-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjesson_fun.R
194 lines (137 loc) · 7.19 KB
/
jesson_fun.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# Functions used particularly by Jesson et al.'s method
# Heaviside function
heaviside.fun <- function(x) {
return(ifelse(x >= 0, 1, 0))
}
# Function to compute the PEI
APO.Jesson.PEI <- function(dose, lambda, capo.method, nn.init=NULL, d1.d2.ind, unconf.capo.model=NULL,
X.tensor, X.sample, Y.sample.len, use.parallel=TRUE, device, verbose=TRUE) {
n.obs <- dim(X.tensor)[1]
message("Estimating the PEI")
message("Sampling outcomes according to p(y|x,t)")
Y.samples <- matrix(NA, nrow=n.obs, ncol=Y.sample.len)
# The estimated density for particular values of X and t
Y.density1 <- nn.init$resp.gmm2(covariates=X.tensor[d1.d2.ind$data1.ind, ],
treatment=torch_squeeze(torch_tensor(rep(dose, length(d1.d2.ind$data1.ind)), device=device), dim=1))
Y.samples1 <- Y.density1$sample(Y.sample.len)
Y.samples1 <- t(as.matrix(Y.samples1)) # The samples are now on each row (n.data1 * Y.sample.len)
# The estimated density for particular values of X and t
Y.density2 <- nn.init$resp.gmm1(covariates=X.tensor[d1.d2.ind$data2.ind, ],
treatment=torch_squeeze(torch_tensor(rep(dose, length(d1.d2.ind$data2.ind)), device=device), dim=1))
Y.samples2 <- Y.density2$sample(Y.sample.len)
Y.samples2 <- t(as.matrix(Y.samples2)) # The samples are now on each row (n.data2 * Y.sample.len)
# Reorganize the results
Y.samples[d1.d2.ind$data1.ind, ] <- Y.samples1
Y.samples[d1.d2.ind$data2.ind, ] <- Y.samples2
message("Estimating the CAPOs under ignorability")
# If the method is "Neural Network Gaussian Mixture Model"
if (capo.method == "nn_gmm") {
mu.tilde <- rep(NA, n.obs)
mix.prob1 <- Y.density1$.mixture_distribution$probs # The fitted probabilities of each component
dist.mean1 <- Y.density1$.component_distribution$mean # The fitted means for each component
mu.tilde1 <- torch_sum(mix.prob1 * dist.mean1, dim=-1) # Compute the CAPO under ignorability assumption
mu.tilde1 <- as.array(mu.tilde1)
mix.prob2 <- Y.density2$.mixture_distribution$probs # The fitted probabilities of each component
dist.mean2 <- Y.density2$.component_distribution$mean # The fitted means for each component
mu.tilde2 <- torch_sum(mix.prob2 * dist.mean2, dim=-1) # Compute the CAPO under ignorability assumption
mu.tilde2 <- as.array(mu.tilde2)
# Reorganize the predictions
mu.tilde[d1.d2.ind$data1.ind] <- c(mu.tilde1)
mu.tilde[d1.d2.ind$data2.ind] <- c(mu.tilde2)
# If the method is "Regression forest"
} else if (capo.method == "regression_forest") {
# Compute mu.tilde, the CAPO with unconfoundedness assumption
mu.tilde <- predict(unconf.capo.model, data.frame(X=X.sample, t=rep(dose, X.sample.len)))$predictions
} else {
stop('capo.method must be "nn_gmm" or "regression_forest"')
}
unconf.APO.estimate <- mean(mu.tilde) # Take the mean of the estimated CAPOs to get the APO estimate under ignorability assumption for a given dose
message("Estimating the CAPO bounds")
if (use.parallel) { # If we want to use parallel computation
if (verbose) {
# Initialize another progress bar
pb <- txtProgressBar(max=n.obs, style=3)
progress <- function(n) {
setTxtProgressBar(pb, n)
if (n == n.obs) {close(pb)}}
opts <- list(progress=progress)
} else {
opts <- NULL
}
# Find y.down and y.up thanks to grid search (Algorithm 1)
CAPO.estimates <- foreach(k=1:n.obs, .combine="rbind",
.options.snow=opts) %dopar% {
CAPO.bounds <- grid.search.optimizer(lambda=lambda,
Y.sample=Y.samples[k, ],
mu.tilde=mu.tilde[k])
CAPO.bounds
}
} else {
if (verbose) {
pb <- txtProgressBar(max=n.obs, style=3)
}
# Find y.down and y.up thanks to grid search (Algorithm 1)
CAPO.estimates <- foreach(k=1:n.obs, .combine="rbind") %do% {
CAPO.bounds <- grid.search.optimizer(lambda=lambda,
Y.sample=Y.samples[k, ],
mu.tilde=mu.tilde[k])
if (verbose) {
setTxtProgressBar(pb, k)
}
CAPO.bounds
}
if (verbose) {
close(pb)
}
}
message("Computing the APO bounds")
# Compute the lower and upper bounds of the PEI for the APO
APO.lower <- mean(CAPO.estimates[, 3])
APO.upper <- mean(CAPO.estimates[, 4])
return(list(PEI.bounds=c(APO.lower, APO.upper), unconf.APO.estimate=unconf.APO.estimate))
}
# Function to estimate the CAPO bounds
CAPO.estim <- function(y.vec, y.H, optim, mu.tilde, lambda, w.fun) {
# If we want to solve the minimization problem
if (optim == "min") {
w.y <- w.fun(rep(y.H, length(y.vec)) - y.vec)
capo <- mu.tilde + mean(w.y * (y.vec - rep(mu.tilde, length(y.vec)))) / (1/(lambda**2 - 1) + mean(w.y))
} else if (optim == "max") { # Else, if we want to solve the maximization problem
w.y <- w.fun(y.vec - rep(y.H, length(y.vec)))
capo <- mu.tilde + mean(w.y * (y.vec - rep(mu.tilde, length(y.vec)))) / (1/(lambda**2 - 1) + mean(w.y))
} else {
stop("optim must be 'min' or 'max'")
}
return(capo)
}
# Find values of y.down and y.up thanks to Algorithm 1 from Jesson et al.
# lambda is the sensitivity parameter
# Y.sample is the sample obtained for a given couple (X, dose)
# mu.tilde is the CAPO estimated under ignorability assumption for a given couple (X, dose)
grid.search.optimizer <- function(lambda, Y.sample, mu.tilde) {
CAPO.up.fun <- function(y) CAPO.estim(y.vec=Y.sample, y.H=y, optim="max", mu.tilde=mu.tilde, lambda=lambda, w.fun=heaviside.fun)
CAPO.down.fun <- function(y) CAPO.estim(y.vec=Y.sample, y.H=y, optim="min", mu.tilde=mu.tilde, lambda=lambda, w.fun=heaviside.fun)
kappa.up.vec <- sapply(X=Y.sample, FUN=CAPO.up.fun)
kappa.down.vec <- sapply(X=Y.sample, FUN=CAPO.down.fun)
return(c(0, 0, min(kappa.down.vec), max(kappa.up.vec)))
mu.up <- -Inf
mu.down <- Inf
y.up <- 0
y.down <- 0
Y.sample <- unique(Y.sample) # Make sure we only have unique values
Y.sample.len <- length(Y.sample)
for (i in 1:Y.sample.len) {
Y.i <- Y.sample[i]
kappa.up <- CAPO.estim(y.vec=Y.sample, y.H=Y.i, optim="max", mu.tilde=mu.tilde, lambda=lambda, w.fun=heaviside.fun)
kappa.down <- CAPO.estim(y.vec=Y.sample, y.H=Y.i, optim="min", mu.tilde=mu.tilde, lambda=lambda, w.fun=heaviside.fun)
if (kappa.up > mu.up) {
mu.up <- kappa.up
y.up <- Y.i
}
if (kappa.down < mu.down) {
mu.down <- kappa.down
y.down <- Y.i
}
}
return(c(y.down, y.up, mu.down, mu.up))
}