-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
111 lines (85 loc) · 3.91 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import streamlit as st
# This is to load the environment tokens in my main file without using them publicly
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub
# Function to loop through all pdfs uploaded and extract the raw text in the pdfs
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
# To convert the entire text into chunks of text
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator = "\n",
chunk_size = 1000,
chunk_overlap = 200,
length_function = len
)
chunks = text_splitter.split_text(text)
return chunks
# The vector store to store the data and embeddings
def get_vectorstore(text_chunks):
embeddings = OpenAIEmbeddings()
# embeddings = HuggingFaceInstructEmbeddings(model_name = "hkunlp/instructor-xl")
vectorstore = FAISS.from_texts(texts = text_chunks, embedding = embeddings)
return vectorstore
def get_conversation_chain(vectorstore):
llm = ChatOpenAI()
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
memory = ConversationBufferMemory(memory_key='chat_history', return_messages = True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm = llm,
retriever = vectorstore.as_retriever(),
memory = memory,
)
return conversation_chain
def handle_userinput(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i%2 == 0:
st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html= True)
else:
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html= True)
def main():
load_dotenv()
st.set_page_config(page_title='Physics Chatbot', page_icon=':books:', layout='wide')
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header(" Your Physics Buddy :books:")
user_question = st.text_input("Ask a Question about Physics")
if user_question:
handle_userinput(user_question)
# st.write(user_template.replace("{{MSG}}", "Hello Robot"), unsafe_allow_html= True)
# st.write(bot_template.replace("{{MSG}}", "Hello Human"), unsafe_allow_html= True)
# For uploading pdf document
with st.sidebar:
st.subheader("Your Document")
pdf_docs = st.file_uploader("Upload your pdfs here and click on 'Process'", type=['pdf'], accept_multiple_files= True)
if(st.button("Process")):
with st.spinner("Processing your pdfs"): # GIves a loadig animation
# get the pdf text
raw_text = get_pdf_text(pdf_docs)
# get the text chunks
text_chunks = get_text_chunks(raw_text)
# st.write(text_chunks)
# to create our vector store with embeddings
vectorstore = get_vectorstore(text_chunks)
# create conversation chain
st.session_state.conversation = get_conversation_chain(vectorstore)
if __name__ == '__main__':
main()