Skip to content

Commit 963ddab

Browse files
committed
Add pandas dataframe methods and create flights data CSV file
1 parent b021b7c commit 963ddab

File tree

1 file changed

+111
-0
lines changed

1 file changed

+111
-0
lines changed

9-Pandas/3-pandas.ipynb

+111
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,111 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"## Pandas Essentials"
8+
]
9+
},
10+
{
11+
"cell_type": "code",
12+
"execution_count": 3,
13+
"metadata": {},
14+
"outputs": [
15+
{
16+
"name": "stdout",
17+
"output_type": "stream",
18+
"text": [
19+
" FlightID Airline Destination Duration Delay\n",
20+
"0 1 American Airline Sharjah 330 18\n",
21+
"1 2 Tata Airline Lahore 320 17\n",
22+
"2 3 PIA Washington 297 93\n",
23+
"3 4 Japan Airways Alaska 199 84\n",
24+
"4 5 Japan Airways Madina 146 2\n",
25+
" Duration Delay\n",
26+
"Airline \n",
27+
"American Airline 265.166667 50.777778\n",
28+
"Emirates 226.500000 61.700000\n",
29+
"Japan Airways 228.526316 55.736842\n",
30+
"PIA 227.125000 64.312500\n",
31+
"Qatar Airways 170.000000 65.875000\n",
32+
"Saudi Airline 213.500000 45.500000\n",
33+
"Tata Airline 215.444444 68.555556\n"
34+
]
35+
}
36+
],
37+
"source": [
38+
"import pandas as pd\n",
39+
"import numpy as np\n",
40+
"\n",
41+
"# Create a random flights data CSV file\n",
42+
"np.random.seed(0)\n",
43+
"num_records = 100\n",
44+
"\n",
45+
"AIRLINES = ['PIA', 'Qatar Airways', 'Emirates',\"Japan Airways\",\"American Airline\",\"Tata Airline\", \"Saudi Airline\"]\n",
46+
"\n",
47+
"CITIES = [\n",
48+
" \"Dubai\",\n",
49+
" \"Delhi\",\n",
50+
" \"Karachi\",\n",
51+
" \"Riyad\",\n",
52+
" \"Makkah\",\n",
53+
" \"Madina\",\n",
54+
" \"Kuwait\",\n",
55+
" \"Lahore\",\n",
56+
" \"Colombo\",\n",
57+
" \"Dhaka\",\n",
58+
" \"Sharjah\",\n",
59+
" \"Mumbai\",\n",
60+
" \"Auckland\",\n",
61+
" \"Alaska\",\n",
62+
" \"San Francisco\",\n",
63+
" \"Washington\",\n",
64+
"]\n",
65+
"\n",
66+
"flights_data = {\n",
67+
" 'FlightID': np.arange(1, num_records + 1),\n",
68+
" 'Airline': np.random.choice(AIRLINES, num_records),\n",
69+
" 'Destination': np.random.choice(CITIES, num_records),\n",
70+
" 'Duration': np.random.randint(60, 360, num_records), # Duration in minutes\n",
71+
" 'Delay': np.random.randint(0, 120, num_records) # Delay in minutes\n",
72+
"}\n",
73+
"\n",
74+
"flights_df = pd.DataFrame(flights_data)\n",
75+
"flights_df.to_csv('random_flights_data.csv', index=False)\n",
76+
"\n",
77+
"# Read the CSV file using pandas\n",
78+
"flights_df = pd.read_csv('random_flights_data.csv')\n",
79+
"\n",
80+
"# Display the first few rows of the dataframe\n",
81+
"print(flights_df.head())\n",
82+
"\n",
83+
"# Perform operations on the data\n",
84+
"# Example: Calculate the average duration and delay for each airline\n",
85+
"average_stats = flights_df.groupby('Airline')[['Duration', 'Delay']].mean()\n",
86+
"print(average_stats)"
87+
]
88+
}
89+
],
90+
"metadata": {
91+
"kernelspec": {
92+
"display_name": "venv",
93+
"language": "python",
94+
"name": "python3"
95+
},
96+
"language_info": {
97+
"codemirror_mode": {
98+
"name": "ipython",
99+
"version": 3
100+
},
101+
"file_extension": ".py",
102+
"mimetype": "text/x-python",
103+
"name": "python",
104+
"nbconvert_exporter": "python",
105+
"pygments_lexer": "ipython3",
106+
"version": "3.12.6"
107+
}
108+
},
109+
"nbformat": 4,
110+
"nbformat_minor": 2
111+
}

0 commit comments

Comments
 (0)