|
9 | 9 | },
|
10 | 10 | {
|
11 | 11 | "cell_type": "code",
|
12 |
| - "execution_count": 3, |
| 12 | + "execution_count": 25, |
13 | 13 | "metadata": {},
|
14 |
| - "outputs": [ |
15 |
| - { |
16 |
| - "name": "stdout", |
17 |
| - "output_type": "stream", |
18 |
| - "text": [ |
19 |
| - " FlightID Airline Destination Duration Delay\n", |
20 |
| - "0 1 American Airline Sharjah 330 18\n", |
21 |
| - "1 2 Tata Airline Lahore 320 17\n", |
22 |
| - "2 3 PIA Washington 297 93\n", |
23 |
| - "3 4 Japan Airways Alaska 199 84\n", |
24 |
| - "4 5 Japan Airways Madina 146 2\n", |
25 |
| - " Duration Delay\n", |
26 |
| - "Airline \n", |
27 |
| - "American Airline 265.166667 50.777778\n", |
28 |
| - "Emirates 226.500000 61.700000\n", |
29 |
| - "Japan Airways 228.526316 55.736842\n", |
30 |
| - "PIA 227.125000 64.312500\n", |
31 |
| - "Qatar Airways 170.000000 65.875000\n", |
32 |
| - "Saudi Airline 213.500000 45.500000\n", |
33 |
| - "Tata Airline 215.444444 68.555556\n" |
34 |
| - ] |
35 |
| - } |
36 |
| - ], |
| 14 | + "outputs": [], |
37 | 15 | "source": [
|
38 | 16 | "import pandas as pd\n",
|
39 | 17 | "import numpy as np\n",
|
40 | 18 | "\n",
|
41 | 19 | "# Create a random flights data CSV file\n",
|
42 |
| - "np.random.seed(0)\n", |
| 20 | + "# np.random.seed(0)\n", |
43 | 21 | "num_records = 100\n",
|
44 | 22 | "\n",
|
45 | 23 | "AIRLINES = [\n",
|
|
56 | 34 | " \"Dubai\",\n",
|
57 | 35 | " \"Delhi\",\n",
|
58 | 36 | " \"Karachi\",\n",
|
59 |
| - " \"Riyad\",\n", |
60 |
| - " \"Makkah\",\n", |
61 |
| - " \"Madina\",\n", |
| 37 | + " \"Riyadh\",\n", |
| 38 | + " \"Mecca\",\n", |
| 39 | + " \"Medina\",\n", |
62 | 40 | " \"Kuwait\",\n",
|
63 | 41 | " \"Lahore\",\n",
|
64 | 42 | " \"Colombo\",\n",
|
|
69 | 47 | " \"Alaska\",\n",
|
70 | 48 | " \"San Francisco\",\n",
|
71 | 49 | " \"Washington\",\n",
|
72 |
| - "]\n", |
73 |
| - "\n", |
| 50 | + "]\n" |
| 51 | + ] |
| 52 | + }, |
| 53 | + { |
| 54 | + "cell_type": "code", |
| 55 | + "execution_count": 26, |
| 56 | + "metadata": {}, |
| 57 | + "outputs": [], |
| 58 | + "source": [ |
74 | 59 | "flights_data = {\n",
|
75 | 60 | " \"FlightID\": np.arange(1, num_records + 1),\n",
|
76 | 61 | " \"Airline\": np.random.choice(AIRLINES, num_records),\n",
|
|
80 | 65 | "}\n",
|
81 | 66 | "\n",
|
82 | 67 | "flights_df = pd.DataFrame(flights_data)\n",
|
83 |
| - "flights_df.to_csv(\"random_flights_data.csv\", index=False)\n", |
84 |
| - "\n", |
| 68 | + "flights_df.to_csv(\"random_flights_data.csv\", index=False)\n" |
| 69 | + ] |
| 70 | + }, |
| 71 | + { |
| 72 | + "cell_type": "code", |
| 73 | + "execution_count": 27, |
| 74 | + "metadata": {}, |
| 75 | + "outputs": [ |
| 76 | + { |
| 77 | + "data": { |
| 78 | + "text/html": [ |
| 79 | + "<div>\n", |
| 80 | + "<style scoped>\n", |
| 81 | + " .dataframe tbody tr th:only-of-type {\n", |
| 82 | + " vertical-align: middle;\n", |
| 83 | + " }\n", |
| 84 | + "\n", |
| 85 | + " .dataframe tbody tr th {\n", |
| 86 | + " vertical-align: top;\n", |
| 87 | + " }\n", |
| 88 | + "\n", |
| 89 | + " .dataframe thead th {\n", |
| 90 | + " text-align: right;\n", |
| 91 | + " }\n", |
| 92 | + "</style>\n", |
| 93 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 94 | + " <thead>\n", |
| 95 | + " <tr style=\"text-align: right;\">\n", |
| 96 | + " <th></th>\n", |
| 97 | + " <th>FlightID</th>\n", |
| 98 | + " <th>Airline</th>\n", |
| 99 | + " <th>Destination</th>\n", |
| 100 | + " <th>Duration</th>\n", |
| 101 | + " <th>Delay</th>\n", |
| 102 | + " </tr>\n", |
| 103 | + " </thead>\n", |
| 104 | + " <tbody>\n", |
| 105 | + " <tr>\n", |
| 106 | + " <th>0</th>\n", |
| 107 | + " <td>1</td>\n", |
| 108 | + " <td>Tata Airline</td>\n", |
| 109 | + " <td>Mecca</td>\n", |
| 110 | + " <td>342</td>\n", |
| 111 | + " <td>114</td>\n", |
| 112 | + " </tr>\n", |
| 113 | + " <tr>\n", |
| 114 | + " <th>1</th>\n", |
| 115 | + " <td>2</td>\n", |
| 116 | + " <td>Emirates</td>\n", |
| 117 | + " <td>Dubai</td>\n", |
| 118 | + " <td>266</td>\n", |
| 119 | + " <td>57</td>\n", |
| 120 | + " </tr>\n", |
| 121 | + " <tr>\n", |
| 122 | + " <th>2</th>\n", |
| 123 | + " <td>3</td>\n", |
| 124 | + " <td>Emirates</td>\n", |
| 125 | + " <td>Dubai</td>\n", |
| 126 | + " <td>92</td>\n", |
| 127 | + " <td>91</td>\n", |
| 128 | + " </tr>\n", |
| 129 | + " <tr>\n", |
| 130 | + " <th>3</th>\n", |
| 131 | + " <td>4</td>\n", |
| 132 | + " <td>American Airline</td>\n", |
| 133 | + " <td>Washington</td>\n", |
| 134 | + " <td>175</td>\n", |
| 135 | + " <td>89</td>\n", |
| 136 | + " </tr>\n", |
| 137 | + " <tr>\n", |
| 138 | + " <th>4</th>\n", |
| 139 | + " <td>5</td>\n", |
| 140 | + " <td>Saudi Airline</td>\n", |
| 141 | + " <td>Sharjah</td>\n", |
| 142 | + " <td>238</td>\n", |
| 143 | + " <td>3</td>\n", |
| 144 | + " </tr>\n", |
| 145 | + " </tbody>\n", |
| 146 | + "</table>\n", |
| 147 | + "</div>" |
| 148 | + ], |
| 149 | + "text/plain": [ |
| 150 | + " FlightID Airline Destination Duration Delay\n", |
| 151 | + "0 1 Tata Airline Mecca 342 114\n", |
| 152 | + "1 2 Emirates Dubai 266 57\n", |
| 153 | + "2 3 Emirates Dubai 92 91\n", |
| 154 | + "3 4 American Airline Washington 175 89\n", |
| 155 | + "4 5 Saudi Airline Sharjah 238 3" |
| 156 | + ] |
| 157 | + }, |
| 158 | + "metadata": {}, |
| 159 | + "output_type": "display_data" |
| 160 | + } |
| 161 | + ], |
| 162 | + "source": [ |
85 | 163 | "# Read the CSV file using pandas\n",
|
86 | 164 | "flights_df = pd.read_csv(\"random_flights_data.csv\")\n",
|
87 | 165 | "\n",
|
88 | 166 | "# Display the first few rows of the dataframe\n",
|
89 |
| - "print(flights_df.head())\n", |
90 |
| - "\n", |
| 167 | + "display(flights_df.head())\n" |
| 168 | + ] |
| 169 | + }, |
| 170 | + { |
| 171 | + "cell_type": "code", |
| 172 | + "execution_count": 28, |
| 173 | + "metadata": {}, |
| 174 | + "outputs": [ |
| 175 | + { |
| 176 | + "data": { |
| 177 | + "text/html": [ |
| 178 | + "<div>\n", |
| 179 | + "<style scoped>\n", |
| 180 | + " .dataframe tbody tr th:only-of-type {\n", |
| 181 | + " vertical-align: middle;\n", |
| 182 | + " }\n", |
| 183 | + "\n", |
| 184 | + " .dataframe tbody tr th {\n", |
| 185 | + " vertical-align: top;\n", |
| 186 | + " }\n", |
| 187 | + "\n", |
| 188 | + " .dataframe thead th {\n", |
| 189 | + " text-align: right;\n", |
| 190 | + " }\n", |
| 191 | + "</style>\n", |
| 192 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 193 | + " <thead>\n", |
| 194 | + " <tr style=\"text-align: right;\">\n", |
| 195 | + " <th></th>\n", |
| 196 | + " <th>Duration</th>\n", |
| 197 | + " <th>Delay</th>\n", |
| 198 | + " </tr>\n", |
| 199 | + " <tr>\n", |
| 200 | + " <th>Airline</th>\n", |
| 201 | + " <th></th>\n", |
| 202 | + " <th></th>\n", |
| 203 | + " </tr>\n", |
| 204 | + " </thead>\n", |
| 205 | + " <tbody>\n", |
| 206 | + " <tr>\n", |
| 207 | + " <th>American Airline</th>\n", |
| 208 | + " <td>181.600000</td>\n", |
| 209 | + " <td>71.600000</td>\n", |
| 210 | + " </tr>\n", |
| 211 | + " <tr>\n", |
| 212 | + " <th>Emirates</th>\n", |
| 213 | + " <td>219.769231</td>\n", |
| 214 | + " <td>64.538462</td>\n", |
| 215 | + " </tr>\n", |
| 216 | + " <tr>\n", |
| 217 | + " <th>Japan Airways</th>\n", |
| 218 | + " <td>181.230769</td>\n", |
| 219 | + " <td>73.307692</td>\n", |
| 220 | + " </tr>\n", |
| 221 | + " <tr>\n", |
| 222 | + " <th>PIA</th>\n", |
| 223 | + " <td>226.357143</td>\n", |
| 224 | + " <td>47.285714</td>\n", |
| 225 | + " </tr>\n", |
| 226 | + " <tr>\n", |
| 227 | + " <th>Qatar Airways</th>\n", |
| 228 | + " <td>249.684211</td>\n", |
| 229 | + " <td>65.157895</td>\n", |
| 230 | + " </tr>\n", |
| 231 | + " <tr>\n", |
| 232 | + " <th>Saudi Airline</th>\n", |
| 233 | + " <td>214.928571</td>\n", |
| 234 | + " <td>64.928571</td>\n", |
| 235 | + " </tr>\n", |
| 236 | + " <tr>\n", |
| 237 | + " <th>Tata Airline</th>\n", |
| 238 | + " <td>196.416667</td>\n", |
| 239 | + " <td>67.833333</td>\n", |
| 240 | + " </tr>\n", |
| 241 | + " </tbody>\n", |
| 242 | + "</table>\n", |
| 243 | + "</div>" |
| 244 | + ], |
| 245 | + "text/plain": [ |
| 246 | + " Duration Delay\n", |
| 247 | + "Airline \n", |
| 248 | + "American Airline 181.600000 71.600000\n", |
| 249 | + "Emirates 219.769231 64.538462\n", |
| 250 | + "Japan Airways 181.230769 73.307692\n", |
| 251 | + "PIA 226.357143 47.285714\n", |
| 252 | + "Qatar Airways 249.684211 65.157895\n", |
| 253 | + "Saudi Airline 214.928571 64.928571\n", |
| 254 | + "Tata Airline 196.416667 67.833333" |
| 255 | + ] |
| 256 | + }, |
| 257 | + "metadata": {}, |
| 258 | + "output_type": "display_data" |
| 259 | + }, |
| 260 | + { |
| 261 | + "data": { |
| 262 | + "text/plain": [ |
| 263 | + "'Max Delay: 73.3076923076923 minutes'" |
| 264 | + ] |
| 265 | + }, |
| 266 | + "metadata": {}, |
| 267 | + "output_type": "display_data" |
| 268 | + }, |
| 269 | + { |
| 270 | + "data": { |
| 271 | + "text/plain": [ |
| 272 | + "'Max Duration: 249.68421052631578 minutes'" |
| 273 | + ] |
| 274 | + }, |
| 275 | + "metadata": {}, |
| 276 | + "output_type": "display_data" |
| 277 | + } |
| 278 | + ], |
| 279 | + "source": [ |
91 | 280 | "# Perform operations on the data\n",
|
92 | 281 | "# Example: Calculate the average duration and delay for each airline\n",
|
93 | 282 | "average_stats = flights_df.groupby(\"Airline\")[[\"Duration\", \"Delay\"]].mean()\n",
|
94 |
| - "print(average_stats)" |
| 283 | + "display(average_stats)\n", |
| 284 | + "\n", |
| 285 | + "display(f\"Max Delay: {average_stats['Delay'].max()} minutes\")\n", |
| 286 | + "display(f\"Max Duration: {average_stats['Duration'].max()} minutes\")" |
95 | 287 | ]
|
96 | 288 | }
|
97 | 289 | ],
|
|
0 commit comments