoQyAw5uixHefKI6vf7+fDDDwkGg7z00kusWrWKjIwMXn75ZVJSUuIXUuPGjePUqVNEIpH45zY1NZGVleXW0hMmZy6MmXT1g15P7VKGQt5TMOL3ji/LMT5LY9CLiooIh8McONB9ebtw4UKWLFlCaWkpe/bsYdmyZTQ3N5OamuriShMjGoX2NmgLw3+/jW3LnQf3TIXUEe6uLdE8eervS11dHbNnz+6x7Z133uH5559n06ZNpKamUlZWlpSRAvh8MCozdrsWatZMd9fkFDOhXrhwgYaGBkpLS3tsz87OpqamxqVViVPMhJqWlkZnZ6fbyxCXePJiSqQ3hSomKFQxQaGKCQpVTFCoYoJCFRMUqpigUMUEhSomKFQxQaGKCQpVTFCoYoJCFRMUqpigUMUEhSomKFQxQaGKCQpVTFCoYoJCFRMUqpigUMUEhSomKFQxQaGKCQpVTFCoYoJCFRMUqkFdXW6vwHmeDlVDe3u6fBEOV0PN5u5tdf+EM0fcW5NTPP2O08XFxZSXl7NmzRpmzJjBnj17WL58OWfOnOHVV191e3mOilyAL/8Bl37sub29DdpbIWcOTJh9889NBp4NVUN7e6qvgEs/3eSOqzNtju6ODaFIz3R0WY7x7Kl/oEN7X3/9dQKBAH6/n+3bt7ux1IS7eD42uJdbDVrywfH9zqzHDZ4MdTBDewsLC6moqGDu3LmD+h5uD6sdzG3p48X9P6AoHKo74/paEzW015On/v6G9j7xxBPxbfn5+Y6uzQ3+/gahXpUywP0s8mSo1w/tffLJJ+Pbew/t/TUMDSzkx1Owd1s/O/kga/JoU49rMDwZqob29vS7MXDnGPjpNH0/T43GBvsmK08+Rx3o0N7byZTC2HDe3gN7r7knCBk5ji7JUZ48ogIEAgEqKyt7bCsqKmLKlCmMGJHkE2pv4s67YOYKOLILzh7t3p46EsbNiM1EHcS1iTmePKL2pa6u7obT/po1a8jMzKS2tpaSkhIyMzM5evRoH1/BtrQMyPsTzCnp3janBMbPSu5IwVCo14b29v5B/7p162htbSUSiXDu3DlaW1vJyUnicyAw/M7u//ab+T/463j21N+bhvbe3m6Tf49inUIVExSqmKBQxQSFKiYoVDFBoYoJClVMUKhigkIVExSqmKBQk1BVVRVZWVkUFBSwePFiLl261OP+jRs3sm/fvj4/v62tjdWrV8c/fuutt5gzZw4A4XCYDRs2JGTdt6JQk1RRURFVVVXk5+f3eHVuV1cXn3/+OdOn9/1ygE8//ZTHHnsMgEgkwv79++P3hUIhamtrHX/Ji0JNcnl5efEXS0LsiDhx4kQgduQdNWoUBQUFZGVlsXjxYgCqq6vjL1N/7733WLlyZY+vmZube8sjciIo1CRXU1NDIBCIf3z48GHGjx8PwNy5c5k1a1b8TT62bNlCNBqlo6ODtLQ0rly5QlVVFY8++miPr5mdnc13333n5MNQqMlq27ZtzJ8/n/b29viRsrfGxkays7MBOH78OGPHjiUcDhMKheJfY8WKFY6t+VYUapIqKiqisrKSzZs3k5LS/Xr/3NxcmpubAaivrycYDNLZ2Yn/6ksFrn9+eujQIbZu3UphYSH19fW8/fbbQCzwSZMmOfp4FOptJhQK0dDQAHSHGolEOH36NCdPnqSuro4HH3wQgDfffJOdO3dSUVFBMBjklVdeAWLvt5CXl+fous28FEUGrqCggIKCgpve5/f7eeSRR9i3bx+vvfZafPs333wDwNKlS+NH1+vt3r0biF2MPfzwwzfdJ5F80WR9a40k95+NsT8X/NXddThFp34xQaGKCQpVTFCoYoJCFRMUqpigUMUEhSomKFQxQaGKCQpVTFCoYoKnQ9XQ3htFLkBjbffHZ45C9DaYNu3pX/PT0N5u0Sg0fQGNe+gxwif8bxiRDnlPwcjRbq0u8Tz7a35lZWWsWLGix9BeiP2+ZHl5OXv37mXmzJkurtBZLV9BQ2Ufd/pg2Eh4aCWkJunAGM+e+gcytPf8+fMsWrSIQCBAKBRi4cKFHDmSfMPrO3+5eiTtSzT2lODEAceW5DhPhjrQob0+n4/Vq1fT0NBAOBxm0aJFrFq1yoUVJ9a5Jvgl0v9+Jw4mfi1u8Wyo0PfQ3msjfNLT01mwYEH8/vz8fJqamgb0PdyeqjyYW/FfXhzQYzp9ot31tSZqurQnQ71+aO/1+hvau2nTJpYsWZLo5Tnuh46z/e4TjXbxY8c5B1bjDk9e9f8/Q3vXrl3LkSNH+Oyzzwb0PTx6DXlTnVegZkvsz774fH7m/DGH6N/sPK7B8OQRdbBDe9944w0++ugjKioquOOOO1xadeKkDIXxD91iBx8MHQFjQ44tyXGe/fHUzRQVFREOhzlwoPvydu3atezYsYOdO3eSnp7u3uISLBqFw9XQUnd1w7Wnd9HY4N7py2KDfZOVqVAnT57M7Nmzef/994HYGyhMnTqVnJwc0tLS4vtd/+5zyabj+9iPoTrOQ8qQ2OjzMQHwe/JJ3G/HzMO7NrS3tLQ0vi0YDJp6rvlbGDkacgvcXoXzTB1R5fblyYspkd4UqpigUMUEhSomKFQxQaGKCQpVTFCoYoJCFRMUqpigUMUEhSomKFQxQaGKCQpVTFCoYoJCFRMUqpigUMUEhSomKFQxQaGKCQpVTFCoYoJCFRMUqpigUMWE/wEwnllIOYnWZwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cu_circ = QuantumCircuit(nq)\n", + "cu_circ.mcp(pi/4,[0,1],2)\n", + "cu_circ.draw('mpl')" + ] + }, + { + "cell_type": "markdown", + "id": "b7f548b5-7964-49d8-960e-c839a4d23ec6", + "metadata": {}, + "source": [ + "Let's apply $2^t$ times $\\text{MCP}(\\pi/4)$. Since for the first step $t=m-1$ and $m=3$, we have $2^t=4$." + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "id": "13cbdd8a-0213-4204-9532-585872833656", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAegAAADWCAYAAAAaVxFlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbj0lEQVR4nO3dfXRU9b3v8feeSXiI4bERkBAigSRAIAFiFaiSoJai116wlgrtZVHqOljkuBZVj+2p0lWvnqyKHHW1R61eFW294r2k4OG4KBavJECjVp7CkxKQQBKeHwIkkMeZuX9sTIiETALJ3r/Z+bzW2ovMnp3Z33yZmc/ev733jBUKhUKIiIiIUXxuFyAiIiKXU0CLiIgYSAEtIiJiIAW0iIiIgRTQIiIiBlJAi4iIGEgBLSIiYiAFtIiIiIEU0CIiIgZSQIuIiBhIAS0iImIgBbSIiIiBFNAiIiIGUkCLiIgYSAEtIiJiIAW0iIiIgRTQIiIiBlJAi4iIGEgBLSIiYiAFtIiIiIEU0CIiIgZSQIuIiBhIAS0iImIgBbSIiIiBFNAiIiIGUkCLiIgYKMrtAky3YhMcKndn3fF94Ac3ubNuERFxlwI6jEPl8NVxt6sQEZHORkPcIiIiBlJAi4iIGEgBLSIiYiAFtIiIiIEU0CIiIgZSQIuIiBhIAS0iImIgBbSIiIiBFNDiqFDI7Qo6h1BIvXaKeu2cztZroz9JLBgM8vzzz/Pqq69SWlpKamoqv//975k3bx5ZWVm89tprbpd4mdxnshk86k5unv5kq+Z3BmcOQclmOLkfggGI6QODxkD8aPBHu12dt5wshtItcPogEILY62HQWLhhJPj8blfnHaEQHC+C0q1w9rA9r+cNkDAW+qeCZblbn5cEg3B0t93ryuOABX0SYPA4iBvqdnUdy+iAfuCBB1ixYgWLFi0iMzOTgoICZs2axYkTJ3jkkUfcLk9aoXQr7Pl/gAVc3PK9cBqKPrZfdONmQFRXNyv0jq82QvGnNOl1xQn44kM4vgcypoPP6Fd8ZAiF4Iu/weEdNOn12cNw9pC9IZp2l0K6PQQDsH0VnPyKxl6H4HSJvRGa+G0YNsm7vTb25bps2TLeeust8vLyyMrKAmDy5Mls2bKFFStWMG7cOJcrlHDOHr4YztDwJnapc0ft+9PudrQsTzq+72I4Q9NeX/z51AH4qgCSJzlcmAcdKrwYztBsr4/uhp79YXCm05V5T/GnF8MZmu31wc/tXvcf7nRlzjD2GHROTg5Tp05tCOevDRs2jOjoaNLT0wE4cOAAWVlZpKSkMHr0aDZs2OBGudKM0q3YW70tOPol1Jx3pBxPK9lM2F6XbYNAnRPVeFcodLHXYZRs7lzHSjtCsP7ie0hLLDjYiv+PSGVkQJeVlbFz505mzJhx2X0lJSWkpaXRtas9Lvrggw9y//33U1RUxKuvvsrMmTOpra0Nuw7Lslo15efntbn+f/znv/HKvN5NpsNFG9v8OPn5ea2u08Rp35Yzze45XyoUhLtuneV6rZE8dYnqyplSwvY6UAvjhme7Xm8kTwP6JnKhFV8/W30OBvdPdb3eSJ5GDR1PfXWYRofg3BG4rltP1+tty9RaRg5xl5WVATBgwIAm86uqqsjPz+euu+4C4OTJk2zcuJFVq1YBMHHiRAYOHMi6dev43ve+52zRl7h52hPNniTW2US18gywKH+XDq7E2/xtONMuOkq9vhZt6Z+e19emLf3zaq+NDOi4uDgAioqKuPvuxgOUixcv5siRI2Rm2gd3SkpK6N+/f8PeNMCQIUM4ePBg2HWEWjn+9Ie17n0fdFZWNrnPRO442T/egXPHCLtnl/vB2/Qc8LYjNXlRKAQbX4WayvDLbvz8b3Tr2fE1eVWgDta/HP5Qgc8Pew/uQNtDV6/mPGz4I2HfP7rEwJmKk1hGjgdfGyMDOikpifT0dHJycujbty/x8fHk5uayevVqgIaAFrMNGgO717SwgAU9roeeA1pYRsKyLPtSqq9aOv3CgrghKJyvkT8abhgFZWGOjd6QhsL5GnW9Dq4fBif20WJIx2fgyXAGQ49B+3w+li9fTlpaGvPnz2fu3LnExcWxYMEC/H5/wwligwcP5tixY9TU1DT8bnFxMYmJiW6VLpcYMAL6DL7CnRb4fDD8u46W5FkJY+1rnptl2WGRnO1kRd6VNP7ihk5zhxIt6BoLSROdrsqbkrMguhtXPAHyum9B4k2OluQoK9TasV4DzJ49m8LCQrZv394wb8qUKUyfPp2HHnqIgoICfvjDH3LgwAG6dGmfzVc3h7iH9oOHIzzAAnWwN9++LCUYaJzfcwCk3gG9bnCvNq+pq4Y9H8OxL+2T777WJwGG32m/mUn7qKmELz+6uHd3ibgke6OzWw936vKiC+XwxUdQfsmRS8sH/VJg+B0Q3d292jpaRAX0iBEjGD9+PEuXLm2Yt3//fn76059y9OhRunTpwksvvXTZpVnXQgHdPuqqIf8/7J9vmWMPbUvHqD0P61+xf57wM7iur7v1eFn1Odh48QMNv/NP0L2Xu/V42YVyKHjD/vm2+fYQuNcZeQy6OZWVlRQVFfHQQw81mZ+UlMT69etdqkpaK7pb488K547V5ZI3LoVzx7r0mL7CuWPF9Gn8uTOEM0RQQMfGxhIIBMIvKCIi4gFGniQmIiLS2SmgRUREDKSAFhERMZACWkRExEAKaBEREQMpoEVERAykgBYRETFQxFwH7Zb4PuGX8eK6RUTEXQroMH7g4Q9iFxERc2mIW0RExEAKaBEREQMpoEVERAykgBYRETGQAlpERMRACmgREREDKaBFREQMpIAWERExkAJaRETEQApoERERAymgRUREDKSAFhERMZACWkRExED6NqswHt2zm8KKClfWndGjB/+eOtKVdYuIiLsU0GEUVlSwvvy022WIiEgnoyFuERERAymgRUREDKSAFhERMZACWkRExEAKaBEREQMpoEVERAykgBYRETGQAlpERMRARgd0MBhkyZIlJCcn061bNzIyMsjPzyc1NZV58+a5XZ60UigEZ4803j68EwJ17tXjZaEQnC5pvH30SwgG3KvHy0JBOPFV4+0T++x50v6CATi2p/H2qYP2c93rjP4ksQceeIAVK1awaNEiMjMzKSgoYNasWZw4cYJHHnnE7fKaFaqro/7hX+Abm4H/wX9qmB9Y+T7Bv6wk6o8vYcXGulihs6orYPsqOHdJQO9eA3s+htTbYeAo92rzmvOn7F6fP9U4b+cHEN0dRk6F64e6V5vXnD0CO/4Lqs81zit8H7rGwujvQ+9410rznFPFsHM11FU1ztu6HGL6QPp/h9jr3autoxm7B71s2TLeeustVq1axWOPPcbkyZN54oknmDBhAvX19YwbN87tEptlRUcT9at/IfjBaoJbtwEQKi4m+Obb+B9/rFOFc101bH4Pzh29/L5ArR3Ux750vi4vqq6ATe/B+WY+lbauyg6PS/es5epVnoQt/9fu+TfVnIcty6HiuPN1edGZMti20n4v+aYLZ2DT/4Gqs46X5RhjAzonJ4epU6eSlZXVZP6wYcOIjo4mPT0dgN/85jekpKTg8/nIzc11o9TLWDcm4vvZHAJLXiB0+jT1v3sO37Tv40sf7XZpjjq0/eKLp4WhqL35GhZsDyWbLu5htNDrfesdK8fTij+BQD3N9zpkD8fuL3C6Km/at+HiUPYVel1fDQc/d7oq5xgZ0GVlZezcuZMZM2Zcdl9JSQlpaWl07doVgKlTp7JmzRomTZrkdJkt8k2fhjU4gfoHF4Dfj2/ObLdLctyh7eGXqa6A8tKOr8XLQiE4tCPcQvZIRuVJR0ryrLpqOL6XFjeECNnHo2svOFWVN104A2cO0XKvsc9p8ep5FsYGNMCAAQOazK+qqiI/P7/J8PbEiRNJSkpq8zosy2rVlJeXd1V/g2VZWOmj4exZfHfcjhUd3ebHyMvLa3WdJk5nTlSF/yOBH/9wruu1RvIU270ngdrWPacm3zrV9XojeUoanNrqEZ8RwzJcrzeSpwmZ2a3qc7AevtWrn+v1tmVqLSMDOi4uDoCioqIm8xcvXsyRI0fIzMx0o6w2CRUXE3z3PXz3zyD4zruEjne+g1IXLj2DpgXnqz18EMkBNXVVBAL1rVpWvb42bemfen1tWtu/YDBAVW1lB1fjDiPP4k5KSiI9PZ2cnBz69u1LfHw8ubm5rF69GqBdAjrUynP079z0WZu/DzpUW2cfd/7BdPxz5xAqLyfw3PP4n83B8rV+myg7O5uPIvhagj0fQ+mWlpfxR0Pe5hX4uzhTk1dtXxV+6LVrD9i1/xMsIzfLI8fny+DsYa7cawt69IOjpw84WJX3hEJQ8HqYk8As6Jfsp9qjxxOMfKn6fD6WL19OWloa8+fPZ+7cucTFxbFgwQL8fn/DCWKmCr65FCsqCt/snwDgf+jnhI4eI/iXlS5X5qyEseCLAloY0RmcicK5HSR+O/wyN96MwrkdDLmZsMegh4x3qhrvsiy4MVwfQ3BjK577kcrYl2tKSgrr1q3j/PnzlJSU8PTTT7Njxw5GjhxJ9+7d3S7vioJbtxFcvQb/rx7HirIHKKyYGPy/fIzgn94hVFzscoXOiekDY+4F/zfHaS4G9g2jIGmi42V5Uq8bYPQ9Vw7gxJth0BhHS/KsuKGQeseV70/Ohn7JjpXjaQNHwZAJzd9nWZB2N/Qe5GxNTrJCrR3rNcCIESMYP348S5cubZi3aNEili5dyokTJ4iNjaV79+7k5+czdGj7fCrD1Qxxt5dJffry0U23uLLu9lR7AQ7vsC+ZABgwEgZlQK+B9otM2k91BRwqhOJP7dvx6XYw9+jnalmedKEcyrZByWb7dsI4u9fX9XWzKm+qPGH3uqzQvn3jLfZzu3svV8vqcMbuQX9TZWUlRUVFl31AydNPP01ZWRk1NTWcOnWKsrKydgtnaR9dYuwX1NdG3W1/0pLCuf116wFDb228PWKKwrmjxPSBlMmNt1NvVzh3lNjrYfh3G28Pu8374QyGniTWnNjYWAIBj17sJiIi8g0RswctIiLSmSigRUREDKSAFhERMZACWkRExEAKaBEREQMpoEVERAykgBYRETFQxFwH7ZaMHj065bpFRMRdCugw/j11pNsliIhIJ6QhbhEREQMpoEVERAykgBYj5OXlkZiYSHZ2NtOmTaO6urrJ/UuWLGHr1q1X/P1Dhw6xcOHChtsvvPACt95qf2tEYWEhixcv7pC6I5F67Rz12jle7LUCWowxe/Zs8vLymDhxIrm5uQ3zg8Egf//73xk7duwVf3ft2rV897v2193U1NSwbdu2hvsyMjL45JNPiKBvVu1w6rVz1GvneK3XCmgxzpgxYygrK2u4XVhYyLBhwwB7K7lPnz5kZ2eTmJjItGnTAMjPzycrKwuAN954gzlz5jR5zOTk5Ba3njsr9do56rVzvNJrBbQYZ/369aSkpDTc3rt3LzfeeCMAkyZN4uabbyYvL4+srCxefvllQqEQ58+fJzY2lrq6OvLy8rj99tubPGZSUhJffvmlk39GRFCvnaNeO8crvVZAizH+/Oc/M3nyZM6cOdOwVftN+/fvJykpCYDS0lLi4+MpLCwkIyOj4TF+/OMfO1ZzpFKvnaNeO8drvVZAizFmz57NunXreOmll/D7/Q3zk5OTOXDgAAC7du0iLS2NQCCAz2c/fS89drRnzx5eeeUVpk6dyq5du/jDH/4A2C/K4cOHO/sHGUy9do567Ryv9VoBLcbLyMigqKgIaHxx1dTUcPz4cY4cOcKmTZu46aabAHj22Wf58MMPWbNmDWlpaTz88MMAFBUVMWbMGLf+hIihXjtHvXZOpPZanyQmRsjOziY7O7vZ+3w+H7fddhtbt27l17/+dcP8HTt2AHDfffc1bAlfauPGjYB9gsiECROaXaYzUq+do147x4u9tkI6R18c8tES+987H3O3js5AvXaOeu2cztZrbXqJiIgYSAEtIiJiIB2DDuPRPbsprKhwZd0ZPXro27RERDopBXQYhRUVrC8/7XYZIiLSyWiIW0RExEAKaBEREQMpoEVERAykgBYRETGQAlpERMRACmgREREDKaBFREQMpIAWERExkNEBHQwGWbJkCcnJyXTr1o2MjAzy8/NJTU1l3rx5bpcnVykYdLsCb7v0629C6nWHatJrfe1Qh+qMvTY6oB944AGefvppHnzwQf7617/yox/9iFmzZrF//34yMzPdLq9Zobo66n7+zwRe/V9N5gdWvk/d/5hDqLLSpcrcc6wIPn+38faGl2HfBqircq8mLwqF4PAO+OxPjfM2vgbFn0Kg1r26vCgYhJItUPBG47yC16FkMwQD7tXlRYE6OPCZ/Vz+2qdvw6Ht3g9qYz/qc9myZbz11lvk5eWRlZUFwOTJk9myZQsrVqxg3LhxLlfYPCs6mqhf/Qv1Dy/Euvnb+MaOIVRcTPDNt/H/2//Eio11u0RHfbXRDgisxnl11fYL7tgeuGkWdL3OtfI8IxSCL/5mB/Slva6ptP8Pju+FzPshqotrJXpGMADbV8HJr5rOrzoLRevgZDGMuRd8fnfq85JALWzJhbOHm84/f9J+vpeXQdpdYFnN/36kM3YPOicnh6lTpzaE89eGDRtGdHQ06enplJeXc88995CSkkJGRgZTpkxh3759LlXcyLoxEd/P5hBY8gKh06ep/91z+KZ9H1/6aLdLc9TpgxfDGaCZLd2qM/DlWicr8q6jX1wMZ2i21xXHYN96R0vyrJLNl4fzpU4fgAP/cKwcT9v398vD+VJHd8Phnc7V4zQjA7qsrIydO3cyY8aMy+4rKSkhLS2Nrl27YlkWCxcupKioiMLCQu655x7mzp3rQsWX802fhjU4gfoHF4Dfj2/ObLdLclzpVprszTXnxD6oPudIOZ5WuoWwvT68E+prHCnHs0LBi8/rMMq2aqj7WgVq4fD2MAtZULrZu0PdxgY0wIABA5rMr6qqIj8/v2F4u3fv3tx5550N90+cOJHi4uJWrcOyrFZNeXl5V/U3WJaFlT4azp7Fd8ftWNHRbX6MvLy8Vtdp4nRw57lm9+a+6b9l/8T1WiN56hrdnXNHCdvrYD18O+121+uN5Gng9UnUtOLbZ2svwJCBI1yvN5KnjNTvEKgL0+gQVJ6EHjG9Xa+3LVNrGRnQcXFxABQVFTWZv3jxYo4cOXLFE8RefPFFpk+f3tHltUqouJjgu+/hu38GwXfeJXT8uNslOc7XyoNwrV1OmteW/qnX18bfll5b6vW1aEv/vPq8NvIksaSkJNLT08nJyaFv377Ex8eTm5vL6tWrAZoN6Keeeop9+/bx8ccft2odoVaOidy56bM2fx90qLbOPu78g+n4584hVF5O4Lnn8T+bg+Vr/TZRdnY2H0Xw2M2m9+DMIcLu2a1c8ydi4/7U8kJyRaGQfTZx1ZkwC1pQsHWtTsq7BsF6WP9HqK9ueTl/F9hXuhN/2wfO5KLaKtjwSvhLBbv1gLOVp2jDjmnEMHIP2ufzsXz5ctLS0pg/fz5z584lLi6OBQsW4Pf7SU9Pb7L8M888wwcffMCaNWuIiYlxqepGwTeXYkVF4Zv9EwD8D/2c0NFjBP+y0uXKnJUwhpbD2YLe8RAb51BBHmVZkDA23ELQP0VnzF8rXxTEp4dfbuBoFM7XqEt3GDCcsOdWDBrr3bO4jdyDBkhJSWHdunVN5s2ePZuRI0fSvXv3hnlPPfUUq1evZu3atfTu3dvhKi8X3LqN4Oo1RL30e6wou71WTAz+Xz5G4F+fxHfTOKwhQ1yu0hn9UqH/XvtyqstY9iU/I6Y4XpYnDRpjn3BXXtrMnZYdzMnZDhflUUNugVPFUHmi+fuv+xYkTXC2Jq8almVfSlVdQbMb+73jIcHMK27bhRVq7VivAUaMGMH48eNZunQpALt27WLUqFEMHTqU2EuuL962bVu7rfNqhrjby6Q+ffnopltcWXd7CQXtS05Kt9gnzgBgwfXDYNhtcF1fV8vzlEA97C+AQ4WNZ2tbPug/HJInQdfOdQl+h6qvsT9s5/BOe9gb7L3rG9Ls53V0N3fr85Ka8/Ylgke/aBzu9nexRzKGfsfbIxURE9CVlZX06tWLF198kYcfftix9Sqg20cwABXH7TezmD4Ki44UqIOKE0AQYvpCF/eP+nhWfY19FjHYh2qiurpbj5fVVcH5U4APelzv7WD+mrFD3N8UGxtLIKALCyOVzw+9bnC7is7BHw29B7pdRecQ1dUeZpWOF90deg9yuwpnGXmSmIiISGengBYRETGQAlpERMRACmgREREDKaBFREQMpIAWERExkAJaRETEQApoERERA0XMB5W4JaNHj065bhERcVfEfNSniIhIZ6IhbhEREQMpoEVERAykgBYRETGQAlpERMRACmgREREDKaBFREQMpIAWERExkAJaRETEQApoERERAymgRUREDKSAFhERMZACWkRExEAKaBEREQMpoEVERAyk74O+gilTpnD8+HECgQCpqam8+eab9OzZ0+2yRESkk9D3QV/B2bNn6dWrFwALFy6kd+/e/Pa3v3W3KBER6TQ0xH0FX4dzMBikuroay7JcrkhERDoTBXQL7r33Xvr168eePXt49NFH3S5HREQ6EQV0C1auXMnhw4cZNGgQubm5bpcjIiKdiAI6jC5dujBz5kxWrlzpdikiItKJKKCbUVFRwZEjRwD7GPSqVatIS0tzuSoREelMdJlVMyoqKpg2bRo1NTUEg0FuueUWnnzySbfLEhGRTkSXWbVRKBTSGd0iItLhNMTdRvmfFfK/319LfSDgdikiIuJhER/QO3bs4L777iMuLo5u3bqRnJzME0880SHrqqmpZf1nhdTW1RPl93fIOkRERCDCj0Fv3ryZSZMmkZCQwHPPPUdiYiLFxcUUFBR0yPoKtuziQnUNd34ns0MeX0RE5GsRfQw6Ozub3bt3s3fv3oZP/mqtXz37WgdVJSIicmW/++W8Vi0XsUPcFy5cYMOGDcyaNavN4SwiImK6iB3iLi8vJxgMMmjQoKv6/dZuwYB97PnZPy4jYWA/5s6466rWJyIi0hYRG9B9+vTB5/Nx6NChq/r9qxni3rO/VEPjIiJyTTw/xB0TE8OkSZNYtmwZ586dc7scERGRdhXRJ4l9fRZ3YmIijz/+OImJiZSUlLBhwwZef/31dlnHuk+28uH6z1kwezoJA/u1y2OKiIiEE7FD3ACZmZl88sknLFq0iF/84hdUV1eTkJDAzJkz2+Xxa2pq2fCP7aQmJSicRUTEURG9B93Rjhw/xTvvr2XmPbcroEVExFEK6DCCwSA+X8QeqhcRkQilgBYRETGQdg1FREQMpIAWERExkAJaRETEQApoERERAymgRUREDKSAFhERMZACWkRExEAKaBEREQMpoEVERAykgBYRETGQAlpERMRACmgREREDKaBFREQMpIAWERExkAJaRETEQApoERERAymgRUREDKSAFhERMZACWkRExEAKaBEREQMpoEVERAykgBYRETGQAlpERMRACmgREREDKaBFREQMpIAWERExkAJaRETEQP8fyJf28KUOf5wAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "for _ in range(2**(m-1)):\n", + " qc.mcp(pi/4,[0,1],2)\n", + "qc.draw('mpl')" + ] + }, + { + "cell_type": "markdown", + "id": "72958d41-0107-48a6-a331-b9983bb599fb", + "metadata": {}, + "source": [ + "#### Measure in x-basis\n", + "\n", + "Finally, we perform the measurenment of the auxiliary qubit in x-basis.\n", + "We can use the `x_measurement` function defined above in the example for 1-qubit gate. In this way we have obtained the phase bit $\\varphi_3$ and stored it in the classical bit $c_0$." + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "id": "78e39186-7cbc-4e44-9a5f-88c2a3fb7893", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAADWCAYAAADSDYZCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAgk0lEQVR4nO3de3RU9d3v8ffM5AIhXA13QiDkggSSQIRykwRUxGpBUSq0h4WIxSK2pdan9ah4KT6sgmg5elovj6i1PqXngOChLoTaShIoVA2QGOQSkEAuBMM9CZCQZOb8sSEhEDITSGbPzP681trLmd/s2fubH+Psz/z2b/bYXC6XCxERERGLsptdgIiIiIiZFIZERETE0hSGRERExNIUhkRERMTSFIZERETE0hSGRERExNIUhkRERMTSFIZERETE0hSGRERExNIUhkRERMTSFIZERETE0hSGRERExNIUhkRERMTSFIZERETE0hSGRERExNIUhkRERMTSFIZERETE0hSGRERExNIUhkRERMTSFIZERETE0hSGRERExNIUhkRERMTSFIZERETE0hSGRERExNIUhkRERMTSFIZERETE0oLMLsDXrcmC4lPm7Lt3Z5h6izn7FhGR1uevx5gFCxaQnZ3dovV4Ijk5meXLl7f4dhWG3Cg+Bd+Wml2FiIgEIn89xmRnZ5ORkWF2GS1Gp8lERETE0hSGRERExNIUhkRERMTSFIZERETE0hSGRERExNIUhkRERMTSFIZERETE5wQHB3ttX7rOkIiIiLSaNm3aMHHiRIYPH87gwYMJCwujsrKSPXv2kJWVxYYNG6ioqLjqOevWrSMrK4unn3661WtUGBKvcrnAZjO7isDnchn/VV+3PvW196iv/UvHjh15+umnmTNnDjfddNNVj0+ePBmAsrIyPvjgAxYtWkRpaWldELrjjjsYMmQIy5cvp7S0da9M6dNhyOl08uqrr/LWW29RWFhIfHw8r732GnPnziU1NZW3337b7BKvsvqlNPoOvp0R9z7rUbsVnC6Ggu1w/CA4ayGsM/RJht5DwOG9UVBLOJ4PhTvg5GHABeFdoc9Q6DkI7A6zqwscLheU5kHhTjhzxGjr0BMih0L3eB2sW5LTCUd3G31dUQrYoHMk9B0GEQPMrs77/OUYc+edd7JixQp69+4NwPbt29m4cSPZ2dmcOXOG8PBwkpKSmDBhAmPHjuXxxx9nxowZ/OIXv2DWrFnccccdHD16lAkTJrR6EAIfD0Nz5sxhzZo1LFy4kJSUFLZu3cqMGTM4duwYTzzxhNnliQcKd8K+fwI24OKnunMnIe9z4w1u2DQICjWzwsDx7RbI/zcN+rr8GOzZCKX7IOlesPv0//H+weWCPX+HI7k06OszR+BMsRH6E+5SIGoJzlr4eh0c/5b6vnbByQIj8EcNh5hx6mtfM3v2bN555x3sdjvbtm1jwYIFfPnll1ett2bNGp5//nkGDx7MK6+8wsSJE/nwww8B6oLQnj17vFKzz06gXrlyJe+//z7r1q3jySefZPz48TzzzDOMGjWKmpoahg0bZnaJ4saZIxeDENQdMC5XdvSyx+WGlB64GISgYV9fvH3iEHy71ctFBajinItBCBrt66O7jdE5uXH5/74YhKDRvj78lRH0xXfcfffddUHoxRdfZOzYsY0Gocvt2rWLKVOmsHfv3rq21157zWtBCHw4DC1evJhJkyaRmpraoD0mJobg4GASExMBOHToEKmpqcTFxTFkyBA2b95sRrnSiMKdGJ/mmnB0L1Sd9Uo5Aa1gO277uigbaqu9UU3gcrku9rUbBdvr57fI9XHWXHwPaYoNDnvw7yHe0aVLl7og9Nxzz/HCCy/gdDrdPu/SHKGBAwdy5swZAJ566ikiIyNbu+Q6PhmGioqK2LVrF9OmTbvqsYKCAhISEggNNc6tPProozz44IPk5eXx1ltvMX36dC5cuOB2HzabzaMlIyO92fV/+f/+kzfmdmqwHMnb0uztZGSke1ynLy4HdpxudEToci4n3DV2hum1+vMSEhTK6ULc9nXtBRg2MM30ev156dElinOn3P+/W1kGfbvHm16vPy+DB4ykptJNR7ugrATatelger3Xu/jrMaaxX6x//vnn6dGjB5mZmbz00kse1XD5ZOmjR48yatQo1qxZQ4cOHXj55ZcbqTmjWXV6yidnEBQVFQHQo0ePBu3nz58nIyODu+66C4Djx4+zZcsW1q1bB8Do0aPp1asXmzZt4s477/Ru0ZcZMeWZRie3WU2Qh7OjgxwhrVxJYHM0YxZ6cJD6+kY0p//0ur4xzek/q/W1Lx5jwsPDeeihhwB4/PHHcXkwNHplELo0R+jnP/85kydPZurUqfTs2ZOSkpJWrt5HR4YiIiIAyMvLa9C+dOlSSkpKSElJAYxRou7du9eNEgH079+fw4cPu92Hy+XyaElNTWu5P6yZUlPTPK7TF5dufdu5PXUDsPqTP5leqz8v5yorCA337DW15au/m16vPy+Hj+z36BuQdgfsP5xrer3+vHyVm+nR+0dIGJwuP256vde7+Osx5sopLJMnT6ZDhw5kZmaSm5t7jT3Wu1YQAiguLubjjz8mODiY6dOnX1FzarPq9JRPhqHo6GgSExNZvHgxH3zwAf/85z+ZN28e7777LkBdGBLf1ieZpk/d2KB9N+jQo4l1xC2bzfj6fNMrQUQ0tOnglZICliMYeg52v17PBNAg3I0JbQddY3AbiHongc0nj2TWMmLECAA+/fRTt+s2FYQuubSd4cOHt3yxjfDJl5DdbmfVqlUkJCQwb948Zs+eTUREBPPnz8fhcNRNnu7bty/fffcdVVVVdc/Nz88nKirKrNLlMj1uhs59r/GgDex2GHiHV0sKWJFDjWsKNcpmHJhj07xZUeCKHnkxVDZ2kLZBaDhEj/Z2VYEpNhWC23DNQNTuJoi6xaslyTUMGTIEgJ07m5717kkQunw7l473rc0n5wwBxMXFsWnTpgZtM2fOZNCgQbRt2xYwTqeNGTOGFStW8Nhjj7F161aKi4sZP368GSUD8MCz6c1qD2R2ByTfB/szjK8iO2vrH+vQHeJvg449zasvkASFQMqDsO9z+G6vMTH9ks59YODt0K6LefUFkpB2MPxHsPcfcOxAw8ci+hsB39PTltK0sE5GX+/5B5y6bPaDzQ7d4mDgbda7TpmvHmM2btzIoUOH2L9/f5Prvf76626DEEBhYSHvvfcexcXFrVHuVXw2DDUmKyuLkSNHNmh78803eeihh1i+fDkhISGsXLmSkBCNT/sKR7BxIB4wFjL+t9H2vVnQ/lqjGHLdgtvA4O9DXCpkvmG0jXpYIag1hIYbF7GsLIMtFy+EP+Yn0LajqWUFpLDOkDINzp2CrSuMtrGPGqfRxHcsXbrUo/V++9vfMmjQIB555JEmryN0/PhxHn744ZYqzy2/CUMVFRXk5eXx2GOPNWiPjo4mMzPTpKrEU8Ft6m8rCLWukMsOEgpCrevyOVgKQq0rrHP9bQUh/1VYWMiYMWPMLuMqfhOGwsPDqa2tdb+iiIiISDP45ARqEREREW9RGBIRERFLUxgSERERS1MYEhEREUtTGBIRERFLUxgSERERS1MYEhEREUvzm+sMmaV3Z/frBOK+RUSk9fnrMSY5ObnZzzlYUAJAdN+eDW639n49oTDkxlT9CKCIiLQSfz3GLF++vNnPeWqJ8ds1v/vN3Aa3fYFOk4mIiIilKQyJiIiIpSkMiYiIiKUpDImIiIilKQyJiIiIpSkMiYiIiKUpDImIiIilKQyJiIiIpSkMiYiIiKUpDImIiIilKQyJiIiIpSkMiYiIiKUpDImIiIil6Vfr3fjVvt3klJebsu+k9u15JX6QKfsWERGxCoUhN3LKy8k8ddLsMkRERKSV6DSZiIiIWJrCkIiIiFiawpCIiIhYmsKQiIiIWJrCkIiIiFiawpCIiIhYmsKQiIiIWJrCkIiIiFiaT4chp9PJsmXLiI2NpU2bNiQlJZGRkUF8fDxz5841uzzxkMsFZ0rq7x/ZBbXV5tUTyFwuOFlQf//oXnDWmldPIHM54di39fePHTDapOU5a+G7ffX3Txw2XusiLcWnr0A9Z84c1qxZw8KFC0lJSWHr1q3MmDGDY8eO8cQTT5hdXqNc1dXU/OyX2Icm4Xj0J3XttWs/xvnRWoLe/AO28HATK/SuynL4eh2UXRaGdm+AfZ9D/AToNdi82gLN2RNGX589Ud+26xMIbguDJkHXAebVFmjOlEDu36CyrL4t52MIDYchP4BOvU0rLeCcyIdd66H6fH3bzlUQ1hkSJ0N4V/Nqk8DhsyNDK1eu5P3332fdunU8+eSTjB8/nmeeeYZRo0ZRU1PDsGHDzC6xUbbgYIKe+g+cn6zHuTMbAFd+Ps53/4Tj109aKghVV8L2v0LZ0asfq71ghKLv9nq/rkBUWQ5Zf4WzjfxyTPV540B9+YiRXL+K47Dj/xp9fqWqs7BjFZSXer+uQHS6CLLXGu8lVzp3GrL+D5w/4/WyJAD5bBhavHgxkyZNIjU1tUF7TEwMwcHBJCYmAvDcc88RFxeH3W5n9erVZpR6FVu/KOwPz6J22e9xnTxJze9exj7lB9gTh5hdmlcVf33xjaqJ4ez9GTq10BIKsi5+cm6irw9keq2cgJa/DWpraLyvXcYpnYNbvV1VYDqw+eLpsGv0dU0lHP7K21VJIPLJMFRUVMSuXbuYNm3aVY8VFBSQkJBAaGgoAJMmTWLDhg2MGzfO22U2yX7vFGx9I6l5dD44HNhnzTS7JK8r/tr9OpXlcKqw9WsJZC4XFOe6W8kYoas47pWSAlZ1JZTup8nQicuYP3ThnLeqCkznTsPpYprua4w5iJoXJzfKZ8MQQI8ePRq0nz9/noyMjAanyEaPHk10dHSz92Gz2Txa0tPTr+tvsNls2BKHwJkz2G+bgC04uNnbSE9P97hOX1xOHzvv/o8EfvTAbNNr9eclvG0Hai949poaP3aS6fX68xLdN97jkcybY5JMr9efl1EpaR71s7MGburYzfR6tbhfLrnytjf26Y5PhqGIiAgA8vLyGrQvXbqUkpISUlJSzCirWVz5+Tj/8lfsD07D+eFfcJVabxLBuctnlzbhbKVO+t+Iqurz1NbWeLSu+vrGNKf/1Nc3xtP+czprOX+hopWrkUDnk98mi46OJjExkcWLF9OlSxd69+7N6tWrWb9+PUCLhCGXh9/LvD3rCzJPNTIrtaltX6g25glNvRfH7Fm4Tp2i9uVXcSxZjM3uef5MS0vjH378/dF9n0PhjqbXcQRD+vY1OEK8U1Og+nqd+9M3oe3hm4PbsPnkRyD/8dVKOHOEa/e1Ddp3g6MnD3mxqsDjcsHWd9xMkLZBt1gHlTon6ReeWvI2YBx/L7/tC3zybdFut7Nq1SoSEhKYN28es2fPJiIigvnz5+NwOOomT/sq57vvYQsKwj7zxwA4HvsprqPf4fxorcmVeVfkULAHAU2MVPZNQUGoBUQNd79OvxEoCLWA/iNwO2eo/0hvVRO4bDbo564fXdDPg9e+iDs++9YYFxfHpk2bOHv2LAUFBSxatIjc3FwGDRpE27ZtzS7vmpw7s3Gu34DjqV9jCzIG3mxhYTh+8yTODz7ElZ9vcoXeE9YZku8Dx5XjjxfDUc/BED3a62UFpI49Ycg91w47USOgT7JXSwpYEQMg/rZrPx6bBt1ivVZOQOs1GPqPavwxmw0Svg+d+ni3JglMPnma7FqysrIYObLhR4WFCxfy3nvvcezYMXJzc1mwYAEZGRkMGGDOFebsQ5Oxr1tzdfvgBOx/s9bIEECXKBjzEziSa3xNFqDHzdAnCTr2Mt7QpGV0jzf6tDgH8v9ttPVONEJQ+26mlhZwIofCTf2gKBsKtl9sG2b0dbsuJhYWYGw2GDAGuscZfV2UY7T3+57x2m7b0dTyJID47MjQlSoqKsjLy7vqYouLFi2iqKiIqqoqTpw4QVFRkWlBSBoXEma8eV0y+PvGFXoVhFpem/YwYGz9/ZsnKgi1lrDOEDe+/n78BAWh1hLeFQbeUX8/5lYFIWlZfjMyFB4eTm2tLiYhIiIiLctvRoZEREREWoPCkIiIiFiawpCIiIhYmsKQiIiIWJrCkIiIiFiawpCIiIhYmsKQiIiIWJrfXGfILEnt21ty3yIiIlahMOTGK/GDzC5BREREWpFOk4mIiIilKQyJiIiIpSkMiU9IT08nKiqKtLQ0pkyZQmVlZYPHly1bxs6dO6/5/OLiYhYsWFB3//e//z1jxxq/WJqTk8PSpUtbpW5/pL72HvW196iv5UYoDInPmDlzJunp6YwePZrVq1fXtTudTv71r38xdOjQaz73s88+4447jJ+1rqqqIjs7u+6xpKQktm3bhsvlarXa/Y362nvU196jvpbrpTAkPic5OZmioqK6+zk5OcTExADGp7/OnTuTlpZGVFQUU6ZMASAjI4PU1FQAVqxYwaxZsxpsMzY2tslPhValvvYe9bX3qK+luRSGxOdkZmYSFxdXd3///v3069cPgHHjxjFixAjS09NJTU3lj3/8Iy6Xi7NnzxIeHk51dTXp6elMmDChwTajo6PZu3evN/8Mv6C+9h71tfeor6W5FIbEZ/z5z39m/PjxnD59uu7T2pUOHjxIdHQ0AIWFhfTu3ZucnBySkpLqtvGjH/3IazX7K/W196ivvUd9LddLYUh8xsyZM9m0aRN/+MMfcDgcde2xsbEcOnQIgG+++YaEhARqa2ux242X7+Xn+vft28cbb7zBpEmT+Oabb3j99dcB4w1w4MCB3v2DfJj62nvU196jvpbrpTAkPi8pKYm8vDyg/o2sqqqK0tJSSkpKyMrK4pZbbgFgyZIlbNy4kQ0bNpCQkMDPfvYzAPLy8khOTjbrT/Ab6mvvUV97j/pa3NEVqMUnpKWlkZaW1uhjdrudW2+9lZ07d/L000/Xtefm5gJw//33133Cu9yWLVsAY/LkqFGjGl3HitTX3qO+9h71tdwIm0vfFRQv+ccy47+3P2luHVagvvYe9bX3qK/921NL3gbgd7+Z2+C2L1DMFREREUtTGBIRERFL05whN361bzc55eWm7DupfXteiR9kyr5FRESsQmHIjZzycjJPnTS7DBEREWklOk0mIiIilqYwJCIiIpamMCQiIiKWpjAkIiIilqYwJCIiIpamMCQiIiKWpjAkIiIilqYwJCIiIpbm02HI6XSybNkyYmNjadOmDUlJSWRkZBAfH8/cub7x427SfE6n2RUEtst/etmlvm5VDfpaP3ndqtTX0pp8OgzNmTOHRYsW8eijj/Lpp5/ywx/+kBkzZnDw4EFSUlLMLq9Rrupqqn/6OLVv/VeD9tq1H1P9P2bhqqgwqTLzfJcHX/2l/v7mP8KBzVB93ryaApHLBUdy4YsP6tu2vA35/4baC+bVFYicTijYAVtX1LdtfQcKtoOz1ry6AlFtNRz6wngtX/LvP0Hx1wpF0nJ89uc4Vq5cyfvvv096ejqpqakAjB8/nh07drBmzRqGDRtmcoWNswUHE/TUf1DzswXYRgzHPjQZV34+znf/hOM/f4stPNzsEr3q2y3GwRhbfVt1pfHm9t0+uGUGhLYzrbyA4XLBnr8bYejyvq6qMP4NSvdDyoMQFGJaiQHDWQtfr4Pj3zZsP38G8jbB8XxIvg/sDnPqCyS1F2DHajhzpGH72ePG6/1UESTcBTZb488X8ZTPjgwtXryYSZMm1QWhS2JiYggODiYxMZFTp05xzz33EBcXR1JSEhMnTuTAgQMmVVzP1i8K+8OzqF32e1wnT1Lzu5exT/kB9sQhZpfmVScPXwxCAI18gjt/GvZ+5s2KAtfRPReDEDTa1+XfwYFMr5YUsAq2Xx2ELnfyEBz60mvlBLQD/7o6CF3u6G44sst79Ujg8skwVFRUxK5du5g2bdpVjxUUFJCQkEBoaCg2m40FCxaQl5dHTk4O99xzD7Nnzzah4qvZ752CrW8kNY/OB4cD+6yZZpfkdYU7aTBK0ZhjB6CyzCvlBLTCHbjt6yO7oKbKK+UELJfz4uvajaKdOl12o2ovwJGv3axkg8LtOl0mN85nwxBAjx49GrSfP3+ejIyMulNknTp14vbbb697fPTo0eTn53u0D5vN5tGSnp5+XX+DzWbDljgEzpzBftsEbMHBzd5Genq6x3X64nJ4V1mjoxRXujvtx6bX6s9LaHBbyo7itq+dNTA8YYLp9frz0qtrNFXl7l/TF85B/143m16vPy9J8WOorXbT0S6oOA7twzqZXq8W98slV972xj7d8ckwFBERAUBeXl6D9qVLl1JSUnLNydPLly/n3nvvbe3yPOLKz8f5l79if3Aazg//gqu01OySvM7u4aQJT9eTxjWn/9TXN8bRnL62qa9vRHP6T69ruVE+OYE6OjqaxMREFi9eTJcuXejduzerV69m/fr1AI2GoRdffJEDBw7w+eefe7QPl4fjqrdnfUHmqZOeFw+4LlQb84Sm3otj9ixcp05R+/KrOJYsxmb3PH+mpaXxDz8e/836K5wuxu2IxdoNHxAe8UHTK8k1uVzGt5rOn3azog227vxME9ZvgLMGMt+Emsqm13OEwIHCXTiaPyAsF104D5vfcH95iDbt4UzFCZoxCCAmeWqJ8ZVAl8vV4LYv8MmRIbvdzqpVq0hISGDevHnMnj2biIgI5s+fj8PhIDExscH6L730Ep988gkbNmwgLCzMpKrrOd99D1tQEPaZPwbA8dhPcR39DudHa02uzLsik2k6CNmgU28Ij/BSQQHKZoPIoe5Wgu5x+ubejbIHQe9E9+v1GoKC0A0KaQs9BuJ2Llyfofo2mdw4nxwZAoiLi2PTpk0N2mbOnMmgQYNo27ZtXduLL77I+vXr+eyzz+jUqZOXq7yac2c2zvUbCPrDa9iCjO61hYXh+M2T1P7PZ7HfMgxb//4mV+kd3eKh+37jK/RXsRlf8755otfLCkh9ko3J6KcKG3nQZoSg2DQvFxWg+n8PTuRDxbHGH293E0SP8m5NgSom1fj6fGU5jX6w6tQbIn3zKiviZ3w2DDUmKyuLkSNH1t3/5ptveOGFFxgwYABpaWl17dnZ2d4v7iL70GTs69Zc3T44AfvfrDUyZLPB4LshvKvxbacL5y49AF1jIOZWaNfF1BIDht0ByffDwa1QnFP/rTGbHboPhNhxEGqtS1y1mqBQuGW6ceHQI7uMU2dgjBr1TDBe18FtzK0xUIS2g+E/Ni4LcXRP/SkzR4gxQjdgDDj86igmvspvXkYVFRXk5eXx2GOP1bUlJCT4zPlGaZzNDv1HQtRwKC81DhxhnXVgbg2OICP0RI+C8mOAE8K6QIj5Z44DTlAoDLzdCD4Vx4228AijXVpWaDvjwopxaXD2BGCH9l11GlJalt+EofDwcGprdeEOf2V3QMeeZldhDY5g6NTL7CqsISjUOFUjrS+4LXTqY3YVEqh8cgK1iIiIiLcoDImIiIilKQyJiIiIpSkMiYiIiKUpDImIiIilKQyJiIiIpSkMiYiIiKUpDImIiIil+c1FF82S1L69JfctIiJiFQpDbrwSP8jsEkRERKQV6TSZiIiIWJrCkIiIiFiawpCIiIhYmsKQiIiIWJrCkIiIiFiawpCIiIhYmsKQiIiIWJrCkIiIiFiawpCIiIhYmsKQiIiIWJrCkIiIiFiawpCIiIhYmsKQiIiIWJrCkIiIiFiawtA1TJw4keTkZIYMGcIDDzxAWVmZ2SWJiIhYVnp6OgkJCcTExPDII49QW1vbYttWGLqGVatWkZ2dTW5uLn369OHVV181uyQRERFLcjqdPPLII6xatYoDBw5QVlbGhx9+2GLbVxi6ho4dOwLGP0BlZSU2m83kikRERKzpq6++olevXgwaNAiAOXPm8NFHH7XY9hWGmnDffffRrVs39u3bx69+9SuzyxEREbGkoqIiIiMj6+737duXwsLCFtt+UIttKQCtXbuWCxcuMGfOHFavXs1DDz1kdkkiIiJ+oaziHH9es5GaWmeD9v/13kdX3bbZYMbk2+japVOj23K5XK1WJ2hkyK2QkBCmT5/O2rVrzS5FRETEb3QID2NwfDQlpScoKT1R137l7ZLSE8RE9b5mEAKIjIxsMBJUUFBAnz59WqxWhaFGlJeXU1JSAhhzhtatW0dCQoLJVYmIiPiXW4cPoV+fHk2u06NrFybeOrzJdW655RaKiorYvXs3ACtWrGDq1KktVqfCUCPKy8uZPHkyiYmJJCYmUlNTw7PPPmt2WSIiIn7Fbrfzw3vGExoS3OjjjouPBwU5mtyOw+HgnXfe4YEHHmDAgAGEh4czc+bMFqvT5mrtE3EBxuVy6ZtlIiIizZD19T5Wf5pxVftdaSNI/V6y9wu6gkaGminjixz+++PPqGnBiz2JiIgEspQhcQyK7degrV+fHtw6PNGcgq7g92EoNzeX+++/n4iICNq0aUNsbCzPPPNMq+yrquoCmV/kcKG6hiBH00N6IiIiYrDZbEyddCvhYW0BCAkJ5od3p2G3+0YM8euv1m/fvp1x48YRGRnJyy+/TFRUFPn5+WzdurVV9rd1xzecq6zi9jEprbJ9ERGRQBUe1papd43jg4828oPbRtGlUwezS6rj13OG0tLS2L17N/v376+7YrSnnlryditVJSIiIr7gd7+Z69F6vjE+dR3OnTvH5s2bmTFjRrODkIiIiMglfnua7NSpUzidzuu+6JKnaRGMuUJL3lxJZK9uzJ5213XtT0RERHyT34ahzp07Y7fbKS4uvq7nX89psn0HC3V6TURExE8E/GmysLAwxo0bx8qVKykrKzO7HBEREfFTfj2B+tK3yaKiovj1r39NVFQUBQUFbN68mXfeeadF9rFp2042Zn7F/Jn3EtmrW4tsU0RERHyH354mA0hJSWHbtm0sXLiQX/7yl1RWVhIZGcn06dNbZPtVVRfY/OXXxEdHKgiJiIgEKL8eGWptJaUn+PDjz5h+zwSFIRERkQClMOSG0+n0mStkioiISMtTGBIRERFL05CHiIiIWJrCkIiIiFiawpCIiIhYmsKQiIiIWJrCkIiIiFiawpCIiIhYmsKQiIiIWJrCkIiIiFiawpCIiIhYmsKQiIiIWJrCkIiIiFiawpCIiIhYmsKQiIiIWJrCkIiIiFiawpCIiIhYmsKQiIiIWJrCkIiIiFiawpCIiIhYmsKQiIiIWJrCkIiIiFiawpCIiIhYmsKQiIiIWJrCkIiIiFiawpCIiIhYmsKQiIiIWJrCkIiIiFiawpCIiIhY2v8HzfadmajGaAwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "x_measurement(qc, q[0], c[0])\n", + "qc.draw('mpl')" + ] + }, + { + "cell_type": "markdown", + "id": "d74a9c71-c2e7-47a2-9ed2-571de5ed673c", + "metadata": {}, + "source": [ + "### Subsequent steps (2nd, 3rd)\n", + "\n", + "Now we build the quntum circuit for the other remaining steps, the second and the third ones.\n", + "As said in the first example, in these steps we have the additional sub-step of the phase correction.\n", + "\n", + "#### Initialization with reset\n" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "id": "3a45528b-d0c6-4332-b367-276443bf046c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAp4AAADWCAYAAAB44oK7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAi4UlEQVR4nO3deXhU9eHv8c/MZIEQViOyhUCABAkkgQgCIgmoiNWCGxXa8gBioYjtj1q361Kl+KOCaLl6W5cratVbei8ISi2CtJKAhSoBEoICAQlkIcieBQiQzNw/BhICITMhyffMTN6v5zmPM2fOzHz4euB8crbYXC6XSwAAAEAjs1sdAAAAAE0DxRMAAABGUDwBAABgBMUTAAAARlA8AQAAYATFEwAAAEZQPAEAAGAExRMAAABGUDwBAABgBMUTAAAARlA8AQAAYATFEwAAAEZQPAEAAGAExRMAAABGUDwBAABgBMUTAAAARlA8AQAAYATFEwAAAEZQPAEAAGAExRMAAABGUDwBAABgBMUTAAAARlA8AQAAYATFEwAAAEZQPAEAAGAExRMAAABGBFkdwNctS5cKjlvz3Z3bSvfeYM13AwAan79uY2bNmqWMjIwGzeONxMRELVy48Krea1VmqX65rVpHGquDUDw9KDgufX/I6hQAgEDkr9uYjIwMpaWlWR2jTvwxs+S/68iVcKgdAAAARlA8AQAAYATFEwAAAEZQPAEAAGAExRMAAABGUDwBAABgBMUTAAD4nODgYKsjoBFwH08AANBomjVrplGjRmngwIHq27evwsLCVFZWph07dig9PV2rVq1SaWnpZe9ZsWKF0tPT9fTTT1uUHI2B4gmjXC7JZrM6ReBzudz/ZawbH2NtDmPtX1q3bq2nn35aU6dO1TXXXHPZ62PGjJEkFRcX64MPPtCcOXN06NChytJ52223qV+/flq4cKEOHQqgO6g3cT5dPJ1Op1599VW99dZbysvLU2xsrF577TVNmzZNycnJevvtt62OeJmlL6aoa99bNejuZ72a3xScKJByN0tH9krOCimsrdQlUercT3JwJKVBHcmR8rZIx/ZLcknh10pd+ksd+0h2h9XpAofLJR3KlvK2SkUH3PNadZQi+0vXxVKMGpLTKR38zj3WpYck2aS2kVLXAVJED6vTmecv25jbb79dixYtUufOnSVJmzdv1urVq5WRkaGioiKFh4crISFBI0eO1LBhw/TII49owoQJ+q//+i9NmjRJt912mw4ePKiRI0caLZ2TJk3S5MmTNWLECK+Wv7BH9osvvmjkZN7z9XXEp4vn1KlTtWzZMj333HNKSkrShg0bNGHCBB0+fFiPPvqo1fHghbyt0q5/SbJJOr+34tQxKftL98ZkwDgpKNTKhIHj+6+knP+o2liXHJZ2rJYO7ZIS7pbsPv033j+4XNKOL6QDWao21kUHpKIC9w9YcXdQPhuCs0LatkI68r2qxtolHct1/3AVNVDqOZyx9jVTpkzRO++8I7vdro0bN2rWrFn65ptvLltu2bJlev7559W3b1+98sorGjVqlD766CNJqiydO3bsMB2/GrvdrpdeekmTJ09Ws2bN9MUXX2j69Ok6evSoJOnTTz/VmDFjfKp4+jqfvbho8eLFev/997VixQo99thjGjFihJ555hkNGTJE5eXlGjBggNUR4UHRgfOlU6rcOF+s+OBFr6NeDu05Xzql6mN9/vHRfdL3GwyHClAFmedLp1TjWB/8zr3XGfWX85/zpVOqcaz3b3L/UAXfceedd1aWztmzZ2vYsGE1ls6Lbd++XWPHjtXOnTsr57322muWl05JeuqppzR27FjdeOON6tKliyTpww8/rHz9QvGE93y2eM6dO1ejR49WcnJytfk9e/ZUcHCw4uPjJUn79u1TcnKyYmJi1K9fP61fv96KuKhB3la591LU4uBO6cxJI3ECWu5meRzr/Ayp4pyJNIHL5To/1h7kbq46HxFXx1l+/t+Q2tik/V78/4AZ7dq1qyydv/vd7/TCCy/I6XR6fN+Fczp79+6toqIiSe7CFxkZ2diRPZo2bZrmzZunnJwcFRcX64knntAdd9yhrl27SpK2bdumiooKdobVgU8Wz/z8fG3fvl3jxo277LXc3FzFxcUpNNR9fHb69Ol64IEHlJ2drbfeekvjx4/X2bNnPX6HzWbzakpLS61z/m8+/W+9Ma1NtelA9ld1/py0tFSvc/ritGfLiRr3dF7M5ZTuGDbB8qz+PIUEhepEnjyOdcVZaUDvFMvz+vPUoV2UTh33/He3rFjqel2s5Xn9eerbY7DKyzwMtEsqLpRaNGtled6rnfx1G5OWlnbZ5z3//PPq0KGD1q1bpxdffNGrDBdfSHTw4EENGTJEy5YtU6tWrfTyyy/XkDmtQTPXpnXr1oqKitLmzVU/3ezdu1dFRUVKSEionPfpp59q7NixtX5W/XKn1im31DDrSF3XD2/55Blf+fn5kqQOHTpUm3/69GmlpaXpjjvukCQdOXJEX331lVasWCFJGjp0qDp16qS1a9fq9ttvNxv6IoPGPlPjSb1NTZCXVw4FOUIaOUlgc9ThCq3gIMa6PuoyfqzX9VOX8WtqY+2L25jw8HBNnjxZkvTII4/I5cUu/0tL54VzOn/9619rzJgxuvfee9WxY0cVFhY2cvqatWzZUpIq98JecOLECbVq1ary+T/+8Q/94Q9/0PPPP280X218cR25wCf3eEZEREiSsrOzq82fP3++CgsLlZSUJMm99/O6666r3PspSd27d9f+/fs9fofL5fJqSk5Oabg/WB0lJ6d4ndMXp/ZdW3g8/CtJSz/7i+VZ/Xk6VVaq0HDv1qmvNn1heV5/nvYf2O3VnRjsDmn3/izL8/rztClrnVf/foSESSdKjlie92onf93GXHoa3JgxY9SqVSutW7dOWVlZV/jGKlcqnZJUUFCgTz75RMHBwRo/fvwlmZMbLLMnJSUlktx7Pi/Wpk0bFRcXVz6PiopSbm5urZ9Vv9wpdcrdUOq6fnjLJ4tndHS04uPjNXfuXH3wwQf617/+pRkzZujdd9+VpMriCd/WJVG1H/61SS3bS6061LIMPLLZ3LdMqn0hKSJaatbKw3KolSNY6tjX83Id4yR2LtdPaAvp2p7yWD47J0g2n9ySNS2DBg2SJH3++ecel62tdF5w4XMGDhzY8GG9VFRUpP3791c7f7N79+5q3bq1tm3bVjlvzJgx+vTTT62I6Jd88q+r3W7XkiVLFBcXpxkzZmjKlCmKiIjQzJkz5XA4Ki8s6tq1q3744QedOXOm8r05OTmKioqyKjou0uF6qW3XK7xok+x2qfdtRiMFrMj+7nt21sjmLkG9UkwmClzRg88X+JoKkU0KDZeih5pOFZh6JUvBzXTF8tniGinqBqORcAX9+vWTJG3dWvsVYd6Uzos/58L23ipvv/22nnzySXXr1k0tW7bUvHnztGrVqsojq2FhYRoxYoQ+++wzS3P6E588x1OSYmJitHbt2mrzJk6cqD59+qh58+aS3Ifkb7rpJi1atEgPP/ywNmzYoIKCAnl749fGcP+zqXWaH8jsDinxHml3mvv2M86KqtdaXSfF3iK17mhdvkASFCIlPSDt+lL6Yaf7oq0L2naRet8qtWhnXb5AEtJCGvhTaec/pcN7qr8W0d39w5S3pz6gdmFt3GO945/S8YvOoLLZpfYxUu9bmt59gH11G7N69Wrt27dPu3fvrnW5119/3WPplKS8vDy99957KigoaIy4XnvppZfUtm1bbdq0SaGhoVqzZo1+/vOfV74+atQobd26tfK+nr7AV9eRC3y2eNYkPT1dgwcPrjbvzTff1OTJk7Vw4UKFhIRo8eLFCgnhGJevcAS7S0+PYVLa/3LPu3GS1PJKe+dw1YKbSX1/JMUkS+vecM8b8iCFszGEhrtvyF9WLH11/heo3fQLqXnrWt+GqxDWVkoaJ506Lm1Y5J43bLr7UDx8x/z5871a7ve//7369Omjhx56qNb7dB45ckQPPvhgQ8W7ak6nU48//rgef/zxGl/nMHvd+U3xLC0tVXZ2th5++OFq86Ojo7Vu3TqLUsFbwc2qHlM6G1fIRRtkSmfjuvicWUpn4wprW/WY0um/8vLydNNNN1kdo8Hs379fS5YssTqGX/Gb4hkeHq6KigrPCwIAAFyFjIwMvf/++14vP3v27MYLE6D8pngCAAA0pszMTGVmZlodI6D55FXtAAAACDwUTwAAABhB8QQAAIARFE8AAAAYQfEEAACAERRPAAAAGMHtlDzo3NbzMoH43QCAxuev25jExMQ6v2dvbqEkKbprx2qPG/t7G+K99VWf77ZqHWms76V4enDvDVYnAAAEKn/dxixcuLDO73lqnvv3y7705LRqj025msy+wF/XkSvhUDsAAACMoHgCAADACIonAAAAjKB4AgAAwAiKJwAAAIygeAIAAMAIiicAAACMoHgCAADACIonAAAAjKB4AgAAwAiKJwAAAIygeAIAAMAIiicAAACMCLI6gK/77a7vlFlSYsl3J7RsqVdi+1jy3QAAAA2N4ulBZkmJ1h0/ZnUMAAAAv8ehdgAAABhB8QQAAIARFE8AAAAYQfEEAACAERRPAAAAGEHxBAAAgBEUTwAAABhB8QQAAIARPl08nU6nFixYoF69eqlZs2ZKSEhQWlqaYmNjNW3aNKvjwUsul1RUWPX8wHap4px1eQKZyyUdy616fnCn5KywLk8gczmlw99XPT+8xz0PDc9ZIf2wq+r50f3udR2A//Hp31w0depULVu2TM8995ySkpK0YcMGTZgwQYcPH9ajjz5qdbwauc6dU/mvfiN7/wQ5pv+icn7F8k/k/Hi5gt78k2zh4RYmNKusRNq2Qiq+qHh+t0ra9aUUO1Lq1Ne6bIHm5FH3WJ88WjVv+2dScHOpz2jp2h7WZQs0RYVS1t+lsuKqeZmfSKHhUr8fS206WxYt4BzNkbavlM6drpq3dYkU1laKHyOFX2tdNgB157N7PBcvXqz3339fK1as0GOPPaYRI0bomWee0ZAhQ1ReXq4BAwZYHbFGtuBgBT31uJyfrZRza4YkyZWTI+e7f5HjiceaVOk8VyZt/ptUfPDy1yrOugvoDzvN5wpEZSVS+t+kkzX8dtdzp92l6OI9obh6pUekLf/PPeaXOnNS2rJEKjlkPlcgOpEvZSx3/1tyqVMnpPT/K50uMh4LQD34bPGcO3euRo8ereTk5Grze/bsqeDgYMXHx0uSfve73ykmJkZ2u11Lly61IuplbN2iZH9wkioW/FGuY8dU/tLLso/9sezx/ayOZlTBtvMbhVoOie1O4/BkQ8hNP79HqJax3rPOWJyAlrNRqihXzWPtch8W3rvBdKrAtGf9+UPqVxjr8jJp/ybTqQDUh08Wz/z8fG3fvl3jxo277LXc3FzFxcUpNDRUkjR69GitWrVKw4cPNx2zVva7x8rWNVLl02dKDofskyZaHcm4gm2elykrkY7nNX6WQOZySQVZnhZy73kuPWIkUsA6VyYd2q1aC75c7vM9z54ylSownTohnShQ7WMt9znjnMcM+A+fLZ6S1KFDh2rzT58+rbS0tGqH2YcOHaro6Og6f4fNZvNqSk1Nvao/g81mky2+n1RUJPstI2ULDq7zZ6Smpnqd0xenE4dPe/5DSvrp/VMsz+rPU3jzVqo46906NWLYaMvz+vMU3TXW6z301/dMsDyvP09DklK8GmdnuXRN6/aW52XyPF1w6WOmwJi85ZPFMyIiQpKUnZ1dbf78+fNVWFiopKQkK2LViSsnR86//k32B8bJ+dFf5TrU9E76OnXxlRe1OFnGSVr1cebcaVVUlHu1LGNdP3UZP8a6frwdP6ezQqfPljZyGgANxSevao+OjlZ8fLzmzp2rdu3aqXPnzlq6dKlWrlwpSQ1SPF1e3ovj1vSvte54DVds1PbZZ8+5z+u89245pkyS6/hxVbz8qhzz5spm977rp6Sk6J9+fM+QXV9KeVtqX8YRLKVuXiZHiJlMgWrbCs+HgENbSt/u3SibT/646T82LZaKDujKY22TWraXDh7bZzBV4HG5pA3veLh4yCa17+VQGec1+IWn5r0tyb39vfgxmhaf3ATZ7XYtWbJEcXFxmjFjhqZMmaKIiAjNnDlTDoej8sIiX+V89z3ZgoJkn/gzSZLj4V/KdfAHOT9ebnEysyL7S/YgSbXsge+aJEpnA4ga6HmZboNE6WwA3QfJ4zme3QebShO4bDapm6dxdEndvFj3AfgOn90MxcTEaO3atTp58qRyc3M1Z84cZWVlqU+fPmrevLnV8a7IuTVDzpWr5HjqCdmC3DuUbWFhcjz5mJwffCRXTo7FCc0Jaysl3iM5Lt2vfr6IduwrRQ81Hisgte4o9bvrysUyapDUJdFopIAV0UOKveXKr/dKkdr3MhYnoHXqK3UfUvNrNpsU9yOpTRezmQDUj08ear+S9PR0DR5c/Ufg5557Tu+9954OHz6srKwszZo1S2lpaerRw5q7Zdv7J8q+Ytnl8/vGyf73prXHU5LaRUk3/UI6kOW+NYokdbhe6pIgte7k3nigYVwX6x7Tgkwp5z/ueZ3j3YWzZXtLowWcyP7SNd2k/Awpd/P5eQPcY92inYXBAozNJvW4Sbouxj3W+Znu+d1udK/bzVtbGg/AVfDZPZ6XKi0tVXZ29mU3jp8zZ47y8/N15swZHT16VPn5+ZaVTtQsJMy9obig74/cv9mF0tnwmrWUegyren79KEpnYwlrK8WMqHoeO5LS2VjCr5V631b1vOfNlE7AX/nNHs/w8HBVVHCzNgAAAH/lN3s8AQAA4N8ongAAADCC4gkAAAAjKJ4AAAAwguIJAAAAIyieAAAAMILiCQAAACP85j6eVklo2bJJfjcAAEBDo3h68EpsH6sjAAAABAQOtQMAAMAIiicAAACMoHjCJ6SmpioqKkopKSkaO3asysrKqr2+YMECbd269YrvLygo0KxZsyqf//GPf9SwYcMkSZmZmZo/f36j5PZHjLU5jLU5jDXgHyie8BkTJ05Uamqqhg4dqqVLl1bOdzqd+ve//63+/ftf8b1r1qzRbbfdJkk6c+aMMjIyKl9LSEjQxo0b5XK5Gi27v2GszWGszWGsAd9H8YTPSUxMVH5+fuXzzMxM9ezZU5J7r0bbtm2VkpKiqKgojR07VpKUlpam5ORkSdKiRYs0adKkap/Zq1evWvd2NFWMtTmMtTmMNeC7KJ7wOevWrVNMTEzl8927d6tbt26SpOHDh2vQoEFKTU1VcnKy/vznP8vlcunkyZMKDw/XuXPnlJqaqpEjR1b7zOjoaO3cudPkH8MvMNbmMNbmMNaA76J4wmd8+OGHGjFihE6cOFG5F+JSe/fuVXR0tCQpLy9PnTt3VmZmphISEio/46c//amxzP6KsTaHsTaHsQZ8H8UTPmPixIlau3at/vSnP8nhcFTO79Wrl/bt2ydJ+vbbbxUXF6eKigrZ7e7V9+Jzs3bt2qU33nhDo0eP1rfffqvXX39dkntj07t3b7N/IB/GWJvDWJvDWAO+j+IJn5eQkKDs7GxJVRuNM2fO6NChQyosLFR6erpuuOEGSdK8efO0evVqrVq1SnFxcfrVr34lScrOzlZiYqJVfwS/wVibw1ibw1gDvoPfXASfkJKSopSUlBpfs9vtuvnmm7V161Y9/fTTlfOzsrIkSffdd1/lnouLffXVV5LcFxYMGTKkxmWaIsbaHMbaHMYa8A82F/eHgCH/XOD+762PWZujKWCszWGszWGs/dtT896WJL305LRqj9G08OMbAAAAjKB4AgAAwAjO8fTgt7u+U2ZJiSXfndCypV6J7WPJdwMAADQ0iqcHmSUlWnf8mNUxAAAA/B6H2gEAAGAExRMAAABGUDwBAABgBMUTAAAARlA8AQAAYATFEwAAAEZQPAEAAGAExRMAAABG+HTxdDqdWrBggXr16qVmzZopISFBaWlpio2N1bRp06yOh6vkdFqdILC5XBc9ZqwbVbWxdl15OdQfYw0EBp8unlOnTtWcOXM0ffp0ff755/rJT36iCRMmaO/evUpKSrI6Xo1c587p3C8fUcVb/7va/Irln+jczyfJVVpqUTLr/JAtbfpr1fP1f5b2rJfOnbYuUyByuaQDWdLXH1TN++ptKec/UsVZ63IFIqdTyt0ibVhUNW/DO1LuZslZYV2uQFRxTtr3tXtdvuA/f5EKtlFAAX/ks78yc/HixXr//feVmpqq5ORkSdKIESO0ZcsWLVu2TAMGDLA4Yc1swcEKeupxlf9qlmyDBsreP1GunBw53/2LHP/9e9nCw62OaNT3X7mLj2xV886VuTckP+ySbpgghbawLF7AcLmkHV+4i+fFY32m1P3/4NBuKekBKSjEsogBw1khbVshHfm++vzTRVL2WulIjpR4j2R3WJMvkFSclbYslYoOVJ9/8oh7fT+eL8XdIdlsNb8fgO/x2T2ec+fO1ejRoytL5wU9e/ZUcHCw4uPjdfz4cd11112KiYlRQkKCRo0apT179liUuIqtW5TsD05SxYI/ynXsmMpfeln2sT+WPb6f1dGMOrb/fOmUpBr2TJw+Ie1cYzJR4Dq443zplGoc65IfpD3rjEYKWLmbLy+dFzu2T9r3jbE4AW3Pvy8vnRc7+J10YLu5PADqzyeLZ35+vrZv365x48Zd9lpubq7i4uIUGhoqm82mWbNmKTs7W5mZmbrrrrs0ZcoUCxJfzn73WNm6Rqp8+kzJ4ZB90kSrIxmXt1XV9r7V5PAeqazYSJyAlrdFHsf6wHap/IyROAHL5Ty/XnuQv5VD7vVVcVY6sM3DQjYpbzOH3AF/4rPFU5I6dOhQbf7p06eVlpZWeZi9TZs2uvXWWytfHzp0qHJycrz6DpvN5tWUmpp6VX8Gm80mW3w/qahI9ltGyhYcXOfPSE1N9TqnL077txfXuPftUnem/MzyrP48hQY3V/FBeRxrZ7k0MG6k5Xn9eep0bbTOlHhep8+ekrp3ut7yvP48JcTepIpzHgbaJZUekVqGtbE8L5Pn6YJLHzMFxuQtnyyeERERkqTs7Oxq8+fPn6/CwsIrXli0cOFC3X333Y0dzyuunBw5//o32R8YJ+dHf5Xr0CGrIxln9/IkN2+XQ83qMn6Mdf046jLWNsa6PuoyfqzXgP/wyYuLoqOjFR8fr7lz56pdu3bq3Lmzli5dqpUrV0pSjcVz9uzZ2rNnj7788kuvvsPl5bGZW9O/1rrjx7wPL8l19pz7vM5775ZjyiS5jh9XxcuvyjFvrmx277t+SkqK/unHx5DS/yadKJDHPXHLV32g8IgPal8IV+Ryua+uPn3Cw4I2acPWNVzMVQ/Ocmndm1J5We3LOUKkPXnb5aj7gQ6cd/a0tP4Nz7cEa9ZSKio9qjrscIFFnprnvjWBy+Wq9hhNi0/u8bTb7VqyZIni4uI0Y8YMTZkyRREREZo5c6YcDofi4+OrLf/iiy/qs88+06pVqxQWFmZR6irOd9+TLShI9ok/kyQ5Hv6lXAd/kPPj5RYnMysyUbWXTpvUprMUHmEoUICy2aTI/p4Wkq6L4Q4C9WUPkjrHe16uUz9ROusppLnUobc8nrvcpT9XtQP+xCf3eEpSTEyM1q5dW23exIkT1adPHzVv3rxy3uzZs7Vy5UqtWbNGbdq0MZzycs6tGXKuXKWgP70mW5B7eG1hYXI8+Zgq/sezst8wQLbu3S1OaUb7WOm63e7bJl3G5r61z/WjjMcKSF0S3RdqHc+r4UWbu3D2SjEcKkB1v1E6miOVHq759RbXSNFDzGYKVD2T3bdMKitRjT/EtuksRfrmnfUAXIHPFs+apKena/DgwZXPv/32W73wwgvq0aOHUlJSKudnZGSYD3eevX+i7CuWXT6/b5zsf29aezxtNqnvnVL4te6rrs+euvCCdG1PqefNUot2lkYMGHaHlHiftHeDVJBZdfW6zS5d11vqNVwKbVq3kG00QaHSDePdvwThwHb34XfJvTe0Y5x7vQ5uZm3GQBHaQhr4M/etwA7uqDrs7ghx73nucZPk8KutGAC/+StbWlqq7OxsPfzww5Xz4uLiOD/Ex9nsUvfBUtRAqeSQeyMd1pYS1BgcQe6CGT1EKjksySmFtZNCrD/7JOAEhUq9b3WXzNIj7nnhEe75aFihLdw3iY9JkU4elWSXWl7LqQyAv/Kb4hkeHq6KCm6M56/sDql1R6tTNA2OYKlNJ6tTNA1Boe7DvWh8wc2lNl2sTgGgvnzy4iIAAAAEHoonAAAAjKB4AgAAwAiKJwAAAIygeAIAAMAIiicAAACMoHgCAADACIonAAAAjPCbG8hbJaFlyyb53QAAAA2N4unBK7F9rI4AAAAQEDjUDgAAACMongAAADCC4gkAAAAjKJ4AAAAwguIJAAAAIyieAAAAMILiCQAAACMongAAADCC4gkAAAAjKJ4AAAAwguIJAAAAIyieAAAAMILiCQAAACMongAAADCC4nkFo0aNUmJiovr166f7779fxcXFVkcCAKDJSk1NVVxcnHr27KmHHnpIFRUVVkfCVaB4XsGSJUuUkZGhrKwsdenSRa+++qrVkQAAaJKcTqceeughLVmyRHv27FFxcbE++ugjq2PhKlA8r6B169aS3Ct7WVmZbDabxYkAAGiaNm3apE6dOqlPnz6SpKlTp+rjjz+2OBWuBsWzFvfcc4/at2+vXbt26be//a3VcQAAaJLy8/MVGRlZ+bxr167Ky8uzMBGuVpDVAXzZ8uXLdfbsWU2dOlVLly7V5MmTrY4EAIBfKC49pQ+XrVZ5hbPa/P/53seXPbbZpAljbtG17drU+Fkul6vRcsIs9nh6EBISovHjx2v58uVWRwEAwG+0Cg9T39hoFR46qsJDRyvnX/q48NBR9YzqfMXSKUmRkZHV9nDm5uaqS5cujZIbjYviWYOSkhIVFhZKcp/juWLFCsXFxVmcCgAA/3LzwH7q1qVDrct0uLadRt08sNZlbrjhBuXn5+u7776TJC1atEj33ntvg+WEORTPGpSUlGjMmDGKj49XfHy8ysvL9eyzz1odCwAAv2K32/WTu0YoNCS4xtcd518PCnLU+jkOh0PvvPOO7r//fvXo0UPh4eGaOHFiY0RGI7O5OHGiTlwuF1e4AwBQB+nbdmnp52mXzb8jZZCSb0w0HwiWYY9nHaV9nan/88kalXPjWgAAvJLUL0Z9enWrNq9blw66eWC8NYFgGb8vnllZWbrvvvsUERGhZs2aqVevXnrmmWca5bvOnDmrdV9n6uy5cgU5aj8sAAAA3Gw2m+4dfbPCw5pLkkJCgvWTO1Nkt/t9DUEd+fXtlDZv3qzhw4crMjJSL7/8sqKiopSTk6MNGzY0yvdt2PKtTpWd0a03JTXK5wMAEKjCw5rr3juG64OPV+vHtwxRuzatrI4EC/j1OZ4pKSn67rvvtHv37srfNOStp+a93UipAAAAmpaXnpzm1XJ+u4/71KlTWr9+vSZMmFDn0gkAAADz/PZQ+/Hjx+V0Oq/6BrLeNnPJfW7nvDcXK7JTe00Zd8dVfR8AAEBT57fFs23btrLb7SooKLiq91/NofZde/M4RA8AAHCJgD/UHhYWpuHDh2vx4sUqLi62Og4AAAA88OuLiy5c1R4VFaUnnnhCUVFRys3N1fr16/XOO+80yHes3bhVq9dt0syJdyuyU/sG+UwAAICmyG8PtUtSUlKSNm7cqOeee06/+c1vVFZWpsjISI0fP75BPv/MmbNa/802xUZHUjoBAADqya/3eDa2wkNH9dEnazT+rpEUTwAAgHqieHrgdDr5zQoAAAANgOIJAAAAI9iVBwAAACMongAAADCC4gkAAAAjKJ4AAAAwguIJAAAAIyieAAAAMILiCQAAACMongAAADCC4gkAAAAjKJ4AAAAwguIJAAAAIyieAAAAMILiCQAAACMongAAADCC4gkAAAAjKJ4AAAAwguIJAAAAIyieAAAAMILiCQAAACMongAAADCC4gkAAAAjKJ4AAAAwguIJAAAAIyieAAAAMILiCQAAACMongAAADCC4gkAAAAj/j8pDro0Ulg3+QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 77, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "qc.reset(0)\n", + "qc.h(0)\n", + "qc.draw('mpl')" + ] + }, + { + "cell_type": "markdown", + "id": "f25c47cf-de23-4ef4-84e8-dd2b95df7375", + "metadata": {}, + "source": [ + "#### Phase correction (for step 2)\n", + "In order to extract the phase bit $\\varphi_{2}$, we perform a phase correction of $-\\pi\\varphi_3/2$.\n", + "\n", + "So, after the reset we apply the phase gate $P(\\theta)$ with phase $\\theta=-\\pi/2$ conditioned by the classical bit $c_0$ ($=\\varphi_3$)." + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "id": "df38fd1b-a177-4c8e-82a4-0a76a79931f4", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAswAAADWCAYAAADFA9TOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAncUlEQVR4nO3deXxTdaL+8SdJS6GU1cpSKIUCLUOhLZsDCLQgMDCjoCgKKj9g8MJFnRkc1+vuoAzgMly9jqMjyqgj3guiMAyiqLTggA4FWgooBSl0oezQBWhLk/z+CLRUyklL25wk/bxfr/MyOTlJHr4eyJOTb04sTqfTKQAAAABVspodAAAAAPBmFGYAAADAAIUZAAAAMEBhBgAAAAxQmAEAAAADFGYAAADAAIUZAAAAMEBhBgAAAAxQmAEAAAADFGYAAADAAIUZAAAAMEBhBgAAAAxQmAEAAAADFGYAAADAAIUZAAAAMEBhBgAAAAxQmAEAAAADFGYAAADAAIUZAAAAMEBhBgAAAAxQmAEAAAADFGYAAADAAIUZAAAAMEBhBgAAAAxQmAEAAAADFGYAAADAQIDZAbzdihQp95Q5z92hlTShvznPDQCof776GjNnzhylpqbWaZ7qiI+P16JFi67qvmZllmqX26x9pDb7x56vpcKjdZunupq1kaJH1P3jUpjdyD0l/WjS/3QAgH/z1deY1NRUJScnmx2jRnwxs+Sb+0jhUel0jtkp6hZTMgAAAAADFGYAAADAAIUZAAAAMEBhBgAAAAxQmAEAAAADnCUDAAAApnrwjUR9f3CzbLZAWa02tW8dqbtueFJDY281O5okjjADAAAvFBgYaHYEeNhdI5/SP14o0opnT2h4/GQ9//c7lHMsw+xYkjjCDAAA6lHjxo01evRoDRgwQL169VJwcLCKi4v1/fffKyUlRWvXrlVRUdFl91m1apVSUlL0+OOPm5QcZrHZAjRu8L16e82jysxLV8dro8yORGGGZzmdksVidgr/53S6/stY1z/G2nMYa9/SokULPf7445oxY4auueaay24fN26cJKmgoEDvvfee5s6dq6NHj5aX5VGjRql3795atGiRjh71sV/uQK2cLyvVyk2vK8AWqMiwOLPjSPLywuxwOPTKK6/ozTffVHZ2tqKjo/Xqq69q5syZSkhI0FtvvWV2xMssfz5RnXqN1HU3P1mt9Q3B6Vwpa6t0fL/ksEvBraSO8VKH3pKNT9zq1PFMKXubdPKgJKcUcq3UsY/UvqdktZmdzn84ndLRDCl7u5R/yLWueXspvI/UNppCV5ccDunwbtdYFx2VZJFahUud+kqhXc1O53m+8hrzi1/8QosXL1aHDh0kSVu3btXnn3+u1NRU5efnKyQkRHFxcRoxYoSGDBmi+++/X5MnT9bvfvc7TZ06VaNGjdLhw4c1YsQIj5blqVOnatq0aRo+fHi1tr94BPyLL76o52TV5yv7SFU+/OoFLUt+SYG2RgoL7aan/9/H6hDazexYkry8MM+YMUMrVqzQU089pX79+mnTpk2aPHmyjh07pt///vdmx0M1ZG+X9nwlySLpwtGhsyeljK9dL4J9J0oBQWYm9B8/fiNlfqtKY114TPr+c+noHinuZsnq1X/jfYPTKX3/hXQoXZXGOv+QlJ/remMYM5bSXBccdmnHKun4j6oYa6d0Msv1pjBigNRtGGPtbaZPn663335bVqtVmzdv1pw5c/Tvf//7su1WrFihZ555Rr169dLLL7+s0aNH64MPPpCk8rL8/fffezp+JVarVfPnz9e0adPUuHFjffHFF5o1a5ZOnDghSVq5cqXGjRvnVYXZl915wxO6a6R3Fnqv/dLf0qVLtWTJEq1atUoPPfSQhg8frieeeEKDBg1SWVmZ+vbta3ZEuJF/6EJZlspLxaUKDl9yO2rl6L4LZVmqPNYXLp84IP24ycOh/FRu2oWyLFU51od3u47yo/Yyv71QlqUqx/rgFtebQXiPX/3qV+Vl+bnnntOQIUOqLMuX2rlzp8aPH68ffvihfN2rr75qelmWpMcee0zjx4/Xz3/+c3Xs2FGS9P7775fffrEww/95bWGeN2+exowZo4SEhErru3XrpsDAQMXGxkqSDhw4oISEBEVFRal3797auHGjGXFRheztch0VMnD4B6nkjEfi+LWsrXI71jmpkv28J9L4L6fzwli7kbW1Yr4tro6j7MK/IUYs0sFq/P+AZ7Ru3bq8LD/99NN69tln5XA43N7v4pzlHj16KD8/X5KrqIaHh9d3ZLdmzpypBQsWKDMzUwUFBXrkkUc0duxYderUSZK0Y8cO2e12DuI1AF5ZmHNycrRz505NnDjxstuysrIUExOjoCDX5/izZs3SHXfcoYyMDL355puaNGmSSktL3T6HxWKp1pKcnFTj/P9e+YLemNmy0nIo45saP05yclK1c3rjsm/b6SqPLF/K6ZDGDplselZfXhoFBOl0ttyOtb1U6tsj0fS8vry0ax2hs6fc/90tLpA6tY02Pa8vL726DlRZsZuBdkoFeVLTxs1Nz3u1i6++xiQnJ1/2eM8884zatWunDRs26Pnnn69Whku/4Hf48GENGjRIK1asUPPmzfXiiy9WkTm5TjMbadGihSIiIrR1a8W7sv379ys/P19xcRVfRFu5cqXGjx9v+Fi1y51Uo9xS3ewjtds/ap65rtQkd0145YzGnJwcSVK7du0qrT937pySk5M1duxYSdLx48f1zTffaNWqVZKkwYMHKywsTOvXr9cvfvELz4a+xHXjn6hysn1DE1DNb/QF2BrVcxL/ZqvBNycDAxjr2qjJ+LFf105Nxq+hjbU3vsaEhIRo2rRpkqT7779fzmp8xPLTsnxxzvJvf/tbjRs3ThMmTFD79u2Vl5dXz+mr1qxZM0kqP+p90enTp9W8efPy6//85z/1xz/+Uc8884xH8xnxxn3EnZdnJ5kdwZBXHmEODQ2VJGVkVD5Z9cKFC5WXl6d+/fpJch1tbtu2bfnRZknq0qWLDh486PY5nE5ntZaEhMS6+4PVUEJCYrVzeuPSplNTt9MEJGn56r+ZntWXl7PFRQoKqd4+9c2WL0zP68vLwUN7q3VmF6tN2nsw3fS8vrxsSd9QrX8/GgVLpwuPm573ahdffY356XTJcePGqXnz5tqwYYPS09Ov8IwVrlSWJSk3N1effvqpAgMDNWnSpJ9kTqizzO4UFhZKch1pvlTLli1VUFBQfj0iIkJZWVmGj1W73Ik1yl1Xard/mJO5prlrwisLc2RkpGJjYzVv3jy99957+uqrrzR79my98847klRemOHdOsbLeJqARWrWRmrezmAbuGWxuE4dZ7yRFBopNW7uZjsYsgVK7Xu53659jMTB/NoJaipd201uS3OHOMnila9kDct1110nSfrss8/cbmtUli+6+DgDBgyo+7DVlJ+fr4MHD1aan9ylSxe1aNFCO3bsKF83btw4rVy50oyI8CCv/GfGarVq2bJliomJ0ezZszV9+nSFhobqvvvuk81mK//CX6dOnXTkyBGVlJSU3zczM1MRERFmRccl2v1MatXpCjdaJKtV6jHKo5H8Vngf1zmXq2RxlbfuiZ5M5L8iB15441FVkbNIQSFS5GBPp/JP3ROkwMa6Ymlueo0U0d+jkXAFvXv3liRt3278Tc3qlOVLH+fi671Z3nrrLT366KPq3LmzmjVrpgULFmjt2rXln2QHBwdr+PDhWr16tak5Uf+8cg6zJEVFRWn9+vWV1k2ZMkU9e/ZUkyZNJLmmblx//fVavHix7r33Xm3atEm5ubmq7gnH68NtTybVaL0/s9qk+Fukvcmu03A57BW3NW8rRd8gtWhvXj5/EtBI6neHtOdr6cgPri9TXtSqo9RjpNS0tXn5/EmjptKAO6UfvpSO7at8W2gX15vA6k6RgbHglq6x/v5L6dQlM+0sVqlNlNTjhoZ3HndvfY35/PPPdeDAAe3du9dwu9dee81tWZak7Oxsvfvuu8rNza2PuNU2f/58tWrVSlu2bFFQUJDWrVunu+++u/z20aNHa/v27eXnZfYG3rqP+DqvLcxVSUlJ0cCBAyut+8tf/qJp06Zp0aJFatSokZYuXapGjfgs1FvYAl1lresQKfl/XOt+PlVqdqWjobhqgY2lXr+UohKkDW+41g36NUW5PgSFuH4IprhA+ubCD45e/x9SkxaGd8NVCG4l9ZsonT0lbVrsWjdklmvKBrzHwoULq7XdH/7wB/Xs2VP33HOP4XmWjx8/rl//+td1Fe+qORwOPfzww3r44YervJ3pGA2HzxTmoqIiZWRk6N577620PjIyUhs2bDApFaorsHHFZcpy/Wp0SZGgLNevS+eEU5brV3CrisuUZd+VnZ2t66+/3uwYdebgwYNatmyZ2TH82vH8XL2y7B6dKc6XxWJVdPgAzR73J4/n8JnCHBISIrvd7n5DAACAq5CamqolS5ZUe/vnnnuu/sJAkrQ1Y51u6Hu3hva+VY0CG+uPH96lzLx0dWnf26M5fKYwAwAA1Ke0tDSlpaWZHaNBSvsxSc/+7RZFto/T4ZOZ6hoWrz9MX6kd+5N1/82vqdGFj6pt1kBZrTaP5/PKs2QAAACg4ejdZZiiw6/Ty7OTFBuZoN9O+LOcTqeKS8+oyYVvUu8/tEP5Z44pom1Pj+fjCDMAAAA84mTBYb3w98o/SNO6WTtNG/O82reOlCQdy89WaIsO2pebqsgw18+QF5w9qf/59H49eff/eTyzRGEGAACAh7Ru3q7Kn8HetHOlItrFyO6wy3Lh14i27V2nft1HyW4v0/yld2vmjS+ptUm/dsaUDAAAAJjqwJFd6tw2RufLSnS66KhOFOQpIydFUR37K3nHMmVkb9Ff//mIHnwjUbsPbPZ4Po4wAwAAwFR33vB4+eW/PpguSRra+1ZZrVaN6DNZI/pMNiuaJI4wAwAAwAslxN1udoRyHGF2o0Mr99v443MDAOqfr77GxMfH1/g++7PyJEmRndpXulzfz1sX962t2jy3WftIbZ63WZua3ycz+5AkqUt4WKXLnnju6qAwuzGhv9kJAAD+yldfYxYtWlTj+zy2wPU78vMfnVnpsqdcTWZv4Iv7SPSImt9n+YLVkqSJk2ZWuuwtmJIBAAAAGKAwAwAAAAYozAAAAIABCjMAAABggMIMAAAAGKAwAwAAAAYozAAAAIABCjMAAABggMIMAAAAGKAwAwAAAAYozAAAAIABCjMAAABggMIMAAAAGAgwO4C3e3DPbqUVFpry3HHNmunl6J6mPDcAAABcKMxupBUWasOpk2bHAAAAgEmYkgEAAAAYoDADAAAABijMAAAAgAEKMwAAAGCAwgwAAAAYoDADAAAABijMAAAAgAEKMwAAAGDAqwuzw+HQSy+9pO7du6tx48aKi4tTcnKyoqOjNXPmTLPjoZqcTik/r+L6oZ2S/bx5efyZ0ymdzKq4fvgHyWE3L48/czqkYz9WXD+2z7UOdc9hl47sqbh+4qBrXwcAT/HqX/qbMWOGVqxYoaeeekr9+vXTpk2bNHnyZB07dky///3vzY5XJef58yr7zQOy9omTbdZ/lK+3f/KpHB9/ooC/vC5LSIiJCT2ruFDasUoquKQw714r7flaih4hhfUyL5u/OXPCNdZnTlSs27laCmwi9RwjXdvVvGz+Jj9PSv+HVFxQsS7tUykoROp9k9Syg2nR/M6JTGnnGun8uYp125dJwa2k2HFSyLXmZQPQcHjtEealS5dqyZIlWrVqlR566CENHz5cTzzxhAYNGqSysjL17dvX7IhVsgQGKuCxh+VYvUaO7amSJGdmphzv/E22Rx5qUGX5fLG09SOp4PDlt9lLXcX5yA+ez+WPigullI+kM1X8ivv5c64yd+mRZ1y9ouPStv9zjflPlZyRti2TCo96Ppc/Op0jpX7i+rfkp86ellL+VzqX7/FYABogry3M8+bN05gxY5SQkFBpfbdu3RQYGKjY2FhJ0tNPP62oqChZrVYtX77cjKiXsXSOkPXXU2V/6U9ynjypsvkvyjr+Jllje5sdzaNyd1x4MTP46HRvMh9j14WslAtH4AzGet8Gj8Xxa5mbJXuZqh5rp2v6wP5Nnk7ln/ZtvDD14gpjXVYsHdzi6VQAGiKvLMw5OTnauXOnJk6ceNltWVlZiomJUVBQkCRpzJgxWrt2rYYNG+bpmIasN4+XpVO4ymbdJ9lssk6dYnYkj8vd4X6b4kLpVHb9Z/FnTqeUm+5uI9eR/qLjHonkt84XS0f3yvCNiZyu+cylZz2Vyj+dPS2dzpXxWMv1nQjm6QOob15bmCWpXbt2ldafO3dOycnJlaZjDB48WJGRkTV+DovFUq0lKSnpqv4MFotFltjeUn6+rDeMkCUwsMaPkZSUVO2c3ricPnbO/R9S0p23TTc9qy8vIU2ay15avX1q+JAxpuf15SWyU3S1PxH5Wbc40/P68jKoX2K1xtlRJl3Too3peVncLxf99DILi8Vizv5RE15ZmENDQyVJGRkZldYvXLhQeXl56tevnxmxasSZmSnHhx/JesdEOT74UM6jDW9S49lLvxFl4EwxkxBro+T8OdntZdXalrGunZqMH2NdO9UdP4fDrnOlRfWcBkBD55VnyYiMjFRsbKzmzZun1q1bq0OHDlq+fLnWrFkjSXVSmJ3VPCfRyJTvtOFUFd+kMnrs0vOuecsTbpZt+lQ5T52S/cVXZFswTxZr9d+jJCYm6ksfPnfSnq+l7G3G29gCpaStK2Rr5JlM/mrHKvdTBYKaSbv2b5bFK98m+44tS6X8Q7ryWFukZm2kwycPeDCV/3E6pU1vu/lSn0Vq092mYua/+ITHFrwlyfX6e+llQPL+/cMrXzqtVquWLVummJgYzZ49W9OnT1doaKjuu+8+2Wy28i/8eSvHO+/KEhAg65S7JEm2e/9TzsNH5Pj4E5OTeVZ4H8kaIMngU49O/URZrgMRA9xv0/k6UZbrQJfr5HYOc5eBnkrjvywWqbO7cXRKnaux7wNAbXnty2dUVJTWr1+vM2fOKCsrS3PnzlV6erp69uypJk2amB3vihzbU+VYs1a2xx6RJcB1AN8SHCzbow/J8d4HcmZmmpzQc4JbSfG3SLaffo5xoUC37yVFDvZ4LL/Uor3U+8YrF+KI66SO8R6N5LdCu0rRN1z59u6JUpvuHovj18J6SV0GVX2bxSLF/FJq2dGzmQA0TF45JeNKUlJSNHBg5UMOTz31lN59910dO3ZM6enpmjNnjpKTk9W1qzm/0mDtEy/rqhWXr+8VI+s/GtYRZklqHSFd/x/SoXTXKaIkqd3PpI5xUosw14se6kbbaNeY5qZJmd+61nWIdRXlZm1MjeZ3wvtI13SWclKlrK0X1vV1jXXT1iYG8zMWi9T1eqltlGusc9Jc6zv/3LVvN2lhajwADYjXHmH+qaKiImVkZFz2gyVz585VTk6OSkpKdOLECeXk5JhWllG1RsGuF7iLev3S9UtolOW617iZ1HVIxfWfjaYs15fgVlLU8Irr0SMoy/Ul5Fqpx6iK692GUpYBeJbPHGEOCQmR3c7JNgEAAOBZPnOEGQAAADADhRkAAAAwQGEGAAAADFCYAQAAAAMUZgAAAMAAhRkAAAAwQGEGAAAADPjMeZjNEtesWYN8bgAAALhQmN14Obqn2REAAABgIqZkAAAAAAYozAAAAIABCjO8QlJSkiIiIpSYmKjx48eruLi40u0vvfSStm/ffsX75+bmas6cOeXX//SnP2nIkCGSpLS0NC1cuLBecvsixtpzGGvPYawB1CcKM7zGlClTlJSUpMGDB2v58uXl6x0Oh/71r3+pT58+V7zvunXrNGrUKElSSUmJUlNTy2+Li4vT5s2b5XQ66y27r2GsPYex9hzGGkB9oTDD68THxysnJ6f8elpamrp16ybJdRSpVatWSkxMVEREhMaPHy9JSk5OVkJCgiRp8eLFmjp1aqXH7N69u+HRpYaKsfYcxtpzGGsAdY3CDK+zYcMGRUVFlV/fu3evOnfuLEkaNmyYrrvuOiUlJSkhIUF//vOf5XQ6debMGYWEhOj8+fNKSkrSiBEjKj1mZGSkfvjhB0/+MXwCY+05jLXnMNYA6hqFGV7j/fff1/Dhw3X69Onyoz4/tX//fkVGRkqSsrOz1aFDB6WlpSkuLq78Me68806PZfZVjLXnMNaew1gDqC8UZniNKVOmaP369Xr99ddls9nK13fv3l0HDhyQJO3atUsxMTGy2+2yWl2776VzD/fs2aM33nhDY8aM0a5du/Taa69Jcr1I9ujRw7N/IC/GWHsOY+05jDWA+kJhhteLi4tTRkaGpIoXu5KSEh09elR5eXlKSUlR//79JUkLFizQ559/rrVr1yomJka/+c1vJEkZGRmKj48364/gMxhrz2GsPYexBlBb/NIfvEJiYqISExOrvM1qtWro0KHavn27Hn/88fL16enpkqRbb721/EjRpb755htJri/8DBo0qMptGiLG2nMYa89hrAHUJwozfMJDDz10xdtuv/12w/vGxcWVz0+Ee4y15zDWnsNYA6gN3i4DAAAABijMAAAAgAGmZLjx4J7dSissNOW545o108vRPU15bgAAALhQmN1IKyzUhlMnzY4BAAAAkzAlAwAAADBAYQYAAAAMUJgBAAAAAxRmAAAAwACFGQAAADBAYQYAAAAMUJgBAAAAAxRmAAAAwIBXF2aHw6GXXnpJ3bt3V+PGjRUXF6fk5GRFR0dr5syZZsfDVXI4zE7g35zOSy4z1vWq0lg7r7wdao+xBmAmry7MM2bM0Ny5czVr1ix99tlnuv322zV58mTt379f/fr1MztelZznz+v8f94v+5t/rbTe/smnOn/3VDmLikxKZp4jGdKWDyuub/yztG+jdP6ceZn8kdMpHUqXvnuvYt03b0mZ30r2UvNy+SOHQ8raJm1aXLFu09tS1lbJYTcvlz+yn5cOfOfaly/69m9S7g6KMwDP8dqfxl66dKmWLFmipKQkJSQkSJKGDx+ubdu2acWKFerbt6/JCatmCQxUwGMPq+w3c2S5boCsfeLlzMyU452/yfbCH2QJCTE7okf9+I2rsMlSse58sesF8Mgeqf9kKaipafH8htMpff+FqzBfOtYlRa7/B0f3Sv3ukAIamRbRbzjs0o5V0vEfK68/ly9lrJeOZ0rxt0hWmzn5/Im9VNq2XMo/VHn9meOu/f1UjhQzVrJYqr4/ANQVrz3CPG/ePI0ZM6a8LF/UrVs3BQYGKjY2VqdOndKNN96oqKgoxcXFafTo0dq3b59JiStYOkfI+uupsr/0JzlPnlTZ/BdlHX+TrLG9zY7mUScPXijLklTFkaBzp6Uf1nkykf86/P2FsixVOdaFR6R9GzwayW9lbb28LF/q5AHpwL89Fsev7fvX5WX5Uod3S4d2ei4PgIbLKwtzTk6Odu7cqYkTJ152W1ZWlmJiYhQUFCSLxaI5c+YoIyNDaWlpuvHGGzV9+nQTEl/OevN4WTqFq2zWfZLNJuvUKWZH8rjs7ap0tLMqx/ZJxQUeiePXsrfJ7Vgf2imVlXgkjt9yOi7s127kbGdqRm3ZS6VDO9xsZJGytzI1A0D989rCLEnt2rWrtP7cuXNKTk4un47RsmVLjRw5svz2wYMHKzMzs1rPYbFYqrUkJSVd1Z/BYrHIEttbys+X9YYRsgQG1vgxkpKSqp3TG5eDOwuqPNr5U79KvMv0rL68BAU2UcFhuR1rR5k0IGaE6Xl9eQm7NlIlhe736dKzUpewn5me15eXuOjrZT/vZqCdUtFxqVlwS9PzsrhfLvrpZRYWi8Wc/aMmvLIwh4aGSpIyMjIqrV+4cKHy8vKu+IW/RYsW6eabb67veNXizMyU48OPZL1johwffCjn0aNmR/I4azUncVZ3O1StJuPHWNeOrSZjbWGsa6Mm48d+DaC+eeWX/iIjIxUbG6t58+apdevW6tChg5YvX641a9ZIUpWF+bnnntO+ffv09ddfV+s5nNX8DG9kynfacOpk9cNLcpaed81bnnCzbNOnynnqlOwvviLbgnmyWKv/HiUxMVFf+vBnjSkfSadz5fbI5ydr31NI6HvGG+GKnE7X2RrOnXazoUXatH0dX7KsBUeZtOEvUlmx8Xa2RtK+7J2y1fyDJVxQek7a+Ib7UyM2biblF51QDQ8WwQSPLXCd6sTpdFa6DEjev3945RFmq9WqZcuWKSYmRrNnz9b06dMVGhqq++67TzabTbGxsZW2f/7557V69WqtXbtWwcHBJqWu4HjnXVkCAmSdcpckyXbvf8p5+IgcH39icjLPCo+XcVm2SC07SCGhHgrkpywWKbyPu42ktlGckaS2rAFSh1j324X1FmW5lho1kdr1kNu5+R37cJYMAPXPK48wS1JUVJTWr19fad2UKVPUs2dPNWnSpHzdc889pzVr1mjdunVq2bKlh1NezrE9VY41axXw+quyBLiG1xIcLNujD8n+X0/K2r+vLF26mJzSM9pES233uk4fdxmL6xRnPxvt8Vh+qWO86wuUp7KruNHiKsrdEz0cyk91+bl0IlMqOlb17U2vkSIHeTaTv+qW4Dp1XHGhqnzz3bKDFO6dZxgF4Ge8tjBXJSUlRQMHDiy/vmvXLj377LPq2rWrEhMTy9enpqZ6PtwF1j7xsq5acfn6XjGy/qNhHWG2WKRev5JCrnWdxaH07MUbpGu7Sd2GSk1bmxrRb1htUvyt0v5NUm5axdkwLFapbQ+p+zApqGGdArzeBARJ/Se5fnzn0E7XNA3JdfS5fYxrvw5sbG5GfxHUVBpwl+uUiIe/r5ieYWvkOtLf9XrJ5lOvYgB8lc/8U1NUVKSMjAzde++95etiYmK8an4LLmexSl0GShEDpMKjrnIR3IryVh9sAa5iHDlIKjwmySEFt5YamT9Lye8EBEk9RrrKcdFx17qQUNd61K2gpq4fJ4lKlM6ckGSVml3LlBcAnuUzhTkkJER2Oyc29VVWm9SivdkpGgZboNQyzOwUDUNAkGtaAOpfYBOpZUezUwBoqLzyS38AAACAt6AwAwAAAAYozAAAAIABCjMAAABggMIMAAAAGKAwAwAAAAYozAAAAIABCjMAAABgwGd+uMQscc2aNcjnBgAAgAuF2Y2Xo3uaHQEAAAAmYkoGAAAAYIDCDAAAABigMAMAAAAGKMwAAACAAQozAAAAYIDCDAAAABigMAMAAAAGKMwAAACAAQozAAAAYIDCDAAAABigMAMAAAAGKMwAAACAAQozAAAAYIDCDAAAABigMF/B6NGjFR8fr969e+u2225TQUGB2ZEAAGiwkpKSFBMTo27duumee+6R3W43OxIaEArzFSxbtkypqalKT09Xx44d9corr5gdCQCABsnhcOiee+7RsmXLtG/fPhUUFOiDDz4wOxYaEArzFbRo0UKS6y9pcXGxLBaLyYkAAGiYtmzZorCwMPXs2VOSNGPGDH388ccmp0JDQmE2cMstt6hNmzbas2ePHnzwQbPjAADQIOXk5Cg8PLz8eqdOnZSdnW1iIjQ0AWYH8GaffPKJSktLNWPGDC1fvlzTpk0zOxIAAD6hoOis3l/xucrsjkrr//vdjy+7bLFIk8fdoGtbt6zysZxOZ73lBKqDI8xuNGrUSJMmTdInn3xidhQAAHxG85Bg9YqOVN7RE8o7eqJ8/U8v5x09oW4RHa5YliUpPDy80hHlrKwsdezYsV5yA1WhMFehsLBQeXl5klxzmFetWqWYmBiTUwEA4FuGDuitzh3bGW7T7trWGj10gOE2/fv3V05Ojnbv3i1JWrx4sSZMmFBnOQF3KMxVKCws1Lhx4xQbG6vY2FiVlZXpySefNDsWAAA+xWq16vYbhyuoUWCVt9su3B4QYDN8HJvNprffflu33XabunbtqpCQEE2ZMqU+IgNVYg5zFcLCwrRly5Yqb3M6nZwxAwCAamrdopluumGwln+WfNlto4f1V1iba6r1OCNGjCg/wgx4GoW5hpK/S1Pu4WO646YRCrAZvyMGAABSv95R2r3voHbvPVC+rnPHdho6INa8UPAqxWfPKH3bZk3d/S9t3/2jIrpGq6RkqoKCgsyOJskPpmSkp6fr1ltvVWhoqBo3bqzu3bvriSeeqJfnKikp1Ybv0lR6voyyDABANVksFk0YM1QhwU0kSY0aBer2XyXKavX5GoI6sGTJEv3PvEf09epl+vvf/66dWzdp9f++o/DwcG3atMnseJJ8vDBv3bpVAwcO1K5du/Tiiy9qzZo1euyxx3T48OF6eb5N23bpbHGJRl7fr14eHwAAfxUS3EQTxg6TJN10wyC1btnc5ETwBitXrtT06dNlLyuTJNnt9vLTCJ44cUKjR4/Wnj17zIwoSbI4ffjkhomJidq9e7f27t1b/st81fXYgrfqKRUAAADccTqdemfRH3TiaN4Vz7VtsVgUO+B6jZlQ91/ynP/ozGpv67NHmM+ePauNGzdq8uTJNS7LAAAAMNexw7k6fuSQ4Q/TOJ1O7dr2nRx2uweTXc5nv/R36tQpORyOqz5xeU3eVZSUlGrBX5YqPKyNpk8ce1XPBwAAgArr1q3Tu//tfruysvP6r9mT1KpVq/oPdQU+W5hbtWolq9Wq3Nzcq7r/1UzJ2LM/m6kcAAAAdeBIbla1trPabJr3xkey1fEJFxrElIzg4GANGzZMS5cuVUFBgdlxAAAAUANtwsLVOrStpCv/voXFYlHPuAF1XpZryqe/9Ld161YNGzZMEREReuSRRxQREaGsrCxt3LhRb7/9dp08x/rN2/X5hi26b8rNCg9rUyePCQAAAOmjjz7S5MmTq7zNarUqMDBQKSkp6tWrl4eT/SSLqc9eS/369dPmzZvVvXt3PfDAA/rlL3+pF154QWFhYXXy+CUlpdr47x2KjgynLAMAANSxSZMm6dVXXy0/gmy1WssvN23aVKtXrza9LEs+foS5vuUdPaEPPl2nSTeOoDADAADUk9zcXP31r39VamqqAgICNGLECN19991q3tw7ztdNYXbD4XDwS0QAAAANGIUZAAAAMMChUwAAAMAAhRkAAAAwQGEGAACAxz3wwAMaOnSofve731V5+2effaYePXpoyJAhHk52OQozAAAAPGrbtm0qKirSxo0bVVpaqi1btly2zcCBA5WWlmZCustRmAEAAOBR3377rUaNGiVJGjlypDZv3qyHH35YDodDY8aMUVZWllq1aqWgoCCTk7pQmAEAAOBRp0+fLj/HcosWLXT69GkdOXJEM2fO1E033aROnTqZnLCyALMDAAAAoGFp0aKFCgoKJEkFBQVq2bKlZs2apbFjx+r11183Od3lOMIMAAAAjxo0aJC++uorSdKXX36pgQMHau7cuXrmmWc0f/58k9NdjsIMAAAAj+rbt68aN26soUOHymazadOmTbrlllv04IMPKj09Xbt27VJKSopGjhypnTt3auTIkSouLjYtL7/0BwAAABjgCDMAAABggMIMAAAAGKAwAwAAAAYozAAAAIABCjMAAABggMIMAAAAGKAwAwAAAAYozAAAAIABCjMAAABggMIMAAAAGKAwAwAAAAYozAAAAIABCjMAAABggMIMAAAAGKAwAwAAAAYozAAAAIABCjMAAABg4P8DaURrkk7Dm34AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "qc.p(-pi/2,0).c_if(c,1)\n", + "qc.draw('mpl')" + ] + }, + { + "cell_type": "markdown", + "id": "fdc695d1-c521-4d06-a8c9-19d58d30b8c1", + "metadata": {}, + "source": [ + "#### Application of the Control-$U$ gates and x-measurement (for step 2)\n", + "We apply the $CU$ operations as we did in the first step. For the second step we have $t=m-2$, hence $2^t=2$. So we apply $\\text{MCP}(\\pi/4)$ $2$ times. And then we perform the x-measurment of the qubit $q_0$, storing the phase bit $\\varphi_2$ in the bit $c_1$." + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "id": "b27201e4-e358-4e96-96b7-e8eb8244000d", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9wAAADWCAYAAAAjI4rmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAw50lEQVR4nO3de3gU9d3//9fu5kQIBDByDAQCJEhIwkEQEEhAoFgVPKHQyg8p3nCjVm098dNaq1iKeChfvXvQolKr0n5BEOqtKLUkgKAlkIQASkAOORDOh3AMJLvfPwZygCS7IZmd3c3zcV1zXdmZ2d0XH8f57HvmMzM2l8vlEgAAAAAAaFB2qwMAAAAAABCIKLgBAAAAADABBTcAAAAAACag4AYAAAAAwAQU3AAAAAAAmICCGwAAAAAAE1BwAwAAAABgAgpuAAAAAABMQMENAAAAAIAJKLgBAAAAADABBTcAAAAAACag4AYAAAAAwAQU3AAAAAAAmICCGwAAAAAAE1BwAwAAAABgAgpuAAAAAABMQMENAAAAAIAJKLgBAAAAADABBTcAAAAAACag4AYAAAAAwAQU3AAAAAAAmICCGwAAAAAAE1BwAwAAAABgAgpuAAAAAABMQMENAAAAAIAJKLgBAAAAADBBkNUBfN2SDKnwmDXf3aGldOf11nw3AMB8/trHPPbYY8rKymrQPJ7o3bu35s2bd1XvtSqzVL/cVm0j9dk+tv9bOnmwYfN4qllrKX6ENd8N+Br6mLqpz766NhTcbhQek36wqNMAAAQ2f+1jsrKylJ6ebnWMOvHHzJJ/biMnD0rHC6xOAcAf9x+S/+6va8KQcgAAAAAATEDBDQAAAACACSi4AQAAAAAwAQU3AAAAAAAmoOAGAAAAAMAE3KUcAAAAlnr8T6n6bu96ORzBstsdatcqVj+96VcamnSX1dEAoF44ww0AAHxOcHCw1RHgZT8d+Zz++dtTWvKbIxree6Je+vBeFRzKtToWgAAUFBQkm83mne/yyrcAAIBGKSwsTKNHj1b//v3Vq1cvhYeH69y5c/ruu++UkZGhFStW6NSpU1e8Z/ny5crIyNAzzzxjUXJYxeEI0tjBD2r+Z09rd1GOoq+NszoSAB8VHBysUaNGacCAAUpMTFRERIRKSkq0ffv28j7mxIkTV7znH//4h4qKivTwww/L5XKZmpGCG17lckleOpjUqF3ab9DW5qOtvYe29i+RkZF65plnNHXqVF1zzTVXLB87dqwkqbi4WO+//75mzZqlgwcPlhfbo0aNUmJioubNm6eDBw96Oz4sdKH0vJat+4OCHMGKbZ9sdRxLsd/zHtravzRt2lRPP/20pk2bpjZt2lyx/LbbbpMknT59Wh9++KFmzZqlgoKC8mL7jjvu0NGjRzV37lzt3bvX1Kw+XXA7nU69/vrreuutt5Sfn6/4+Hi98cYbmjZtmlJSUvT2229bHfEKi19KVadeIzXg9l95NL8xOF4o5W2UDu+SnGVSeEspurfUIVFyMGKwQR3eLeVvko7uleSSIq6VovtI7XpKdofV6QKHyyUdzJXyM6UT+4x5zdtJHftIbeLprBuS0ynt32a09amDkmxSy45Sp75SVFer03mfv/QxP/rRj/TOO++oQ4cOkqSNGzfqiy++UFZWlk6cOKGIiAglJydrxIgRGjJkiB5++GFNnDhRjz76qCZPnqxRo0Zp//79GjFihFeL7cmTJ+v+++/X8OHDPVr/0hn4L7/80uRknvOXbaQ6H331Wy1Kf1XBjhC1j+qmX/9/H6tDVDerY3mdy2X8ZsrfJB3Ll+SSmrW52J9fJ9m4ILTBuFzSge+NPqZ4vzEvsoPRn7fu3jj7c3/YhwwbNkwLFixQly5dJEmbN2/W559/rszMTB07dkxNmzZVYmKiUlNTNXz4cE2bNk333nuvHn/8cd1yyy3lxfbIkSNNL7YlHy+4p06dqiVLlui5555Tv379tG7dOk2cOFGHDh3SL3/5S6vjwQP5mdL2ryTZJF08cnjmqJT7b+NHdN/xUlColQkDxw9rpd3fqEpbnzwkffeFdHC7lHy7ZPfp/+P9g8slffeltC9HVdr6xD7pRKHxIynh5sbZSTc0Z5m0ebl0+AdVtLVLOppnHFSK6S91G0Zb+5opU6Zo/vz5stvtWr9+vR577DH95z//uWK9JUuW6Pnnn1evXr302muvafTo0frggw8kqbzY/u6777wdvwq73a45c+bo/vvvV1hYmL788ktNnz5dR44ckSQtW7ZMY8eO9amC25/95KZn9dOR1v+Yt5LLJe1Il/IyVKWPKT4gbftcOrRDSryNg+gNweWUtn4u7f9OVdr6eIF0PF/qkCz1GEkf42vuvvtuffTRRwoODlZmZqYeeeQRrV279or1li5dqhdffFHx8fGaM2eObr/9ds2fP1+SyovtzMxMr2T22WNkCxcu1IIFC7R8+XI98cQTGj58uJ599lkNGjRIpaWl6tu3r9UR4caJfReLbal8J1ZZ8f5Ky1EvB3deLLalqm198e8je6Qf1nk5VIAqzL5YbEvVtvX+bcZZCdTf7m8uFttStW29d4NxMAm+45Zbbikvtl944QUNGTKk2mK7si1btmjcuHH6/vvvy+e98cYblhfbkjRz5kyNGzdON9xwg6KjoyVJf/vb38qXXyq4gYZy4PuLxbZU7X7v0E5pz7feThWY8jZdLLalatu6Sn8PnzBs2LDyYvv111/XgAEDqi22K9u+fbvuuecebdpU8eNs/vz5Xiu2JR8uuGfPnq0xY8YoJSWlyvxu3bopODhYSUlJkqQ9e/YoJSVFcXFxSkxM1Jo1a6yIi2rkZ8o4YliL/d9LJae9Eieg5W2U27YuyJLKLngjTeByuS62tRt5GyuuBcPVcZZe3IfUxibt9eC/B7yjVatW5cX2r3/9a/3mN7+R0+l0+75L12z36NGj/MY2M2fOVMeOHc2O7Na0adP08ssva/fu3SouLtZTTz2lm2++WZ06dZJkDGMsKyvjJAAajCf9eX6mMQIIV8/l9KA/t0l7M+jPfUXTpk21YMECBQcH67XXXtPjjz+u0tJSt++7dM123759y2/Q+cgjjyg+Pt7syOV8suAuKCjQli1bNH78+CuW5eXlKSEhQaGhxjjk6dOn695771Vubq7eeustTZgwQefPn3f7HTabzaMpPT2tzvn/s+y3+tO0FlWmfbm1H32pTnp6msc5fXHauel4tWe2K3M5pZuHTLQ8qz9PIUGhOn7xGq/alJ2X+vZItTyvP09tW8XozDH3/++eK5Y6tYm3PK8/T726DlTpOTcN7ZKKi6SmYc0tz3u1k7/2Menp6Vd83vPPP6+2bdtq9erVeumllzzKUPkGafv379egQYO0ZMkSNW/eXK+88ko1mdMbNHNtIiMjFRMTo40bK36V79q1SydOnFBycsWNvJYtW6Zx48bV+ln1y51Wp9xSw2wj9ds+6p65ofjzb6eIJi2M64jd9OcXzko9uwywPK8/T53bXaeSk242JpdxGWSblh0tz3u109X+v2j9PuTK/fXTTz+tLl26aNOmTZo5c6ZHGS6/QdqwYcP03nvvKSwsTPPmzasmc3qdcnrKJ6/oLCgokCS1bdu2yvyzZ88qPT1dN998syTp8OHDWrt2rZYvXy5JGjx4sNq3b69Vq1bpRz/6kXdDVzJg3LPV3migsQny8I5oQY4Qk5MENkcd7jwXHERb10dd2o/tun7q0n6Nra19sY+JiIjQ/fffL0keP2Ll8mL70jXbjzzyiMaOHas777xT7dq1U1FRkcnpq9esWTNJuuJxMsePH1fz5s3LX//v//6vfve73+n555/3ar7a+OI24s5rM9KsjmC5YPZ7XlOnPqYR/nbytX1ISEiIpk2bJsk4O12XM9uVb5CWmZmpJ554Qvfee6/GjBmjbt26aefOnWbH980z3FFRUZKk3NzcKvPnzp2roqIi9evXT5JxtrtNmzblZ7slqUuXLh7dbc7lcnk0paSkNtw/rI5SUlI9zumLU+tOTd0Oi5KkxZ/+1fKs/jydOXdKoRGebVNrN3xpeV5/nvbu2+HRnfXtDmnH3hzL8/rztCFntUf7j5Bw6fjJw5bnvdrJX/uYyy/3Gjt2rJo3b67Vq1crJ8f9RY81FduSVFhYqE8++UTBwcGaMGHCZZlTGiyzOydPGqe/IiMjq8xv0aKFiouLy1/HxMQoLy+v1s+qX+7UOuVuKPXbPqzJXN/cVk9Hig8quIkH/0ibtGnLWsvz+vO0fXe2Rzeec4RI+ft/sDzv1U7++v/i5fvrUaNGqU2bNsrOztbXX3/t9rtrKrYl44ZpCxculCTdd999l2VOqVNOT/lkwR0bG6ukpCTNnj1b77//vr766ivNmDFD7777riSVF9zwbdG9VfuwKJvUrLXUvG0t68Atm814VEjtK0lRsVJYczfroVaOYKldL/frtUuQGuEB8QYV2lS6tpvcFt0dknlEji8YMGCAJOnzzz93u25txfYllz6nf//+DR/WQydOnNDevXurXJ/dpUsXRUZGavPmzeXzxo4dq2XLllkREQHGbpei3T123Ca1iZNCmnolUsAKCpXaXie3fUz7RMnhk+OBG5e69DG1FduXeLuP8cmfKXa7XYsWLVJCQoJmzJihKVOmKCoqSg899JAcDkf5DdM6deqkAwcOqKSkpPy9u3fvVkxMjFXRUUnb66SWnWpYaDM6lh6jvBopYHXsYzxzu1o2o/jrnurNRIErduDFAxfVddI2KTRCih3s7VSBqXuKFBymGn8QNb1Girneq5FQg8TERElye9dXT4rtyp9zqb+3yttvv62nn35anTt3VrNmzfTyyy9rxYoV5SPpwsPDNXz4cH366aeW5kTg6HS9sW+rls3YJ3Yb6tVIASv2RuPgbk39eVik1OUGb6dCdTztYzwptit/jrf6GJ89ZhMXF6dVq1ZVmTdp0iT17NlTTZoY422ioqJ044036p133tGDDz6odevWqbCwUMOHD7cisiTp7l+l1Wl+ILM7pN53GM+T3JdT9Y6azdtI8TdJke2syxdIgkKkfvdK2/9tPFLEVenGwC2jjedINm1lXb5AEtJU6v8T6ft/GY9nqSyqi3EQydMh/qhdeAujrb/7l3Ss0pVCNrvUOk7qcZNxlqIx8dU+5osvvtCePXu0Y8eOWtd788033RbbkpSfn6/33ntPhYWFZsT12Jw5c9SyZUtt2LBBoaGhWrlyZZUhiKNHj1ZmZmb5c7l9ga9uI/BMcJjUb4Lx2NQD21VlpGCrTkYf06SFVekCS1iziv788K5KC2zGCKseI43LlhobX9yHrFq1SkePHtW2bdtqXe93v/ud22Jbkvbv36/33ntPR48eNSPuFXy24K5ORkaGBg4cWGXen//8Z91///2aN2+eQkJCtHDhQoWEMJbTVziCjR1W1yFS+v8Y826YLDWr6WwsrlpwmNTrx1JcirT6T8a8QT+j0DZDaISUfLtxN/K1bxvzbvwvqUlkrW/DVQhvKfUbL505Jq17x5g3ZPrFsxLwGXPnzvVovRdffFE9e/bUAw88UOtztg8fPqyf/exnDRXvqjmdTj355JN68sknq13OcHKYIaSJlHirFDdcWnOxPx/8gHEQEg0rrLnU+07p7Anp678Y84ZMM4px+I4333zTo/Xmzp2rG264QY888kitZ8PPnDnj1T7GbwruU6dOKTc3Vw8++GCV+bGxsVq9erVFqeCp4LCKvym2zVX5ui6KbXNVviaeYttc4S0r/qbY9l/5+fm68cYbrY7RYPbu3atFixZZHSOgHT5RqNcXPaDT507IZrMrvmN/zRj7e6tjeUXlfR3Ftrkq9+EU2/7r4MGDGjrU96658JuCOyIiQmVlZe5XBAAAuApZWVlasGCBx+u/8MIL5oWBJGlj7krd1Pc+DU28SyHBYfrdRz/V7qIcdWmXaHU0APCI3xTcAAAAZsrOzlZ2drbVMRql7B/S9Ju/3qHYdsnaf3S3urbvrRenLNPmXel6+PY3FXJxqJzDHiy7J89zAgAf4ZN3KQcAAEDjkdhlmOI7DtBrM9KUFJuiR+78o1wul86dP60mF+9EuWvfZp04fUgxbXpanBYAPMcZbgAAAHjF0eL9+u2HE6rMa9Wsre4f85LatYqVJB06ka+oyA7aWZil2PbGg6mLzxzV/3zysH513//1emYAqA8KbgAAAHhFq+Zt9dqMtCvmr9uyTDFtE1TmLJPNZgzA3LRjpfp1H6WyslLNWXifpt36qlo1b+vlxABQPwwpBwAAgKX2HNiqzm0SdKG0RMdPHdSR4iLlFmQoLvp6pW9epNz8DfrL/z6lx/+Uqm171lsdFwA8xhluAAAAWOonNz1T/vdfHs+RJA1NvEt2u10j+kzUiD4TrYoGAPXCGW4AAAD4nJTke6yOAAD1xhluNzq0bJzfDQAwn7/2Mb17967ze3blFUmSYju1q/K32d/bEO+tr/p8t1XbSH2+t1nrur9nd/4+SVKXju2r/O2N7wYCFX2M9/qY2lBwu3Hn9VYnAAAEKn/tY+bNm1fn98x8+W1J0pynp1X521uuJrMv8MdtJH5E3d+z+OVPJUnjJ0yr8jeAq+eP+w/JP/uY2jCkHAAAAAAAE1BwAwAAAABgAgpuAAAAAABMQMENAAAAAIAJKLgBAAAAADABBTcAAAAAACag4AYAAAAAwAQU3AAAAAAAmICCGwAAAAAAE1BwAwAAAABgAgpuAAAAAABMQMENAAAAAIAJKLgBAAAAADBBkNUBfN3j27cp++RJS747uVkzvRbf05LvBgAAAADUDwW3G9knT2r1saNWxwAAAAAA+BmGlAMAAAAAYAIKbgAAAAAATEDBDQAAAACACSi4AQAAAAAwAQU3AAAAAAAmoOAGAAAAAMAEFNwAAAAAAJiAghsAAAAAABP4dMHtdDr16quvqnv37goLC1NycrLS09MVHx+vadOmWR0PHnK5pBNFFa/3bZHKLliXJ5C5XNLRvIrX+7+XnGXW5QlkLqd06IeK14d2GvPQ8Jxl0oHtFa+P7DW2dQAIVC6XdGRPxesD2+nPzeJ0Sgd3VLw+vIv+HA0ryOoAtZk6daqWLFmi5557Tv369dO6des0ceJEHTp0SL/85S+tjlct14ULKv35L2TvkyzH9P8qn1+29BM5P16qoD//QbaICAsTete5k9Lm5VJxpYJ72wpp+7+l+BFS+17WZQs0p48YbX36SMW8LZ9KwU2knmOka7taly3QnCiScv4pnSuumJf9iRQaISXeJrXoYFm0gHNkt7TlM+nC2Yp5mYuk8JZS0lgp4lrrsgGAGU4ekjYvk84er5iX808pJFxK+LF0TWerkgWeYwXGb6WSUxXzspZIYc2N/jyynXXZEDh89gz3woULtWDBAi1fvlxPPPGEhg8frmeffVaDBg1SaWmp+vbta3XEatmCgxU080k5P/1MzswsSZJr92453/2rHE890aiK7QvnpI1/l4r3X7ms7LxReB/43vu5AtG5k1LG36XTR69cduGsUQxWPvONq3fqsLTp/xptfrmS09KmRdLJg97PFYiOF0hZS419yeXOHJcy/iGdPeH1WABgmrPHjd9O1e3bzp81isHjhV6PFZCKDxgHcEtOX7ns3Emjr698EgO4Wj5bcM+ePVtjxoxRSkpKlfndunVTcHCwkpKSJEm//vWvFRcXJ7vdrsWLF1sR9Qq2zjGy/2yyyl79vVxHj6p0ziuyj7tN9qREq6N5VeHmix1GLUM/d6QzbKch5GVcPANYS1vvXO21OAFt93qprFTVt7XLGPK3a523UwWmnWsuDh2voa1Lz0l7N3g7FQCYZ88GqbRENe73XC7ph7XeThWYdn1tDCevqa3LSqXd33g7FQKRTxbcBQUF2rJli8aPH3/Fsry8PCUkJCg0NFSSNGbMGK1YsULDhg3zdsxa2W8fJ1unjiqd/pDkcMg+eZLVkbyucLP7dc6dlI7lm58lkLlcUmGOu5WMkQanDnslUsC6cO7idV61XT/sMq7nPn/GW6kC05njF8/iuLlWe98WrmsEEBicpVLRVjcruYzfTZWHm6PuSk4b12q7688PbL94AASoB58tuCWpbdu2VeafPXtW6enpVYaTDx48WLGxsXX+DpvN5tGUlpZ2Vf8Gm80mW1KidOKE7DeNkC04uM6fkZaW5nFOX5yOHzrr/h8p6Sd3T7E8qz9PEU2aq+y8Z9vU8CFjLM/rz1Nsp3iPR2Rc1y3Z8rz+PA3ql+pROztLpWsiW1uel8n9dMnlfzMx2WxsHzabTVGt2spZ6lkfc0PfYZbn9ecpIa6PR+3sckqdo7tbnpfJ/WTFPsRTPllwR0VFSZJyc3OrzJ87d66KiorUr18/K2LViWv3bjk/+rvs946X84OP5DrY+C7qPFP5jlK1OH2OizDro+TCWZWVedZD09b1U5f2o63rx9P2czrLdPb8KfcrAoCPO1tySk4Pj+rSx9RPnfpzbhaCevLJu5THxsYqKSlJs2fPVqtWrdShQwctXrxYn332mSQ1SMHt8vCZMiMzvtXqY9Xciaq2zz5/wbhu+87b5ZgyWa5jx1T2yutyvDxbNrvnxzhSU1P1Lz9+9s32f0v5m2pfxxEspW1cIkeIdzIFqs3L3Q91Dm0mbd21XjafPMzmPzYslE7sU81tbZOatZb2H93jxVSBx+WS1s13c1M0m9S6u0PnGL/vF2a+/LYko/+t/DcgsX1ckrVEOrxbtfbnTVpIOwuzVYcTbLiMyyX952/GHeFr689bdJCOnWp8J838kS/vQ3zyp7fdbteiRYuUkJCgGTNmaMqUKYqKitJDDz0kh8NRfsM0X+V89z3ZgoJkn/RTSZLjwf+Wa/8BOT9eanEy7+rYR7IHSaqlQ+jUTxTbDSCmv/t1Og8QxXYD6DJAbq/56jLQW2kCl80mdXbXji6pswfbPgD4i5j+cnvvii4DRbFdTzab1PkGue3PO9/grUQIZD778zsuLk6rVq3S6dOnlZeXp1mzZiknJ0c9e/ZUkyZNrI5XI2dmlpyfrZBj5lOyBRkDCGzh4XI8/YSc738g1+7dFif0nvCWUu87JMfl4ygudhLtekmxg70eKyBFtpMSb625oI4ZIEX39mqkgBXVVYq/qebl3VOl1t29Fiegte8ldRlU/TKbzXgebYto72YCADO17Cgl3FxzQR072Ng3ov7axEvdU2pYaJN6jJSiung1EgKUTw4pr0lGRoYGDqx6yuO5557Te++9p0OHDiknJ0ePPfaY0tPT1bVrV0sy2vv0ln35kivn90qQ/Z+N6wy3JLWKkW78L2lfjvGIH0lqe50UnSxFtucIbUNqE2+0aWF2xWMsOiQZhXaz1pZGCzgd+0jXdJYKsqS8jRfn9TXaumkrC4MFGJtN6nqj1CbOaOuCbGN+5xuMbbtJpKXxAMAU7RKMg4mFm6U93xrzonsbv50irrU0WsCJ6S9FxRr9y6XLIDtdb7R3eAsrkyGQ+OwZ7sudOnVKubm5Ve5QLkmzZs1SQUGBSkpKdOTIERUUFFhWbKN6IeFVh+T0+rFxTQzFdsMLayZ1HVLx+rrRFNtmCW8pxQ2veB0/gmLbLBHXSj1GVbzuNpRiG0BgaxJp7Osu6TGSYtssTa8x+vBL4lIpttGw/OYMd0REhMrKeNgqAAAAAMA/+M0ZbgAAAAAA/AkFNwAAAAAAJqDgBgAAAADABBTcAAAAAACYgIIbAAAAAAATUHADAAAAAGACCm4AAAAAAEzgN8/htkpys2aN8rsBAAAAAPVDwe3Ga/E9rY4AAAAAAPBDDCkHAAAAAMAEFNwAAAAAAJiAghs+IS0tTTExMUpNTdW4ceN07ty5KstfffVVZWZm1vj+wsJCPfbYY+Wvf//732vIkCGSpOzsbM2dO9eU3P6ItvYe2tp7aGsAjQ37Pe+hrVEfFNzwGZMmTVJaWpoGDx6sxYsXl893Op36+uuv1adPnxrfu3LlSo0aNUqSVFJSoqysrPJlycnJWr9+vVwul2nZ/Q1t7T20tffQ1gAaG/Z73kNb42pRcMPn9O7dWwUFBeWvs7Oz1a1bN0nGEcaWLVsqNTVVMTExGjdunCQpPT1dKSkpkqR33nlHkydPrvKZ3bt3r/XIY2NFW3sPbe09tDWAxob9nvfQ1qgrCm74nNWrVysuLq789Y4dO9S5c2dJ0rBhwzRgwAClpaUpJSVFf/zjH+VyuXT69GlFRETowoULSktL04gRI6p8ZmxsrL7//ntv/jP8Am3tPbS199DWABob9nveQ1ujrii44TP+9re/afjw4Tp+/Hj5EcHL7dq1S7GxsZKk/Px8dejQQdnZ2UpOTi7/jJ/85Cdey+yvaGvvoa29h7YG0Niw3/Me2hpXi4IbPmPSpElatWqV/vCHP8jhcJTP7969u/bs2SNJ2rp1qxISElRWVia73dh8K18Xs337dv3pT3/SmDFjtHXrVr355puSjB1gjx49vPsP8mG0tffQ1t5DWwNobNjveQ9tjatFwQ2fl5ycrNzcXEkVO7KSkhIdPHhQRUVFysjI0PXXXy9Jevnll/XFF19oxYoVSkhI0M9//nNJUm5urnr37m3VP8Fv0NbeQ1t7D20NoLFhv+c9tDXcCbI6ACBJqampSk1NrXaZ3W7X0KFDlZmZqWeeeaZ8fk5OjiTprrvuKj+KWNnatWslGTezGDRoULXrNEa0tffQ1t5DWwNobNjveQ9tjfqg4IZfeOKJJ2pcds8999T63uTk5PJrZ+Aebe09tLX30NYAGhv2e95DW6M2HEoBAAAAAMAEFNwAAAAAAJiAIeVuPL59m7JPnrTku5ObNdNr8T0t+W4AAAAAQP1QcLuRffKkVh87anUMAAAAAICfYUg5AAAAAAAmoOAGAAAAAMAEFNwAAAAAAJiAghsAAAAAABNQcAMAAAAAYAIKbgAAAAAATEDBDQAAAACACSi4AQAAAAAwgU8X3E6nU6+++qq6d++usLAwJScnKz09XfHx8Zo2bZrV8XCVnE6rEwQ2l6vS37S1qaq0tavm9VB/tDWAxob9nvfQ1jCTTxfcU6dO1axZszR9+nR9/vnnuueeezRx4kTt2rVL/fr1szpetVwXLujCfz+ssrf+UmV+2dJPdOG+yXKdOmVRMuscyJU2fFTxes0fpZ1rpAtnrcsUiFwuaV+O9O37FfPWvi3t/kYqO29drkDkdEp5m6R171TMWzdfytsoOcusyxWIyi5Ie741tuVLvvmrVLiZH0UAApPLJRVkS98sqJi39m1jX1hWalmsgOQsk/ZmSF/Pr5i3/l0pfxMniNBwgqwOUJOFCxdqwYIFSktLU0pKiiRp+PDh2rRpk5YsWaK+fftanLB6tuBgBc18UqU/f0y2Af1l79Nbrt275Xz3r3L89kXZIiKsjuhVP6w1Cj7ZKuZdOGd0Gge2S9dPlEKbWhYvYLhc0ndfGgV35bYuOWX8Nzi4Q+p3rxQUYlnEgOEskzYvlw7/UHX+2RNS7irp8G6p9x2S3WFNvkBSdl7atFg6sa/q/NOHje39WIGUcLNks1X/fgDwNy6XtPUzaf93VeeXnDROVhzaJfW9W3IEW5MvkDhLpayl0tG9VeefOSZt/7d0NE9KHCvZffr0JPyBz25Cs2fP1pgxY8qL7Uu6deum4OBgJSUl6dixY7r11lsVFxen5ORkjR49Wjt37rQocQVb5xjZfzZZZa/+Xq6jR1U65xXZx90me1Ki1dG86ujei8W2JFVzJurscen7ld5MFLj2f3ex2JaqbeuTB6Sdq70aKWDlbbyy2K7s6B5pz3+8Fieg7fz6ymK7sv3bpH1bvJcHAMxWuPnKYruyE4XSrq+9lyeQ7f72ymK7skM7jTPdQH35ZMFdUFCgLVu2aPz48Vcsy8vLU0JCgkJDQ2Wz2fTYY48pNzdX2dnZuvXWWzVlyhQLEl/Jfvs42Tp1VOn0hySHQ/bJk6yO5HX5mapytrU6h3ZK54q9Eieg5W+S27bet0UqLfFKnIDlcl7crt0oyGRoeX2VnZf2bXazkk3K38jQcgCBweXyrMAr2GxcboOr5yyTCrLcr5e/iT4G9eezBbcktW3btsr8s2fPKj09vXw4eYsWLTRy5Mjy5YMHD9bu3bs9+g6bzebRlJaWdlX/BpvNJltSonTihOw3jZAtuO5jf9LS0jzO6YvT3i3F1Z5tvdwtqT+1PKs/T6HBTVS8X27b2lkq9U8YYXlef57aXxurkpPut+nzZ6Qu7a+zPK8/T8nxN7r/QemSTh2WmoW3sDwvk/vpksv/ZmKy2dg+bDabIiOu0ekj7vuYsvNSYreBluf156lrh14e3UvoXLHUtlWM5XmZ3E9W7EM85ZMFd1RUlCQpNze3yvy5c+eqqKioxhumzZs3T7fffrvZ8Tzi2r1bzo/+Lvu94+X84CO5Dh60OpLX2T28iNXT9VC9urQfbV0/jrq0tY22ro+6tB/bNYBA4GC/5zX8doI3+WTBHRsbq6SkJM2ePVvvv/++vvrqK82YMUPvvvuuJFVbcL/wwgvauXOn5s6d69F3uFwuj6bU1NQ653edv2Bct33n7XJMnSLbjYNU9srrctXxdoepqake5/TFqW1sU7fDnCVp6Yr3Lc/qz9OZc6fUpIUHG5RNWpe50vK8/jzlFe1QUJj7pnaESDvzt1ie15+njK2rZfOghwprJp04dcTyvEzup0su/5uJyeVi+3C5XDp68qBCm3nQnTukzO++tjyvP0+5e7I9uvFccJhUeHCX5XmZ3E9W7EM85ZMFt91u16JFi5SQkKAZM2ZoypQpioqK0kMPPSSHw6GkpKQq67/00kv69NNPtWLFCoWHh1uUuoLz3fdkCwqSfdJPJUmOB/9brv0H5Px4qcXJvKtjb9U+zNkmteggRUR5KVCAstmkjn3crSS1ieOO8PVlD5I6JLlfr30id5Ctr5AmUtsecnvQLroPdykHEBhsNim6t/v12l5nFIK4eo4QqX0v9+t1SOapI6g/nyy4JSkuLk6rVq3S6dOnlZeXp1mzZiknJ0c9e/ZUkyZNytd74YUX9M9//lMrV65UixYtrAt8kTMzS87PVsgx8ynZgoynrtnCw+V4+gk53/9ALg+vMQ8EreOlNvE1LLQZj6i6brRXIwWs6N5Sy441LLQZhXb3VC8GCmBdbpAirq15edNrpNhB3ssTyLqlGGewayq6W3SQOvrmEyIB4Kp06itFtq95eVik1H2o9/IEstjBUnirmpdHtJY63+C9PAhcPvsc7upkZGRo4MCB5a+3bt2q3/zmN+ratWuVod9ZWVneD3eRvU9v2ZcvuXJ+rwTZ/9m4znDbbFKvW4ziJH+TcSMpY4F0bTep21CpaS07OnjO7pB63yXtWicVZlfcjdxml9r0kLoPk0Ib1yPgTRMUKl0/wXge6r4txs3oJOPsd7sEY7vmzEPDCG0q9f+p8Ui7/d8Zd4mXjDMTHZKkrjdKDr/qxQCgdo5gqe946Ye1xiPCLt080uYwRv10HyaFMFqtQQQ3kfpPNPrzoq0VTxexBxtnv7sNMU4OAfXlNz9VTp06pdzcXD344IPl8xISEuo0fh7eZ7NLXQZKMf2lkweN4iS8JcWfGRxBRkccO0g6eUiS0zhyG2L9VRYBJyhU6jHSKK5PHTbmRUQZ89GwQptKCTdLcaky7t5rl5pdy5B9AIHLESzFDTcOKp48LMlpjJ4KbuL2raij4CbGaMvuKZX682sptNGw/KbgjoiIUFkZD7b1V3aHFNnO6hSNgyNYalHLcDQ0nKBQY1gzzBfcRGoRbXUKAPAeRwj9ubfQn8NMPnsNNwAAAAAA/oyCGwAAAAAAE1BwAwAAAABgAgpuAAAAAABMQMENAAAAAIAJKLgBAAAAADABBTcAAAAAACag4AYAAAAAwARBVgfwdcnNmjXK7wYAAAAA1A8Ftxuvxfe0OgIAAAAAwA8xpBwAAAAAABNQcAMAAAAAYAIKbgAAAAAATEDBDQAAAACACSi4AQAAAAAwAQU3AAAAAAAmoOAGAAAAAMAEFNwAAAAAAJiAghsAAAAAABNQcAMAAAAAYAIKbgAAAAAATEDBDQAAAACACSi4AQAAAAAwAQU3AAAAAAAmoOCuwejRo9W7d28lJibq7rvvVnFxsdWRAABotNLS0pSQkKBu3brpgQceUFlZmdWRAAAB4NFHH1V0dLSCgoJM+XwK7hosWrRIWVlZysnJUXR0tF5//XWrIwEA0Cg5nU498MADWrRokXbu3Kni4mJ98MEHVscCAASA8ePHKyMjw7TPp+CuQWRkpCSjkz937pxsNpvFiQAAaJw2bNig9u3bq2fPnpKkqVOn6uOPP7Y4FQAgEAwZMkRt27Y17fMpuGtxxx13qHXr1tq+fbsef/xxq+MAANAoFRQUqGPHjuWvO3XqpPz8fAsTAQDgGXMGqgeIpUuX6vz585o6daoWL16s+++/3+pIAAD4heJTZ/S3JV+otMxZZf7/ee/jK/622aSJY2/Sta1aVPtZLpfLtJwAAP9z5uw5/fXjL3T+QmmV+dX1MZI0/scpat8mymv5KuMMtxshISGaMGGCli5danUUAAD8RvOIcPWKj1XRwSMqOnikfP7lfxcdPKJuMR1qLLYlqWPHjlXOaOfl5Sk6OtqU3AAA3xfeJEx9e8V51Md0bHetZcW2RMFdrZMnT6qoqEiScQ338uXLlZCQYHEqAAD8y9D+ieocXft1cW2vbaXRQ/vXus7111+vgoICbdu2TZL0zjvv6M4772ywnAAA/zMguYd6dO1U6zqtWjTTLSMGeSlR9Si4q3Hy5EmNHTtWSUlJSkpKUmlpqX71q19ZHQsAAL9it9t1z63DFRoSXO1yx8XlQUGOWj/H4XBo/vz5uvvuu9W1a1dFRERo0qRJZkQGAPgJm82mu8YMU3iT0BqX33tLzX3QJdOnT1d0dLTKysoUHR2thx56qEFzcg13Ndq3b68NGzZUu8zlcnHHcgAAPNQqspluu2mwFn+efsWy0cOuV/vW13j0OSNGjCg/ww0AgCQ1iwjXnT8apg8+WXnFstSByYpxM8pKkt566y0zopXjDHcdpX+brQ8/WanSsjKrowAA4Bf6JcapZ/fOVeZ1jm6rof2TrAkEn3PuzGltWPsvTZ48WZ8tfl9bM79VSUmJ1bEA+IFe8V3Ut1dclXnt21yjm27sZ1Giqvy+4M7JydFdd92lqKgohYWFqXv37nr22WdN+a6SkvNa/W22zl8oVZCj9uFvAADAYLPZdOeYoYoIbyJJCgkJ1j23pMpu9/ufIWgACxYs0P/Mfkr//nSRPvzwQ23ZuE6f/uNddezYUevWrbM6HgA/MHbkYLVoHiFJCnI4dO8tw32mXvPrnm7jxo0aOHCgtm7dqldeeUWfffaZZs6cqf3795vyfes2bdWZcyUa6SNHSwAA8BcR4U10583DJEm33TRIrVo0tzgRfMGyZcs0ZcoUlZUaj/YpKysrfwzckSNHNHr0aG3fvt3KiAD8QFhoiMbfkiqbpB+l9Feba1tZHamczeXHD7dMTU3Vtm3btGPHDkVGRtbpvTNfftukVAAAAHDH5XLp3Xkv6sjBohqftW6z2ZTU/0aNuZOb5AHwLXOenubRen57hvvMmTNas2aNJk6cWOdiGwAAANY6tL9Qhw/sq7HYloyifOumb+Xk3jkA/JTf3qX82LFjcjqdio6Ovqr3e3pEQjKu3X75zwvVsX1rTRl/81V9HwAAACqsXLlS7/0f9+uVll7Q/z9jglq2bGl+KABoYH5bcLds2VJ2u12FhYVX9f6rGVK+fVc+Q9EBAAAawIHCPI/Wszscmv2nv8vhIzdAAgCpEQwpDw8P17Bhw7Rw4UIVFxdbHQcAAAB10Lp9R7WKaiPJVuM6NptNPZP7U2wD8Ft+fdO0jRs3atiwYYqJidFTTz2lmJgY5eXlac2aNZo/f36DfMeq9Zn6YvUGPTTpdnVs37pBPhMAAADS3//+d02cOLHaZXa7XcHBwcrIyFCvXr28nAwAGobfnuGWpH79+mn9+vXq3r27fvGLX+jHP/6xfvvb36p9+/YN8vklJee15j+bFR/bkWIbAACggU2YMEFvvPFG+Rlsu91e/nfTpk316aefUmwD8Gt+fYbbbEUHj+iDT1Zqwq0jKLgBAABMUlhYqL/85S/KyspSUFCQRowYofvuu0/Nm/O8dgD+jYLbDafTKbvdrwcCAAAAAAAsQMENAAAAAIAJOHULAAAAAIAJKLgBAAAAADABBTcAAAC87he/+IWGDh2qRx99tNrln3/+uXr06KEhQ4Z4ORkANBwKbgAAAHjVpk2bdOrUKa1Zs0bnz5/Xhg0brlhn4MCBys7OtiAdADQcCm4AAAB41TfffKNRo0ZJkkaOHKn169frySeflNPp1JgxY5SXl6eWLVsqNDTU4qQAUD8U3AAAAPCq48ePlz9jOzIyUsePH9eBAwc0bdo03XbbberUqZPFCQGgYQRZHQAAAACNS2RkpIqLiyVJxcXFatGihaZPn66bb75Zf/jDHyxOBwANhzPcAAAA8KpBgwbpq6++kiT961//0sCBAzVr1iw9//zzmjNnjsXpAKDhUHADAADAq/r27auwsDANHTpUDodD69at0x133KHHH39cOTk52rp1qzIyMjRy5Eht2bJFI0eO1Llz56yODQB1ZnO5XC6rQwAAAAAAEGg4ww0AAAAAgAkouAEAAAAAMAEFNwAAAAAAJqDgBgAAAADABBTcAAAAAACYgIIbAAAAAAATUHADAAAAAGACCm4AAAAAAExAwQ0AAAAAgAkouAEAAAAAMAEFNwAAAAAAJqDgBgAAAADABBTcAAAAAACYgIIbAAAAAAATUHADAAAAAGACCm4AAAAAAExAwQ0AAAAAgAn+H4D1Rj6bGM5JAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "for _ in range(2**(m-2)):\n", + " qc.mcp(pi/4,[0,1],2)\n", + "x_measurement(qc, q[0], c[1])\n", + "qc.draw('mpl')" + ] + }, + { + "cell_type": "markdown", + "id": "d503acb9-a692-44cf-897c-8a128cfce713", + "metadata": {}, + "source": [ + "#### All substeps of the 3rd step\n", + "For the 3rd and last step, we perform the reset and initialization of the auxiliary qubit as done in the second step.\n", + "\n", + "Then at the 3rd step we have to perform the phase correction of $-2\\pi 0.0\\varphi_{2}\\varphi_{3}= -2\\pi \\left(\\frac{\\varphi_2}{4}+\\frac{\\varphi_3}{8}\\right)=-\\frac{\\varphi_2\\pi}{2}-\\frac{ \\varphi_3\\pi}{4}$, thus we have to apply 2 conditioned phase corrections, one conditioned by $\\varphi_3$ ($=c_0$) and the other by $\\varphi_2$($=c_1$). To do this we have to apply the following:\n", + "- gate $P(-\\pi/4)$ conditioned by $c_0=1$, that is, by $c=001$ (c_if with vaule 1)\n", + "- gate $P(-\\pi/2)$ conditioned by $c_1=1$, that is, the gate is applied when $c=010$ (c_if with values $2$)\n", + "- gate $P(-3\\pi/4)$ conditioned by $c_1=1$ and $c_0=1$ that is, the gate is applied when $c=011$ (c_if with values $3$)\n", + "\n", + "Next, the $CU$ operations: we apply $2^t$ times the $\\text{MCP}(\\pi/4)$ gate and since at the 3rd step $t=m-3=0$, we apply the gate only once." + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "id": "59cac307-8260-4d50-b2c5-c733d623db54", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABMAAAAG5CAYAAABoX0g4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABTPElEQVR4nO3deXhTZcL+8TtJN6BAgcrWlkKhBSm0hQICAi0IiI6KGyo4jDI48APHV1BH3HBcGUBU1NdxeQfFZcQZEBUdZUSlpQgqBVopKAVZSqEssrYs3ZLfH4FC6ZIU2pzk9Pu5rnOZnpwkdx9DnvTOOScWh8PhEAAAAAAAAGBSVqMDAAAAAAAAAHWJAgwAAAAAAACmRgEGAAAAAAAAU6MAAwAAAAAAgKlRgAEAAAAAAMDUKMAAAAAAAABgahRgAAAAAAAAMDUKMAAAAAAAAJgaBRgAAAAAAABMjQIMAAAAAAAApkYBBgAAAAAAAFOjAAMAAAAAAICpUYABAAAAAADA1CjAAAAAAAAAYGoUYAAAAAAAADA1CjAAAAAAAACYGgUYAAAAAAAATI0CDAAAAAAAAKZGAQYAAAAAAABTowADAAAAAACAqVGAAQAAAAAAwNQowAAAAAAAAGBqFGAAAAAAAAAwNQowAAAAAAAAmBoFGAAAAAAAAEyNAgwAAAAAAACm5md0AG+3OF3afdiYxw5rJt3Yy5jHBgDUPV+dY6ZMmaKMjIxazeOOhIQEzZ0794Jua1Rm6eJyG/UcuZjnx+Zvpfz9tZvHXY1bSp2HGPPYgLdhjqkZ5hjPqY9zjFG5fTGzVHfzOQWYC7sPS78a9D8dAGBuvjrHZGRkKDU11egYNeKLmSXffI7k75eO5BqdAoAvvn5Ivvl67YuZJd98jvjqHOOLuX0xsyscAgkAAAAAAABTowADAAAAAACAqVGAAQAAAAAAwNQowAAAAAAAAGBqFGAAAAAAAAAwNb4FEgAAAIa6/7Vk/bxztWw2f1mtNrVpHqXbr3hMA+NuMjoaAMDH+eoc44u5vT0ze4ABAACvExkZqYYNGxodAx50+9Dp+uzZAi1+4qAGJ4zWM/+8VbkHso2OBcCE2rZtq6ZNmxodAx7kq3OML+b25swUYAAAoM707t1bL774olauXKkjR46oqKhIx44d0w8//KBXX31VgwYNqnCbqKgopaWl6fPPP6cEq4dsNj9d13+y7PZSbc/bYHQcAF4sPj5ezz33nFJTU3Xo0CEVFRUpPz9f6enpev311zVs2DBZLJZytwkLC1NKSoq++uorSrB6yFfnGF/M7Y2ZOQQSHmEvlfL3S/YSqWEzKTDY6ETmVVos5R+QHHapUXMpgL8d60xJoVTwmySHFHyJ5BdodCLzKjopHT8oWSxS45aSzd/oRHDlsssu0yuvvKLevXtXuM7f3199+vRRnz59NHnyZGVlZWnq1Kn6+uuvFRUVpZSUFEVERGjHjh2yWvmsrr4pLinSp6telZ/NX1Ft442OY5jSotPzuUMKbiH5NzA6kXkVn5KO/ybJcno+DzA6EVyJj4/X//7v/2rAgAEVrvP391diYqISExM1ceJEZWdn64EHHtBnn32msLAwLV++XNHR0Vq7di1zTD3kq3OML+b2xsxeXYDZ7Xa98MILeuONN7Rr1y517txZL7/8siZMmKCkpCS9+eabRkesYNEzyWrXbaj6XP+YW+vNzm6Xdv4o5ayVik+eXmmRLukodRrkLGhQO0pLpG3fSbmZzjfNkmSxSq06O8c6qLGx+cykpFDaukLas9FZ6kqS1Sa1iZU6DeSPlNpUeFzamirt/cVZ6kqSLUAK6y51HFD/ijBfmGMsFoueeeYZTZs2TTabTb/99pvefvttffXVV8rIyNCRI0fUuHFjxcfHa8iQIRo/fry6deumZcuW6YMPPtDAgQMVERGhtLQ0XX311SooKPBY9jvuuEN33nmnBg8e7Nb26enpeuSRR/TVV1/VcTL3+cJzpCoffPOsFqbOkb8tQG1DO+nxP3yksNBORsfyuNIi6dfvpN0/OT/UkiSLTWrdxTmfBzYyNp+ZFJ+UtqyQ9m5yflgrSVY/qW0353xeHz/Y8oXXkEceeURPPPGE/P39deTIEb3zzjv68ssvtX79eh0+fFgNGzZUXFyckpOTdddddykmJkZLlizRokWLlJCQoE6dOmnt2rUaNmyYDh8+7LHczDHG8tU5xhdze3Nmry7Axo8fr8WLF2v69OlKTEzUqlWrNHr0aB04cED33Xef0fHggsMhbfyPtG/z+VdIB36VDu+Seo+RGrUwJJ6p2EukjI+cY3ouh91ZHBzeJfW+nRKsNpQUSukfSgUHyq+3lzr/WDmyW+o1WvIPMiafmRQel9b8UzqVL8lxdn1pkbNUP7pX6jlKsnn1TFa/WCwWzZs3T+PGjVNpaalmzpypJ598UqdOnSq33eHDh5WSkqKUlBQ99dRTuv/++/Xkk09qzJgxkqSVK1d6vPyqjNVq1cyZM3XnnXcqKChIX331lSZOnKiDBw9Kkj799FNdd911XvXHiS8bc8Wjun2o9/7x5AmlxdK6RdLRPeXXO0qlvI1n53NKsItXfFJas0A6caj8enuJlJshHdkj9bqNvcG8zdy5c3XvvfdKkl5++WU98sgjOn78eLltjh49qrS0NKWlpenZZ5/Vn//8Z82cOVM333yzJGndunUeL78qwxzjWb46x/hibm/O7LX7fC5YsEDz58/XkiVL9MADD2jw4MF69NFH1a9fP5WUlKhnz55GR4QL+zdXUn6d4ZBKiqSfeT2vFbmZFcuvMg5nkbAlxZOJzGv7DxXLr3MdPyhtW+25PGa2NbVi+XWuo7ulXes8GgkuTJs2TePGjdPx48c1fPhwPfzwwxXKr/OVlJRo4cKF5f4QyczMNLz8kqSHHnpII0eO1GWXXabw8HBJ0nvvvVd2/Zk/ToDakrOuYvl1rlPHpK1pnstjZttWVSy/zlWwX9rxg+fywLVJkybp3nvvVWFhoa677jrde++9Fcqv89ntdn300Ufav39/2bqff/7Z8PJLYo4BjOC1BdiMGTM0YsQIJSUllVvfqVMn+fv7Ky4uTpK0Y8cOJSUlKSYmRt27d1daGu8KvMWuDEmWajZwOPeWqa5MgGsOh7RrvauNpH3ZziIMF85e4tzLy5U9G84etoILU3TSufdiVeXXGbvWO/8NwHixsbF68sknJUmjRo3St99+69btzpzzq3Xr1srIyFBJSYkmTZpU6XldPG3ChAmaNWuWtm/frmPHjunBBx/UVVddpXbt2kmSfvrpJ5WWlvKhHGqFwyHluprPJe39+ZzTSuCClBZJe7Jcb7c78+yhkTBWhw4d9Nxzz0lyHkr42WefuXW7M+f8ioyM1KZNm3Ty5Endfvvtuvrqq+syrluYYwDP88oCLDc3V1lZWRo1alSF63JychQbG6vAQOdB+RMnTtStt96q7OxsvfHGG7rttttUVFTk8jEsFotbS2pqSo3z//jps3ptQki5ZU/2yhrfT2pqits5vXHZu+24yz9eJemGq/5geFZfXhoGBevkETeeUA6pf49hhuf15aVdm2iVVL8ziyTnG+tOEd0Mz+vLS6/YQWXn/KpOYb7UNLiF4XkvdPHVOSY1NbXC/T399NMKCAjQ66+/ri+//NKtDOee8D4tLU0DBw7UjBkzZLVaNWvWrEoyp9Zq5uo0bdpUkZGRWrt2bdm6bdu26ejRo4qPP3si108//VQjR46s9r4uLndKjXJLtfMcubjnR80z1xZffu/UvHFLFbqx46OjVOrR9XLD8/ryEtM+3q0PqopPSWEtowzPe6HLhf5bNP41pOLr9eOPP65GjRppwYIF+te//uVWhvNPeD9gwAA99pjzsCzmmAt/jhj//Kh55trii7l9MXNNc9eEV545JTc3V5LUunXrcutPnjyp1NRUXXXVVZKk3377TStXrtSSJUskSf3791fbtm21fPlyXXnllZ4NfY4+Ix+t9MSA9Y3dzY/M3N0OlavJ+DHWF6e0JmPtYKwvRk3Gr749r71xjomIiNB1112noqIi/fWvf3XrNueXX2fO+TVr1izde++96t+/v+Lj45WZmVnH6SvXuLHzpIlHjx4tt/7IkSNq0qRJ2c//+c9/9Le//c3t39sTvPE54srzk1KMjmC4Ul73PIb3TtXztteQFi1a6LbbbpPdbtejjz7q1m3OL7/OnPPrlVde0QMPPKBu3bpp0KBBWrFiRR2nrxxzjGf56hzji7m9PbNX7gEWGhoqScrOzi63fvbs2crLy1NiYqIk595grVq1KtsbTHLuHrtz506Xj+FwONxakpKSa+8Xq6GkpGS3c3rjEtmtSfWHQJ72n5R/Gp7Vl5fC4pNq0loux9rqJ63Z+K3heX152XNgmwLd+CKBgIbS9ryfDc/ry0vm5u9cf8OjRQoOlfJPHDE874UuvjrHnH96gmuvvVY2m02ffvppufOsVKWq8kuSTpw4offff1+SdMMNN5yXOanWMruSn58vyfkp/blCQkJ07Nixsp8jIyOVk5NT7X1dXO7kGuWuLRf3/DAm88XmNno5WnDQrS8GsgVIG7Z+b3heX15+3Z3l1jc2BzWR9h7aaXjeC1189d/i+a/XI0aMUFBQkL7++mtt377d5WNXVX5JUnFxsd5++21JzDFGPkfq4xzDWNd+7qSkpBr/2/PKAiwqKkpxcXGaMWOG3n33XX3zzTeaNGmS3nrrLUkqK8Dg3SJ6yOUhkJd0cr65wMWJ6CmXY922W/38Ou/aZLGefl67EN5Dsnrlq6vvsAVIbeNcbOSQIhKlGu75jDpwZl525xCQ6sqvM87cj5Hz/dGjR7Vz585y517p0KGDmjZtqp9+OnsywOuuu06ffvqpERFhMhbL6fnchfA4uf6AANWy2qTwBNfbRfRkjvEGNZljqiu/zmCOAeovr/wTzWq1auHChYqNjdWkSZM0btw4hYaG6u6775bNZis7AX67du20b98+FRYWlt12+/btioyMNCo6ztE8UurQ9/QPlbx5aBAiXTrMk4nMq/WlUtvup3+oZKybtJY6DfJoJNNqlyiFdqz6+hbtpfZ9PBbH1DpdLjVtW8kVp5/jrbs6i10Yr3PnzpKkrKzqzyrtTvl17v2cuV+jvPnmm5o2bZrat2+vxo0ba9asWVq6dGnZnuYNGzbU4MGD9fnnnxuaE+YRFuec06vSNEyKutxzecysw2XO96pVuaSTe4Uk6l5MTIwk13OMO+XXuffDHAPUP155DjDJ+UK3fPnycuvGjh2rrl27qkED5z7LoaGhuvzyyzVv3jxNnjxZq1at0u7duzV48GAjIkuSbn4spUbrza7jAKlxS2nnWunobuc6/yApLF6K7CW3dj+HaxaLdOlwKSRMyll79ps1A4Odn3C26+ncowYXz2qT4kZKuzOc30B44vT7qgZNnW+UwxOc2+Di2QKknqOkXeuc3ypb6DxaQI1aOJ/TbbvXv0/mvXWO+etf/6o2bdpo48aN1W43bdo0l+WX5DzFwR/+8AcdPHiwLuK6bebMmWrWrJnWrFmjwMBALVu2TL///e/Lrh8+fLjWr19veM5zeetzBO6xWKTYq6VmEVLOOun4b871gY2liATnXq82r3337lusflLCjc65fNd66dTpUzE1bOacz8Pi6+fe3N74GjJ79mwtWLBA6enp1W537733uiy/JOd5pP/whz+UHYZoFOYYwPN8agpNT09X3759y617/fXXdeedd2ru3LkKCAjQggULFBDAX/repGWMc/l6jvPngZPr5xuKumaxOPeGaRMrffO8c92AifWvIPAEq/V02dXj7Fj3v4uxrgs2f6n9ZVJkn7Nj3fcOxtrbfPPNN25td88992j//v2aNWtWleWXJB0/flzvvfdebcW7YHa7XX/5y1/0l7/8pdLrOTQFdcFice4J1rb7OfP5BF736oLV5vxAtl3i2bHu90fG2tu4e6L6hx9+WCdPntTcuXOrLL8kqaioiDkGqKd8pgArKChQdna2Jk+eXG59VFSUYd/egQtD+VW3zn3Txhu4usVYew5jbQ5FRUWaPn260TFqzc6dO7Vw4UKjY5jab0d364WFd+n4qaOyWKzqHNFbk6570ehYHsHrnucw1uZQWlrqVd+WeLGYY+reb0d3698pz2nyyLmSpI9WvKi0DR9p7t0rjQ1WDW+cF7fvzdLcRRNktdrUtkUnPXDLW7JU8WJ6ZswH9xit15dM9fjv4DMFWHBwsEpL69/XEAMAAM/IyMjQ/Pnz3d7+ySefrLswkCStzV6mK3r+XgO736QA/yD97YPbtT1vgzq06e76xgDgRZhjvM/a7GVKjHGelLqopFC/7skwNpAbvHFejLiks1768ypJ0nP/Gqfs3HR1juhd6bZnxrxVSKSem/itx38HnynAAAAA6lJmZqYyMzONjlEvZf6aoifeuUFRbeK199B2dWyboKfGfaqftqXqz9e/ogD/IEmSzeovKydaBOCDmGOM42qOkaSlP87TsF536J3/Pm5wWidfmhf9zvlqYn+/QF3SNMJl/gaBwWW38eTvwMFoAAAAMFT3DoPUOaKPnp+UorioJP3PjX+Xw+HQqaLjZW+St+35SUePH1Bkq64GpwUA+BJXc0xJabEyf01Rj05DjI5axtfmxVUbl+hPc7rpSP4+NWnUwq38kud/B/YAAwAAgEccOrZXz/7ztnLrmjdurTtHPKM2zaMkSQeO7lJo0zBt3Z2hqLbxkqRjJw7pfz/5sx77/b89nhkA4BsudI75eu17GtJjjMfzSr41L1aV9dHff6j+sdepf+x1+t9P7tH3mz5Xhzbdq81v1O9AAQYAAACPaN6ktZ6flFJh/aqsTxXZOlal9lJZLM4DFNZtWabE6GEqLS3RzAW/14Rr5qh5k9YeTgwA8BUXMsdI0q4Dm/Xrngx9vvp17dy3UZ+sfEXXD7jHazMbNS9WlbWopFABfoGSpIaBTRTo30A7926sdsyN+h04BBIAAACG2rFvo9q3ilVxSaGOFOzXwWN5ys5NV0x4L6X+tFDZu9bo//7zoO5/LVmbdqw2Oi4AwIdUN8dI0p9+N0sz//Rf/e1PSxXZKtZj5Vd1fGleTP9lqe57LUn3vZakwwX7lBgz3OWYG/U7sAcYAAAADDXmikfKLv/f/RskSQO73ySr1aohPUZrSI/RRkUDAPi46uaY8829e6XHclXHl+bF/t1Gqn+3keXWuRpzo34H9gADAACA10mKv8XoCAAAk/LFOcYXM5/LG/KzB5gLYc3q52MDAOqer84xCQkJNb7Ntpw8SVJUuzblLtf149bGbS/WxTy2Uc+Ri3ncxi1rfpvtu/ZIkjpEtC132ROPDZgVcwxzjCvMMXX/2Bdz29rI7YuZL/Sx3UEB5sKNvYxOAAAwK1+dY+bOnVvj2zw0601J0sxpE8pd9pQLyewNfPE50vkCvkV+0azPJUmjbptQ7jKAC+eLrx8Sc4wn+eJzxFfnGF/M7YuZXeEQSAAAAAAAAJgaBRgAAAAAAABMjQIMAAAAAAAApkYBBgAAAAAAAFOjAAMAAAAAAICpUYABAAAAAADA1CjAAAAAAAAAYGoUYAAAAAAAADA1CjAAAAAAAACYGgUYAAAAAAAATI0CDAAAAAAAAKZGAQYAAAAAAABTowADAAAAAACAqfkZHcDb3b95kzLz8w157PjGjfV8566GPDYAAAAAAIBZUIC5kJmfrxWHDxkdAwAAAAAAABeIQyABAAAAAABgahRgAAAAAAAAMDUKMAAAAAAAAJgaBRgAAAAAAABMjQIMAAAAAAAApkYBBgAAAAAAAFOjAAMAAAAAAICpUYABAAAAAADA1Ly6ALPb7ZozZ46io6MVFBSk+Ph4paamqnPnzpowYYLR8eCmouPSjh/O/pz1hXRkt+RwGJfJrE4dk35defbnn7+S8vcbl8fMThyWspef/Xnzt9LxQ8blMbP8A9LPy87+vDVNOnnUuDwAUNdOHpW2rjj78y/LpIIDxuUxs+MHnXP4GdkpzjkeAGA+fkYHqM748eO1ePFiTZ8+XYmJiVq1apVGjx6tAwcO6L777jM6XqUcxcUquWeqrD3iZZv4p7L1pR9/IvtHH8vv9VdlCQ42MKFnHdopZX4ilRafXbf3Z2nvJqlNrNT1Ssni1TWs79j3i7NcdNjPrtv9k3OJ7CN1GihZLMblM5Nd66XN35y3bp1ziU6WInsZEst0HA5p2ypp++ry63f8IO38Uep6ldSmqzHZAKCu7Nko/by0/AeFuZnOJaq/c0Ht2LlG2pJafl1OupSzVupyhRSeYEgsAEAd8doCbMGCBZo/f75SUlKUlJQkSRo8eLDWrVunxYsXq2fPngYnrJzF319+D/1FJfdMkaVPb1l7JMixfbvsb70j27NP1avy68RhKeNjyV563hWn39DlbZSCGksdB3g8mukczZM2/EdlY3u+nT86xzqih0djmdJvv1Ysv861JUVq0FRqGe2xSKa1J6ti+XWGwyFt/EJq0EQKCfdsLgCoK4d3SZu+rPr6baukoCZS226ey2RW+zZXLL/KOKRfvnaOdWiUR2MBAOqQ1+57M2PGDI0YMaKs/DqjU6dO8vf3V1xcnCTp8ccfV0xMjKxWqxYtWmRE1Aos7SNl/eMdKp3zohyHDqlk5nOyjrxW1rjuRkfzqF3rJXuJqixlJOcnbKVFHotkWjvXuN5mx4/l9w7Dhdn+o6Tq9qSzSNu/91Qa83I4pB2uxtEi7XDjuQ8AvmLnGlU/x8g5x3AaiYvjcJyeq13M5zt+9FQiAIAneGUBlpubq6ysLI0aNarCdTk5OYqNjVVgYKAkacSIEVq6dKkGDRpUo8ewWCxuLSkpKRf0O1ivHylLuwiVTLxbstlkvWNsje8jJSXF7ZzeuPyUus/l71haLCUn3mh4Vl9e/Gz+yvu5pNqiUZIK86XYqH6G5/XlpXmT1jq6W9WPtUPK3ye1bt7e8Ly+vESH93B9ni+HtH9LqYICGhqel8X1csb5l1lYLBaeHxaLRQ0Cg7X/V7vL+fzkEalTWLzheX15aRsa5Tynmov5/Eiu1Cy4peF5WVwvvIawVLf46vPDF3N7MnNqaqpSU6valbdyXluASVLr1q3LrT958qRSU1PLHf7Yv39/RUV5377JFotFlrju0tGjsl4xRBZ/f6MjeVzDoCZubdcoqGkdJzG3QP8GstncO5qZsb44NRk/xvriuDt+VqtNDQLqz6HlAMyrQWCwrG6eGJU55uLUaD5vwFgDgFl4ZQEWGhoqScrOzi63fvbs2crLy1NiYuJFP4bD4XBrSU5OvrD7375d9g8+lPXWUbK//4Ec+2v+VXzJyclu5/TGJeSSBm79nh8setvwrL68FJw8JluAe8+p5SuXGp7Xl5dtOZvd/tKGn7dmGp7Xl5fVa1PcGmern3Tw6H7D87K4Xs44/zILi8PB88PhcOi3Q3tldfPsvD+sW2F4Xl9eNmavd2ucLVZpR+4Ww/OyuF54DWGpbvHV54cv5vZk5qSkpAqnzHLFKwuwqKgoxcXFacaMGXr33Xf1zTffaNKkSXrrrbckqVYKsLrkKCp2nvfrxutlGz9Olsv7qfS5F+Sw168TMIXFud4mqLHULKLus5iZxSKFuTq9nEVq0loKDvVIJNPyDzp9cnsX5wy5pJMU0NBTqcypYYgUEiaX58Jp202y2jyRCADqltXP+Q3Z1bI43zc1CPFEIvMKbHT65PYu5vNWnSW/QE+lAgDUNa8swKxWqxYuXKjY2FhNmjRJ48aNU2hoqO6++27ZbLayE+B7K/tbb8vi5yfr2NslSbbJ/0+Ovftk/+hjg5N5Vlic89vwqntzEZ0kt/eoQdXa9ZL8G6jase5Us9PkoQod+kk2P1U+1hZnGcNX1NeOTgOdBW9VY+0XJEX29nQqAKg77XufLlyqeN2zWPj27NoSdblktarKsbb5SR36ejoVAKAueW31EBMTo+XLl+v48ePKycnR008/rQ0bNqhr165q0MC9Q+uMYF+fIfsXS2V76EFZ/Jz7sVsaNpRt2gOyv/u+HNu3G5zQc/yDpMTbnHsenc8WIHUdIbXq4vlcZhTUWOp1m9SoecXr/BtI8ddLzdt5PJYpBYdKPW9xjvn5AhtJPUdJjVt6PpcZhYRLCTc4X0vO1zBE6nXr6ZIdAEyiQYjzvVNlr20BDaSEG0/vHYuL1qSVc84ObFTxuqDGzrm+UQvP5wIA1B03zzTgHdLT09W3b/mPYqZPn663335bBw4c0IYNGzRlyhSlpqaqY8eOhmS09kiQdcniiuu7xcr6Wf3aA0xyvoHoPUY6tlda80/nuq4jnLuU2+rf9wLUqUYtpL53Sod3Sev+7VzX7RrnIXscIla7mraRLr9LOrhdyjj9zzr+eufhFOzRWLtadJAG/j/pwFZpw2fOdT1HSc3and47DABMpvElUv/x0qEcaf1C57ru1zoPr2c+r10h4dLlE6Tftkk/feJcl3Cjc+5hjgEA8/GZP9UKCgqUnZ1d7hsgJenpp59Wbm6uCgsLdfDgQeXm5hpWfqFyFouzMDijbTfKr7pisZTf06t1F94s1xWLVQo956Xmkk6UX3XFanOW5mc0j+QPEwDmZrFILSLP/tyqM/N5XbFapZadzv4cGsUcAwBm5TN7gAUHB6u0tNToGAAAAAAAAPAx7K8AAAAAAAAAU6MAAwAAAAAAgKlRgAEAAAAAAMDUKMAAAAAAAABgahRgAAAAAAAAMDUKMAAAAAAAAJgaBRgAAAAAAABMzc/oAN4uvnHjevnYAAAAAAAAZkEB5sLznbsaHQEAAAAAAAAXgUMgAQAAAAAAYGoUYAAAAAAAADA1CjB4hZSUFEVGRio5OVkjR47UqVOnyl0/Z84crV+/vsrb7969W1OmTCn7+cUXX9SAAQMkSZmZmZo9e3ad5PZFjLXnMNaew1gDqG943fMcxhoAzIECDF5j7NixSklJUf/+/bVo0aKy9Xa7Xd9995169OhR5W2XLVumYcOGSZIKCwuVkZFRdl18fLxWr14th8NRZ9l9DWPtOYy15zDWAOobXvc8h7EGAN9HAQavk5CQoNzc3LKfMzMz1alTJ0nOT+CaNWum5ORkRUZGauTIkZKk1NRUJSUlSZLmzZunO+64o9x9RkdHV/vJXH3FWHsOY+05jDWA+obXPc9hrAHAd1GAweusWLFCMTExZT9v2bJF7du3lyQNGjRIffr0UUpKipKSkvT3v/9dDodDx48fV3BwsIqLi5WSkqIhQ4aUu8+oqCj98ssvnvw1fAJj7TmMtecw1gDqG173PIexBgDfRQEGr/Hee+9p8ODBOnLkSNknZufbtm2boqKiJEm7du1SWFiYMjMzFR8fX3YfY8aM8VhmX8VYew5j7TmMNYD6htc9z2GsAcD3UYDBa4wdO1bLly/Xq6++KpvNVrY+OjpaO3bskCRt3LhRsbGxKi0tldXqfPqee16FzZs367XXXtOIESO0ceNGvfLKK5Kcb0i6dOni2V/IizHWnsNYew5jDaC+4XXPcxhrAPB9FGDwevHx8crOzpZ09o1FYWGh9u/fr7y8PKWnp6tXr16SpFmzZum///2vli5dqtjYWN1zzz2SpOzsbCUkJBj1K/gMxtpzGGvPYawB1De87nkOYw0AvsPP6ACAJCUnJys5ObnS66xWqwYOHKj169frkUceKVu/YcMGSdJNN91U9inbuVauXCnJeXLSfv36VbpNfcRYew5j7TmMNYD6htc9z2GsAcAcKMDgEx544IEqr7vllluqvW18fHzZuRfgGmPtOYy15zDWAOobXvc8h7EGAN/ARw0AAAAAAAAwNQowAAAAAAAAmBqHQLpw/+ZNyszPN+Sx4xs31vOduxry2AAAAAAAAGZBAeZCZn6+Vhw+ZHQMAAAAAAAAXCAOgQQAAAAAAICpUYABAAAAAADA1CjAAAAAAAAAYGoUYAAAAAAAADA1CjAAAAAAAACYGgUYAAAAAAAATI0CDAAAAAAAAKZGAQYAAAAAAABT8+oCzG63a86cOYqOjlZQUJDi4+OVmpqqzp07a8KECUbHQw0Unzp7Of+AcTnqg6LjZy8fP2Rcjvrg1LGzl08eNS5HfXDi8NnLhcer3g4AzKKw4Ozlc18DUfvOncNP5RuXAwBQt/yMDlCd8ePHa/HixZo+fboSExO1atUqjR49WgcOHNB9991ndLxKOYqLVXLPVFl7xMs28U9l60s//kT2jz6W3+uvyhIcbGBCzyotlrakSns2nF33wztSk9ZS5yukpm2My2Y2xaekzd9K+345u271W1KzCKnLUKlRC+OymU1hgfTL19KBrWfXffd/UmiUc6yDmhiXzWxOHJZ+/lo6vPPsurTXpVadna8hAQ2MywYAdaHoxOn5fPPZdavmSc0jpS7DpIYhhkUznVPHnHPMwW1n1618U7qkk3M+D2xkXDYAQO3z2j3AFixYoPnz52vJkiV64IEHNHjwYD366KPq16+fSkpK1LNnT6MjVsri7y+/h/4i++dfyL4+Q5Lk2L5d9rfeke3BB+pV+WUvlTI+lnIznJfPdWyftPZD6WieIdFMp6RIWvsvae8myWEvf93hXGnNB+wNVluKjjvH88CvFa/7bbvzunM/tceFO3FEWvNP6XDOeVc4nEXv2g+lkkIjkgFA3Sg+JaV/ePrDLEf56w7lOF8TTx4xIpn5nMp3ztkHt593hcP5AdeaD5xlJADAPLy2AJsxY4ZGjBihpKSkcus7deokf39/xcXF6fDhw7rmmmsUExOj+Ph4DR8+XFu3bq3iHj3H0j5S1j/eodI5L8px6JBKZj4n68hrZY3rbnQ0j9r7cyV/uJ7hkOx26ZdlHo1kWrvWSwVVHVrqcBZkW1I8mci8tn1/+tBHRyVXOpzl17ZVnk5lTltSpeJCVT7Wko4flHamezQSANSpnHTpRFUfWDmcBdnWNI9GMq1t350+pL6K+fzUUWn7D55OBQCoS15ZgOXm5iorK0ujRo2qcF1OTo5iY2MVGBgoi8WiKVOmKDs7W5mZmbrmmms0btw4AxJXZL1+pCztIlQy8W7JZpP1jrFGR/K43AxJlmo2cEj5+6Vjez0UyKQcDil3vauNpN+2lT9nFWqutFjKy3K9Xd5GZ+mIC1d4/PQhplWUX2fszqy41yMA+CK7XcrNdLGRQ9qXXf58n6i5kkLnB7Wu5pg9G5xzPwDAHLy2AJOk1q1bl1t/8uRJpaamlh3+GBISoqFDh5Zd379/f23ffv5+zJWzWCxuLSkpKRf0O1gsFlniuktHj8p6xRBZ/P1rfB8pKSlu5/TGZX/OcZdvLCTp5mvuMDyrLy8Ng4LdPuRuQO/hhuf15SWybbRbb4TtpVJ0ZHfD8/ry0rv7ILdeP4pOSCGNQw3Py+J6OeP8yywsFgvPD4vFohZNWqr4pBuTuUPq2W2A4Xl9eencIb7C6TkqU1okRbTpaHheFtcLryEs1S2++vzwxdyezJyamqrU1FQ3Js6zvLIACw0NlSRlZ2eXWz979mzl5eUpMTGx0tvNnTtX119/fV3Hc4tj+3bZP/hQ1ltHyf7+B3Ls3290JI8rcfMjs5JSdpW5GKU1+GiymN2SLkpNxo/n9cWpyfgx1gDMoJjXPY+p0RzDeycAMA2vLMCioqIUFxenGTNm6N1339U333yjSZMm6a233pKkSguwJ598Ulu3btXs2bPdegyHw+HWkpycXOP8jqJi53m/brxetvHjZLm8n0qfe0EOe82O00lOTnY7pzcunXqGVH8IpCSLVfpy5QLDs/ryUlRSqJAIuRxrW4C07pcUw/P68rL30E41bOb6325QEyln32bD8/rykvXr9/ILcjHQFqlJG+n4qWOG52VxvZxx/mUWFoeD54fD4VDBySNq0tr1fO7fQNq0/UfD8/rysiPvZwU2dj3HNGwu7Tu8y/C8LK4XXkNYqlt89fnhi7k9mTkpKanCOeNd8coCzGq1auHChYqNjdWkSZM0btw4hYaG6u6775bNZlNcXFy57Z955hl9/vnnWrp0qRo2bGhQ6rPsb70ti5+frGNvlyTZJv8/Ofbuk/2jjw1O5lkRPeTyEKbWXfiK6drQLlEuxzo8QbLV/EhcnMNiOT3WLrRLdG6LC2f1O/0aUh2HFOnG/w8A8BXuzOcRPSSrzSNxTMtidWM+d0iRvZjPAcBMvLIAk6SYmBgtX75cx48fV05Ojp5++mlt2LBBXbt2VYMGDcq2e/LJJ/XZZ59p2bJlCgkJMS7wafb1GbJ/sVS2hx6Uxc9PkmRp2FC2aQ/I/u77crh5jjIzaNpW6nzF6R8qefPQpPU51+OitOwkdeh7+odzx/r05RbtpY6XeziUSYXFS2FnOvhKxrp1Vymip6dTmVOHvlJox9M/VDLWkb2llp09nQoA6k6rLlK7Xqd/qOR175JOUvu+598KF6JdT6n1pad/qGSsw+KltvXrC9wBwPT8jA5QE+np6erb9+ysv3HjRj3xxBPq2LFjuUMVMzIyPB/uNGuPBFmXLK64vlusrJ/Vrz3AJOenlI1bSrvWSQd+dZ4cvGEzKSLB+aaCPZJqT8cBUkiYlLNeOrRDkkMKvkQK7yG16cqnxbXFYpG6DJOat3c+r4/uca5v0sb5fG/VmU+La4vVJsWPlPI2Ob9VNn+fJIvUvJ1zrMvKMQAwCYtFik6SmkU455jDuyQ5pMatTs/nlzr3XsLFs1il2Kudc8mudWe/lbxpmNSuh3RJNPM5AJiNzxRgBQUFys7O1uTJk8vWxcbGlju2FN4pJMy5SJLDwZuJutSig3ORGOu6ZLFIrWKcy5mXIMa6blisUttuzoXnNID6wGKRLunoXCRe++qSxeI8HUfrLsznAFAf+EwBFhwcrNJSN76vGF6NNxWew1h7BuPsOYw1gPqI1z7PYJwBwPzYiRoAAAAAAACmRgEGAAAAAAAAU6MAAwAAAAAAgKlRgAEAAAAAAMDUKMAAAAAAAABgahRgAAAAAAAAMDUKMAAAAAAAAJgaBRgAAAAAAABMzc/oAN4uvnHjevnYAAAAAAAAZkEB5sLznbsaHQEAAAAAAAAXgUMgAQAAAAAAYGoUYAAAAAAAADA1CjAAAAAAAACYGgUYAAAAAAAATI0CDAAAAAAAAKZGAQYAAAAAAABTowADAAAAAACAqVGAAQAAAAAAwNQowAAAAAAAAGBqFGAAAAAAAAAwNQowAAAAAAAAmBoFGAAAAAAAAEyNAgwAAAAAAACmRgEGAAAAAAAAU6MAq8Lw4cOVkJCg7t276+abb9axY8eMjgQAQL2VkpKi2NhYderUSXfddZdKS0uNjgQAMIF7771X4eHh8vPzMzoKgDpGAVaFhQsXKiMjQxs2bFB4eLheeOEFoyMBAFAv2e123XXXXVq4cKG2bt2qY8eO6f333zc6FgDABEaNGqX09HSjYwDwAAqwKjRt2lSS8033qVOnZLFYDE4EAED9tGbNGrVt21Zdu3aVJI0fP14fffSRwakAAGYwYMAAtW7d2ugYADyA/TyrccMNNygtLU3du3fXnDlzjI4DAIDPKCktVVFxSYX1J04VVnrZ388m/yoOP8nNzVVERETZz+3atdOuXbtqMS0AwJeUltpVWFxcYX2Vc4zNJn9//vQF6jteBarx8ccfq6ioSOPHj9eiRYt05513Gh0JAACfUFhUrLlvLVJ+wYly65966Z0KlwMD/DXljzerWdPGld6Xw+Gou6AAAJ9TUlKi/52/WIeO5pdbX9kc4+dn0//ceZNatgjxZEQAXohDIF0ICAjQbbfdpo8//tjoKAAA+IxGDYJ084hBbm173bDLqyy/JCkiIqLcHl85OTkKDw+/6IwAAN8UGBigW64ZLHdOUnNV8mWUXwAkUYBVKj8/X3l5eZKc5wBbsmSJYmNjDU4FAIBv6dyxnS5LuLTabbrFdFDP2Ohqt+nVq5dyc3O1adMmSdK8efN044031lpOAIDvaR/eWoMui692m+j2YerXk7/jADhRgFUiPz9f1113neLi4hQXF6eSkhI99thjRscCAMDn/G5wX7Vo1qTS64IbNdANVw50+UUzNptN//jHP3TzzTerY8eOCg4O1tixY+siLgDAhwwb0EttWrao9LqgwADdfHWyrC7mmIkTJyo8PFylpaUKDw/X3XffXRdRAXgBzgFWibZt22rNmjWVXnfi5Cn5+/tVeaJeAABwVkCAv2793WC99s8lFc7ldfNVSWrUMMit+xkyZEjZHmAAAEjO83vdes1gvfLOYpWW2stdd8PwAWrauJHL+3jjjTfqKh4AL0OLU0NLU3/U1p27dd9dt8jPZjM6DgAAXq9dWCsN7tdD365aV7busoRL1aVjOwNTwVs4HA5t25yldatT9O5LT6jgxCm1j+6qW4b1Us+ePY2OB8DLtb6kua4c1EdfLP++bF38pR0V37WTgangLRwOh3Zu/UXrvk/Rey8/qWMFJxTZsbOuT4pT3759jY5XpX379mnVN//RxowfNP/FxyW/QMX3HqCCgjEKDg42Ol6l7Ha7tm7K1LrvU/XuS0/o+MlCdYiJ1Zir+iouLs7oeJJMcAjkhg0bdNNNNyk0NFRBQUGKjo7Wo48+WiePdehovtI3bFbnqAjKLwAAauCK/j0V1jpUktSiWRNdPdh733TCc+x2u/74xz9q4duvaNvmLOXl5Sn/6GFlrV2lXr166ZVXXjE6IgAfMKB3d3WIaCNJahLcSCOHXW5wIngDh8OhqVOn6sN/vKgtGzO0Z88eFRw7ok0ZP6pfv3569tlnjY5YqbVr1+rSSy9V2rIlOnRgn/bt26f9e3bpq08+UO/evbVnzx6jI1ZQUlKi22+/XR+9+3ft2LJJeXl5OnbkkDLXrFSPHj30j3/8w+iIkny8AFu7dq369u2rjRs36rnnntMXX3yhhx56SHv37q2Tx0tZvV4Wi0XJlyXUyf0DAGBWNptVt/5usAL8/XTr7wYrMMDf6EjwArNnz9b8+fMlqdwhsg6HQw6HQ//zP/+jr7/+2qB0AHyF1WLRLb9LVlBggEZdnaSGDdw7vB7m9vrrr+ull16SVHGOkaTHHntMixcvNiRbVfLz8zVixAgdPXq03PozmbOzs3XjjTdWOK2E0Z566il9+OGHksqPtRwO2e12TZgwQd99951B6c6yOLxt5GogOTlZmzZt0pYtW9S0adMa3fahWW/WUSoAAAC4Ulpaqr/PmKYTx/Or3MZisahDTKxGjbvHg8kAAL7OYbfrjTnTdfTQb1VuY7FY1Caig8ZOnubBZNVb/32qvvrkA5fb/X7yNIW1i/JAIteKi4v06rMPqvDUySq3sVgsiontoet/P7HWHveDN56XJOVs2+z2bXx2D7ATJ04oLS1No0ePrnH5BQAAAGPl5e6otvySzp4frKS42EOpAABm8NuBvdWWX5JzjtmTs00nCqqfizxpy6YMycU3l0rSlo0ZdZ7FXbt3/Fpt+SU5xzp7U4Ycdnu129U1nz0J/uHDh2W32xUeHn5Bt585bYLb2x46mq85b36oyxIu1chhAy7o8QAAAHDWsmXL9M/XZru17WN/vl0hISF1GwgAYBo//vij3nrxSbe2vf+umxUZGVnHidzz3efvaXt29QfpWa1W9YmLqVGnUZc+/fRT/WveXJfbOex2PX3/HxUQEFArj3sqr+bfDu6zBVizZs1ktVq1e/fuC7r9hRwCuXrdJq1ex1ewAwAAXKwjBw+4tV1Qw0b622sfymL12QMXAAAedrzgmCwWi8tzZfn5B+jl9z6Tv3/tlDIX6+hJu8vcdrtdm3bs95rTOh3Y595J+YObhOjxF+fX2uMGtela49v47DuJhg0batCgQVqwYIGOHTtmdBwAAADUQEiLSxTZsYssLg71SOgzkPILAFAjjYKbKDo2ofo5xmJR98R+XlN+SVJ8nwEuSzubzU+xPS7zUCLXLmnVVm3bRbmcz3tcNshDiarm0yfBX7t2rQYNGqTIyEg9+OCDioyMVE5OjtLS0mrtazYXL12htVnZenDCbWraJLhW7hMAAADSunXrNGDAABUWFsp+3nlBrFarIiIitGbNGl1yySUGJQQA+KpffvlFl112mQoKCiqdYy655BKlp6df8GmV6oLD4dAf/vAHvf/++1Vu89xzz+mBBx7wYCrXVq9ereTkZJWUlFQ61h07dtSPP/5o+OkMfPrjtMTERK1evVrR0dGaOnWqrr76aj377LNq27Ztrdz/oaP5St+wWX3iu1B+AQAA1LKePXtq+fLliomJqXBdcnKyvvvuO8ovAMAF6dKli9LS0tS9e/cK1/Xt21erVq3yqvJLcn5b4ttvv62pU6dWOFdWSEiIXnnlFa8rvySpX79+WrZsmTp27FjhumHDhiktLc3w8kvy8T3A6trRYwVa9t1aDbs8kQIMAACgjjgcDqWlpSkjI0M2m02DBw9W1641P7cHAADnczgc+uGHH7RmzRpZLBYNHDhQ8fHxRsdy6dChQ1qyZIkOHz6s8PBwXXPNNWrQoIHRsarlcDiUkpKin376Sf7+/ho6dGilH3IZhQIMAAAAAAAApubTh0ACAAAAAAAArlCAAQAAAAAAwNQowAAAAAAAAGBqFGAAAADwuKlTp2rgwIG69957K73+yy+/VJcuXTRgwAAPJwMA+DpfnGNcZX7zzTfVt29f9e3bVx988IGH01XNVe533nlHgwYNUu/evfX3v//dw+nKowADAACAR61bt04FBQVKS0tTUVGR1qxZU2Gbvn37KjMz04B0AABf5otzjDuZhw8fru+//15paWl6/vnnDUhZkTu5x4wZoxUrVuj777/XG2+8YUDKsyjAAAAA4FHff/+9hg0bJkkaOnSoVq9erb/85S+y2+0aMWKEcnJy1KxZMwUGBhqcFADga3xxjnEnc/v27SVJfn5+8vPzMzDtWe7k9vf3lyQVFRXp0ksvNTIuBRgAAAA868iRI2rSpIkkqWnTpjpy5Ij27dunCRMm6Nprr1W7du0MTggA8FW+OMfUJPPrr7+ukSNHGhW1HHdzP/XUU4qOjlZiYqKRcSnAAAAA4FlNmzbVsWPHJEnHjh1TSEiIJk6cqH//+9+66667DE4HAPBlvjjHuJv5hx9+0BdffKFp06YZFbUcd3M//vjj+vXXX7Vw4UIdPHjQqLgUYAAAAPCsfv366ZtvvpEkff311+rbt6+efvpp/fWvf9XMmTMNTgcA8GW+OMe4k3n37t26//779c4778hmsxkZt4w7uQsLCyVJAQEBatiwoaGHnlKAAQAAwKN69uypoKAgDRw4UDabTatWrdINN9yg+++/Xxs2bNDGjRuVnp6uoUOHKisrS0OHDtWpU6eMjg0A8AG+OMe4k/mpp57Svn37dOONNyo5OVknT540NLO7uf/2t78pOTlZl19+uW699VYFBwcbltficDgchj06AAAAAAAAUMfYAwwAAAAAAACmRgEGAAAAAAAAU6MAAwAAAAAAgKlRgAEAAAAAAMDUKMAAAAAAAABgahRgAAAAAAAAMDUKMAAAAAAAAJgaBRgAAAAAAABMjQIMAAAAAAAApkYBBgAAAAAAAFOjAAMAAAAAAICpUYABAAAAAADA1CjAAAAAAAAAYGoUYAAAAAAAADA1CjAAAAAAAACYGgUYAAAAAAAATI0CDAAAAAAAAKZGAQYAAAAAAABTowADAAAAAACAqVGAAQAAAAAAwNQowAAAAAAAAGBqFGAAAAAAAAAwNQowAAAAAAAAmBoFGAAAAAAAAEyNAgwAAAAAAACmRgEGAAAAAAAAU6MAAwAAAAAAgKlRgAEAAAAAAMDUKMAAAAAAAABgahRgAAAAAAAAMDUKMAAAAAAAAJgaBRgAAAAAAABMjQIMAAAAAAAApkYBBgAAAAAAAFOjAAMAAAAAAICpUYABAAAAAADA1CjAAAAAAAAAYGoUYAAAAAAAADA1CjAAAAAAAACYGgUYAAAAAAAATI0CDAAAAAAAAKZGAQYAAAAAAABTowADAAAAAACAqVGAAQAAAAAAwNQowAAAAAAAAGBqFGAAAAAAAAAwNQowAAAAAAAAmBoFGAAAAAAAAEyNAgwAAAAAAACmRgEGAAAAAAAAU6MAAwAAAAAAgKlRgAEAAAAAAMDUKMAAAAAAAABgahRgAAAAAAAAMDUKMAAAAAAAAJgaBRgAAAAAAABMjQIMAAAAAAAApuZndADgjMXp0u7Dxjx2WDPpxl4XdtspU6YoIyOjVvO4IyEhQXPnzvX44wIAAAAA4GsowOA1dh+Wft1vdIqay8jIUGpqqtExAAAAAABAFTgEEgAAAAAAAKZGAQYAAAAAAABTowADAAAAAACAqVGAAQAAAAAAwNQowAAAAAAAAGBqFGAAAAAAAAAwNQowwAf4+/sbHQEAAAAAAJ/lZ3QAoD4JCQnRiBEj1KtXL3Xu3FkBAQEqKCjQhg0b9OOPP2rZsmUqLi4ud5uWLVvq66+/1osvvqi3337boOQAAAAAAPguCjAf5XBIFovRKeCuiIgIPf744xozZowaNmxY4fobb7xRkrR37169+eabmj17to4fP66WLVvq22+/VWxsrKZMmaL333+/QkEGAAAAAACq59WHQNrtds2ZM0fR0dEKCgpSfHy8UlNT1blzZ02YMMHoeB5XWiTlrJVWzZO+eUH6dq604XPp6B6jkxlj0TPJ+vGTZ9xeb5Q//vGPysrK0l133aWGDRvq22+/1eOPP64bbrhBV155pUaPHq3Zs2drw4YNat26tR5//HH99NNPuu6668rKr6ysLA0dOpTyCwAAAACAC+DVe4CNHz9eixcv1vTp05WYmKhVq1Zp9OjROnDggO677z6j43lU8Slp7b+kggNn19lLpH2bpX2/SJcOl8LijMuHys2YMUMPP/ywJOnjjz/WQw89pOzs7Arbffjhh5o2bZoGDRqkl156SQkJCfrkk09ksViUlZWlIUOG6MCBAxVuBwAAAAAAXPPaAmzBggWaP3++UlJSlJSUJEkaPHiw1q1bp8WLF6tnz54GJ/Ssn78qX36VcZy9vnErqUkrj8ZCNaZMmaKHH35YxcXFmjBhgubPn+/yNitWrNA111yjzMxMtWjRQna7XQ8//DDlFwAAAAAAF8FrD4GcMWOGRowYUVZ+ndGpUyf5+/srLs65u9OOHTuUlJSkmJgYde/eXWlpaUbErVOn8qX9FXcaqiB3fd1ngXsuvfRSzZw5U5L0+9//3q3yS3Ke8P6///2vWrRood9++01Wq1Vz586t9LxhAAAAAADAPV65B1hubq6ysrI0derUCtfl5OQoNjZWgYGBkqSJEyfq1ltv1eTJk7Vq1SqNGjVK27dvV0BAQLWPYfGhM8gP73WH/nLrfJfbbVy9T7FXta77QHXkpkeXK/zS5Brd5sdPn9XaL+aUW1d8qkDtug2t0f2kpqbof4YPrtFtqvPSSy8pMDBQ//d//6d///vfbt3m3BPeZ2Vl6corr9R//vMfJSQk6MEHH9QTTzxxXuZUn3oeAwAAAABQmxwOh9vbeuUeYLm5uZKk1q3LlzknT55Uampq2eGPv/32m1auXKnx48dLkvr376+2bdtq+fLlng1cx/xs1Zd5Z7fzr+Mk3qfPyEc16c0j5Za2MQMMzdSlSxcNGzZMx48f14MPPujWbc4vv4YMGaI9e/ZoypQpkqQJEybI37/+/f8FAAAAAKA2eOUeYKGhoZKk7OxsXX311WXrZ8+erby8PCUmJkpy7g3WqlWrsr3BJKlDhw7auXOny8c4c2hlSkpKLSavG0dypfQPXWxkkSKim9eo/fQ2ryyTft1vzGMnJSVr0TMXNnbJyclKTU0t+/n222+XJP3zn//UkSNHXN6+svLrzDm/UlNTlZWVpW7dumno0KH68ssvz8mc5BPPXwAAAAAAjOaVBVhUVJTi4uI0Y8YMNW/eXGFhYVq0aJG++OILSSorwOqLpmFSw+bSicMqO+l9BQ4pvIcnU6Eqffr0kaRyZVVVqiu/zli6dKm6deum3r17u3WfAAAAAACgPK88BNJqtWrhwoWKjY3VpEmTNG7cOIWGhuruu++WzWYrOwF+u3bttG/fPhUWFpbddvv27YqMjDQqep2wWKSuw53/VRWnfGrRQWoZ49FYqEK3bt0kSevXV/+tBO6UX+fez5nnPQAAAAAAqBmv3ANMkmJiYiqcy2vs2LHq2rWrGjRoIMl5qOTll1+uefPmlZ0Ef/fu3Ro8uPZOZu4tQsKlxFulzd9K+fvOrrf6SWHxUvRAyeqVdWbdufmxlBqt95R//etfCgkJ0f791R/P+dFHH7ksvyQpKytL8+bNc1moAQAAAACAynltAVaZ9PR09e3bt9y6119/XXfeeafmzp2rgIAALViwwOU3QPqqkDDpsrFS/n7ph3ed6wZNkvwCq78dPOu+++5za7spU6boxRdf1E033VRl+SVJP/30k+66667aigcAAAAAQL3jMwVYQUGBsrOzNXny5HLro6KitGLFCoNSGaNxy7OXKb9819q1azVo0CCjYwAAAAAAYHo+U4AFBwertLTU6BgAAAAAAADwMfXsrFEAAAAAAACobyjAAAAAAAAAYGoUYAAAAAAAADA1CjAAAAAAAACYGgUYAAAAAAAATI0CDAAAAAAAAKZGAQYAAAAAAABT8zM6AHBGWDPffOyEhIQa32ZbTp4kKapdm3KX6/pxAQAAAACojyjA4DVu7GV0ggszd+7cGt/moVlvSpJmTptQ7jIAAAAAAKh9HAIJAAAAAAAAU6MAAwAAAAAAgKlRgAEAAAAAAMDUKMAAAAAAAABgahRgAAAAAAAAMDUKMAAAAAAAAJgaBRgAAAAAAABMjQIMAAAAAAAApkYBBgAAAAAAAFOjAAMAAAAAAICpUYABAAAAAADA1CjAAAAAAAAAYGoUYAAAAAAAADA1CjAAAAAAAACYGgUYAAAAAAAATI0CDAAAAAAAAKZGAQYAAAAAAABTowADAAAAAACAqVGAAQAAAAAAwNQowAAAAAAAAGBqFGAAAAAAAAAwNQowAAAAAAAAmBoFGAAAAAAAAEzNqwswu92uOXPmKDo6WkFBQYqPj1dqaqo6d+6sCRMmGB3PECVF0u4NZ38+tte4LAAAAAAAAL7Az+gA1Rk/frwWL16s6dOnKzExUatWrdLo0aN14MAB3XfffUbH87jdP0nZy6XS4rPrfnxfahomxV0rBQYblw0AAAAAAMBbeW0BtmDBAs2fP18pKSlKSkqSJA0ePFjr1q3T4sWL1bNnT4MTetaejdLPX1V+3dE90tp/SX3GSn4Bns0FAAAAAADg7bz2EMgZM2ZoxIgRZeXXGZ06dZK/v7/i4uIkSY8//rhiYmJktVq1aNEiI6LWOXuptDW1mg0c0onD0p4sj0UCAAAAAADwGV5ZgOXm5iorK0ujRo2qcF1OTo5iY2MVGBgoSRoxYoSWLl2qQYMGeTqmxxzaIRWdcL3d7p/qPAoAAAAAAIDP8cpDIHNzcyVJrVu3Lrf+5MmTSk1N1VVXXVW2rn///hf0GKmpzl2qLBbLBab0nGv6TtS9N73ucrt9u47IYmnmgUS4WNNmviHJ+fw79zIAAAAAAHCPw+Fwe1uv3AMsNDRUkpSdnV1u/ezZs5WXl6fExEQjYhnm+KmjLrdxOBxubQcAAAAAAFDfeOUeYFFRUYqLi9OMGTPUvHlzhYWFadGiRfriiy8kqVYKsDPnFktJSbno+6prJYXSir87zwVWFYvFoj5XRsrxrPvtJ4zz0Kw3JTmLy3MvAwAAAACA2ueVe4BZrVYtXLhQsbGxmjRpksaNG6fQ0FDdfffdstlsZSfAry/8AqWIHtVsYJFs/lJ4vMciAQAAAAAA+Ayv3ANMkmJiYrR8+fJy68aOHauuXbuqQYMGBqUyTsdB0qkCad8vkiySztlZyOYvJdwgNWhqVDoAAAAAAADv5ZV7gFUlPT29wuGP06dPV3h4uFavXq2JEycqPDxcv/76q0EJ647VKnX7nZR4m9S6y9n10UnS5X+SmkUYlw0AAAAAAMCb+UwBVlBQoOzsbPXs2bPc+qefflq5ubkqLCzUwYMHlZubq44dOxqUsm5ZLFKzcGcRdkZkbymg/u0QBwAAAAAA4DavPQTyfMHBwSotreYs8AAAAAAAAEAlfGYPMAAAAAAAAOBCUIABAAAAAADA1CjAAAAAAAAAYGoUYAAAAAAAADA1CjAAAAAAAACYGgUYAAAAAAAATI0CDAAAAAAAAKZGAQYAAAAAAABTowADAAAAAACAqVGAAQAAAAAAwNQowAAAAAAAAGBqFGAmlJKSosjISCUnJ2vkyJE6depUuevnzJmj9evXV3n73bt3a8qUKWU/v/jiixowYIAkKTMzU7Nnz66T3AAAAAAAAHWBAsykxo4dq5SUFPXv31+LFi0qW2+32/Xdd9+pR48eVd522bJlGjZsmCSpsLBQGRkZZdfFx8dr9erVcjgcdZYdAAAAAACgNlGAmVxCQoJyc3PLfs7MzFSnTp0kOfcUa9asmZKTkxUZGamRI0dKklJTU5WUlCRJmjdvnu64445y9xkdHV3tHmQAAAAAAADehALM5FasWKGYmJiyn7ds2aL27dtLkgYNGqQ+ffooJSVFSUlJ+vvf/y6Hw6Hjx48rODhYxcXFSklJ0ZAhQ8rdZ1RUlH755RdP/hoAAAAAAAAXjALMpN577z0NHjxYR44cKduz63zbtm1TVFSUJGnXrl0KCwtTZmam4uPjy+5jzJgxHssMAAAAAABQFyjATGrs2LFavny5Xn31VdlstrL10dHR2rFjhyRp48aNio2NVWlpqaxW51Ph3PN/bd68Wa+99ppGjBihjRs36pVXXpHkLM66dOni2V8IAAAAAADgAlGA1TPx8fHKzs6WdLYAKyws1P79+5WXl6f09HT16tVLkjRr1iz997//1dKlSxUbG6t77rlHkpSdna2EhASjfgUAAAAAAIAa8TM6AGpfcnKykpOTK73OarVq4MCBWr9+vR555JGy9Rs2bJAk3XTTTWV7g51r5cqVkpwn0e/Xr1+l2wAAAAAAAHgjCrB66IEHHqjyultuuaXa28bHx5edIwwAAAAAAMAXsBsPAAAAAAAATI0CDAAAAAAAAKZGAQYAAAAAAABTowADAAAAAACAqVGAAQAAAAAAwNQowAAAAAAAAGBqFGAAAAAAAAAwNQowAAAAAAAAmBoFGAAAAAAAAEyNAgwAAAAAAACmRgEGAAAAAAAAU6MAAwAAAAAAgKlRgPkgu93oBAAAAAAAAL7Dqwswu92uOXPmKDo6WkFBQYqPj1dqaqo6d+6sCRMmGB3P44pOSFtSpRWvnl2X/qF0YKtxmQAAAAAAALydn9EBqjN+/HgtXrxY06dPV2JiolatWqXRo0frwIEDuu+++4yO51GFBdKaD6RTx8qvP7JbOpIrdRwgdehrTDYAAAAAAABv5rUF2IIFCzR//nylpKQoKSlJkjR48GCtW7dOixcvVs+ePQ1O6Fkbl0qn8iu5wuH8z68rpWbhUki4R2MBAAAAAAB4Pa89BHLGjBkaMWJEWfl1RqdOneTv76+4uDgdPnxY11xzjWJiYhQfH6/hw4dr61bzHQ944rB0aIfKyq5KWaRdGZ7JAwAAAAAA4Eu8cg+w3NxcZWVlaerUqRWuy8nJUWxsrAIDA3Xy5ElNmTJFQ4cOlSS9/PLLGjdunNLS0lw+RmpqqiTJYrHUbvg6MKL3H3X/LfOq38ghbU4/oLhrW3omFC7KtJlvSHI+/869DAAAAAAA3ONwVLenUHleuQdYbm6uJKl169bl1p88eVKpqallhz+GhISUlV+S1L9/f23fvt1zQT3EarW5tZ3Nze0AAAAAAADqE6/cAyw0NFSSlJ2drauvvrps/ezZs5WXl6fExMRKbzd37lxdf/31bj3GmUMrU1JSLiqrJxzbJ/34nouNLFLkpc1r1H7COA/NelOSs60+9zIAAAAAAKh9XlmARUVFKS4uTjNmzFDz5s0VFhamRYsW6YsvvpCkSguwJ598Ulu3btW3337r6bh1rkkrqXErKX+/qj4PmEOK6OHJVAAAAAAAAL7BKw+BtFqtWrhwoWJjYzVp0iSNGzdOoaGhuvvuu2Wz2RQXF1du+2eeeUaff/65li5dqoYNGxqUum51HSHZ/CVVcZqoNrFSaEePRgIAAAAAAPAJXrkHmCTFxMRo+fLl5daNHTtWXbt2VYMGDcrWPfnkk/riiy+0bNkyhYSEeDil5zS+ROo9RtqaJv3269n1AY2kdolSZG+Jc6gDAAAAAABU5LUFWGXS09PVt2/fsp83btyoJ554Qh07dlRycnLZ+oyMDM+H84DgUCnhBulUvnTyiGT1cx4aafXK/fgAAAAAAAC8g88UYAUFBcrOztbkyZPL1sXGxtbLE4cHNXYuAAAAAAAAcM1nCrDg4GCVlpYaHQMAAAAAAAA+hoPnAAAAAAAAYGoUYAAAAAAAADA1CjAAAAAAAACYGgUYAAAAAAAATI0CDAAAAAAAAKZGAQYAAAAAAABTowADAAAAAACAqVGAAQAAAAAAwNQowAAAAAAAAGBqFGAAAAAAAAAwNQowAAAAAAAAmBoFGAAAAAAAAEyNAgwAAAAAAACmRgEGAAAAAAAAU6MAAwAAAAAAgKlRgAEAAAAAAMDUKMAAAAAAAABgahRgAAAAAAAAMDUKMAAAAAAAAJgaBRgAAAAAAABMjQIMAAAAAAAApkYBBgAAAAAAAFOjAAMAAAAAAICpUYABAAAAAADA1CjAqjB8+HAlJCSoe/fuuvnmm3Xs2DGjIwGSpF27dumKK67QpZdeqtjYWD388MNGRwIAAAAAwKtRgFVh4cKFysjI0IYNGxQeHq4XXnjB6EiAJMnPz0+zZs3Szz//rPXr12vlypX69NNPjY4FAAAAAIDX8jM6gLdq2rSpJMlut+vUqVOyWCwGJwKc2rRpozZt2kiSAgIC1KNHD+Xk5BicCgAAAAAA70UBVo0bbrhBaWlp6t69u+bMmWN0HPiw3Xt/06IvUyusf+ntjypcDgzw1x9uulINgwJd3u+hQ4f0ySef6Kuvvqq9sAAAAAAAmAyHQFbj448/1p49exQeHq5FixYZHQc+LKx1qMJahSpv/0Hl7T9Ytv78y3n7DyqxW4xb5VdRUZFuvvlm3XvvverSpUud5AYAAAAAwAwowFwICAjQbbfdpo8//tjoKPBx11zRT82aNq52m0s7RapXXGeX91VaWqoxY8YoISFB999/f21FBAAAAADAlCjAKpGfn6+8vDxJznOALVmyRLGxsQangq8LCgzQLb9LVlVnk2vUMEg3jRjk1vnmJkyYoMaNG+v555+v3ZAAAAAAAJgQBVgl8vPzdd111ykuLk5xcXEqKSnRY489JklyOBwGp4Mv6xDRRoMui6/0uhtHDFJwowYu7+O7777TW2+9pfT0dPXo0UMJCQl6+eWXazsqAAAAAACmwUnwK9G2bVutWbOm0utSf8jU7r0HdOu1Q+Rns3k4Gcxg2IBe2rxtl/YeOFS2rlf3zoqNbu/W7S+//HKKWAAAAAAAaoA9wGqgsLBIK37IVFFxCeUXLpifn023XTtENpvzn1/zpo117RX9DE4FAAAAAIB5+XwBtmHDBt10000KDQ1VUFCQoqOj9eijj9bJY61at1EnThVq6OWJdXL/qD9aX9Jcwwf2lkXSqN8lKzAwwOhIAAAAAACYlsXhw8dSrV27VoMGDVJERISmTZumyMhIbd++XatWrdK8efOqvW27KOc37Y2ZyDfoAQAAAAAA+JqZ0ya4va1PnwPs/vvvV6NGjfTDDz+oadOmZevHjx9vYCoAAAAAAAB4E58twE6cOKG0tDT9+c9/Lld+uSuqXRtJ7rWFhYVFmvX6AkW0balxo66q8WMBAAAAAADAOD5bgB0+fFh2u13h4eEXdPuCEudJ7B+a9abbt9m8bVeNtgcAAAAAAEDdqBeHQDZr1kxWq1W7d+++oNsPvfbWWk4EAAAAAAAAb+TTJ8EfPHiwNm3apC1btqhJkyZ18hjLV6/Xf1es0d1jr1dE25Z18hgAAAAAAACoO1ajA1yMOXPmqKCgQH379tX8+fO1fPlyvfPOO7rrrrtq5f4LC4uU9uNP6hwVQfkFAAAAAADgo3z2EEhJSkxM1OrVqzV9+nRNnTpVp06dUkREhG677bZauf9DR/PVoEGghl6eWCv3BwAAAAAAAM/z6UMgPcFut8tq9ekd5QAAAAAAAOo1CjAAAAAAAACYGrs2AQAAAAAAwNQowAAAAAAAAGBqFGAAAAAAAAAwNQowAAAAAAAAmBoFGAAAAAAAAEyNAgwAAAAAAACmRgEGAAAAAAAAU6MAAwAAAAAAgKlRgAEAAAAAAMDUKMAAAAAAAABgahRgAAAAAAAAMDUKMAAAAAAAAJgaBRgAAAAAAABMjQIMAAAAAAAApkYBBgAAAAAAAFOjAAMAAAAAAICpUYABAAAAAADA1CjAAAAAAAAAYGoUYAAAAAAAADA1CjAAAAAAAACYGgUYAAAAAAAATI0CDAAAAAAAAKZGAQYAAAAAAABTowADAAAAAACAqVGAAQAAAAAAwNQowAAAAAAAAGBqFGAAAAAAAAAwtf8P2GCcMgwDJu0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# initialization of qubit q0\n", + "qc.reset(0)\n", + "qc.h(0)\n", + "\n", + "# phase correction\n", + "qc.p(-pi/4,0).c_if(c,1)\n", + "\n", + "qc.p(-pi/2,0).c_if(c,2)\n", + "qc.p(-3*pi/2,0).c_if(c,3)\n", + "\n", + "# c-U operations\n", + "for _ in range(2**(m-3)):\n", + " qc.mcp(pi/4,[0,1],2)\n", + "\n", + "# X measurement \n", + "qc.h(0)\n", + "qc.measure(0,2)\n", + "\n", + "qc.draw('mpl')" + ] + }, + { + "cell_type": "markdown", + "id": "d8b00f08-5eed-49a2-8cd8-71ede0588c53", + "metadata": {}, + "source": [ + "Now, we execute the circuit with the simulator without noise." + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "id": "a2606cc0-4153-42f0-8eb8-217cc99ea609", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcBklEQVR4nO3df7QcZZng8e9DkAFElPAjBEIEDTMogiABAQcIjpFfMygwIzJilkVggFkQUUc9AyqO6C4qC+MsOjBzgKCzi6DiKFGCKD+EAN7gHgEdBgWjCSGGH4oIIRCe/aPqsm3TN7fr3k53dff3c06ddL/1VvXTkCdPV9Vbb0VmIklS3azX6wAkSWrFAiVJqiULlCSplixQkqRaskBJkmpp/V4H0EtbbLFFbr/99r0OQ31q8eLFj2Tmlr2Oow7MJU3GWLk01AVq++23Z2RkpNdhqE9FxJJex1AX5pImY6xc8hSfJKmWLFCSpFqyQEmSaskCJUmqJQuUJKmWLFCSpFqyQEmSaskCJUmqJQuUJKmWLFCSpFqyQEmSaskCJUmqJQuUJKmWLFCSpFqyQEmSaskCJUmqJQvUkDj++OPZaquteN3rXtdyfWZy+umnM2vWLHbddVfuuuuuF9Zdfvnl7Ljjjuy4445cfvnlL7QvXryYXXbZhVmzZnH66aeTmev8e0i9Zi51UWYO7bLHHnvksLjpppty8eLFufPOO7dcf+211+bBBx+czz//fC5atCj32muvzMx89NFHc4cddshHH300H3vssdxhhx3ysccey8zMPffcMxctWpTPP/98HnzwwblgwYKufZ86AEayBn+P67CYS/+fuVTdWLnkEdSQ2H///Zk6deqY67/xjW8wb948IoK9996b3/zmNyxfvpzrrruOuXPnMnXqVDbbbDPmzp3Ld77zHZYvX84TTzzB3nvvTUQwb948rrnmmu59IalHzKXusUAJgGXLlrHddtu98H7GjBksW7Zsre0zZsx4Ubs07MylzrFASZJqyQIlALbddlt+9atfvfB+6dKlbLvttmttX7p06YvapWFnLnWOBUoAHH744cyfP5/M5Pbbb+flL38506dP56CDDmLhwoU8/vjjPP744yxcuJCDDjqI6dOns+mmm3L77beTmcyfP5+3ve1tvf4aUs+ZS52zfq8DUHccc8wx3HjjjTzyyCPMmDGDc845h2effRaAk08+mUMPPZQFCxYwa9YsNt54Yy699FIApk6dytlnn82ee+4JwEc/+tEXLhBfdNFFHHfccTz99NMccsghHHLIIb35clIXmUvdE8UIv+E0e/bsHBkZ6XUY6lMRsTgzZ/c6jjowlzQZY+WSp/gkSbVkgZIk1ZIFSpJUSxYoSVItWaAkSbVkgZIk1VJXC1RE7B8R/x4RyyIiI+K4NrbZJSJuioiny+0+GhHR1OeoiPhJRDxT/nnEOvsSUg2YSxoG3T6C2gS4B3gv8PR4nSNiU+B6YAWwZ7ndB4EzG/rsA1wJfBnYrfzzqoh4Y4djl+rEXNLA6+pMEpm5AFgAEBGXtbHJu4CNgf+SmU8D90TETsCZEXF++RyRM4DvZ+a55TbnRsSBZfsxnf0GUj2YSxoGdb8GtQ9wS5lQo64DtgG2b+izsGm764B913l0Uv8wl9R36j4X39bA0qa2FQ3rHiz/XNGiz9atdhgRJwEnAcycOXPMDz7xgsqxagBdckavI+iYnuSSeaRRE8mluh9BdVxmXpyZszNz9pZbbtnrcKS+ZS5pXat7gXoYmNbUNq1h3dr6PIykUeaS+k7dC9QiYL+I2LChbS7wEPCLhj5zm7abC9y2zqOT+oe5pL7T7fugNomI3SJit/KzZ5bvZ5brPx0RNzRs8m/AU8BlEfG6iDgS+DAwOuoI4ELgzRHx4YjYKSI+AhwIXNClryV1nbmkYdDtI6jZwI/KZSPgnPL1J8r104FXj3bOzN9S/ILbBhgB/hfwOeD8hj63Ae8EjgN+DMwDjs7MO9btV5F6ylzSwOv2fVA3ArGW9ce1aLsb2H+c/V4NXD3J8KS+YS5pGNT9GpQkaUhZoCRJtWSBkiTVkgVKklRLFihJUi1ZoCRJtWSBkiTVkgVKklRLFihJUi1ZoCRJtWSBkiTVkgVKklRLFihJUi1ZoCRJtWSBkiTVkgVKklRLFihJUi1ZoCRJtWSBkiTVkgVKklRLFihJUi1ZoCRJtWSBkiTVkgVKklRLFihJUi1ZoCRJtVSpQEXEehGxXsP7rSPihIh4U+dDkwaTeSS1p+oR1LXAaQARsQkwAnwGuDEi5nU4NmlQmUdSG6oWqNnA98rXRwJPAFsBJwIf6GBc0iAzj6Q2VC1QmwC/KV+/Ffh6Zj5LkWyv7mBc0iAzj6Q2VC1QvwTeFBEvBQ4Cri/bpwJPdTIwaYCZR1Ib1q/Y/3zgCuBJYAlwc9m+P3B3B+OSBpl5JLWhUoHKzH+OiMXAdsD1mfl8uernwNmdDk4aROaR1J6qR1Bk5gjFqKPGtms7FpE0BMwjaXyVb9SNiFMj4t6IeCoiXlW2fSgi3lFh+wcjYlVELI6I/dbS97KIyBbL7xv6zBmjz05Vv5vULZPNo4Z9mEsaWFVv1D0DOAu4GIiGVQ8B/62N7Y8GLgQ+BewO3AZ8OyJmjrHJe4HpTcsDwFda9N25qd/9434hqQcmm0flPswlDbyqR1AnAydm5oXAcw3td1H8pR7PmcBlmXlJZv40M08DlgOntOqcmb/NzIdHF4ohuK8CLmnR/deNfTNzTZUvJnXRZPMIzCUNgaoF6pXAPS3anwU2WtuGEbEBsAewsGnVQmDfNj//RODezLytxbqRiFgeETdExIFt7k/qhQnnEZhLGh5VC9QDwBtatB8K/GScbbcApgArmtpXAFuP98ER8XLgHbz4F9/or8ajKO7Kvw+4Yazz8RFxUkSMRMTIypUrx/tYaV2YTB6BuaQhUXUU32eBf4qIjSnOne8TEe8G/g44vtPBNTmWoqBe0diYmfdRJNKoRRGxPfBB4JbmnWTmxRTn/pk9e3auq2CltehlHoG5pD5R9T6oSyNifYoLsxtT/AV/CDg9M68cZ/NHgDXAtKb2acDDbXz8icBXM/OxNvreAbyzjX5S100yj8Bc0pCoPMy8vCj7SorJLbfOzBmZ+a9tbLcaWAzMbVo1l2IE0pgiYi/g9bS+oNvKbhSnK6RammgelduaSxoKlW/UHZWZj0xgs/OBKyLiTuBWitFM2wBfBIiI+eW+mx85cBJwf2be2LzDcsjuL4B7gQ0oTl+8neI8ulRrE8wjMJc0BMYtUBHxY+CAzHw8Iu4GxjzXnJm7rm1fmXllRGxOcQ/IdIqRTIdm5pKyy4vu4YiIl1GcYvjEGLvdgOJZOjOApymS67DMXLDWLyZ1USfzqOxjLmngtXME9VXgmYbXk7oYmpkXAReNsW5Oi7bfUTyeYKz9nQecN5mYpC7oaB6BuaTBN26BysxzGl5/fJ1GIw0o80iqrupUR9+LiFe0aN80Ir7XYhNJTcwjqT1VR/HNoThP3WxDYMyJKiX9gTmYR9K42hrFFxGNd73vGhGN909MoXgq6LJOBiYNGvNIqqbdYeYjFBd1kxfP/wXFiJ/TOhWUNKDMI6mCdgvUDhRTsjwA7AU0Try1mmL2Y2c8ltbOPJIqaKtANdxbUXnmCUkF80iqpp0bdY8EvpmZz5avx5SZX+tYZNIAMY+k6to5grqaYgr/X5evx5IUF3olvZh5JFXUzo2667V6Lal95pFUnYkiSaqldq9BtcVz51Jr5pFUXbvXoNrhuXNpbOaRVFGla1CSJsY8kqozaSRJteR9UFIXmEdSdd4HJXWHeSRV5H1QUheYR1J1JookqZYqF6iIeENEzI+IkXK5ouk5N5LGYR5J46v6yPd3AT8EpgMLymUacGdEHNv58KTBYx5J7Wn3eVCjzgXOzsxPNTZGxEeATwJf6lRg0gAzj6Q2VD3FtyXwlRbtVwFbTT4caSiYR1Ibqhao7wNzWrTPAW6abDDSkDCPpDZUnSz228CnI2I2cHvZtjdwJPDxjkcnDQjzSKpuopPFnlQujT4PXDTpiKTBZB5JFTlZrNQF5pFUnUkjSaqlqsPMiYjNgEOAmcAGjesy8xMdiksaaOaRNL5KBSoi9gauBZ6hGCq7jOJmw2eAXwAmljQO80hqT9VTfJ8BvgxsC6wC3kzxC3AE+B+dDU0aWOaR1IaqBWpX4J8yM4E1wB9l5grgQzg8VmqXeSS1oWqBWt3wegXwyvL1k8A2HYlIGnzmkdSGqoMk7gL2BP4TuBH4ZERMA44FftzZ0KSBZR5Jbah6BPX3wEPl67OAlRQ3Fm7Gi284bCkiTo2IByNiVUQsjoj91tJ3TkRki2Wnpn5HRcRPIuKZ8s8jKn4vqZsmnUdgLmnwVTqCysyRhtcrKYbJti0ijgYuBE4FflD++e2IeG1m/nItm+4MPNbwfmXDPvcBrgQ+BnyNYrqYqyLiTZl5R5X4pG6YbB6BuaThMKEbdSPi1RHx5+XyqgqbnglclpmXZOZPM/M0YDlwyjjb/TozH25Y1jSsOwP4fmaeW+7zXIrTJmdUiEvquknkEZhLGgJVH1i4eURcA9wPXFMu90fENyJi83G23QDYA1jYtGohsO84Hz0SEcsj4oaIOLBp3T4t9nldG/uUemIyeVRuby5pKFQ9gvoXYBawH7BhuewP7ABcMs62WwBTKEYtNVoBbD3GNqO/CI+iON1wH3BD07n2ravsMyJOGn3M9sqVK1t1kda1yeQRmEsaElVH8R0E/FlmLmpouzUi/gb4bufCKmTmfRSJNGpRRGwPfBC4ZYL7vBi4GGD27Nk52RilCehqHoG5pP5U9QhqJfD7Fu1PAY+Os+0jFDclTmtqnwY8XCGGO4AdG94/3IF9St00mTwCc0lDomqB+gRwQURsO9pQvv4c48wflpmrgcXA3KZVc4HbKsSwG8XpilGLOrBPqZsmnEdgLml4tPNE3buBxsP3HYBfRMSy8v3ofGJbUZxbX5vzgSsi4k7gVuBkijvnv1h+1nyAzJxXvj+DYvLMeylmfD4WeDvFefRRFwI3R8SHKS42HwEcCPzpeN9N6pYO5xGYSxoCE32i7oRk5pXlKKWzKGZvvgc4NDOXlF1mNm2yAcXEmjOApymS67DMXNCwz9si4p3AJyl+ff4cONr7NlQzHcsjMJc0HNp5ou45nfzAzLyIMR5pnZlzmt6fB5zXxj6vpsP/AEid1Ok8KvdpLmmgVX5gIUBEvBl4LcUpi3sz88ZOBiUNA/NIWruqDyzcFvg6xU2Co3OJbRMRI8ARmfnQmBtLAswjqV1VR/H9I8Xw1lmZuV1mbkcxTHVNuU7S+MwjqQ1VT/HNBeZk5oOjDZn5QEScDtzQ0cikwWUeSW2YyGSxre4Y9y5yqRrzSBpH1QJ1A/D5iNhutCEiZgIX4C8/qV3mkdSGqgXqdOClwAMRsSQillDcK/HScp2k8ZlHUhuqXoN6FNgLmAOMPonzp5m5Tia4lAaUeSS1oe0CFRFTgN8Cr8/M64Hr11lU0oAyj6T2tX2Kr3zy5hKKKVMkTYB5JLWv6jWofwD+e0RssS6CkYaEeSS1oeo1qA9QzMK8LCKW0vRMm8zctVOBSQPMPJLaULVAXU1xr0asg1ikYWEeSW1oq0BFxMYUU/W/HXgJxb0ap2XmI+suNGmwmEdSNe1egzoHOA64FvjfwFuAL6yjmKRBZR5JFbR7iu9I4D2Z+X8AIuLLwK0RMaUclSRpfOaRVEG7R1DbAbeMvsnMO4HnKB4xLak95pFUQbsFagqwuqntOSb4wENpSJlHUgXtJkYAX4qIZxraNgQuiYinRhsy8/BOBicNGPNIqqDdAnV5i7YvdTIQaQiYR1IFbRWozPyv6zoQadCZR1I1E3lgoSRJ65wFSpJUSxYoSVItWaAkSbVkgZIk1ZIFSpJUSxYoSVItWaAkSbVkgZIk1ZIFSpJUSxYoSVItWaAkSbVkgZIk1ZIFSpJUS10vUBFxakQ8GBGrImJxROy3lr5HRsTCiFgZEb+LiDsi4vCmPsdFRLZYNlz330bqHXNJg66rBSoijgYuBD4F7A7cBnw7ImaOsckBwPeAw8r+C4Cvt0jEp4DpjUtmrur8N5DqwVzSMGj3ibqdciZwWWZeUr4/LSIOBk4BPtLcOTPf29R0TkQcBrwduOUPu+bD6yBeqa7MJQ28rh1BRcQGwB7AwqZVC4F9K+zqZcDjTW0bRcSSiFgaEd+KiN3XEsdJETESESMrV66s8LFSPZhLGhbdPMW3BTAFWNHUvgLYup0dRMTfAjOAKxqa7wOOB94GHAOsAm6NiB1b7SMzL87M2Zk5e8stt6z2DaR6MJc0FLp9im/CIuIo4DPA0Zm5ZLQ9MxcBixr63Qb8X+A04PQuhynVnrmkftHNI6hHgDXAtKb2acBaz3lHxF9S/NKbl5nfXFvfzFwDjAAtf/VJA8Bc0lDoWoHKzNXAYmBu06q5FCOQWoqId1Ak1HGZefV4nxMRAewKLJ94tFJ9mUsaFt0+xXc+cEVE3AncCpwMbAN8ESAi5gNk5rzy/TspEuoDwM0RMXp+fXVmPlb2+RhwO3A/sCnFqYhdKUYzSYPKXNLA62qByswrI2Jz4CyKeyzuAQ5tOA/efA/HyRQxXlAuo24C5pSvXwFcTHFx+LfAj4D9M/POjn8BqSbMJQ2Drg+SyMyLgIvGWDdnbe/H2OZ9wPs6EZvUT8wlDTrn4pMk1ZIFSpJUSxYoSVItWaAkSbVkgZIk1ZIFSpJUSxYoSVItWaAkSbVkgZIk1ZIFSpJUSxYoSVItWaAkSbVkgZIk1ZIFSpJUSxYoSVItWaAkSbVkgZIk1ZIFSpJUSxYoSVItWaAkSbVkgZIk1ZIFSpJUSxYoSVItWaAkSbVkgZIk1ZIFSpJUSxYoSVItWaAkSbVkgZIk1ZIFSpJUSxYoSVItWaAkSbVkgZIk1ZIFSpJUS10vUBFxakQ8GBGrImJxROw3Tv8Dyn6rIuKBiDh5svuUBoG5pEHX1QIVEUcDFwKfAnYHbgO+HREzx+i/A7Cg7Lc78Gng8xFx1ET3KQ0Cc0nDoNtHUGcCl2XmJZn508w8DVgOnDJG/5OBhzLztLL/JcDlwAcmsU9pEJhLGnhdK1ARsQGwB7CwadVCYN8xNtunRf/rgNkR8ZIJ7lPqa+aShsX6XfysLYApwIqm9hXAW8bYZmvguy36r1/uL6ruMyJOAk4q3z4ZEfe1E/yQ2gJ4pNdB9NK/vG+tq1/ZpTCamUv9x1yaQC51s0DVQmZeDFzc6zj6QUSMZObsXsehejKX2mcuTUw3C9QjwBpgWlP7NODhMbZ5eIz+z5X7iwnsU+p35pKGQteuQWXmamAxMLdp1VyK0UKtLBqj/0hmPjvBfUp9zVzS0MjMri3A0cBq4ATgNRRDWp8EXlmunw/Mb+i/A/B74IKy/wnl9ke1u0+XSf3/OqnXMbiM+f/GXOqjxVya4H+3HvyPOhX4BfAMxS+2/RvW3Qjc2NT/AOCusv+DwMlV9uniMqiLueQy6EtkZutDK0mSesi5+CRJtWSBkiTVkgVKklRLFihJUi1ZoNRSREyJCP9+SB0QEUdExEa9jqPf+A+Q/kBE7AGQmWsy8/mybUpERG8jk/pTRGwOfBWY2tD20oh4TUTs1LvI6s8CpRdExI7ADyPinog4PyJ2hxeKVUbhJRGxVzn7taTxnQLclZnLImKLiPhb4CGK53N9PiI+3Nvw6ssCpUbHAD8Hrgf2Br4VEbdHxN9FxHZZ3DS3FXB7+aek8Z0A/GP5+kPAicB5wPspboo+xyLVmjfq6gUR8WWKiUM/DWwOzAb2A/aiOD3xI4pJRXfIzJ17FafUL8qzEvcBe2bm4oi4H3h/Zv57Q58vADOBIzPzmR6FWktD97gNtRYR6wPXUsy79jDFDNb3RsQ3gT+heJjd/sBfUvwClDS+1wBLgEsbTovfBsW13cxcA1wDfA7YhGKKKZU8glJLEfGSzHy2qe1I4Gpgk8x8qjeRSf0jIjYFXl8uBwBLgU9n5q8b+rwXmJeZe/QmyvryCEoARMR6o6P2AEaLU3lktaa8/rQvcLPFSWpPZj4B3ALcEhFfp3iy7qOj6yNiGvBu4IreRFhvHkEJgIiYAcyiuMb0PHBfeapvdH0AbwOWZeYPexOl1H8iYsPMXNWqHfgs8CbgTf7wezELlIiIU4DjKU5D/B74GcWpiNuBazLzvh6GJ/WliNiFYqTeKoozD//Wos/mFNd97+p2fP3AAjXkygT5GcVF2i8AWwJvAeZQXOBdCrwvM3/ScFFX0lpExEHAPwAbAE8AuwGfzcxP9DKufmOBGnIRcRpwbGa+scW6P6UYcr4tsFdmPtLt+KR+FBE3AXcCH8nM5yLiBIqjqb/IzJ+Vff4EOCwzz+9hqLXmjbpaDbwsIl4HEBF/NDocNjN/ALyL4hTFW3sXotQ/IuIVwM7ApWVxWg+YD6wE3tPQ9SyK0+oagwVKV1MMijgjIl6Wmc9k5urRiWIz85fAb4AZPYxR6idvAO4efZOZz2fmauBc4NSI2KYcdHQEcEmPYuwLFqghVibJYxS/5OYCD0XEv45OGBsRMyPiWGAX4Cu9i1TqK8spZmR5KbyQZwDfBUaAvwH+AlhVnqXQGLwGpdFTEjMp7nM6gmLYKxSzSQRwRWZ+vCfBSX2oeWj56H2GEfHXwMnAZsANmXlGr2LsBxaoIRURW1HcIPh+il97T1OcyvsBxfDyl1DcF/WdzPzPHoUp9ZXyaGm9sUa7RsTLKHJsF2C7zFzWzfj6jQVqSEXEZRQXcr9JcZpvKkXS/DHwa+CszLyjZwFKfWz0tF62+Ac2It4NHJ6Zf9X1wPqMBWoIlcnzO+DQzLy5oW0m8EaKxwO8CniHNxBK7YmIbSjOOtzZfHqPolb5j21FzsU3nF4LPEgxxBx44ZfeEmBJRHwDuBX4K8ACJbXnYxSDjW6KiBGK2SPubpzjMiL+GNjKwRHt8QhqCEXERsC3gI2BecDPG5Oo7HMa8J7M3K37EUr9JyKWUvygm0LxQM/fAf9B8XiNmzPzlxFxEbBTZr65d5H2DwvUkIqIvYEvUgyO+GfgBuDxzHwyIjamuLFwVWYe28Mwpb4QEW8ELqIYdHQbxXRhb6W4EXcTipt076MYwffuzLy6R6H2FQvUECtnjzgbOJxikthFFIn0Fop7OU7IzLvH3oMkgIiYDhxFcf3pzqb2P6OY2/JAYGpmbtaTIPuQBUqjQ84PA95OMa3RPcBVmfkfvYxL6ieNkym3mlg5Ir5PcTr9hJ4E2IcsUPoDzQ8ulDRx5ejYoJhweQkwZ3TkrMZngZKkdawcan6k156qsUBJUpdERHg/VPucLFaSOiQKU0afBlC+32J0vcWpGguUJE1SROwYEVtlYU3DddwDgB9ExAd6GV+/ciYJSZqAhgmX30dxe8ZzEbEcuAr4Wmb+nuIg4EmKmVtUkdegJGkCxphweXdgJ2ApcF5mXl/29drTBFigJKmitUy4PAPYGzgR2B7468wc6VWc/c5rUJJUXcsJlzPzV5l5FfDnwBMUs0togixQklTdAxTPTfuf5QCJP/i3NDNXA5cDh/QiuEFhgZKkijLzaeDvgY0oJlaeFxHbRcQmAOWEywdQTBumCfIalCRNkBMur1sWKEmaJCdcXjcsUJLUQU643DkWKElSLTlIQpJUSxYoSVItWaAkSbVkgZIk1ZIFSpJUSxYoSVIt/T95uniiIcU0IwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "count0 = execute(qc, sim).result().get_counts()\n", + "\n", + "key_new = [str(int(key,2)/2**m) for key in list(count0.keys())]\n", + "count1 = dict(zip(key_new, count0.values()))\n", + "\n", + "fig, ax = plt.subplots(1,2)\n", + "plot_histogram(count0, ax=ax[0])\n", + "plot_histogram(count1, ax=ax[1])\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "id": "c176128a-c0eb-4e44-83be-8afbbe428145", + "metadata": {}, + "source": [ + "We have obtained $100\\%$ probability to find $\\varphi=0.125$, that is, $1/8$, as expected." + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "id": "together-projector", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "

Version Information

Qiskit SoftwareVersion
Qiskit0.26.0
Terra0.17.3
Aer0.8.2
Ignis0.6.0
Aqua0.9.1
IBM Q Provider0.13.1
System information
Python3.7.9 (default, Aug 31 2020, 07:22:35) \n", + "[Clang 10.0.0 ]
OSDarwin
CPUs8
Memory (Gb)32.0
Wed Jun 02 13:39:10 2021 EDT
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "

This code is a part of Qiskit

© Copyright IBM 2017, 2021.

This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.

Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import qiskit.tools.jupyter\n", + "%qiskit_version_table\n", + "%qiskit_copyright" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}