|
| 1 | +//===- CNFFormula.h ---------------------------------------------*- C++ -*-===// |
| 2 | +// |
| 3 | +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | +// See https://llvm.org/LICENSE.txt for license information. |
| 5 | +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | +// |
| 7 | +//===----------------------------------------------------------------------===// |
| 8 | +// |
| 9 | +// A representation of a boolean formula in 3-CNF. |
| 10 | +// |
| 11 | +//===----------------------------------------------------------------------===// |
| 12 | + |
| 13 | +#ifndef LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_CNFFORMULA_H |
| 14 | +#define LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_CNFFORMULA_H |
| 15 | + |
| 16 | +#include <cstdint> |
| 17 | +#include <vector> |
| 18 | + |
| 19 | +#include "clang/Analysis/FlowSensitive/Formula.h" |
| 20 | + |
| 21 | +namespace clang { |
| 22 | +namespace dataflow { |
| 23 | + |
| 24 | +/// Boolean variables are represented as positive integers. |
| 25 | +using Variable = uint32_t; |
| 26 | + |
| 27 | +/// A null boolean variable is used as a placeholder in various data structures |
| 28 | +/// and algorithms. |
| 29 | +constexpr Variable NullVar = 0; |
| 30 | + |
| 31 | +/// Literals are represented as positive integers. Specifically, for a boolean |
| 32 | +/// variable `V` that is represented as the positive integer `I`, the positive |
| 33 | +/// literal `V` is represented as the integer `2*I` and the negative literal |
| 34 | +/// `!V` is represented as the integer `2*I+1`. |
| 35 | +using Literal = uint32_t; |
| 36 | + |
| 37 | +/// A null literal is used as a placeholder in various data structures and |
| 38 | +/// algorithms. |
| 39 | +constexpr Literal NullLit = 0; |
| 40 | + |
| 41 | +/// Clause identifiers are represented as positive integers. |
| 42 | +using ClauseID = uint32_t; |
| 43 | + |
| 44 | +/// A null clause identifier is used as a placeholder in various data structures |
| 45 | +/// and algorithms. |
| 46 | +constexpr ClauseID NullClause = 0; |
| 47 | + |
| 48 | +/// Returns the positive literal `V`. |
| 49 | +inline constexpr Literal posLit(Variable V) { return 2 * V; } |
| 50 | + |
| 51 | +/// Returns the negative literal `!V`. |
| 52 | +inline constexpr Literal negLit(Variable V) { return 2 * V + 1; } |
| 53 | + |
| 54 | +/// Returns whether `L` is a positive literal. |
| 55 | +inline constexpr bool isPosLit(Literal L) { return 0 == (L & 1); } |
| 56 | + |
| 57 | +/// Returns whether `L` is a negative literal. |
| 58 | +inline constexpr bool isNegLit(Literal L) { return 1 == (L & 1); } |
| 59 | + |
| 60 | +/// Returns the negated literal `!L`. |
| 61 | +inline constexpr Literal notLit(Literal L) { return L ^ 1; } |
| 62 | + |
| 63 | +/// Returns the variable of `L`. |
| 64 | +inline constexpr Variable var(Literal L) { return L >> 1; } |
| 65 | + |
| 66 | +/// A boolean formula in 3-CNF (conjunctive normal form with at most 3 literals |
| 67 | +/// per clause). |
| 68 | +class CNFFormula { |
| 69 | + /// `LargestVar` is equal to the largest positive integer that represents a |
| 70 | + /// variable in the formula. |
| 71 | + const Variable LargestVar; |
| 72 | + |
| 73 | + /// Literals of all clauses in the formula. |
| 74 | + /// |
| 75 | + /// The element at index 0 stands for the literal in the null clause. It is |
| 76 | + /// set to 0 and isn't used. Literals of clauses in the formula start from the |
| 77 | + /// element at index 1. |
| 78 | + /// |
| 79 | + /// For example, for the formula `(L1 v L2) ^ (L2 v L3 v L4)` the elements of |
| 80 | + /// `Clauses` will be `[0, L1, L2, L2, L3, L4]`. |
| 81 | + std::vector<Literal> Clauses; |
| 82 | + |
| 83 | + /// Start indices of clauses of the formula in `Clauses`. |
| 84 | + /// |
| 85 | + /// The element at index 0 stands for the start index of the null clause. It |
| 86 | + /// is set to 0 and isn't used. Start indices of clauses in the formula start |
| 87 | + /// from the element at index 1. |
| 88 | + /// |
| 89 | + /// For example, for the formula `(L1 v L2) ^ (L2 v L3 v L4)` the elements of |
| 90 | + /// `ClauseStarts` will be `[0, 1, 3]`. Note that the literals of the first |
| 91 | + /// clause always start at index 1. The start index for the literals of the |
| 92 | + /// second clause depends on the size of the first clause and so on. |
| 93 | + std::vector<size_t> ClauseStarts; |
| 94 | + |
| 95 | + /// Indicates that we already know the formula is unsatisfiable. |
| 96 | + /// During construction, we catch simple cases of conflicting unit-clauses. |
| 97 | + bool KnownContradictory; |
| 98 | + |
| 99 | +public: |
| 100 | + explicit CNFFormula(Variable LargestVar); |
| 101 | + |
| 102 | + /// Adds the `L1 v ... v Ln` clause to the formula. |
| 103 | + /// Requirements: |
| 104 | + /// |
| 105 | + /// `Li` must not be `NullLit`. |
| 106 | + /// |
| 107 | + /// All literals in the input that are not `NullLit` must be distinct. |
| 108 | + void addClause(ArrayRef<Literal> lits); |
| 109 | + |
| 110 | + /// Returns whether the formula is known to be contradictory. |
| 111 | + /// This is the case if any of the clauses is empty. |
| 112 | + bool knownContradictory() const { return KnownContradictory; } |
| 113 | + |
| 114 | + /// Returns the largest variable in the formula. |
| 115 | + Variable largestVar() const { return LargestVar; } |
| 116 | + |
| 117 | + /// Returns the number of clauses in the formula. |
| 118 | + /// Valid clause IDs are in the range [1, `numClauses()`]. |
| 119 | + ClauseID numClauses() const { return ClauseStarts.size() - 1; } |
| 120 | + |
| 121 | + /// Returns the number of literals in clause `C`. |
| 122 | + size_t clauseSize(ClauseID C) const { |
| 123 | + return C == ClauseStarts.size() - 1 ? Clauses.size() - ClauseStarts[C] |
| 124 | + : ClauseStarts[C + 1] - ClauseStarts[C]; |
| 125 | + } |
| 126 | + |
| 127 | + /// Returns the literals of clause `C`. |
| 128 | + /// If `knownContradictory()` is false, each clause has at least one literal. |
| 129 | + llvm::ArrayRef<Literal> clauseLiterals(ClauseID C) const { |
| 130 | + size_t S = clauseSize(C); |
| 131 | + if (S == 0) |
| 132 | + return llvm::ArrayRef<Literal>(); |
| 133 | + return llvm::ArrayRef<Literal>(&Clauses[ClauseStarts[C]], S); |
| 134 | + } |
| 135 | + |
| 136 | + /// An iterator over all literals of all clauses in the formula. |
| 137 | + /// The iterator allows mutation of the literal through the `*` operator. |
| 138 | + /// This is to support solvers that mutate the formula during solving. |
| 139 | + class Iterator { |
| 140 | + friend class CNFFormula; |
| 141 | + CNFFormula *CNF; |
| 142 | + size_t Idx; |
| 143 | + Iterator(CNFFormula *CNF, size_t Idx) : CNF(CNF), Idx(Idx) {} |
| 144 | + |
| 145 | + public: |
| 146 | + Iterator(const Iterator &) = default; |
| 147 | + Iterator &operator=(const Iterator &) = default; |
| 148 | + |
| 149 | + Iterator &operator++() { |
| 150 | + ++Idx; |
| 151 | + assert(Idx < CNF->Clauses.size() && "Iterator out of bounds"); |
| 152 | + return *this; |
| 153 | + } |
| 154 | + |
| 155 | + Iterator next() const { |
| 156 | + Iterator I = *this; |
| 157 | + ++I; |
| 158 | + return I; |
| 159 | + } |
| 160 | + |
| 161 | + Literal &operator*() const { return CNF->Clauses[Idx]; } |
| 162 | + }; |
| 163 | + friend class Iterator; |
| 164 | + |
| 165 | + /// Returns an iterator to the first literal of clause `C`. |
| 166 | + Iterator startOfClause(ClauseID C) { return Iterator(this, ClauseStarts[C]); } |
| 167 | +}; |
| 168 | + |
| 169 | +/// Converts the conjunction of `Vals` into a formula in conjunctive normal |
| 170 | +/// form where each clause has at least one and at most three literals. |
| 171 | +/// `Atomics` is populated with a mapping from `Variables` to the corresponding |
| 172 | +/// `Atom`s for atomic booleans in the input formulas. |
| 173 | +CNFFormula buildCNF(const llvm::ArrayRef<const Formula *> &Formulas, |
| 174 | + llvm::DenseMap<Variable, Atom> &Atomics); |
| 175 | + |
| 176 | +} // namespace dataflow |
| 177 | +} // namespace clang |
| 178 | + |
| 179 | +#endif // LLVM_CLANG_ANALYSIS_FLOWSENSITIVE_CNFFORMULA_H |
0 commit comments